Advanced Microeconomics I

Old transparencies (Sommersemester 2016)

Organizational preliminaries

- Prof. Dr. Stefan Napel RW II, 1.83 stefan.napel@uni-bayreuth.de
- Office hours:
- Monday, 2-4 pm; please contact: vwl4@uni-bayreuth.de (Heidi Rossner)
- Downloads and information:
https://elearning.uni-bayreuth.de/
- Two "identical" classes per week; 1-2 weeks delay to lectures
- One-open-book exam will be posed in English; can be answered in English or German (same for optional midterm exam)

Textbooks

- The reference (consider buying it):
- Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green (1995). Microeconomic Theory. New York, NY: Oxford University Press. ($\equiv M W G$)
- Other recommended textbooks:
- Jehle, Geoffrey A., and Philip J. Reny (2011). Advanced Microeconomic Theory, 3 ${ }^{\text {rd }}$ edition. Amsterdam: Addison-Wesley.
- Rubinstein, Ariel (2012). Lecture Notes in Microeconomic Theory: The Economic Agent, ${ }^{\text {nd }}$ edition. Princeton, NJ: Princeton University Press. [it's free: http://arielrubinstein.tau.ac.il/]
- Varian, Hal R. (1992). Microeconomic Analysis, 3 ${ }^{\text {rd }}$ edition. New York, NY: W. W. Norton \& Company.

Goals and structure

- Goals of this course:
- Introduce key concepts of advanced microeconomic analysis
- Aid the self study of MWG
- Prepare for possible PhD studies: we pick a level below typical PhD programs, but familiarize ourselves with the standard textbook
\rightarrow you may skip the small print and most proofs for now
- Structure follows MWG

Tentative schedule for lectures

$\#$	Topic	Chs.
1	Introduction	
2	Preference and choice	1.A-D
3	Consumer choice	2.A-F
4	Classical demand theory	3.A-E, G
5	Aggregate demand	3.I; 4.A-D
6	Choice under risk	6.A-D, F
7	Static games of complete information	7.A-E; 8.A-D, F
8	Dynamic games of complete information	9.A-B; 12.App. A
9	Games of incomplete information	8.E, 9.C
10	Competitive Markets	10.A-G
11	Market power	12.A-F
12	Question session for exam	

- This course is different ...
- Lectures will not provide a self-contained treatment of all material
- Strenuous self-study cannot be avoided (workload still much lower than in a UK/US research MSc/PhD program; NB: 8 ECTS points imply 8 h of homework / week, plus 4 h attendance!)
- Mixture of slides and chalk \& talk
- Optional midterm exam:
- Two problems on topics of sessions \#1 - \#6, each graded in a binary fashion ("+" or "o")
- Each "+" earns 5 bonus points for the 60-point final exam
- Most of what you learn in this course will be learned by doing problems, i.e., preparing for weekly classes and exams

1. Introduction

- Microeconomics studies the behavior of individuals or groups, how they interact and bring about collective outcomes
- We will look at models of
- Preferences, consumer choice, demand, choice under risk
- Strategic decision making (= game theory)
- Perfectly and imperfectly competitive markets
- Market failure, asymmetric information, and mechanism design
- General equilibrium
- Social choice and welfare

Models

- "Models" are simplified descriptions of a part of reality (\equiv the domain in which we observe and take measurements)
- Their purposes include
- description per se
- explanation and prediction
- justification
- decision support
- They can be represented in different ways, e.g.,
- verbally
- graphically or mechanically
- mathematically
- in a programming language
- All representations boil down to a system of assumptions, axioms, premises, or initial conditions $\left\{A_{1}, \ldots, A_{n}\right\}$

Models

- The system of assumptions, axioms, etc. should
- be logically consistent, irreducible, and comprehensible (A. Einstein: "... as simple as possible, but not simpler!")
- relevant for the model's purpose, relate to reality, and have at least some empirical support
- The advantage of stating $\left\{A_{1}, \ldots, A_{n}\right\}$ mathematically instead of in everyday language or software is that the model is particularly
- concise and transparent
- easy to check for consistency
- amenable to formal manipulations and logical deduction
- Mathematical models are constructed with manipulability in mind; this implies a delicate trade-off with realism
(Danger: "Searching where the light is rather than where the keys were lost...")

"Searching where the light is ..."

Models and economic theory

- Some philosophers of science (Hempel, Oppenheim) argued that the distinctive feature of a theory (vs. a model) is: at least some A_{i} is a universal law, i.e., a time and spaceinvariant, necessary connection between certain phenomena
- Such requirements would preclude any economic theory ...
- Social scientists have to contend themselves with restricted regularities or mere tendencies (vs. laws of mechanics)
- e.g., that individuals can usually decide between two available options and mostly do so in a consistent fashion
- Economics is more difficult than physics also because it involves interpretation of phenomena created by objects of study (individuals, firms, ...) who also base their actions on interpretations of reality, possibly influenced by economic theory

Do economics, not mathematics!

- Most microeconomic analysis uses mathematical language and techniques
- We need to do the maths because even trained economic intuition is sometimes wrong:
- One obtains a 'counter-intuitive' result doing the maths, and only facing it realizes that some (ex post: intuitive) causal relations were overlooked
- It is essential to focus on the economics in what you read and do, even though the maths tend to be more time-consuming
- A good intuition about agents' economic incentives is more useful than superb knowledge of Kuhn-Tucker conditions or semidefiniteness of matrices, even in optimization problems

Example (1)

- Consider the following simple microeconomic problem:
- Julian wants to buy spoons and forks
- Each pair of one spoon and one fork gives Julian 1 unit of utility
- A spoon not matched with a fork gives him only a units of utility, where $0 \leq a<1 / 2$; a fork not matched with a spoon also gives a
- Let p_{1} be the price of spoons, p_{2} the price of forks, and w the wealth that Julian plans to spend on spoons and forks
- Assume he wants to get the most utility for each euro he spends
- Find Julian's demand functions for spoons and forks!

2. Preference and choice

- The basic constituent of most economic models is the neoclassical "economic man" or homo economicus
- He or she is a highly stylized model of real decision makers
- "economicus" refers to "the economic way" of decision making, not to the context of decisions
- Broadly speaking, homo economicus is assumed to
- deliberately choose the most suitable means to his or her ends
- evaluate options according to their anticipated consequences (decisions are made in the "shadow of the future")
- weigh the costs and the benefits of a particular choice
... or rather behave "as if" he or she would be doing so

Preliminary remarks

- While the rationality embodied by homo economicus is the key assumption of most of modern economics, it should not be taken too literally
- Hardly any economist thinks that real people are as deliberate, future-oriented, and clever as will commonly be assumed
- Most would hold that people are behaving as if they were "economically rational" sufficiently often to derive useful conclusions from correspondingly pragmatic models
- See
- Ariely, Dan (2008). Predictably Irrational. London: Harper Collins.
- Kahneman, Daniel (2011). Thinking, Fast and Slow. New York: Farrar, Straus and Giroux.
for illuminating accounts of the "biases" of real decision makers

Choosing between several alternatives

- Consider an agent who needs to choose between several actions
- Suppose each action is associated with a particular outcome, and these outcomes are all that the agent cares about
- Denote the set of all possible, mutually exclusive outcomes (or options or alternatives) by X
- Options can be very concrete, like
$X=\{$ go to law school in Berlin, study economics in Bayreuth, ...\}, or, for us, abstract like $X=\{x, y, z\}$.
- Economics presumes that whenever she chooses from the subset $X^{\prime} \subseteq X$, the agent picks an option $x \in X^{\prime}$ which serves his or her goals best (whatever they may be...)
\Rightarrow If we observe that the agent chooses x from X^{\prime}, we conclude that x was amongst the best options in X^{\prime} for this agent

Preferences vs. choice rules

- There are two main approaches to modeling choice behavior:
- Binary preference relations
- Choice rules
- Preference relations are less general, but more handy (with many further restrictions imposed to make them even more handy)
- Observing the choice of x when X ' was available reveals that x is weakly preferred to any other element $y \in X^{\prime}$ when a choice must be made from X^{\prime}
- The preference approach entails the simplifying assumption: x is weakly preferred to y independently of the presence or absence of any other alternatives $z \in X$, i.e., also when a choice must be made from $X^{\prime \prime} \neq X^{\prime}$

Preference relations

- Given such context-independence, an agent's full choice behavior is well-defined by his choices from binary subsets $X^{\prime}=\{x, y\}$
- When x is weakly preferred to y, we write: $x \succsim y$
- \succsim puts (some) pairs of elements $x, y \in X$ into a specific relationship; it is known mathematically as a binary relation
- A binary relation is formally just a subset of $X \times X$; some authors write $(x, y) \in \succsim$ instead of $x \succsim y$
(NB: a function $f: X \rightarrow Y$ can similarly be viewed as just a subset of $X \times Y$)

Other relations derived from \succsim

- If sometimes x and sometimes y is chosen out of $X^{\prime}=\{x, y\}$, then the agent is said to be indifferent between x and y, i.e.,

$$
x \succsim y \wedge y \succsim x \Leftrightarrow: x \sim y
$$

- If the agent (weakly) prefers x over y and is not indifferent, he is said to strictly prefer x over y, i.e.,

$$
x \succsim y \wedge \neg(y \succsim x) \Leftrightarrow: x \succ y
$$

- $x \succ y$ is equivalent to saying:
"The agent never chooses y when x is available"

Rational preferences

- Economics does not care about why somebody prefers x to y; neither does it proclaim which option the agent should prefer
- The common requirement for calling an individual rational is that his choices reflect preferences that are "complete" and "transitive"
- Complete means that for any two options $x, y \in X$, the agent either weakly prefers x or weakly prefers y or both, i.e.,

$$
\forall x, y \in \dot{X}: x \succsim y \vee y \succsim x
$$

- Completeness formalizes that the agent can reach a decision facing any binary choice problem
- Transitive means that a preference for x over y together with a preference for y over z also entails a preference for x over z, i.e.,

$$
x \succsim y \wedge y \succsim z \Rightarrow x \succsim z
$$

- Transitivity rules out cycles, which would, e.g., preclude a decision facing $X^{\prime}=\{x, y, z\}$

Violations of transitivity

- An argument against persistent intransitivity of real people is that one might (or the market would) ruin them with a money pump:
- Suppose your colleague has intransitive preferences:

$$
\text { apple } \succ \text { banana } \succ \text { citrus fruit } \succ \text { apple }
$$

- Give him an apple for free
- Then offer to sell him a citrus fruit for the apple and, e.g., 1 cent; he will accept because he strictly prefers the citrus fruit
- Next sell him a banana for the citrus fruit and 1 cent
- Now sell him an apple for the banana and 1 cent, and repeat the cycle ...
- However, this ignores transaction costs, and the possibility that an intransitivity may be corrected (only) if someone exploits it big time
- Intransitivity is normal when alternatives are very finely graded:
- $\forall k \in \mathbf{N}_{0}$: coffee with k grains of sugar \sim coffee with $k+1$ grains of sugar \Rightarrow coffee without sugar \sim coffee with 100 g of sugar ?

Utility representation

- If set of alternatives X is finite (or countably infinite) and the agent has a complete and transitive preference relation \succsim over it, then the agent's preferences over X can be represented by a utility function $u: X \rightarrow \mathbf{R}$,
i.e., we can find real numbers $u(x)$ such that

$$
x \succsim y \Leftrightarrow u(x) \geq u(y)
$$

- Note that if $u(\cdot)$ represents the agent's preferences, then so does any $v(\cdot)$ which is a strictly increasing transformation of $u(\cdot)$
- The latter implies that the difference or ratio between utility levels of x and y do not mean anything:
$u(\cdot)$ only allows conclusions about the order of x and y, and is therefore called an ordinal utility function

Utility representation

- If the set of alternatives X is uncountably infinite, then completeness and transitivity of a preference relation are not sufficient in order to guarantee existence of a utility representation
- In particular, lexicographic preferences \succsim_{L} over bundles of two goods $\left(x_{1}, x_{2}\right) \in \mathbf{R}_{+}{ }^{2}$, defined by

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) \succ_{L}\left(y_{1}, y_{2}\right): \Leftrightarrow & x_{1}>y_{1} \vee \\
& \left\{x_{1}=y_{1} \wedge x_{2}>y_{2}\right\},
\end{aligned}
$$

and

$$
\left(x_{1}, x_{2}\right) \sim L\left(y_{1}, y_{2}\right): \Leftrightarrow x_{1}=y_{1} \wedge x_{2}=y_{2}
$$

do not possess a utility representation

Utility representation

- A preference relation \succsim is called continuous if whenever $x_{k} \succsim y$ (resp. $y \succsim x_{k}$) holds for all elements x_{k} of a sequence $\left\{x_{k}\right\}_{k=1,2, \ldots}$ with limit point x^{*} then $x^{*} \succsim y$ (resp. $y \succsim x^{*}$) must also be true
- Continuity rules out that negligible changes completely reverse the ordering of two options:
- Lexicographic preferences rank $(2+1 / k, 1)$ strictly higher than $(2,2)$ for every $k=1,2, \ldots$
- The limit point $(2,1)$, however, is ranked strictly lower than $(2,2)$
- An important result in decision theory states:

If \succsim is a complete, transitive, and continuous preference relation on the arbitrary set of outcomes X, then

- \succsim can be represented by an ordinal utility function $u: X \rightarrow \mathbf{R}$
- $u(\cdot)$ can be chosen to be continuous (but not necessarily also differentiable, or even C^{1})

Remarks

- Economic rationality itself does not require existence of a utility representation of an agent's preferences
- Only for convenience is economic rationality sometimes equated with utility-maximizing behavior, but inaccurately so
- In any case, assuming utility maximization does not require agents to "know their utility function" and "try to maximize"; as it happens, if their preferences satisfy completeness and transitivity (plus continuity), they act exactly as if they did ...
- Use of a particular utility function (e.g., $u\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$) amounts to an additional assumption on top of that of a homo economicus

Remarks

- Preferences are psychological or biological entities that economists take as given and fixed
- We tend to ignore preferences'
- origin or causes
- intensity
- possible dynamics
- There are, however, also economic studies that investigate preference saliences, likely mechanisms of preference change, and their effects on decisions in markets or outside
- A key problem of changing / reference-dependent preferences is the welfare interpretation of outcomes

Choice structures and choice rules

- Recall that the move from observing choice x from X^{\prime} towards a binary preference relation entailed a presumption of contextindependence regarding greater desirability of x than $y \in X^{\prime}$
- If one does not want to impose this restriction, one can work with so-called choice structures
- A choice structure ($\mathscr{B}, C(\cdot)$) has two ingredients:
- $\mathscr{B} \subseteq 2^{X}$ is a family of nonempty subsets of X; elements $B \in \mathscr{B}$ are called budget sets,
\mathfrak{B} is meant to describe all choice experiments that could be posed to the decision maker
- The so-called choice rule or choice correspondence $C(\cdot)$ maps any budget set $B \in \mathscr{B}$ to a (nonempty) subset $C(B) \subseteq B$;
it lists all alternatives that the decision maker might choose from B (i.e., he finds equally acceptable from B)

Example

- Suppose that $X=\{B T, \mathrm{KU}, \mathrm{N}\}$ and $\mathscr{B}=\{\{\mathrm{KU}, \mathrm{N}\},\{\mathrm{BT}, \mathrm{KU}, \mathrm{N}\}\}$
- A possible choice structure is $\left(\mathscr{B}, C_{1}(\cdot)\right)$, where
$-C_{1}(\{K U, N\})=\{K U\}$
- $C_{1}(\{B T, K U, N\})=\{K U\}$
\rightarrow Kulmbach is the preferred location no matter what other alternatives are in the budget set
- Another possible choice structure is $\left(\mathscr{B}, C_{2}(\cdot)\right)$, where
$-C_{2}(\{K U, N\})=\{N\}$
- $C_{2}(\{B T, K U, N\})=\{K U\}$
\rightarrow He prefers the location in the budget set which is second-closest to Bayreuth

Weak axiom

- A common restriction on choice structures $(\mathscr{B}, C(\cdot))$, which rules out behavior of the latter kind, is the weak axiom of revealed preference (WARP or WA):
- If x is chosen for a $B \in \mathscr{B}$ that also contains y, and y is chosen for another $B^{\prime} \in \mathscr{B}$ that also contains both, then x must be equally acceptable in B^{\prime}, i.e.,

$$
x, y \in B, x \in C(B) \text { and } x, y \in B^{\prime}, y \in C(B) \Rightarrow x \in C\left(B^{\prime}\right)
$$

- If we interpret the existence of a budget set $B \ni x, y$ with $x \in C(B)$ as: " x is revealed weakly preferred to y (for some budget set)", WARP can simply be phrased as follows:
- If x is revealed weakly preferred to y, then y cannot be revealed strictly preferred to x

Relationship of preferences and choice rules (1)

- Two natural questions arise about WARP:

1. If a decision maker has a rational preference ordering \gtrsim, do her decisions - when facing choices from budget sets in \mathfrak{B} - necessarily generate a choice structure that satisfies WARP?
2. If an individual's choice behavior for a family of budget sets \mathfrak{B} is captured by a choice structure $(\mathfrak{B}, C(\cdot))$ that satisfies WARP, does any rational preference relation \gtrsim exist which is consistent with these choices (i.e., which rationalizes $C(\cdot)$ relative to \mathfrak{B})?

