

Advanced Non-Volatile Memories (NVM)

Jean Yang-Scharlotta

jean.yang-scharlotta@jpl.nssa.gov

818-354-0412

NASA/ Jet Propulsion Laboratory

Acknowledgment:

This work was sponsored by:

NASA Office of Safety & Mission Assurance

Team inputs provided by:

Ted Wilcox, AS&D, Ted.Wilcox@nasa.gov Ken Label, GSFC

Dr. Matt Gadladge, Navy Crane

Open Access

To be presented by Jean Yang-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29, 2017.

Acronyms

Acronym	Definition		
1MB	1 Megabit		
3D	•		
3DIC	Three Dimensional Three Dimensional Integrated Circuits		
ACE			
	Absolute Contacting Encoder		
ADC AEC	Analog to Digital Converter		
AEC	Automotive Electronics Council		
1120	Advanced Encryption Standard		
AF	Air Force		
AFRL	Air Force Research Laboratory		
AFSMC	Air Force Space and Missile Systems Center		
AMS	Agile Mixed Signal		
ARM	ARM Holdings Public Limited Company		
BGA	Ball Grid Array		
BOK	Body of Knowledge		
CAN	Controller Area Network		
CBRAM	Conductive Bridging Random Access Memory		
CCI	Correct Coding Initiative		
CGA	Column Grid Array		
CMOS	Complementary Metal Oxide Semiconductor		
CN	Xilinx ceramic flip-chip (CF and CN) packages are ceramic column grid array (CCGA) packages		
COTS	Commercial Off The Shelf		
CRC	Cyclic Redundancy Check		
CRÈME	Cosmic Ray Effects on Micro Electronics		
CRÈME MC	Cosmic Ray Effects on Micro Electronics Monte Carlo		
CSE	Crypto Security Engin		
CU	Control Unit		
D-Cache	defered cache		
DCU	Distributed Control Unit		
DDR	Double Data Rate (DDR3 = Generation 3; DDR4 = Generation 4)		
DLA	Defense Logistics Agency		
DMA	Direct Memory Access		
DMEA	Defense MicroElectronics Activity		
DoD	Department of Defense		
DOE	Department of Energy		
DSP	Digital Signal Processing		
dSPI	Dynamic Signal Processing Instrument		
Dual Ch.	Dual Channel		
ECC	Error-Correcting Code		
EEE	Electrical, Electronic, and Electromechanical		
EMAC	Equipment Monitor And Control		
EMIB	Multi-die Interconnect Bridge		
ESA	European Space Agency		
eTimers	Event Timers		
ETW	Electronics Technology Workshop		
FCCU	Fluidized Catalytic Cracking Unit		
FeRAM	Ferroelectric Random Access Memory		
FinFET	Fin Field Effect Transistor (the conducting channel is wrapped by a thin silicon "fin")		
FPGA	Field Programmable Gate Array		
FPU	Floating Point Unit		
FY	Fiscal Year		
GaN	Gallium Nitride		
GAN GIT	Panasonic GaN GIT Eng Prototype Sample		
GAN SIT			
Gb	Gallium Nitride GIT Eng Prototype Sample Gigabyte		
GCR	Glactic Cosmic Ray		
GIC			
010	Global Industry Classification		

Acronym	Definition			
Gov't	Government			
GPU	Graphics Processing Unit			
GRC	NASA Glenn Research Center			
GSFC	Goddard Space Flight Center			
GSN	Goal Structured Notation			
GTH/GTY	Transceiver Type			
HALT	Highly Accelerated Life Test			
HAST	Highly Accelerated Stress Test			
HBM	High Bandwidth Memory			
HDIO	High Density Digital Input/Output			
HDR	High-Dynamic-Ran ge			
HIREV	High Reliability Virtual Electronics Center			
HMC	Hybrid Memory Cube			
HP Labs	Hewlett-Packard Laboratories			
HPIO	High Performance Input/Output			
HPS	High Pressure Sodium			
HUPTI	Hampton University Proton Therapy Institute			
I/F	interface			
I/O	input/output			
12C	Inter-Integrated Circuit			
i2MOS	Microsemi second generation of Rad-Hard MOSFET			
IC	Integrated Circuit			
IC	Integrated Circuit			
I-Cache	independent cache			
IUCF	Indiana University Cyclotron Facility			
JFAC	Joint Federated Assurance Center			
JPEG	Joint Photographic Experts Group			
JTAG	Joint Test Action Group (FPGAs use JTAG to provide access to their programming debug/emulation functions)			
КВ	Kilobyte			
L2 Cache	independent caches organized as a hierarchy (L1, L2, etc.)			
LANL	Los Alamos National Laboratories			
LANSCE	Los Alamos Neutron Science Center			
LLUMC	Loma Linda University Medical Center			
L-mem	Long-Memory			
LP	Low Power			
LVDS