Relationship of preferences and choice rules (2)

- Both questions can basically be answered affirmatively:

1. A choice structure which is generated by a rational preference ordering \gtrsim automatically satisfies WARP
2. That a choice structure $(\mathscr{B}, C(\cdot))$ satisfies WARP is sufficient for the existence of an (even unique) preference relation \gtrsim which rationalizes it if \mathscr{B} includes all subsets $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right| \leq 3$ (only then does WARP guarantee transitivity)

- So, if choices are defined on all subsets of X and satisfy WARP, then both preference and choice rule-based approaches to modeling behavior are equivalent
- NB: Consumer decisions described by a demand function $\boldsymbol{x}(\boldsymbol{p}, w)$ are defined only for special subsets of X; then, stronger properties than WARP are needed to guarantee the rationalizability of choices (in an economic sense)

3. Choice-based demand theory

- Now study homo economicus as a consumer in a (competitive) market economy; adopt a choice-based perspective (\leftrightarrow preference-based in 4.)
- Choice of quantities of goods or services provided by the market, called commodities, subject to physical and economic constraints
- Any particular quantity combination $\left(x_{1}, x_{2}, \ldots, x_{L}\right)$ of L different commodities corresponds to a point \boldsymbol{x} in commodity space \mathbf{R}^{L}
- Definition of the relevant commodities comes with great flexibility: same good delivered at different points in time, different locations, or in distinct 'states of the world' are just different commodities
- Physical restrictions on bundles that the individual can consume are reflected by restricting \mathbf{R}^{L} to a consumption set $X \subseteq \mathbf{R}^{L}$

Divisibility and price taking

- For simplicity, we consider $\mathbf{R}_{+}{ }^{L}$ as agents' consumption set; this is a convex set, i.e., we assume perfect divisibility
- We also assume the existence of a complete market, i.e., every commodity $i=1, \ldots, L$ is traded (property rights are well-defined for every relevant good)
- The considered consumer is presumed to be a price taker, i.e., cannot affect prices by his decisions
- Suppliers use linear price schemes, i.e., sell at constant unit price (vs. non-linear pricing: two-part tariffs, quantity discounts, ...),
e.g., because there is perfect competition
- For convenience, let the price of any good i be positive, i.e., $p_{i}>0$ for $i=1, \ldots, L$

Walrasian budget sets

- The economic constraint faced by the agent is that he must afford any commodity bundle $\boldsymbol{x} \in \mathbf{R}_{+}{ }^{\text {L }}$ which he intends to pick, i.e., for a given price vector $\boldsymbol{p} \in \mathbf{R}_{+}{ }^{L}$ total expenditure

$$
p \cdot \boldsymbol{x}:=p_{1} x_{1}+\ldots+p_{L} x_{L}
$$

cannot exceed wealth $w>0$

- The set of affordable, physically feasible bundles for given \boldsymbol{p} and w is the consumer's Walrasian or competitive budget set

$$
B_{p, w}:=\left\{\boldsymbol{x} \in \mathbf{R}_{+}^{\llcorner }: \boldsymbol{p} \cdot \boldsymbol{x} \leq w\right\}
$$

- The consumer's choice problem is thus: "Choose a consumption bundle \boldsymbol{x} from $B_{p, w}{ }^{\text {" }}$

Budget hyperplane

- The set $\left\{\boldsymbol{x} \in \mathbf{R}^{L}: \boldsymbol{p} \cdot \boldsymbol{x}=w\right\}$ is known as the budget line; or for $L>2$ as the budget hyperplane;
it is the upper boundary of $B_{p, w}$
- It's respective intercepts are w / p_{i}, i.e., the maximal affordable quantity if only good i is purchased
- The fact that $\boldsymbol{p} \cdot \boldsymbol{x}=w$ and $\boldsymbol{p} \cdot \boldsymbol{x}^{\prime}=w$ for any two points \boldsymbol{x} and \boldsymbol{x} ' on the budget hyperplane implies that \boldsymbol{p} is orthogonal to it [Recall that the dot product of any vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{L}$ satisfies:

$$
\boldsymbol{x} \cdot \boldsymbol{y}=|\boldsymbol{x}| \cdot|\boldsymbol{y}| \cdot \cos (\theta)
$$

where θ denotes the angle between the vectors; in particular, $\boldsymbol{x} \cdot \boldsymbol{y}=0$ iff \boldsymbol{x} and \boldsymbol{y} are orthogonal]

Walrasian demand

- Set $\mathscr{B}^{w}=\left\{B_{p, w}: \boldsymbol{p} \in \mathbf{R}_{++}{ }^{L} \wedge w>0\right\}$ is just a family of budget sets
- At least in principle, we can observe a consumer's choices $C(B) \subseteq B$ for any budget set $B=B_{p, w} \in \mathscr{B}$
- These choices are called the (Walrasian) demand of the consumer and we refer to

$$
x(\boldsymbol{p}, w):=C\left(B_{p, w}\right)
$$

as the consumer's Walrasian demand correspondence

- We often focus on case in which $C\left(B_{p, w}\right)$ is singleton-valued, i.e., the consumer picks a unique element in any Walrasian budget set
- $x(\boldsymbol{p}, w)$ is then called the Walrasian demand function (we then drop the brackets around $\left\{\boldsymbol{x}^{*}\right\}$)

Homogeneity of Walrasian demand

- A function $f: X \rightarrow Y$ (analogously, a correspondence $F: X \rightrightarrows Y$) between vector spaces X and Y is called homogeneous of degree $r \Leftrightarrow \forall \lambda>0: \forall x \in X: f(\lambda x)=\lambda^{r} f(x)$
- Demand is homogeneous of degree zero iff $x(\lambda \boldsymbol{p}, \lambda w) \equiv x(\boldsymbol{p}, w)$, i.e., when prices and wealth all change by the same factor then demand does not change (\rightarrow only relative prices matter)
- We will assume that the individual cares only about the commodities, and doesn't suffer from money illusion
\Rightarrow Choice depends only on which bundles are affordable and so the fact that $B_{p, w} \equiv B_{\lambda p, \lambda w}$ implies $x(\lambda \boldsymbol{p}, \lambda w) \equiv x(\boldsymbol{p}, w)$

Notes on homogeneity of degree zero

- Given that we can scale prices and wealth up or down by $\lambda>0$ without affecting demand, it is often convenient to normalize such that $w=1$, or such that $p_{i}=1$ for some good i and then all prices are expressed in units of this numeraire good

Technical note:

- If $x(\boldsymbol{p}, w)$ is differentiable, then Euler's theorem for homogeneous functions implies that

$$
\mathrm{D}_{\boldsymbol{p}} x(\boldsymbol{p}, w) \boldsymbol{p}+\mathrm{D}_{w} x(\boldsymbol{p}, w) w=\mathbf{0},
$$

where D_{p} and D_{w} refer to the Jacobian (sub-)matrices of partial derivatives w.r.t. p_{1}, \ldots, p_{L}, and w:
price and wealth derivatives of demand for any good i, when weighted by these prices and wealth, sum to zero

- This can also be stated in terms of elasticities (divide each row i by $x_{i}(\boldsymbol{p}, w)$): the effects on demand for good i of (i) an equal percentage change in all prices, and (ii) in wealth, cancel

Walras‘ law

- We say that a Walrasian demand function (or correspondence) $x(p, w)$ satisfies Walras' law (or is budget balancing) iff it is an element of the budget hyperplane for all \boldsymbol{p} and w, i.e.,

$$
\begin{aligned}
& \begin{array}{r}
\boldsymbol{x}=x(\boldsymbol{p}, w) \\
(\operatorname{or} \boldsymbol{x} \in x(\boldsymbol{p}, w))
\end{array} \Rightarrow \boldsymbol{p} \cdot \boldsymbol{x}=w
\end{aligned}
$$

- Walras' law says that the consumer fully expends his wealth
- When understood in a broad way (e.g., as applying to the entire lifetime of an agent, with bequests viewed as commodities, too), this does not amount to a very restrictive assumption

Technical note on Walras‘ law

- In case of a differentiable demand function the requirement

$$
p \cdot x(p, w)=w
$$

imposed by Walras'law yields

$$
\sum_{k=1}^{L} p_{k} \frac{\partial x_{k}(\mathbf{p}, w)}{\partial p_{i}}+x_{i}(\mathbf{p}, w)=0
$$

after differentiation w.r.t. the price of good i

- This is a differential statement of the fact that total expenditure cannot change after a change in some price (... it equals w)
- Similarly,

$$
\sum_{k=1}^{L} p_{k} \frac{\partial x_{k}(p, w)}{\partial w}=1
$$

captures that increasing w raises expenditure exactly by the increment

Comparative statics w.r.t. wealth

- How do observed choices vary with changes in wealth and prices?
- Examination of outcome changes due to a change in underlying economic parameters is known as comparative statics analysis
- The wealth effect for good i at (\boldsymbol{p}, w) is simply $\partial x_{i}(\boldsymbol{p}, w) / \partial w$
- Commodity i is normal at (\boldsymbol{p}, w) if the wealth effect for it is positive, i.e., demand increases in wealth; i is inferior at (\boldsymbol{p}, w) if the wealth effect is negative
- If all commodities are normal at all ($\boldsymbol{p}, \boldsymbol{w}$), demand is called normal
- If we fix prices \boldsymbol{p}^{\prime} then $x\left(\boldsymbol{p}^{\prime}, w\right)$ is called the consumer's Engel function and $x_{i}\left(\boldsymbol{p}^{\prime}, w\right)$ his Engel curve for good i; the image of $x\left(\boldsymbol{p}^{\prime}, w\right)$ is known as the wealth expansion path

Comparative statics w.r.t. prices

- Derivative $\partial x_{i}(\boldsymbol{p}, w) / \partial p_{k}$ is the price effect of p_{k} on demand for good i at (p,w); the Jacobian matrix $\mathrm{D}_{p} x(\boldsymbol{p}, w)$ collects these in a compact form
- Good i is said to be a Giffen good at (\boldsymbol{p}, w) if $\partial x_{i}(\boldsymbol{p}, w) / \partial p_{i}>0$, i.e., a drop in i's price reduces the demand for it
- Under WARP and Walras' law, a commodity can only be Giffen if it is also (very) inferior,
e.g., very low-quality good purchased by a poor consumer
- We commonly plot $x_{i}(\boldsymbol{p}, w)$ as a function of p_{i} for fixed \boldsymbol{p}_{-i} and w; the image of $x(\boldsymbol{p}, w)$ in, e.g., $x_{1}-x_{2}$-space when only p_{i} is varied is known as an offer curve

Minimal condition for rationalizing demand

- $\mathscr{B}^{w}=\left\{B_{p, w}: \boldsymbol{p} \in \mathbf{R}_{++}{ }^{L} \wedge w>0\right\}$ and $x(\boldsymbol{p}, w)$ define a choice structure
- If $x(\boldsymbol{p}, w)$ is single-valued, i.e., a function, then WARP becomes:

$$
\boldsymbol{p} \cdot x\left(\boldsymbol{p}^{\prime}, w\right) \leq w \wedge x\left(\boldsymbol{p}^{\prime}, w\right) \neq x(\boldsymbol{p}, w) \Rightarrow \boldsymbol{p}^{\prime} \cdot x(\boldsymbol{p}, w)>w^{\prime}
$$

- That is:

If $x\left(\boldsymbol{p}^{\prime}, w^{\prime}\right)$ is affordable in price-wealth situation (\boldsymbol{p}, w) but ignored, then choice of $x\left(\boldsymbol{p}^{\prime}, w^{\prime}\right)$ at $\left(\boldsymbol{p}^{\prime}, w^{\prime}\right)$ requires that $x(\boldsymbol{p}, w)$ would blow the budget in situation ($\boldsymbol{p}^{\prime}, w^{\prime}$)
(If $x\left(\boldsymbol{p}, w\right.$) is revealed preferred to $x\left(\boldsymbol{p}^{\prime}, w\right)$ then $x\left(\boldsymbol{p}^{\prime}, w\right)$ must not be revealed preferred to $x(\boldsymbol{p}, w)$! - Choice of $x\left(\boldsymbol{p}^{\prime}, w\right)$ at ($\left.\boldsymbol{p}^{\prime}, w\right)$ would do so if $x(\boldsymbol{p}, w)$ were also affordable at ($\left.\boldsymbol{p}^{\prime}, w\right)$.)

- NB:

WARP is not sufficient to conclude that demand can be rationalized by a preference relation over commodity bundles (why?)

Slutsky wealth compensation

- A price change has two effects:

1. It alters the relative price of different commodities
2. It changes the consumer's real wealth (affordability)

- Weak axiom restricts demand changes in response to price changes when taking affordability into account
- One can isolate the effect of relative price changes by adjusting the budget in a way that keeps the baseline bundle just affordable, i.e., consider $w^{\prime}=p^{\prime} \cdot x(p, w)$
- This adjustment is known as a Slutsky wealth compensation, resulting in Slutsky compensated price changes

WARP \approx compensated law of demand

- Provided that the Walrasian demand function $x(\boldsymbol{p}, w)$ is homogeneous of degree zero and satisfies Walras' law, WARP is equivalent to the compensated law of demand (CLD): $x(\boldsymbol{p}, w)$ satisfies WARP
\Leftrightarrow For any compensated price change from ($\boldsymbol{p}, \boldsymbol{w}$) to

$$
\left(\boldsymbol{p}^{\prime}, w^{\prime}\right)=\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}^{\prime} \cdot x(\boldsymbol{p}, w)\right),
$$

we have

$$
\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right) \cdot\left[x\left(\boldsymbol{p}^{\prime}, w\right)-x(\boldsymbol{p}, w)\right] \leq 0
$$

with strict inequality whenever $x\left(\boldsymbol{p}^{\prime}, w\right) \neq x(\boldsymbol{p}, w)$

- This 'law' implies that price p_{i} and compensated demand x_{i} always move in opposite directions;
$\Delta \boldsymbol{p}=\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right)=\left(0, \ldots, 0, \Delta p_{i}, 0, \ldots, 0\right)$ implies $\Delta p_{i} \Delta x_{i} \leq 0$
- Question:

Should the same be true for uncompensated demand?

Substitution and income effects

- Let us fix a reference bundle $\boldsymbol{z}=x\left(\boldsymbol{p}^{0}, w^{0}\right)$ and look at the Slutsky compensated demand function $x^{s}(\boldsymbol{p}, \mathbf{z}) \equiv x(\boldsymbol{p}, \boldsymbol{p} \cdot \boldsymbol{z})$
- As prices vary, $x^{s}(\boldsymbol{p}, \boldsymbol{z})$ changes;
this change reflects a pure substitution effect:
the consumer responds to new relative prices, while his real wealth has stayed constant (in the sense of \boldsymbol{z} still being affordable)
- A change Δx_{i} in uncompensated demand can be decomposed into such a (virtual) substitution effect Δx_{i} sub. and the income

- Taking the derivative of $x_{i}^{s}(\boldsymbol{p}, \boldsymbol{z}) \equiv x_{i}(\boldsymbol{p}, \boldsymbol{p} \cdot \boldsymbol{z})$ w.r.t p_{k} at \boldsymbol{p}^{0}, one obtains the Slutsky equation

$$
\partial x_{i}^{s}\left(\boldsymbol{p}^{0}, \boldsymbol{z}\right) / \partial p_{k}=\partial x_{i}\left(\boldsymbol{p}^{0}, w^{0}\right) / \partial p_{k}+\partial x_{i}\left(\boldsymbol{p}^{0}, w^{0}\right) / \partial w \cdot x_{k}\left(\boldsymbol{p}^{0}, w^{0}\right)
$$

Slutsky matrix

- These pure substitution effects (of a change in p_{k} on demand for commodity i) can be collected in an $L \times L$-matrix, known as the substitution or Slutsky matrix $S(\boldsymbol{p}, w)\left[=D_{p} x(p, z)\right.$ with $\left.\mathbf{z}=x(\boldsymbol{p}, w)\right]$
- Multiplying $\partial x_{i}^{s}(\boldsymbol{p}, \boldsymbol{z}) / \partial p_{k}$ with the change Δp_{k} for $k=1, \ldots, L$ and adding these changes up, we obtain the total change Δx_{i} caused by a compensated price change $\Delta \boldsymbol{p}$ (infinitesimal units)
- Doing this for all $i=1, \ldots, L$, we get the change in compensated demand $\Delta \boldsymbol{x}=S(\boldsymbol{p}, w) \Delta \boldsymbol{p}$ caused by price change $\Delta \boldsymbol{p}$
- The compensated law of demand, namely $\Delta \boldsymbol{p} \cdot \Delta \boldsymbol{x} \leq 0$, thus requires that

$$
\Delta \boldsymbol{p} \cdot S(\boldsymbol{p}, w) \Delta \boldsymbol{p} \leq 0
$$

holds for any $\Delta \boldsymbol{p} \in \mathbf{R}^{L}$

Negative semidefiniteness of Slutsky matrix

- So the assumptions of Walras' law, homogeneity of degree zero, and WARP (\leftrightarrow CLD) imply that above quadratic form is never positive, i.e., $S(\boldsymbol{p}, w)$ is negative semidefinite (mathematicians sometimes restrict the term to symmetric matrices; but symmetry of $S(p, w)$ is not implied by Walras' law, WARP and homogeneity for $L>2$)
- Negative semidefiniteness requires that, in particular, $s_{i, i}=\partial x_{i}^{s} / \partial p_{i}$ is negative for every i
(echoing that the compensated law of demand requires $\Delta p_{i} \Delta x_{i} \leq 0$)
- Given that the virtual substitution effects $\partial x_{i}^{s}(\boldsymbol{p}, \boldsymbol{z}) / \partial p_{k}$ can be inferred from real and, at least in principle, observable price and wealth effects at (\boldsymbol{p}, w), the joint hypothesis of a consumer's behavior satisfying Walras' law, homogeneity of degree zero, and WARP can be tested empirically

Remarks

- Negative semidefiniteness of $S(\boldsymbol{p}, w)$ is a necessary implication of WARP (given Walras' law and homogeneity), but not yet sufficient to guarantee that a differentiable demand function satisfies WARP (sufficiency requires that $\Delta \boldsymbol{p} \cdot S(\boldsymbol{p}, w) \Delta \boldsymbol{p} \leq 0$ holds strictly if $\Delta \boldsymbol{p}$ is not proportional to \boldsymbol{p})
(BTW: homogeneity and Walras' law imply that each row in $S(p, w)$ is orthogonal to \boldsymbol{p}, i.e., $S(\boldsymbol{p}, w) \boldsymbol{p}=\mathbf{0}=\Delta \boldsymbol{x}$:
a change $\Delta \boldsymbol{p}=\lambda \boldsymbol{p}$ preserves relative prices; it doesn't change compensated demand since it corresponds to a mere rescaling of prices and wealth)
- A theory of consumer demand based on the assumption of homogeneity of degree zero, Walras' law, and WARP is a bit less restrictive than one based on rational preference maximization; as we'll see in next chapter, the latter forces the Slutsky matrix to be symmetric at all $(\boldsymbol{p}, \boldsymbol{w})$

4. Preference-based demand theory

- The classical approach to consumer theory tries to explain demand by rational preferences \succsim over commodity bundles (vs. description of choices from Walrasian budget sets by ($\left.\mathscr{B}^{w}, x(\cdot)\right)$)
- We'll assume that \succsim can be represented by a utility function u, and that u is sufficiently "smooth"/differentiable
- A rational consumer's demand can be seen as the result of
- maximizing utility under the constraint that a given budget is not blown or of
- minimizing expenditure under the constraint of a target utility level
- The latter perspective will be useful for comparing individual welfare across different price vectors (e.g., different policies)

4.1 Preference relations and utility

- Many qualitative properties of \succsim imply analogue properties of u :
- \succsim is monotone : $\Leftrightarrow\{\boldsymbol{y} \geq \boldsymbol{x} \wedge \boldsymbol{y} \neq \boldsymbol{x} \Rightarrow \boldsymbol{y} \succ \boldsymbol{x}\}$
$\Leftrightarrow u$ is strictly increasing
- \succsim is locally nonsatiated

$$
\begin{aligned}
: & \forall \boldsymbol{x} \in X: \forall \varepsilon>0: \exists \boldsymbol{y} \in U_{\varepsilon}(\boldsymbol{x}): \boldsymbol{y} \succ \boldsymbol{x} ; \\
& \text { this is implied by monotonicity }
\end{aligned}
$$

- \succsim is convex $\quad \Leftrightarrow$ upper contour sets $\{\boldsymbol{y} \in X: \boldsymbol{y} \succsim \boldsymbol{x}\}$ are convex $\Leftrightarrow\{\boldsymbol{y} \succsim \boldsymbol{x} \wedge \boldsymbol{z} \succsim \boldsymbol{x} \Rightarrow \forall \alpha \in(0,1): \alpha \boldsymbol{y}+(1-\alpha) \boldsymbol{z} \succsim \boldsymbol{x}\}$ $\Leftrightarrow u$ is quasiconcave*
- \succsim is strictly convex
$: \Leftrightarrow \boldsymbol{y} \succsim \boldsymbol{x} \wedge \boldsymbol{z} \succsim \boldsymbol{x} \Rightarrow \forall \alpha \in(0,1): \alpha \boldsymbol{y}+(1-\alpha) \boldsymbol{z} \succ \boldsymbol{x}\}$
$\Leftrightarrow u$ is strictly quasiconcave
$\begin{aligned} * & \Leftrightarrow \text { upper level sets }\{\boldsymbol{x} \in X: u(\boldsymbol{x}) \geq \text { a\} are convex for all } a \in \mathbf{R} \\ & \Leftrightarrow \forall \boldsymbol{x} \neq \boldsymbol{y}: \forall \lambda \in(0,1): u(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \geq \min \{u(\boldsymbol{x}), u(\boldsymbol{y})\}\end{aligned}$

4.1 Preference relations and utility

- \succsim is homothetic $\quad: \Leftrightarrow\{\boldsymbol{x} \sim \boldsymbol{y} \Rightarrow \forall \alpha \geq 0: \alpha \boldsymbol{x} \sim \alpha \boldsymbol{y}\}$
$\Leftrightarrow \exists u: u$ is homogeneous of degree 1^{*}
- \succsim is quasilinear w.r.t. good i
$: \Leftrightarrow\left\{\right.$ good i is desirable** $\hat{\left.\boldsymbol{x} \sim \boldsymbol{y} \Rightarrow \forall \alpha \in \mathbf{R}:\left(\boldsymbol{x}+\alpha \boldsymbol{e}_{i}\right) \sim\left(\boldsymbol{y}+\alpha \boldsymbol{e}_{\boldsymbol{i}}\right)\right\}}$
$\Leftrightarrow \exists u: u(\boldsymbol{x})=x_{i}+\phi\left(\boldsymbol{x}_{-i}\right)$

$$
\begin{aligned}
* & : \Leftrightarrow \forall \boldsymbol{x}: \forall \lambda>0: u(\lambda \cdot \boldsymbol{x})=\lambda \cdot u(\boldsymbol{x}) \\
* * & : \Leftrightarrow \forall \boldsymbol{x}: \forall \alpha>0:\left(\boldsymbol{x}+\alpha \boldsymbol{e}_{\boldsymbol{i}}\right) \succ \boldsymbol{x}
\end{aligned}
$$

4.2 Utility maximization problem

- If $p \gg 0$ and u is continuous, then the consumer's utility maximization problem

$$
\begin{equation*}
\max _{\boldsymbol{x} \geq 0} u(\boldsymbol{x}) \quad \text { s.t. } \boldsymbol{p} \cdot \boldsymbol{x} \leq w \tag{UMP}
\end{equation*}
$$

has (by Weierstrass's theorem) a solution $\boldsymbol{x}(\boldsymbol{p}, w)$, namely, the consumer's (Walrasian or Marshallian) demand

- Assume u represents locally nonsatiated preferences \succsim then $\boldsymbol{x}(\boldsymbol{p}, w)$
- is convex-valued if u is quasiconcave (\succsim convex)
- is singleton-valued, i.e., a function, and continuous at all $(p, w) \gg 0$ if u is strictly quasiconcave (\succsim strictly convex)
- satisfies Walras' law and is homogeneous of degree 0
- NB: Lagrange multiplier in (UMP) is the marginal utility of wealth
- The utility value of (UMP), $v(\boldsymbol{p}, w):=u(\boldsymbol{x}(\boldsymbol{p}, w))$, is the consumer's indirect utility function

4.3 Expenditure minimization problem

- The expenditure minimization problem

$$
\begin{equation*}
\min _{\boldsymbol{x} \geq 0} \boldsymbol{p} \cdot \boldsymbol{x} \quad \text { s.t. } \quad u(\boldsymbol{x}) \geq u^{\prime} \tag{EMP}
\end{equation*}
$$

is related to (UMP), often called its "dual problem"

- Its cost value $e\left(\boldsymbol{p}, u^{\prime}\right)$ is the consumer's expenditure function
- Analogously to a firm's cost function, if u is continuous and \succsim locally nonsatiated then $e\left(\boldsymbol{p}, u^{\prime}\right)$ is strictly increasing in u^{\prime}, homogeneous of degree 1 in \boldsymbol{p}, nondecreasing in p_{i}, and weakly concave in p
(intuition for the latter: 1 . linearly raise expenditure by sticking to the old consumption quantities at new prices; 2 . lower costs by re-optimizing)
- Note that $e(\boldsymbol{p}, v(\boldsymbol{p}, w))=w$ and $v\left(\boldsymbol{p}, e\left(\boldsymbol{p}, u^{\prime}\right)\right)=u^{\prime}$

Hicksian demand

- (EMP)‘s solution bundle(s) constitute the Hicksian demand (or Hicks compensated demand) $h\left(\mathbf{p}, u^{\prime}\right)$
- For strictly convex $\succsim, h\left(\boldsymbol{p}, u^{\prime}\right)$ is a function; it is homogeneous of degree zero in p, and satisfies the compensated law of demand

$$
\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right)\left[h\left(\boldsymbol{p}^{\prime}, u\right)-h(\boldsymbol{p}, u)\right] \leq \mathbf{0}
$$

- Goods I and k are called substitutes if $\partial h_{h}(\boldsymbol{p}, u) / \partial p_{k}>0$
- Goods I and k are called complements if $\partial h_{l}(\boldsymbol{p}, u) / \partial p_{k}<0$

Hicksian demand and expenditure function

- Even though Hicks compensation (keeping utility constant) and Slutsky compensation (keeping the old bundle affordable) produce different demand changes for a discrete price change, they coincide for marginal price changes
- In particular, the Slutsky matrix $S(p, w)$ equals the Jacobian of both $x(\boldsymbol{p}, \boldsymbol{p} \cdot x(\boldsymbol{p}, w))$ and $h(\boldsymbol{p}, v(\boldsymbol{p}, w))$ w.r.t. \boldsymbol{p}
- Note that $e\left(\boldsymbol{p}, u^{\prime}\right)=\boldsymbol{p} \cdot h\left(\boldsymbol{p}, u^{\prime}\right)$ implies

$$
\partial e(\cdot) / \partial p_{i}=h_{i}\left(\boldsymbol{p}, u^{\prime}\right)
$$

(where $\left[+\Sigma p_{j} \cdot \partial h_{j} / \partial p_{i}\right]=0$ because $\left(h_{1}{ }^{*}, \ldots, h_{L}{ }^{*}\right)$ is chosen optimally, i.e., $p_{j}=\lambda^{-1} \cdot \partial u /\left.\partial x_{j}\right|_{x_{j}=h_{j} \cdot}$, and so [...] equals λ^{-1}. total utility change from quantity adjustment which, for constant u ', must be zero)

- So the marginal expenditure change that is required to keep utility constant after a change of p_{i} is just equal to current quantity consumed of good i (this mimicks Shepard's lemma in the theory of production)

Symmetry of (UMP)/(EMP)-implied Slutsky matrix

- Assuming $e\left(p, u^{\prime}\right)$ is twice differentiable, we have

$$
\partial^{2} e(\cdot) / \partial p_{i} \partial p_{j}=\partial h_{i}(\cdot) / \partial p_{j}=\partial h_{j}(\cdot) / \partial p_{i}
$$

or in matrix notation

$$
D_{p}^{2} e\left(\boldsymbol{p}, u^{\prime}\right)=D_{p} h\left(\boldsymbol{p}, u^{\prime}\right)=S\left(\boldsymbol{p}, e\left(\boldsymbol{p}, u^{\prime}\right)\right)
$$

- So the Hesse matrix $D_{p}^{2} e\left(p, u^{\prime}\right)=S\left(p, e\left(p, u^{\prime}\right)\right)$ is symmetric, i.e., the Slutsky matrix is symmetric
- Since $e\left(p, u^{\prime}\right)$ is concave in \boldsymbol{p}, Slutsky matrix must moreover be negative semidefinite
- As preference-based (or utility-maximizing) demand implies symmetry of the Slutsky matrix, it is more restrictive than choice-based demand satisfying Walras‘ law, WARP and homogeneity of degree zero

Remarks

- Revealed choice-based demand can be rationalized if it satisfies Walras' law, WARP, zero-homogeneity and has a symmetric substitution matrix
(latter is equivalent to satisfying Houthakker's SARP instead of WARP)
- That the derivative of (EMP)'s value function is simply (EMP)'s solution vector cannot have a direct equivalent in the (UMP): indirect utility $v(\boldsymbol{p}, w)$ is ordinal while $x(\boldsymbol{p}, w)$ is cardinal
- But there exists a close analogue, in which marginal (indirect) utility is "normalized", known as Roy's identity

$$
x_{i}(\boldsymbol{p}, w)=-\frac{\partial v(\boldsymbol{p}, w) / \partial p_{i}}{\partial v(\boldsymbol{p}, w) / \partial w}
$$

- This makes indirect utility functions convenient to work with: demand can be computed w/o solving an optimization problem

4.4 Individual welfare evaluation

- We can evaluate whether a consumer is better off under price vector $\boldsymbol{p}^{\text {c }}$ or $\boldsymbol{p}^{\prime \prime}$ by checking if $v\left(\boldsymbol{p}^{\prime}, w\right)-v\left(\boldsymbol{p}^{\prime \prime}, w\right)$ is positive or negative
- Recall that we obtain an equivalent (indirect) utility function \tilde{u} (\tilde{v}) if we apply a strictly increasing transformation to $u(v)$; e.g., $e\left(\boldsymbol{p}^{\prime}, v(\boldsymbol{p}, w)\right)$ is also an indirect utility function
- It is money metric: evaluates \boldsymbol{p}-vectors by the euro amount that the consumer would need to get ($\boldsymbol{p}, w)$-situation utility under fixed reference prices \boldsymbol{p} ':
- If under \boldsymbol{p}^{\prime}, say, $100 €$ would be needed to obtain utility $v\left(\boldsymbol{p}^{0}, w\right)$ while $120 €$ would be needed to obtain $v\left(\boldsymbol{p}^{1}, w\right)$, then welfare can, loosely speaking, be said to be $20 €$ higher for \boldsymbol{p}^{1} than for \boldsymbol{p}^{0}

Compensating variation

- Suppose we want to use $e\left(\boldsymbol{p}^{\prime}, v(\boldsymbol{p}, w)\right.$) in order to quantify the change in a consumer's welfare caused by going from \boldsymbol{p}^{0} to \boldsymbol{p}^{1}; what should be the reference price?
- One natural choice is $\boldsymbol{p}^{\boldsymbol{c}}=\boldsymbol{p}^{1}$, i.e., we use new prices as our reference
- The change $C V\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{1}, w\right):=e\left(\boldsymbol{p}^{1}, v\left(\boldsymbol{p}^{1}, w\right)\right)-e\left(\boldsymbol{p}^{1}, v\left(\boldsymbol{p}^{0}, w\right)\right)$ $w-e\left(\boldsymbol{p}^{1}, v\left(\boldsymbol{p}^{0}, w\right)\right)$
is known as the compensating variation
- It measures the welfare effect of $\boldsymbol{p}^{0} \rightarrow \boldsymbol{p}^{1}$ on the consumer by answering the question:
How much money could be extracted from the consumer (would need to be paid to him) under the more (less) favorable \boldsymbol{p}^{1} in order for him to be indifferent to the change, i.e., to be fully compensated under the new situation?

Equivalent variation

- Another natural choice is $\boldsymbol{p}^{\text {‘ }}=\boldsymbol{p}^{0}$, i.e., we use old prices as our reference
- The change $E V\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{1}, w\right):=e\left(\boldsymbol{p}^{0}, v\left(\boldsymbol{p}^{1}, w\right)\right)-e\left(\boldsymbol{p}^{0}, v\left(\boldsymbol{p}^{0}, w\right)\right)$

$$
e\left(\boldsymbol{p}^{0}, v\left(\boldsymbol{p}^{1}, w\right)\right)-w
$$

is known as the equivalent variation

- It measures the welfare effect of $\boldsymbol{p}^{0} \rightarrow \boldsymbol{p}^{1}$ on the consumer by answering the question:
How much money would need to be paid to the consumer (could be extracted from him) under \boldsymbol{p}^{0} in order for him to be indifferent to the change to a more (less) favorable \boldsymbol{p}^{1}, i.e., to render the old situation equivalent to the prospective new one?

Consumer surplus

- If \boldsymbol{p}^{0} and \boldsymbol{p}^{1} differ only in the price of a normal good i then

$$
C V\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{1}, w\right)<\Delta C S<E V\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{1}, w\right)
$$ where $\Delta C S$ is the change in (Marshallian) consumer surplus

- CS adds up marginal willingness to pay for the next marginal unit of good i and subtracts actual payment for $x_{i}(\boldsymbol{p}, w)$: denoting by $p_{i}\left(x_{i}, w\right)$ the price at which the consumer would buy x_{i} units of good i, she would strictly prefer to buy the last marginal unit of total x_{i} if $p_{i}<p_{i}\left(x_{i}, w\right)$ but is indifferent if $p_{i}=p_{i}\left(x_{i}, w\right)$, i.e.,

$$
M W T P_{i}\left(x_{i}\right)=p_{i}\left(x_{i}, w\right)
$$

- Remark:
$\Delta C S$ evaluation is not „fully consistent" as MWTPi(x_{i}) evaluates an additional unit at a time for a smoothly varying price p_{i}, not additional units from a \boldsymbol{p}^{0} or \boldsymbol{p}^{1} perspective (instead of compensating a gradual drop from $p_{i}{ }^{0}$ to $p_{i}{ }^{1}$ by taking released funds away, $\Delta C S$ lets the consumer "become richer" along the way)

CV, EV, and consumer surplus

- If there is no wealth effect for good i (e.g., \succsim is quasilinear w.r.t some $\operatorname{good} j \neq i$, so that any extra utility from $w \uparrow$ comes via $\mathrm{x}_{j} \uparrow$), then $h_{i}\left(p, u^{1}\right)=h_{i}\left(p, u^{0}\right)$ and all three measures coincide

5. Aggregate demand

- Aggregate demand in an economy is readily obtained by adding individual demand $x^{\prime}\left(\boldsymbol{p}, w^{\prime}\right)$ across all individuals, i.e.,

$$
x\left(\boldsymbol{p}, w^{1}, \ldots, w^{\prime}\right)=\Sigma_{i} x^{\prime}\left(\boldsymbol{p}, w^{\prime}\right)
$$

- Tracking the wealth vector $\left(w^{1}, \ldots, w^{\prime}\right)$ in, e.g., comparative static analysis is cumbersome; one is tempted to work with aggregate wealth $w=\Sigma_{i} w^{i}$ and to pretend that $x(\boldsymbol{p}, w)$ is the demand of a single agent
- This raises questions:
- When is it possible to work with w instead of the full wealth distribution ($w^{1}, \ldots, w^{\prime}$)?
- Assuming that individual demands are preference-based and ($\boldsymbol{p}, \boldsymbol{w}$) determines aggregate demand, are the choices $x(\boldsymbol{p}, w)$ compatible with existence of a single rational representative consumer?
- Can the representative consumer's (money-metric) indirect utility function be used for welfare statements?

5.1 When doesn't the wealth distribution matter?

- Total demand $x\left(\boldsymbol{p}, w^{1}, \ldots, w^{\prime}\right)=\Sigma_{i} x^{i}\left(\boldsymbol{p}, w^{\prime}\right)$ can be expressed as a function $x(p, w)$ of total wealth $w=\Sigma_{i} w^{i}$ only in special cases
- Distribution independence requires that individual wealth effects exactly cancel out as we shift Δw between consumers i and j, i.e.,

$$
\partial x_{k}^{i} / \partial w=\partial x_{k}^{j} / \partial w \text { for all } k \text { and arbitrary } i, j w^{i} \text {, and } w^{j}
$$

- This necessitates that consumers (for the relevant wealth range) have parallel straight lines as their wealth expansion paths
- That turns out to be equivalent to each \succsim_{i} admitting a utility representation s.t. indirect utility functions are of the Gorman form

$$
v_{i}\left(\boldsymbol{p}, w^{\prime}\right)=a_{i}(\boldsymbol{p})+b(\boldsymbol{p}) \cdot w_{i}
$$

with identical wealth multiplier $b(\boldsymbol{p})$ for all i

When doesn't the (initial) wealth distribution matter?

- This is the case (mainly) if
- all \succsim_{i} equal the same homothetic \succsim
(e.g., Cobb-Douglas, perfect substitutes, or complements)
or
- all \succsim_{i} are quasilinear w.r.t. the same good k and we only consider sufficiently big wealth levels
- We can also, trivially, drop $\left(w^{1}, \ldots, w^{\prime}\right)$ and simply write $x(p, w)$ if each w^{i} can be expressed as a function $w^{i}(\boldsymbol{p}, w)$ of \boldsymbol{p} and w (e.g., because of wealth redistribution according to a particular given rule, or as an empirical "regularity")

5.2 Aggregate demand $\stackrel{?}{=}$ demand of a single \succsim

- That each $x^{i}\left(\boldsymbol{p}, w^{\prime}\right)$ satisfies WARP, or even results from a rational \succsim_{i}, does not guarantee that $\Sigma_{i} x^{i}\left(\boldsymbol{p}, w^{\prime}\right)$ satisfies WARP, or comes from a "representative" rational \succsim even when $\Sigma_{i} x^{\prime}\left(p, w^{\prime}\right)=x(p, w)$
- WARP ($\hat{=}$ compensated law of demand) doesn't "aggregate": a price-wealth change that is compensated for the aggregate may fail to be compensated for some individuals.
- The stronger uncompensated law of demand (ULD)

$$
\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right) \cdot\left[x^{\prime}\left(\boldsymbol{p}^{\prime}, w^{\prime}\right)-x^{i}\left(\boldsymbol{p}, w^{\prime}\right)\right] \leq \mathbf{0}
$$

does aggregate when $w^{i} \equiv \alpha_{i} \cdot w$

- So, if all $x^{i}(\cdot)$ satisfy ULD (and hence also CLD), $x(\cdot)$-induced choice structure will satisfy WARP (example: all \succsim_{i} are homothetic)

Positive representative consumer

- We say that a positive representative consumer exists for a given economy if one can find a fictional individual whose optimal behavior would result in aggregate demand $x\left(\boldsymbol{p}, w^{1}, \ldots, w^{\prime}\right)$ if he could spend the society's budget $w=\Sigma w^{i}$
- Existence requires that
- wealth distribution $\left(w^{1}, \ldots, w^{\prime}\right)$ doesn't matter, so that $x\left(\boldsymbol{p}, w^{1}, \ldots, w^{\prime}\right)=$ $x(\boldsymbol{p}, w)$, and
- $x(p, w)$ satisfies WARP (in fact, even Houthakker's SARP)
- Note that it is also possible that aggregate demand satisfies more stringent 'consistency requirements' than individual demands: individual violations of, say, ULD may "average out"

5.3 Aggregate welfare evaluation

- A social planner, who evaluates different (\boldsymbol{p}, w)-situations for society as a whole, presumably looks at a social welfare function $W: \mathbf{R}^{\prime} \rightarrow \mathbf{R}$, which is defined on (indirect) utility vectors (u_{1}, \ldots, u_{i}) and required to be non-decreasing in every u_{i}
- Prominent examples:
- utilitarian welfare $W^{U}\left(u_{1}, \ldots, u_{1}\right)=\Sigma_{i} u_{i}$
- "Rawlsian" welfare $W^{R}\left(u_{1}, \ldots, u_{i}\right)=\min \left\{u_{1}, \ldots, u_{1}\right\}$
- Note that such a social aggregation rule implicitly requires interpersonal comparability of utility

Normative representative consumer

- To what extent can social welfare evaluation be simplified to individual welfare evaluation for the representative consumer?
- Answer depends on the considered social welfare function
- The positive representative consumer with preferences \succsim is called a normative representative consumer relative to social welfare function $W(\cdot)$ if the value function $W^{*}(\boldsymbol{p}, w)$ of the planner's welfare maximization problem

$$
\begin{aligned}
& \max _{w^{\prime}, \ldots, w^{\prime}} W\left(v^{1}\left(\boldsymbol{p}, w^{1}\right), \ldots, v^{\prime}\left(\boldsymbol{p}, w^{\prime}\right)\right) \\
& \text { s.t. } \Sigma w^{\prime} \leq w,
\end{aligned}
$$

is an indirect utility function for \succsim,
i.e., if the representative consumer's demand corresponds to the aggregate demand which would result from utility-maximizing individual demands after an optimal wealth redistribution

Welfare vs. normative representative consumer

- If a normative representative consumer exists, we can, in principle, say that $\boldsymbol{p}^{0} \rightarrow \boldsymbol{p}^{1}$ is socially beneficial or detrimental by looking at $C V\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{1}, w\right), E V\left(\boldsymbol{p}^{0}, \boldsymbol{p}^{1}, w\right)$, or $\Delta C S$ for that consumer
- But:

W's optimal distribution $\left(w^{1^{*}}, \ldots, w^{\prime *}\right)$, which maximizes $W(\cdot)$, generally depends on \boldsymbol{p};
hence, saying " $\boldsymbol{p}^{0} \rightarrow \boldsymbol{p}^{1}$ is socially beneficial because $\Delta C S>0$ " is only warranted in the sense that there exists a redistribution scheme s.t. welfare is higher under \boldsymbol{p}^{1}
("potential welfare" $W^{*}(\boldsymbol{p}, w)$ is higher while actual welfare $W\left(v^{1}\left(\boldsymbol{p}, w^{1}\right), \ldots\right.$, $v^{\prime}\left(\boldsymbol{p}, w^{\prime}\right)$) may be lower under \boldsymbol{p}^{1} than before if wealth is not redistributed)

Existence of a normative representative consumer

- Conditions for existence of a positive representative consumer were already very demanding
- And if a positive representative consumer happens to exist, there is no guarantee that he is also a normative one for the considered welfare function $W(\cdot)$;
it is even possible that his preferences have no normative content for any social welfare function
- However, if all consumers have indirect utility of the Gorman form with identical $b(\boldsymbol{p})$, then the positive representative consumer also is a normative one (the Gorman form imposes sufficient structure for $v(\boldsymbol{p}, w)=\Sigma_{i} a_{i}(\boldsymbol{p})+b(\boldsymbol{p}) \cdot w$ to be a strictly increasing transformation of the planner's value function for any social welfare function $W(\cdot)$)

6. Choice under risk and uncertainty

- Section 2 considered preferences and choice w/o specific assumptions re. the considered alternatives $X=\left\{x_{1}, x_{2} \ldots\right\}$; they might involve risk, uncertainty, different points in time, space, etc.
- We now specifically consider risky alternatives, i.e., options associated with known objective probability distributions over deterministic outcomes (vs. uncertain / ambiguous alternatives)
- One may distinguish between simple lotteries $L=\left(\pi_{1}, \ldots, \pi_{N}\right)$ over deterministic outcomes y_{1}, \ldots, y_{N}, and compound lotteries ('lotteries over lotteries')
- From a consequentialist perspective, a compound lottery can be equated with the simple lottery which it induces; hence, we focus on choice between simple lotteries

6.1 Expected utility representations

- We know that if agent has complete, transitive and continuous preferences \succsim over the space of all (simple) lotteries L, then preferences can be represented by a utility function $U(L)$
- Here, continuity may, e.g., be simplified to:

$$
\begin{array}{rll}
\forall L, L^{\prime}, L^{\prime \prime}: & \left\{\alpha \in[0,1]: \alpha L \oplus(1-\alpha) L^{\prime} \succsim L^{\prime \prime}\right\} & \\
& \left\{\alpha \in[0,1]: L^{\prime \prime} \succsim \alpha L \oplus(1-\alpha) L^{\prime}\right\} & \text { and } \\
& \{\alpha \in \text { are closed sets, }
\end{array}
$$

- The function $U(\cdot)$ which maps each distribution L to a number may be highly complicated and unwieldy (e.g., involve a "Choquet integral" w.r.t. a "capacity" derived from L)
- However, if \succsim additionally satisfies the von NeumannMorgenstern independence axiom

$$
\forall L, L^{\prime}, L^{\prime \prime}: \forall \alpha \in(0,1): L \succsim L^{\prime} \Leftrightarrow \alpha L \oplus(1-\alpha) L^{\prime \prime} \succsim \alpha L^{\prime} \oplus(1-\alpha) L^{\prime \prime},
$$ then $U(\cdot)$ can be chosen to have a simple functional form

Von Neumann-Morgenstern expected utility

- In particular, $U(\cdot)$ can be chosen to have the v.N.-M.-expected utility form, that is:
there exists a (Bernoulli) utility function $u(y)$ defined only for deterministic outcomes such that:

$$
U(L)=\Sigma \pi_{i} \cdot u\left(y_{i}\right)=\mathbf{E}_{L}[u(y)] \quad\left[=\int u(y) d L(y)\right]
$$

- \succsim 's Bernoulli utility function $u(\cdot)$ is unique up to an orderpreserving affine transformation, i.e.,
$u(\cdot)$ can be chosen as Bernoulli utility function for \succsim
$\Leftrightarrow \alpha u(\cdot)+\beta$ for $\alpha>0$ can also be chosen
- $u(\cdot)$ is a cardinal utility function over deterministic outcomes
- $u(x)-u(y)>u(z)-u(w)$ now has the interpretation that x is a bigger improvement on y than z is on w :
- one could mix x with a greater probability for a bad outcome q and the agent still prefers this to $y \ldots$
- ... than one could mix z with q and retain preference over w

Remarks on independence axiom

- Requiring "independence" when "adding" lottery L " to L and L ' makes normative sense because there is no (obvious) complementarity or substitutability for mutually exclusive events
- An agent whose \succsim violates independence may be "Dutchbooked", i.e., some money can be extracted from her at no risk:
- Suppose $L_{1} \succ L_{2}$, but $\alpha L \oplus(1-\alpha) L_{1} \prec \alpha L \oplus(1-\alpha) L_{2}$
- Let her own $\alpha L \oplus(1-\alpha) L_{1}$, while you own $\alpha L \oplus(1-\alpha) L_{2}$
- Trade lotteries with her, collect a fee, and wait
- If L isn't realized, then trade L_{1} for L_{2} and collect another fee
\Rightarrow Your position is exactly as without the trades (L with prob. α, L_{2} with prob. $1-\alpha)$, but you additionally collect a fee one or two times (one might even play this game ex ante and repeat it)
- Independence is equivalent to \succsim 's indifference curves being parallel straight lines in the probability simplex

Allais paradox

- Though normatively appealing, real people frequently violate the independence axiom
- This is illustrated, e.g., by the Allais paradox:

For $\left(y_{1}, y_{2}, y_{3}\right)=(50 €, 40 €, 0 €)$ many people reveal
(1) $L_{1}=(0,1,0) \succ L_{2}=(0.1,0.89,0.01)$
(2) $L_{3}=(0,0.11,0.89) \prec L_{4}=(0.1,0,0.9)$

- If this satisfied the v.N.-M. axioms, we could choose $u(0)=0$, and then infer
- from (1): [1-0.89] $\cdot u(40 €)>0.1 \cdot u(50 €)$
- from (2): $0.11 \cdot u(40 €)<0.1 \cdot u(50 €)$
(L_{1} and L_{2} lie on a parallel line to L_{3} and L_{4} in probability simplex;
so $1^{\text {st }}$ choice fixes $2^{\text {nd }}$ one under v.N-M. axioms: all indifference lines either have greater, smaller, or same slope as these two lines)

6.2 Money lotteries and risk attitudes

- Consider lotteries over interval $[a, \infty)$ of final wealth levels as described by random variable X with cumulative distribution functions $F(x)=\operatorname{Pr}(X \leq x)$, and v.N.-M. utility function $U(\cdot)$ with increasing Bernoulli utility $u(\cdot)$ such that $\mathbf{E}_{F}[u(X)]$ is finite
- The agent is said to be
- risk neutral \Leftrightarrow she is indifferent between lottery F and receiving $\mathbf{E}_{[}[X]$ for sure, i.e., $\forall F: E_{f}[u(X)]=u\left(\mathbf{E}_{[}[X]\right)$
- (strictly) risk averse \Leftrightarrow she (strictly) prefers $\mathbf{E}_{[}[X]$ for sure to F
- (strictly) risk loving \Leftrightarrow she (strictly) prefers F to $\mathbf{E}_{F}[X]$ for sure
- By Jensen's inequality, u is concave iff

$$
\int u(x) f(x) d x \leq u\left(\int x f(x) d x\right)
$$

- So (strict) risk aversion is equivalent to (strict) concavity of u
- It is also equivalent to the certainty equivalent, i.e., sure payment $c(F, u)$ that renders agent indifferent to F, being (strictly) smaller than $\mathbf{E}_{f}[X]$

Quantifying and comparing risk aversion

- Risk attitudes of two individuals, or the same individual at different levels of wealth x can be compared by the Arrow-Pratt coefficient of absolute risk aversion

$$
r_{A}(x ; u)=-u^{\prime \prime}(x) / u^{\prime}(x)
$$

- $u_{2}(\cdot)$ is more risk averse than $u_{1}(\cdot)$
$\Leftrightarrow r_{A}\left(x ; u_{2}\right) \geq r_{A}\left(x ; u_{1}\right)$ for all x
$\Leftrightarrow c\left(F ; u_{2}\right) \leq c\left(F ; u_{1}\right)$ for any lottery F
$\Leftrightarrow \quad u_{2}$ is "more concave" than u_{1}, i.e., there exists an increasing concave transformation $k(\cdot)$ s.t. $u_{2}(x)=k\left(u_{1}(x)\right)$

Common assumptions about risk aversion

- It is often plausible to assume that $u(\cdot)$ has decreasing absolute risk aversion in wealth (DARA), i.e., that $r_{A}(x ; u)$ decreases in x
- Moreover, one often assumes that $u(\cdot)$ has nonincreasing relative risk aversion, i.e., the coefficient of relative risk aversion

$$
r_{R}(x ; u)=-x \cdot u^{\prime \prime}(x) / u^{\prime}(x)
$$

is constant or decreasing (CRRA or DRRA)

- This captures the regularity that, as an individual becomes richer, a greater absolute amount is invested in risky assets (DARA), and this amount corresponds to a weakly greater share of total wealth (CRRA or DRRA)
- Remarks:

$$
\begin{array}{lll}
\left.-r_{A}(x ; u) \equiv \gamma \neq 0 \text { (CARA }\right) \Leftrightarrow & & u(x)=a_{1}-a_{2} \cdot e^{-\gamma x}\left(\text { with } a_{2}>0\right) \\
\left.-r_{R}(x ; u) \equiv \delta \text { (CRRA }\right) & \Leftrightarrow & \delta=1: \\
& u(x)=a_{1}+a_{2} \cdot \ln (x) \\
\delta \neq 1: & u(x)=a_{1}+a_{2} \cdot x^{1-\delta}
\end{array}
$$

(Partial) orderings of random variables

- Any two agents, who like higher x better, agree that lottery F_{1} is better than lottery F_{2} if $F_{1}(x) \leq F_{2}(x)$ for all x,
i.e., F_{1} places less probability on small realizations of X than F_{2}
$\Leftrightarrow F_{1}$ first-order stochastically dominates F_{2}
- Any two risk averters agree that lottery F_{1} is better than lottery F_{2} if F_{1} and F_{2} have the same mean ($\hat{=}$ expected value) and F_{2} can be generated from F_{1} by shifting probability towards the extremes,
$\Leftrightarrow F_{2}$ is a mean-preserving spread of F_{1}
$\Leftrightarrow F_{1}$ second-order stochastically dominates F_{2}

6.3 Subjective probability theory

- If agents choose between uncertain prospects for which no objective probabilities are given, their behavior may still be represented in "as-if"-fashion as expected utility maximization for subjective probabilities
- The key requirements for this to be possible is Savage's sure thing principle: the ranking of two prospects P_{1} and P_{2} ($\hat{=}$ mappings from states of the world to, e.g, wealth) depends only on provisions for states in which P_{1} and P_{2} actually differ
- In particular,

if and only if

$$
P_{3}:
$$

s_{1}	s_{2}	s_{3}
x	y	z^{\prime}

S_{1}	S_{2}	S_{3}
x^{\prime}	y^{\prime}	z^{\prime}

Ellsberg paradox

- Intuitively reasonable choices under uncertainty can violate subjective expected utility maximization
(e.g., because the latter doesn't allow for ambiguity aversion)
- Example:

Suppose a ball is drawn from an urn with 30 red balls, and 60 white or blue balls in unknown proportion

- Many people prefer P_{1} in
P_{1} : $100 €$ for red, $0 €$ otherwise
vs. $\quad P_{2}: 100 €$ for blue, $0 €$ otherwise
- And they prefer P_{4} in P_{3} : $100 €$ for red or white, $0 €$ otherwise,
vs. $\quad P_{4}: 100 €$ for blue or white, $0 €$ otherwise
- The first choice indicates $\pi_{\text {blue }}<1 / 3=\pi_{\text {red }}$; the second one indicates $2 / 3>1-\pi_{\text {blue }} \Leftrightarrow \pi_{\text {blue }}>1 / 3$

7. Static games of complete information

- GT \equiv multiperson decision theory
- Each agent's utility possibly depends on actions of other agents; optimal decisions thus depend on individual beliefs about other agents' choices (which depend on their beliefs)
- GT works with models of real-life situations, called "games"; to these, it applies "solution concepts"
- GT helps to understand how decision makers interact if they are rational and reason strategically,
i.e., if they pursue a well-defined objective and make optimal use of their knowledge about other decision makers

Some distinctions

- There are two main branches of GT
- non-cooperative GT:

Players may communicate before acting but cannot sign binding contracts or irrevocably commit to some action;
order of moves and players' information is explicitly specified

- cooperative GT:

Players can make binding agreements;
"details" of the game are unspecified

- Players' information in a game can be
- complete:
all know the game's structure and everybody's preferences (though maybe not all of others' actions prior to a move)
- incomplete:
at least one player lacks information, e.g., about others' preferences

Some distinctions

- A non-cooperative game can be
- in normal form or static or simultaneous-move: players choose a strategy (= a complete plan of action covering all contingencies) once and "simultaneously"
- in extensive form or dynamic:
players act sequentially based on perfect or imperfect information about what has happened so far
- An extensive form game can be translated into normal form, and vice versa;
dynamic information is often useful, but sometimes also distracting

Basic notation

- Notation:
- $N=\{1,2, \ldots, n\}$: set of agents or players
- S_{i} : set of (pure) strategies available to player i
- $s_{i} \in S_{i}$: a strategy of player i
- $\boldsymbol{S} \equiv S_{1} \times \ldots \times S_{n}$: strategy space of the game
- $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right) \in \boldsymbol{S}$: a strategy profile
- $\boldsymbol{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$: profile of all except player i's strategy choices
$-S_{-i} \equiv S_{1} \times \ldots S_{i-1} \times S_{i+1} \times \ldots \times S_{n}$
- $u_{i}: \boldsymbol{S} \rightarrow \mathbf{R}$: player i's v.N.-M. utility or payoff function
- $\boldsymbol{u}: \boldsymbol{S} \rightarrow \mathbf{R}^{n}$ with $\boldsymbol{u}(\boldsymbol{s}) \equiv\left(u_{1}(\boldsymbol{s}), \ldots, u_{n}(\boldsymbol{s})\right)$
- $\Delta\left(S_{i}\right)$: set of all probability distributions over $S_{i}(=$ is mixed strategies)
- $\sigma_{\in} \in \Delta\left(S_{i}\right)$: a mixed strategy of i
- σ, σ_{-i} : analogous

Normal form

- The normal or strategic form of a game is a triplet $\langle N, \boldsymbol{S}, \boldsymbol{u}\rangle$ specifying the players, their strategies and payoff functions
- The mixed extension of $\langle N, \boldsymbol{S}, \boldsymbol{u}\rangle$, denoted by $\langle N, \Sigma, \boldsymbol{u}\rangle$ with $\Sigma=\Delta\left(S_{1}\right) \times \ldots \times \Delta\left(S_{n}\right)$, explicitly allows the use of mixed strategies, i.e., players can independently randomize over their pure strategies
- Remarks:
- Pure strategies are just particular (degenerate) mixed strategies
- Often the analysis concerns $\langle N, \Sigma, \boldsymbol{u}\rangle$, but only $\langle N, \boldsymbol{S}, \boldsymbol{u}\rangle$ is mentioned
- Utility on \boldsymbol{S} naturally extends to Σ by the assumption of v.N.-M. utilities

Complete information and common knowledge

- Unless otherwise stated, we will consider games of complete information, i.e., we assume that $\langle N, \boldsymbol{S}, \boldsymbol{u}\rangle$ and the rationality underlying u are common knowledge
- Some fact x is called common knowledge if
- everybody knows x,
- everybody knows that everybody knows x,
- everybody knows that everybody knows that everybody knows x,
- etc. ad infinitum
- We presume that with any facts x, y, and z players know all the logical implications of x, y, and z, too

Dominant strategies and rationalizability

- Question: Which predictions can be made just based on (common knowledge of) rationality?
- Strategy $\sigma_{i}^{*} \in \Sigma_{i}$ is
- strictly dominating strategy $s_{i}^{\prime} \in S_{i}$ (or s_{i}^{\prime} 'is strictly dominated by σ_{i}^{*}) $\Leftrightarrow \quad \forall \boldsymbol{s}_{-i} \in \boldsymbol{S}_{-i}: u_{i}\left(\sigma_{i}^{*}, \boldsymbol{s}_{i j}\right)>u_{i}\left(s_{i}^{\prime}, \boldsymbol{s}_{-i}\right)$,
i.e., σ_{i}^{*} is always strictly better than s_{i} ' no matter what (player i believes that) the other players do
- weakly dominating s_{i}^{\prime} (or s_{i}^{\prime} 'is weakly dominated by σ_{i}^{*})
\Leftrightarrow
$\forall \boldsymbol{s}_{-i} \in \boldsymbol{S}_{-i}: u_{i}\left(\sigma_{i}^{*}, \boldsymbol{S}_{-j}\right) \geq u_{i}\left(\boldsymbol{s}_{i}^{\prime}, \boldsymbol{S}_{-j}\right)$
$\wedge \quad \exists \boldsymbol{s}_{i-} \in \boldsymbol{S}_{i i}: u_{i}\left(\sigma_{i}^{*}, \boldsymbol{s}_{i j}\right)>u_{i}\left(\boldsymbol{s}_{i}^{\prime}, \boldsymbol{s}_{-i}\right)$
i.e., σ_{i}^{*} is never worse than s_{i}^{\prime} and sometimes strictly better
- s_{i}^{*} is strictly dominant if it strictly dominates all other $s_{i}^{\prime} \in S_{i}$
- If a strictly dominant strategy exists, rationality dictates its use
- For $n=2$, a profile σ is consistent with common knowledge of rationality, i.e., is rationalizable iff all involved s_{i} survive iterated elimination of strictly dominated strategies

Nash equilibrium

- When many strategy profiles are rationalizable, more specific predictions can be obtained if players are assumed to have beliefs consistent with each other, i.e., i's beliefs about s_{-i} are correct for every $i \in N$
- NB: this is not implied by common knowledge of rationality and the game, but requires extra motivation!
- Strategy profile $\boldsymbol{s}^{*}=\left(\boldsymbol{s}_{1}{ }^{*}, \ldots, \boldsymbol{s}_{n}{ }^{*}\right) \in S$ is a Nash equilibrium (NE) $\Leftrightarrow \quad \forall i \in N: \forall s_{i} \in S_{i}: u_{i}\left(s_{i}^{*}, \boldsymbol{s}_{-i}^{*}\right) \geq u_{i}\left(s_{i}, \boldsymbol{s}_{-i}{ }^{*}\right)$,
i.e., everybody plays a best response ${ }^{1}$ to (his correct beliefs about the) strategy choices \boldsymbol{s}_{-i}^{*} of everybody else.
[${ }^{1}$ There may be others!]

Remarks

- Mixed strategy NE: same for profiles $\sigma^{*} \in \Delta\left(S_{1}\right) \times \ldots \times \Delta\left(S_{n}\right)$
- A strategy profile \boldsymbol{s}^{*} is a strict Nash equilibrium iff it is a NE and above inequality is strict, i.e., everyone has a unique best response to $\boldsymbol{s}_{-i}{ }^{*}$ [NB: a game may have several strict NE]
- Why game theorists care about NE so much:
- Though NE is not implied by rationality, it is "focal" amongst all rationalizable profiles: only NE involve consistent beliefs
- If there is any "unique predicted outcome" or a stable social convention for playing a particular game (w/o external coordination), then it must be a NE
- A NE may be viewed as a "steady state" of play where an unspecified dynamic process has brought about correct expectations;
many learning dynamics or evolutionary processes converge to a NE
- If players can talk prior to the game and agree on some profile s without exogenous commitment or coordination, only NE are self-enforcing

Mixed-strategy NE

Proposition

Consider the mixed extension of finite game $\langle N, \mathbf{S}, \boldsymbol{u}\rangle$. σ^{*} is a $N E$ of $\langle N, \Sigma, u\rangle$
\Leftrightarrow For all $i \in N$, every pure strategy s_{i} played with positive probability under $\sigma_{i}^{*}\left(\equiv s_{i}\right.$ is in the support of σ_{i}^{*}) is a best response to σ_{-i}^{*}

Proof:

It is always true that $u_{i}(\boldsymbol{\sigma})=\sum_{s_{s} \in S_{i}} \sigma_{i}\left(s_{i}\right) \cdot u_{i}\left(s_{i}, \sigma_{-i}\right)$
" \Rightarrow " Assume some s_{i} in $\operatorname{supp}\left(\sigma_{i}{ }^{*}\right)$ is no best response to $\sigma_{-i}{ }^{*}$. Then $u_{i}\left(\sigma^{*}\right)$ can be increased by shifting probability from s_{i} to some s_{i}^{\prime} that is a best response. \mathcal{N} to " σ_{i}^{*} is a best response"
" \Leftarrow " Assume σ^{*} is no NE, i.e., for some i, σ_{i}^{*} is no best response to σ_{-i}^{*} Some s_{i}^{\prime} in supp $\left(\sigma_{i}^{\prime}\right)$ with σ_{i}^{\prime} being a best response to $\sigma_{-i}{ }^{*}$ gives higher payoff against σ_{-i}^{*} than some s_{i} in $\operatorname{supp}\left(\sigma_{i}^{*}\right)$.

Mixed-strategy NE

- That truly mixed NE involve indifference reduces their appeal
- Defense of mixed NE:
- In some games, players try to be unpredictable and mixed NE has some empirical support
(penalty kicks, tennis serves, R-S-P game, ...)
- In zero-sum games, σ_{i}^{*} maximizes i 's guaranteed expected payoff, i.e., is a "safe" strategy with minimal knowledge requirements
- A mixed NE may describe a large population where individuals are randomly matched and play pure strategies in the "right" population proportions
- A mixed NE can be viewed as approximating a pure (Bayesian) NE of a game in which part of players' payoffs is private knowledge (purification of mixed NE proposed by Harsanyi)

Existence of NE

- Games with infinite pure strategy spaces may fail to have any NE
- Nash (1950) proved that every finite game has "an equilibrium point" (=mixed NE)
- The proof involves showing that in such games
- all players have at least one best response to any σ_{-i}; if i has multiple BRs, they form a convex set
- $B R_{i}(\cdot)$ has a closed graph (i.e., is upper semicontinuous)
- It follows that $B R(\cdot) \equiv B R_{1}(\cdot) \times \ldots \times B R_{n}(\cdot)$ is a u.s.c., nonempty and convex-valued correspondence from the non-empty, convex, and compact set $\Sigma \equiv \Delta\left(S_{1}\right) \times \ldots \times \Delta\left(S_{n}\right)$ to itself
\Rightarrow Kakutani's fixed point theorem guarantees existence of a fixed point $\sigma \in \mathrm{BR}(\sigma)$, which is a NE
- Nash's result can be extended to games with general convex strategy spaces, to symmetric NE, or pure-strategy NE

Equilibrium selection and refinement

- The key "problem" is usually not existence but multiplicity of NE
- Consider

a) | $1 \backslash 2$ | F | H |
| :--- | :--- | :--- |
| F | 7,7 | 0,0 |
| H | 0,0 | 9,9 |

b)

1 \ 2	F	H
F	7,7	8,0
H	0,8	9,9

\rightarrow What would you play?
c)

$1 \backslash 2$	f	h
F	3,1	0,0
H	2,2	2,2

d) $S_{1}=S_{2}=[0,100], u_{i}\left(s_{i}, s_{j}\right)=s_{i}$ if $s_{i}+s_{j}=100$, and 0 otherwise

Equilibrium refinement

- A large literature has tried to build plausibility or robustness considerations into the equilibrium concept itself
- Prominent refinements of NE include:
- (trembling-hand) perfect equilibrium
- A NE σ is trembling-hand perfect iff each σ_{i} is still optimal against some completely mixed strategy profile "nearby", i.e., each player isticks to σ_{i} even if he expects others to "tremble" and play any of their pure strategies with at least (some particular) small positive probability
- This rules out the use of weakly dominated strategies;
strict NE and NE involving only completely mixed strategies are automatically perfect
- strictly perfect equilibrium
- As above, but robustness against all, not just some "trembles" is required - essential equilibrium
- Requires robustness against payoff perturbations
- NB: there are also plausible generalizations of NE, esp. the notion of a correlated equilibrium

8. Dynamic games of complete information

- A dynamic or sequential-move or extensive form game adds to the information provided in static games an explicit description of
- the timing of players' actions
- the information about play so far on which actions can be conditioned
- We keep the assumption of complete information, i.e., the game (incl. all preferences) is common knowledge

Game tree

- Central to the modeling of dynamic games is the concept of a game tree, e.g.

- A tree is a particular type of directed graph, with nodes (or vertices) and edges, each connecting two nodes

Game tree

- Formally, a tree is defined by
- a set of nodes N
- a transitive and asymmetric (i.e., $a \prec b \Rightarrow \neg(b \prec a)$) precedence relation \prec satisfying the arborescence properties:
- there is a unique initial node $n^{0} \in \mathrm{~N}$ without predecessor
- if n and n^{\prime} precede $n^{\prime \prime}$, then either $n \prec n^{\prime}$ or $n^{\prime} \prec n$ (in particular, every node except n^{0} has a unique direct predecessor)
- For example,

or 2.

Game tree

- Nodes without successors are called terminal nodes; all non-terminal nodes are called decision nodes
- Given N and \prec with decision nodes D , a function

$$
\mathrm{u}: \mathrm{D} \rightarrow N \cup\{\text { Nature }\}
$$

for every decision node specifies the player who has to move

- The additional player "Nature" is a trick to model chance moves (if needed)
- For $n \in \mathrm{D}, A(n)$ denotes the set of actions available to player $\mathrm{l}(n)$
- Each $a \in A(n)$ leads to a different direct successor n ' of n as defined by a function

$$
\alpha(n): A(n) \rightarrow \operatorname{Succ}(n)
$$

[i.e., each non-initial node n ' is reached from a unique n by a unique action $a \in A(n)$]

Information sets

- The player $1(n)$ who has to move at n may not know that the game is currently exactly at n, e.g., because moves of other players are imperfectly observed
- This is reflected by a partition \boldsymbol{P} of D into information sets $\left\{n^{0}\right\}$, $P^{2}, \ldots, P^{k} \in \boldsymbol{P}$ that capture what players know when moving
- Example:

- Here:

- Player 1 does not know whether 2 played up or down
- Player 2 knows 1's choice when making his first choice, but not his second

Information partition

- The information partition \boldsymbol{P} of D into information sets must satisfy the following conditions:
- the same player $\mathfrak{l}(n)\left(\right.$ or $\mathrm{l}\left(P_{j}\right)$) and action set $A(n)($ or $A(P))$ are assigned to all $n \in P^{j}$
- if $n \in P^{j}$, then no successor of n is also contained in P^{j}
- Player $1(P)$ called to select an action $a \in A(P)$ at node P^{j} knows that moves leading to $P^{i} \neq P^{j}$ were not played, but need not be able to identify the particular move which has led to $P j$

Extensive game

- Formally, the collection $\left\langle N, \mathrm{~N}, \prec, \mathrm{\imath},\{A(n)\}_{n \in \mathbb{N}},\{\alpha(n)\}_{n \in \mathrm{~N}}, \boldsymbol{P}\right\rangle$ defines an extensive game form.
An extensive game form together with
- v.N.-M. utilities u_{i} over all (lotteries over) terminal nodes for all $i \in N$
- a probability distribution $\rho(n)$ on $A(n)$ for each n at which Nature "moves" defines an extensive (form) game.
- Remarks:
- Above 9 -tuple (or 10 -tuple in MWG) is rarely written down; usually Γ is "defined" by a diagram or verbal description
- We assume that players have perfect recall, i.e., do not forget what they learned at some stage (this restricts possible partitions \boldsymbol{P})
- If all information sets are singletons then we speak of a game of perfect information, otherwise of a game of imperfect information

Strategies in extensive games

- In extensive games, actions (at some information set) need to be clearly distinguished from strategies;
strategies are complete plans that prescribe an action for every contingency calling a player to move
- Denoting the set of information sets P such that $\mathfrak{l}(P)=i$ by \boldsymbol{P}_{i}, a (pure) strategy of player i in an extensive game is a function

$$
s_{i}: \boldsymbol{P}_{i} \rightarrow \cup_{P \in P_{i}} A(P)
$$

which maps each of i 's information sets $P \in \boldsymbol{P}_{i}$ to a feasible action $s_{i}(P) \in A(P)$

- A player may randomize either over his pure strategies (\rightarrow mixed strategy) or independently over feasible actions at each information set (\rightarrow behavior strategy)

Backward induction

- Extensive games of perfect information can be solved by backward induction if there is a "last period", i.e., if every possible history is finite:
- One determines optimal choices for the respective last-moving players in all next-to-terminal nodes
- One replaces these decision nodes by the selected terminal nodes (or marks the corresponding edges appropriately), and then repeats the exercise until the initial node is reached
- Every finite game of perfect information has a solution to backward induction; for "generic" games - i.e., if no two payoffs are the same - the solution is unique

Subgame perfect equilibrium

- The idea of players behaving rationally (and others anticipating this) throughout the entire game (= sequential rationality) can also be applied to games of imperfect information or without "last period" ...
- A subgame Γ_{n} of an extensive game Γ is an extensive game starting in a singleton information set $\{n\}$ (of Γ), containing exactly all successors of n as its other nodes, not cutting through any of Γ 's information sets and inheriting payoffs, information sets, etc. from Γ
- A strategy profile \boldsymbol{s}^{*} of Γ is a subgame perfect equilibrium (SPE) iff \boldsymbol{s}^{*} induces a NE in every subgame of Γ
- In games with finitely many stages, SPE can be found by (a generalization of) backward induction

One-deviation principle

- Consider a game of perfect information or one where at each stage players move simultaneously and afterwards observe all actions:
- Obviously, \boldsymbol{s}^{*} is a SPE only if no player i has a strategy s_{i}^{\prime} differing from s_{i}^{*} in just one information set $P \in \boldsymbol{P}_{i}$ and doing strictly better than s_{i}^{*} conditional on P being reached
- The reverse is also true and known as the
- One-deviation principle:
\boldsymbol{s}^{*} is a SPE if no player i has a strategy s_{i}^{\prime} differing from s_{i}^{*} in just one information set $P \in \boldsymbol{P}_{i}$ and doing strictly better than $s_{i}{ }^{*}$ conditional on P being reached

Finitely repeated games

- Suppose that extensive game Γ^{T} consists of $T<\infty$ iterations of exactly the same normal form game $\Gamma=\langle\boldsymbol{N}, \mathbf{S}, \boldsymbol{u}\rangle$ and players try to maximize their undiscounted sum of payoffs
- Knowing the NE of Γ, what can we say about SPE of Γ^{\top} ?
- If stage game Γ has a unique NE \boldsymbol{s}^{*} then T-fold play of \boldsymbol{s}^{*} independently of the current history is Γ^{T} 's unique SPE
- If \boldsymbol{s}^{*} is any NE of stage game Γ, then T-fold play of \boldsymbol{s}^{*} independently of the current history is a SPE of Γ^{T}
- In case of multiple stage game NE, there may also exist other SPE which are history-dependent and involve play of a stage game NE only in an "end-game" phase

Infinitely repeated games

- Let Γ^{∞} denote the infinite repetition of normal form game $\Gamma=\langle\boldsymbol{N}, \mathbf{S}, \boldsymbol{u}\rangle$ in which players maximize their discounted sum of payoffs (with common discount factor $\delta \in(0,1)$)
- A payoff vector \boldsymbol{x} is called strictly individually rational iff for every player i, x_{i} strictly exceeds i's minmax payoff M_{i} in Γ,
i.e, the lowest payoff that players - i can impose as punishment on a player i who correctly anticipates σ_{-i} and best-responds to it
- Nash Folk Theorem / Perfect Folk Theorem: Let \boldsymbol{x} be feasible and strictly individually rational. Then, for δ sufficiently close to 1 , there exists a $N E / S P E$ of Γ^{∞} with average payoff $\cong \boldsymbol{x}$.
(For games with $n>2$ players, an additional technical condition related to reward opportunities has to be satisfied for the Perfect Folk Theorem)

9. Games of incomplete information

- So far, we assumed that players have complete information about the game; in particular, every player knows
- every other player's preferences (incl. the rationality associated to that)
- every other player's strategy space
- every other player's information partition
- What use are NE or SPE, which rest on correct beliefs about others' behavior in the game, when there is incomplete information on one of the above aspects, i.e., about which game is played?

Harsanyi's transformation

- John C. Harsanyi (1967/68) proposed a powerful framework for analysis of games of incomplete information

1. Introduce different types of each player:

- A particular type θ_{i} of player i is identified with a particular preference, strategy space and information partition
- Each player i knows own type θ_{i} but possibly not that of other players

2. Introduce an additional player, called Nature:

- Nature moves first and assigns each player i his type $\theta_{i} \in \Theta_{i}$
- Nature's move is a random draw from an exogenous and commonly known joint probability distribution ρ on $\Theta \equiv \Theta_{1} \times \ldots \times \Theta_{n}$
- Each player i rationally updates the common prior ρ after learning θ_{i}
- Thus, a game of incomplete information is transformed into an (extensive) game with complete (but imperfect) information

Example

- Suppose a potential entrant and the market's incumbent simultaneously decide about whether to enter and whether to boost capacity, respectively
- Cost of a capacity increase is either high or low, and private information of the incumbent
- Profits are

Incumbent \Entrant	Enter	Stay out
Invest	$0,-1$	2,0
Don't invest	2,1	3,0

in case of high costs
and

Incumbent \Entrant	Enter	Stay out
Invest	$1.5,-1$	$3.5,0$
Don't invest	2,1	3,0

in case of low costs

Example

- Nature 'selects' high costs with probability ρ, i.e., we obtain:

Bayesian games

- A Bayesian (normal form) game is a collection $\langle N, \Theta, \rho, \boldsymbol{A}, \boldsymbol{u}\rangle$ where
- type space $\Theta \equiv \Theta_{1} \times \ldots \times \Theta_{n}$ specifies all possible types of players $i \in N$
- actual types are drawn from joint probability distribution ρ on Θ
- players' (pure) strategy spaces S_{i} are implicitly defined as the set of all functions $s_{i}: \Theta_{i} \rightarrow A_{i}$ which map every possible type of player i, θ_{i}, to an action $s_{i}\left(\theta_{i}\right) \in A_{i}$
(elements of A_{i} are strategies in the original game of incomplete information)
- u_{i} is defined on $\boldsymbol{A} \times \Theta_{i}$
- We assume that $\langle N, \Theta, \rho, \boldsymbol{A}, \boldsymbol{u}\rangle$ is common knowledge \Rightarrow Rational players update the the prior ρ using Bayes' rule:

$$
\operatorname{Pr}(A / B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Best responses

- Comparing two actions $a_{i j} a_{i}^{\prime} \in A_{i j}$ player i with type θ_{i} will (in equilibrium: correctly) anticipate some strategy profile s_{-i} but - in the spirit of players having incomplete information - must treat other players' types and hence actions as random variables
- So player i's type θ_{i} compares
to $\mathrm{E} u_{i}\left(a_{i}^{\prime}, s_{-i} \theta_{i}\right)$

$$
\underset{i}{\left.\mathrm{E} u_{i}\left(a_{i}, s_{-i}, \theta_{i}\right) \equiv \sum_{\theta_{-i} \in \Theta_{-i}} \rho\left(\theta_{-i} / \theta_{i}\right) \cdot u_{i}\left(a_{i}, s_{-i}\left(\theta_{-i}\right), \theta_{i}\right)\right) .}
$$

- If players use mixed strategies, then $u_{i}\left(a_{i}^{\prime}, s_{-i}\left(\theta_{-j}\right), \theta_{i}\right)$ is simply replaced by expected payoff $u_{i}\left(a_{i}^{\prime}, \sigma_{-i}\left(\theta_{-i}\right), \theta_{i}\right)$
- Strategy s_{i}^{*} of player i (in a Bayesian game) is a best response to s_{-i} iff it specifies an optimal action $s_{i}^{*}\left(\theta_{i}\right) \in A_{i}$ for each type θ_{i} that player i might happen to be, i.e., $\forall \theta_{i} \in \Theta_{i}: \forall a_{i}^{\prime} \in A_{i}: E u_{i}\left(s_{i}^{*}\left(\theta_{i}\right), s_{-i} \theta_{i j}\right) \geq \mathbf{E} u_{i}\left(a_{i}^{\prime}, s_{-i} \theta_{i}\right)$

Bayesian Nash equilibrium

- A Bayesian Nash equilibrium (BNE) of the game $\langle N, \Theta, \rho, \mathbf{A}, \boldsymbol{u}\rangle$ is a strategy profile $\boldsymbol{s}^{*}=\left(s_{1}{ }^{*}, \ldots, \boldsymbol{s}_{n}{ }^{*}\right)$ such that for each player $i \in N$ the strategy s_{i}^{*} is a best response to s_{-i}^{*}, i.e.,

$$
\forall \theta_{i} \in \Theta_{i}: a_{i}=s_{i}^{*}\left(\theta_{i}\right) \in A_{i} \text { maximizes } \mathrm{E} u_{i}\left(a_{i}, s_{-i}^{*}, \theta_{i}\right)
$$

(with expectation \mathbf{E} based on $\rho\left(\theta_{-i} \mid \theta_{j}\right)$)

- A mixed-strategy BNE σ^{*} is defined analogously
- As in games of complete information, mixed strategy σ_{i}^{*} is a best response to σ_{-i} iff each action a_{i} played with a probability $\sigma_{i}\left(\theta_{i}\right)\left(a_{i}\right)>0$ maximizes $\mathrm{E} u_{i}\left(a_{i} \sigma_{-i} \theta_{i}\right)$
- Proofs of existence of BNE are analogous to those for NE (i's best response correspondence is $\left.B R_{i}=B R_{i}\left(\theta_{1}\right) \times B R_{i}\left(\theta_{2}\right) \times \ldots \times B R_{i}\left(\theta_{k}\right)\right)$

Example

- Again consider

$1_{h} / 1, \backslash \backslash 2$	enter	stay out
invest	$0 / 1.5,-1$	$2 / 3.5,0$
don't invest	$2 / 2,1$	$3 / 3,0$

with probability $\rho \in[0,1]$ for firm 1 having high costs

- Given $\rho=0.5$,
- $\sigma^{*}=\left(\left(1_{h} \mapsto\right.\right.$ don't invest, $1_{/} \mapsto$ don't invest $)$; enter $)$ and
- every $\sigma^{* *}=\left(\left(1_{h} \mapsto\right.\right.$ don't invest, $1, \mapsto$ invest $\left.) ;(q, 1-q)\right)$ with $q \in[0,1 / 2]$
are BNE
(q refers to probability of enter)

Dynamic games of incomplete information

- Two complications arise when we apply the Harsanyi transformation to an extensive game of incomplete information:

1. If θ_{i} is private information, -i's information sets are never singletons \Rightarrow there are no proper subgames started by -i's moves
\Rightarrow subgame perfection does not restrict -i's moves off the NE path
\Rightarrow sequentially irrational behavior can survive (e.g., empty threats)
2. While - i's beliefs about θ_{i} should be updated after any of i 's moves $a_{i}{ }_{i}$, Bayes' rule only defines the conditional probability $\rho\left(\theta_{i} \mid a_{i}^{t}, \theta_{-j}\right)$ after moves a_{i}^{t} which have positive probability under strategy profile σ^{*}

Example

- Consider the following game of complete but imperfect information (not even involving a move by Nature):

- (ENTER, accommodate) and (stay out, fight) are NE
- For the incumbent, fight is strictly dominated;
still, (stay out, fight) is SPE because the game is its only subgame
\Rightarrow We need a better formalization of (sequential) rationality than SPE

Strategies and beliefs

- More refined equilibrium concepts try to formalize optimal behavior in every "continuation game", i.e., in whatever follows a possible history, rather than only proper subgames
- For player i to be able to identify an optimal action in an arbitrary information set P^{j} at which he has the move he must
- anticipate a particular (mixed) strategy σ_{-i} played by other players
- have conditional beliefs $\mu_{i}\left(\cdot \mid P^{j}\right)$ about which decision node $n \in P^{j}$ he is in (= a probability distribution μ_{i} on P^{\prime}) given that P^{j} was reached
- The beliefs held by any player i and the equilibrium strategy profile σ^{*} depend on each other:
- each player i's strategy σ_{i} must maximize expected utility given μ_{i}
- beliefs μ_{i} must be consistent with prior ρ and anticipated strategies σ_{-i}

Perfect Bayesian equilibrium

- A (weak) Perfect Bayesian (Nash) equilibrium (PBE) of the game $\Gamma=\left\langle N, \Theta, \mathrm{~N}, \prec, \mathrm{\imath},\{A(n)\}_{n \in \mathrm{~N}},\{\alpha(n)\}_{n \in \mathrm{~N}}, \boldsymbol{P},\{\rho(n)\}, \boldsymbol{u}\right\rangle$ is a combination (σ^{*}, μ^{*}) of a strategy profile $\sigma^{*}=\left(\sigma_{1}{ }^{*}, \ldots, \sigma_{n}{ }^{*}\right)$ and a system of beliefs $\mu^{*}=\left(\mu_{1}{ }^{*}, \ldots, \mu_{n}{ }^{*}\right)$ such that for each player $i \in N$

1. strategy s_{i}^{*} is sequentially rational,
i.e., it prescribes a best response to $\sigma_{-i}{ }^{*}$ in any information set $P^{j} \in \boldsymbol{P}_{i}$ given the system of beliefs μ_{i}^{*}, i.e.,

$$
\forall \theta_{i} \in \Theta_{i}: \forall P^{j} \in \boldsymbol{P}_{i}: \sigma_{i}^{*}\left(\theta_{i}\right) \in \Delta\left(A_{i}\right) \text { maximizes } \mathbf{E} u_{i}\left(a_{i} \sigma_{-i}{ }^{*}, \theta_{i} \mid P\right)
$$

(with expectation E based on μ_{i}^{*}, and $\sigma_{i}^{*}\left(\theta_{i}\right)\left(a_{i}\right)>0$)
2. system of beliefs μ_{i}^{*} is consistent with σ^{*},
i.e., it is derived from σ^{*} and Bayes' rule (where it can be applied; that is: for information sets which have positive probability under σ^{*})

- A combination of a strategy profile and a system of beliefs, (σ, μ), is also called an assessment;
so a PBE is a sequentially rational and consistent assessment

Example

- Consider

- When the incumbent's information set is reached, sequential rationality requires accommodate for any belief ($\mu, 1-\mu$) about the true history
- Anticipating $\sigma_{2}{ }^{*}=$ accommodate, rationality requires $\sigma_{1}{ }^{*}=E N T E R$
- Anticipating $\sigma_{1}{ }^{*}$, incumbent must believe that ENTER was played with probability 1
$\Rightarrow\left(\sigma^{*}, \mu^{*}\right)$ with $\sigma^{*}=(E N T E R$, accommodate $)$ and $\mu^{*}=1$ is the unique PBE

Remarks

- If players use completely mixed strategies in a PBE, every information set is reached with positive probability and the system of beliefs is well-defined by Bayes' rule everywhere
- Otherwise, there is no restriction on conditional beliefs in information sets reached only after a deviation, i.e., the respective player i who has the move is free to interpret -i's deviation as, for example, a fully informative indication of any particular type θ_{-i}, or as not revealing any information, or ...

Problematic example

- Consider

- ((($\varnothing \mapsto O u t, I n \mapsto A), f), \mu=1)$ is a PBE:
- If 1 anticipates that 2 would fight, it is best to choose Out and to Accommodate after involuntary entry
- Anticipating that 1 will stay out, Bayes' rule doesn't restrict 2's beliefs for the zero-probability event that 2 has to make a move;
2 may think that 1 made another "mistake", so that $\mu=1$
- Based on $\mu=1$, fight is indeed optimal for 2
- This implausible beliefs-based PBE isn't even a SPE:
(A, f) is no NE of the subgame started by In

Sequential equilibrium

- Kreps and Wilson (1982) proposed to avoid complete arbitrariness of beliefs in information sets reached with probability zero by requiring existence of some fully mixed strategy profiles - which reach every information set with positive probability - that "justify" the beliefs in (σ^{*}, μ^{*})
- A sequential equilibrium (SE) of the (mixed extension of) game Γ is an assessment $\left(\sigma^{*}, \mu^{*}\right)$

1. which constitutes a perfect Bayesian equilibrium
2. for which a sequence $\left\{\sigma^{k}\right\}_{k=1,2, \ldots}$ of completely mixed strategy profiles with $\sigma^{k} \rightarrow \sigma^{*}$ exists such that the sequence of beliefs implied by σ^{k} and Bayes' rule, $\left\{\mu^{k}\right\}_{k=1,2, \ldots}$, converges to μ^{*}

Remarks

- Any SE is a PBE, but the reverse is not true; in particular, SE requires two players to have consistent beliefs about a third player also after he deviated
- Every finite game has at least one SE
- In games in which only players' types are private information but all actions are observed, PBE and SE coincide
- if each player has at most two possible types or
- if the game has only two periods (e.g., simple signaling games)
- NB: The sequence $\left\{\sigma^{k}\right\}_{k=1,2, \ldots}$ need not consist of equilibria; requiring that each $\left(\sigma^{k}, \mu^{k}\right)$ also forms a PBE leads to (tremblinghand) perfect equilibria (PE) in extensive games, which are a "refinement" of SE introduced by Selten (1975)
- PE and SE are not the end of the PBE refinement story ... (e.g., the "Dominance Criterion" asks that, if possible, beliefs place zero probability on nodes reached by a strictly dominated action)

10. Competitive markets

- In a perfectly competitive economy, every relevant good is traded, voluntarily and without transaction costs, by agents without market power nor informational advantages
- A general competitive equilibrium is an allocation and a price vector s.t.

1. all firms‘ production and factor demand plans maximize their respective profits,
2. all consumers' consumption and factor supply plans maximize their respective utility,
3. and these plans match, i.e., all markets clear

- Properties of competitive equilibria have fundamental importance:
- Do market allocations satisfy "minimal quality standards" from a collective point of view?
- How do competitive market interaction and social objectives relate?

Two requirements for market outcomes

- A first minimal requirement is that the allocations brought about by the market are Pareto efficient
- NB: Pareto efficiency doesn't involve any equitability concerns
- So, a second ambition is that specific normatively desired allocations somehow can be brought about by the market, too ...
- These issues are addressed for the economy as a whole by general equilibrium theory;
we here restrict attention to a single market which constitutes a small part of the overall economy, i.e., partial equilibrium

10.1 Partial equilibrium competitive analysis

- Generally, a consumer's welfare depends on the optimal use of her endowments (time, talents, goods, ...) , and thus on all prices in the economy
- We study a good k on which consumers spend only a small part of their budgets
- Then it is reasonable to ignore the effect of, e.g., a tax on this good on the price of other goods and any wealth effects
- Without wealth effects, the distribution of wealth amongst consumers doesn't matter, i.e., we could assume a representative consumer;
moreover, equivalent variation and compensating variation coincide with Marshallian consumer surplus

Partial equilibrium competitive analysis

- Fixed prices for all other goods and no wealth effects can most easily be captured by assuming quasilinear utility

$$
u_{i}\left(x_{i}, m_{i}\right)=\phi_{i}\left(x_{i}\right)+m_{i}
$$

for sufficiently rich consumers $i=1, \ldots, I$, where m_{i} captures i's expenditure on "other goods" (treated as a composite numeraire good)

- The price of the numeraire is usually normalized to equal 1 ; the considered good k has price p

Optimization by firms

- Assuming that consumers have no initial endowment of good k, all consumption has to be produced by profit-maximizing firms
- Capturing firm j's transformation of the numeraire into good k by cost function $c_{j}\left(q_{j}\right)$, with $c_{j}{ }^{\prime}>0$ and c_{j} " ≥ 0, the necessary and sufficient condition for
is

$$
\max _{q_{j}=0} p^{*} \cdot q_{j}-c_{j}\left(q_{j}\right)
$$

(I) $p^{*} \leq c_{j}^{\prime}\left(q_{j}^{*}\right)$, with equality for positive output $q_{j}^{*}>0$

Optimization by consumers

- Consumer i chooses consumption $\left(x_{i}, m_{i}\right)$ to solve

$$
\max _{x_{i}, m_{i} \geq 0} \phi_{i}\left(x_{i}\right)+m_{i}
$$

s.t. $\quad m_{i}+p^{*} \cdot x_{i} \leq \omega_{m i}+\Sigma \theta_{i j}\left(p^{*} \cdot q_{j}-c_{j}\left(q_{j}\right)\right)$
($\omega_{m i}$ is i's endowment of the numeraire good, $\theta_{i j}$ is i 's share of firm j 's profits)

- Monotonicity of preferences implies that the budget is exhausted, and

$$
\max _{x_{i} \geq 0} \phi_{i}\left(x_{i}\right)+\left[\omega_{m i}+\Sigma \theta_{i j}\left(p^{*} \cdot q_{j}-c_{j}\left(q_{j}\right)\right)\right]-p^{*} \cdot x_{i}
$$

calls for
(II) $\phi_{i}{ }^{*}\left(x_{i}^{*}\right) \leq p^{*}$, with equality if $x_{i}^{*}>0$
(unique when assuming that $\phi^{\prime \prime}(\cdot)<0$)

Competitive equilibrium

- Conditions (I) for all firms $j=1, \ldots, J$
(II) for all consumers $i=1, \ldots, I$, and
(III) $\Sigma x_{i}^{*}=\Sigma q_{j}{ }^{*}$
define a competitive equilibrium (CE)
- For quasilinear preferences, consumers' shares of firm $\theta_{i j}$ and their initial numeraire endowments play no role for p^{*}, total consumption and production
- Market demand for and supply of the good are defined by (II) and (I) for arbitrary p
- The inverse of the supply function, $q^{-1}(\cdot)$, can be viewed as the industry marginal cost function $C^{\prime}(\cdot)$ (with the next unit produced by the most efficient firm)
- The inverse $P(x)=x^{-1}(x)$ of the demand function corresponds to the marginal social benefit of the next unit of the good if the quantity x is distributed efficiently amongst consumers

10.2 Fundamental Welfare Theorems

- For any fixed consumption and production plans, \boldsymbol{x} and \boldsymbol{q}, and (sufficient) total endowments ω_{m} of the numeraire, any utility vector in set

$$
\left\{\left(u_{1}, \ldots, u_{i}\right) \mid \Sigma u_{i} \leq \Sigma \phi_{i}\left(x_{i}\right)+\omega_{m}-\Sigma c_{j}\left(q_{j}\right)\right\}
$$

could be realized by appropriate transfers of the numeraire in the considered quasilinear case (numeraire has same constant marginal utility for everyone)

- For given \boldsymbol{x} and \boldsymbol{q}, the RHS above is a constant, so the boundary of this utility possibility set is a hyperplane with normal vector ($1,1, \ldots, 1$);
variations of \boldsymbol{x} and \boldsymbol{q} imply parallel shifts of it

Pareto optimal plans

- Plans \boldsymbol{x}^{*} and \boldsymbol{q}^{*} are Pareto-optimal iff they maximize the RHS, i.e., they solve

$$
\begin{aligned}
& \max _{x, q \geq 0} \Sigma \phi_{i}\left(x_{i}\right)+\omega_{m}-\Sigma c_{j}\left(q_{j}\right) \\
& \text { s.t. } \Sigma x_{i}-\Sigma q_{j}=0 .
\end{aligned}
$$

- Given our convexity assumptions ($c_{j}{ }^{\prime \prime} \geq 0, \phi_{i}{ }^{\prime \prime} \leq 0$), the maximization of the Lagrangean

$$
L\left(x_{1}, \ldots, x_{1}, q_{1}, \ldots, q_{J}, \lambda\right)=\Sigma \phi_{i}\left(x_{i}\right)-\Sigma c_{j}\left(q_{j}\right)-\lambda \cdot\left(\Sigma x_{i}-\Sigma q_{j}\right)
$$

yields the necessary and sufficient conditions ($j=1, \ldots, J ; i=1, \ldots$,)
(i) $\quad-c_{j}^{\prime}\left(q_{j}^{*}\right)+\lambda \leq 0 \Leftrightarrow \lambda \leq c_{j}^{\prime}\left(q_{j}^{*}\right)$, with equality for $q_{j}^{*}>0$
(ii) $\phi_{i}^{\prime}\left(x_{i}^{*}\right)-\lambda \leq 0 \Leftrightarrow \phi_{i}^{\prime}\left(x_{i}^{*}\right) \leq \lambda$, with equality for $x_{i}^{*}>0$,
(iii) $\quad \Sigma x_{i}^{*}=\Sigma q_{j}^{*}$

- These correspond exactly to the conditions which characterize a competitive equilibrium, with λ replacing p^{*}

First Fundamental Welfare Theorem

- Hence, if price p^{*} and allocation ($\left.x_{1}{ }^{*}, \ldots, x^{*}, q_{1}{ }^{*}, \ldots, q^{*}\right)$ constitute a CE, then this allocation is Pareto optimal
- This result is also known as the First Fundamental Theorem of Welfare Economics
- Good k's price p^{*} in a CE exactly reflects the good's marginal social value (in units of the numeraire), i.e., the "shadow price" of the resource constraint:
in its resp. profit maximization, each firm equates its marginal production cost to the marginal social value of its output
- Similarly, consumers consume up to the point where their marginal utility equals the marginal cost of production (in units of the numeraire)
- The theorem vindicates Adam Smith's "invisible hand" for perfectly competitive markets, and holds more generally than considered here

Remarks

- Market power, information imperfections or market incompleteness can yield very different conclusions ...
- Nothing is said yet about actual existence of a CE, or how it might be reached (if at all) by a dynamic adaptation or tâtonnement process with decentralized information ...
- In the quasilinear case, CE price p^{*} and individually consumed and produced quantities of good k do not depend on the distribution of total endowment ω_{m} (NB: except for corner solutions, in which some agents are too poor to consume both good k and the numeraire)

Second Fundamental Welfare Theorem

- So, ignoring corner solutions, changing the initial distribution ($\omega_{m}, \ldots, \omega_{m i}$) changes individual consumption of the numeraire but not $\left(x_{1}{ }^{*}, \ldots, x_{1}{ }^{*}, q_{1}{ }^{*}, \ldots, q J^{*}\right)$: one moves within the Pareto efficient hyperplane
- For any Pareto optimal levels of utility $\left(u_{1}{ }^{*}, \ldots, u_{1}{ }^{*}\right)$, there are transfers $\left(T_{1}, \ldots, T_{l}\right)$ of the numeraire good with $\Sigma T_{i}=0$ such that a CE reached from the redistributed endowments $\left(\omega_{m 1}+T_{1}, \ldots, \omega_{m ı}+T_{1}\right)$ yields exactly the utilities ($\left.u_{1}{ }^{*}, \ldots, u_{1}{ }^{*}\right)$
- This result is also known as the Second Fundamental Theorem of Welfare Economics
- Hence, pursuing a particular distributional goal does not conflict with having competitive markets: one can achieve the goal by appropriate endowment transfers and then "let the market work"
- This result generalizes, too, but not as much as the First Theorem (in particular, preferences and technology need to be convex)

10.3 Welfare Analysis in Partial Equilibrium

- What "yardstick" can we use for comparing different allocations (esp. Pareto-incomparable ones)?
- The value of $\Sigma \phi_{i}\left(x_{i}\right)-\Sigma c_{j}\left(q_{j}\right)$ in the maximization problem which characterizes Pareto efficient allocations is known as the (Marshallian) aggregate surplus
- It is an indicator of social welfare under any (increasing) social welfare function $W\left(u_{1}, \ldots, u_{l}\right)$ in the quasilinear case:
- greater surplus implies a larger utility possibility set
- the planner can select a utility vector with a greater (maximized) W value through appropriate endowment transfers
- Aggregate surplus can be derived very simply from market demand and supply functions; it is thus a convenient tool and used in many applications

Aggregate surplus and CE

- Starting from (possibly non-CE) total consumption and production $x=\Sigma x_{i}=\Sigma q_{j}=q$, increases by $\left(\Delta x_{1}, \ldots, \Delta x i\right)$ and $\left(\Delta q_{1}, \ldots, \Delta q_{j}\right)$ such that $\Sigma \Delta x_{i}=\Sigma \Delta q_{j} \equiv \Delta x>0$ change surplus by

$$
\Delta S \approx \Sigma \phi_{i}^{\prime}\left(x_{i}\right) \cdot \Delta x_{i}-\Sigma c_{j}^{\prime}\left(q_{j}\right) \cdot \Delta q_{j}
$$

- For given x, the planner maximizes surplus by allocating consumption and production s.t. $\phi_{i}^{\prime}\left(x_{i}\right)=P(x)$ and $c_{j}^{\prime}\left(q_{j}\right)=C^{\prime}(x)$ for all i, j
- Then

$$
\begin{aligned}
& \Delta S \approx\left[P(x)-C^{\prime}(x)\right] \cdot \Delta x \text { or } \\
& d S / d x=P(x)-C^{\prime}(x) \text { for marginal changes }
\end{aligned}
$$

- So aggregate surplus under an optimal distribution of output x is

$$
S(x)=S(0)+\int_{0}^{\hat{0}}[P(s)-C(s)] d s
$$

- $S(0)$ reflects possible fixed costs of production; $S(x)-S(0)$ is the area between market demand and supply curves
- $S(x)$ increases up to x^{*} s.t. $P\left(x^{*}\right)=C^{\prime}\left(x^{*}\right)$, i.e., the CE level \Rightarrow surplus is maximal in the undistorted laissez-faire CE (but: given one distortion, adding another may raise surplus ...)

10.4 Free-entry long run equilibria

- For strictly convex costs, there is "no" long-run free entry equilibrium because any firm would produce zero (at minimal MC)
- Otherwise, the demand curve intersects with an approximately horizontal LR industry supply curve (resulting either from CRS, with then an indeterminate industry structure, or from r firms each producing at an efficient scale)
- This LR equilibrium can differ from the SR equilibrium, in which the number of firms is fixed and a SR supply curve slopes upwards

11. Market power

- Price-taking behavior is implausible if there are only a few producers (or consumers)
- Several "workhorse" models of industrial organization capture the performance differences that market power can cause
- A first benchmark is an uncontested monopolist who can
- produce quantity x of a good at cost $C(x)$, and
- sell it at a constant unit price p to consumers, whose demand is described by demand curve $D(p)$
- The monopolist maximizes $\Pi(p)=p \cdot D(p)-C(D(p))$
- The necessary condition for an interior profit maximum is

$$
\begin{array}{ll}
& {\left[p-C^{\prime}(D(p))\right] \cdot D^{\prime}(p)=-D(p)} \\
\Leftrightarrow & {\left[p-C^{\prime}(D(p))\right] / p=-D(p) /\left[D^{\prime}(p) \cdot p\right]=1 /|\varepsilon|}
\end{array}
$$

- In the monopolist's profit maximum, the mark-up over price ratio $\left[p^{m}-C^{c}\right] / p^{m}$ (a.k.a. Lerner index) equals the inverse of the (absolute) price elasticity $|\varepsilon|=-D^{\prime}\left(p^{m}\right) \cdot p^{m} / D\left(p^{m}\right)$

Deadweight loss of monopoly

- Except for perfectly elastic demand (" $|\varepsilon|=\infty$ "), $p^{m}>C^{\prime}\left(D^{m}\left(p^{m}\right)\right)$; quantity $x^{m}=D\left(p^{m}\right)$ is weakly smaller than x^{*} in the CE
- Any quantity $x<x^{*}$ results in an inefficient allocation and entails a deadweight welfare loss: surplus which could be generated by further trade is left unrealized
- Having sold $D\left(p^{m}\right)$ units at price p^{m}, the monopolist would gain from selling additional units at any price p with $C^{\prime}(D(p))<p<p^{m}$
- Consumers with willingness to pay v satisfying $p<v<p^{m}$ would gain from buying these additional units
- If the monopolist could perfectly discriminate between consumers, i.e., confront each consumer i with an individual price-payment bundle (x_{i}, T_{i}), then he could capture all surplus
- It would then become optimal to maximize surplus; then there would be no deadweight loss

Further remarks on monopolies

- In addition to the indicated allocative inefficiency $x^{m}<x^{*}$, a monopolistic market structure has further welfare costs
- With neither product market nor capital market benchmarks, agency problems inside a monopolistic firm are harder to tackle, and tend to result in inefficient organization of production (X-inefficiency)
- Firms engage in unproductive fights to secure monopoly rents (rent-seeking)
- A monopolist has smaller incentives to invest in R\&D than firms without market power (dynamic inefficiency)
- Situation can be better if the monopoly market is contestable
- The profit maximization problem of a multi-product monopolist differs from the standard case in that
- (dis-)economies of scope in production and
- positive or negative cross-price effects (complements/substitutes)
need to be taken into account

Bertrand competition

- The Bertrand duopoly model considers
- two firms who simultaneously announce their respective price p_{j} for a homogenous good, which - in the baseline case - can be produced at identical constant marginal cost c without capacity constraints, and
- consumers who buy only at the cheaper firm if $p_{1} \neq p_{2}$, and otherwise split their demand $D(p)$ equally between firms 1 and 2
- If costs and prices have to be multiples of a smallest currency unit ε, firm i's best response correspondence R_{i} to p_{j} is
- $\quad R_{i}\left(p_{j}\right)=\left\{p_{j}-\varepsilon\right\}$ for $p_{j}>c+\varepsilon$
- $\quad R_{i}\left(p_{j}\right)=\{c+\varepsilon\}$ for $p_{j}=c+\varepsilon$
$-R_{i}\left(p_{j}\right)=\left\{p_{i}: p_{i} \geq c\right\}$ for $p_{j}=c$

NE in the discrete Bertrand game

- The discrete Bertrand game has two NE:
- $\left(p_{1}{ }^{*}, p_{2}{ }^{*}\right)=(c, c)$
$-\left(p_{1}{ }^{* *}, p_{2}^{* *}\right)=(c+\varepsilon, c+\varepsilon)$

Bertrand paradox

- If p_{1} and p_{2} are chosen from interval $[0, \infty)$, then $\left(p_{1}^{b}, p_{2}^{b}\right)=(c, c)$ becomes the unique NE
- The "Bertrand paradox":

Price competition between two symmetric firms with CRS results in the same market outcome as perfect competition, namely $p^{*}=c$

- If firm j has a non-drastic cost advantage over its competitor(s), it supplies the entire market at price $p_{j}{ }^{b}=\min _{k \neq j} c_{k}$ (or ε below); for a drastic advantage, it chooses $p_{j}{ }^{b}=p^{m}$
- Even symmetric firms can avoid the paradox
- if technology commits them not to undercut their rival for some $p>C^{\prime}$ (e.g., for strictly convex $C(\cdot)$ or capacity constraints)
- if they differentiate their products, i.e., make them imperfect substitutes
- if they collude

Edgeworth competition

- As a limit case of strictly convex $C(\cdot)$, consider price competition with exogenous capacities q_{1} and $q_{2}<D(c)$, i.e., a single firm cannot serve the whole market at $p^{*}=c$
- If firm i's capacity q_{i} is already exhausted for $p_{i}=p_{j}$, it will not undercut firm j
- If capacities q_{1} and q_{2} are small enough ($\leq x_{i}^{c}$ in Cournot NE), equilibrium prices $p_{1}{ }^{e}=p_{2}{ }^{e}=p^{e}$ are defined by $D\left(p^{e}\right)=q_{1}+q_{2}$:
- Unilateral undercutting of p^{e} is unprofitable because the firm's capacity is already exhausted
- A unilateral increase of p^{e} (i.e., selling below capacity) is unprofitable given that one's quantity/capacity is already small

Cournot competition

- The Cournot duopoly model considers
- two firms who simultaneously produce a respective output x_{j} of a homogenous good at cost $C_{j}\left(x_{j}\right)$, and
- market clearing at price $p=P\left(x_{1}+x_{2}\right)$, i.e., such that $D(p)=x_{1}+x_{2}$
- While it is usually unspecified how market clearing is brought about, Kreps and Scheinkman (1983) have shown that the Cournot game can be interpreted as the reduced form of a twostage extensive game in which
- first, firms invest in capacities x_{i}, incurring costs $C_{i}\left(x_{i}\right)$ for this $(i=1,2)$
- second, they engage in Edgeworth competition with fixed capacities $q_{i}=x_{i}$ and zero costs of production
- We assume that no firm as a drastic cost advantage: costs are sufficiently similar that both firms want to produce in equilibrium

Reaction function of firm i

- Firm i maximizes

$$
\Pi_{i}\left(x_{i}, x_{j}\right)=P\left(x_{i}+x_{j}\right) \cdot x_{i}-C_{i}\left(x_{i}\right)
$$

- The (singleton-valued) best response $x_{i}^{*}=R_{i}\left(x_{j}\right)$ to the anticipated competitor output x_{j} is defined by $(I=1,2)$:

$$
P\left(x_{i}+x_{j}\right)+P^{\prime}\left(x_{i}+x_{j}\right) \cdot x_{i}=C_{i}^{\prime}\left(x_{i}\right)
$$

- For $x_{j}=0$, i should behave like a monopolist, i.e., $R_{i}(0)=x_{i}^{m}$
- If the competitor already produces the CE quantity $x_{j}=x^{*}$, it is optimal not to produce, i.e., $R_{i}\left(x^{*}\right)=0$
- Under the usual assumptions - with $P^{\prime \prime}(x) \leq 0$ and $C_{i}^{\prime \prime}\left(x_{i}\right) \geq 0$ - the reaction function $R_{i}\left(x_{j}\right)$ is strictly decreasing on ($0, x^{*}$)
- This means firms' quantity decisions are strategic substitutes: firm i reacts to a larger output x_{j} with a reduction of own output x_{i}

Nash equilibrium in the Cournot game

Symmetric case:

n-firm Cournot game

- With $x_{\Sigma}=\Sigma x_{i j}$, the NE $x^{c}=\left(x_{1}{ }^{c}, \ldots, x_{n}{ }^{c}\right)$ of Cournot competition between n firms is characterized by:

$$
P\left(x_{\Sigma}\right)+P^{\prime}\left(x_{\Sigma}\right) \cdot x_{i}=C_{i}^{\prime}\left(x_{i}\right) \text { for } i \in\{1, \ldots, n\}
$$

or, expressed in market shares $s_{i}=x_{i} / x_{\Sigma}$ and with $p^{c}=P\left(x_{\Sigma}{ }^{c}\right)$,

$$
\left[p^{c}-C_{i}^{\prime}\left(x_{i}^{c}\right)\right] / p^{c}=s_{i} /\left|\varepsilon\left(p^{c}\right)\right|
$$

- In the Cournot NE, the Lerner index (a measure of market power and profitability) of firm i is proportional to its market share s_{i}; market shares are linked to technology differences
- For symmetric firms, $s_{i}=1 / n$ with mark-up to price ratio $\left.1 /\left[n \cdot \mid \varepsilon\left(p^{c}\right)\right]\right]$; so the market price p^{c} in NE \boldsymbol{x}^{c} converges to $p^{*}=c$ as $n \rightarrow \infty$

Prototypes of product differentiation

- Vertically differentiated products:
- All consumers have the same preferences over products as such, i.e., they would all buy the same one(s) for identical prices $p_{1}=\ldots=p_{n}$
- Different preference intensities (marginal rate of substitution between wealth and the differentiating characteristic) explain different purchase behavior for non-identical prices
- Horizontally differentiated products:
- Different consumers prefer different products for identical prices; they have different notions of the "ideal" location of the good in an abstract or physical product space
- Representative consumer with love of variety:
- A representative consumer obtains utility from the numeraire and an "index" of his consumption of goods $1, \ldots, n$, to which all goods contribute symmetrically, and where usually the first unit of any good has infinite marginal utility

Hotelling competition

- The Hotelling duopoly model considers
- a continuum of consumers who want to buy at most one unit of a differentiated good, regarding which they have uniformly distributed ideal points in the one-dimensional product space $X=[0,1]$, and
- two firms who are - in the baseline case - located at the extremes of X, and simultaneously announce the respective price p_{j} for their good, which has constant marginal cost c
- We look at the case in which consumers suffer from a quadratic disutility of distance, $t x^{2}$ or $t(1-x)^{2}$ for $t>0$, and have a sufficiently high valuation for the good
- They will always buy from the firm for which the total disutility ($\hat{=}$ price plus transportation cost) is minimal

Hotelling model with fixed locations

- The consumer at location x buys from 1 if $p_{1}+t x^{2} \leq p_{2}+t(1-x)^{2}$, otherwise from 2
\Rightarrow Firm 1 faces demand $D_{1}\left(p_{1}, p_{2}\right)=\left(p_{2}-p_{1}+t\right) / 2 t$, firm 2 faces $D_{2}\left(p_{1}, p_{2}\right)=1-D_{1}\left(p_{1}, p_{2}\right)$
- Maximization of $\Pi_{i}\left(p_{1}, p_{2}\right)=\left(p_{i}-c\right) \cdot D_{i}\left(p_{1}, p_{2}\right)$ yields the reaction functions $R_{i}\left(p_{j}\right)=1 / 2 \cdot\left(p_{j}+c+t\right)$
(NB: firms' prices are strategic complements)
\Rightarrow Nash equilibrium: $p_{1}{ }^{*}=p_{2}{ }^{*}=c+t$
- Firms' profits $\Pi_{i}\left(p_{1}{ }^{*}, p_{2}{ }^{*}\right)=t / 2$ are positive and increasing in the differentiation parameter $t>0$

Collusive behavior

- Collusion refers to anti-competitive coordination of firms' prices, quantities, etc. in markets where cartel agreements cannot be enforced in court
- Firms' always have an interest in full coordination: they could duplicate the non-cooperative outcome, but in most cases strictly increase profits by not doing so
- Such coordination is, however, not self-enforcing if firms interact only once, or over a definite time-horizon
- If firms interact repeatedly over an in(de)finite time horizon, collusion can be supported by strategies that involve credible punishment of free-riding deviators
(provided that a deviator's forgone long-term collusion rents are important enough relative to the short-term deviation profit)

Collusion in the symmetric CRS Bertrand oligopoly

- In the symmetric Bertrand n-firm oligopoly with CRS, a firm's per-period profit is

$$
\begin{aligned}
& \Pi^{*} \approx 0 \text { if all firms compete, } \\
& \Pi^{k}=\Pi^{m} / n \text { if all firms collude, and } \\
& \Pi^{d} \approx \Pi^{m} \text { if the firm deviates }
\end{aligned}
$$

- Collusion can be realized by an SPE in Nash reversion strategies iff firms discount future profits by a factor δ that is no smaller than the critical discount factor

$$
\delta_{\text {crit. }}{ }^{b}=\left(\Pi^{d}-\Pi^{k}\right) /\left(\Pi^{d}-\Pi^{*}\right)=(n-1) / n
$$

- The critical discount factor increases in n, and converges to 1
- That repeated interaction allows for equilibria which have very different outcomes than single-shot interaction is formalized by game theory's (Nash or Perfect) Folk Theorems

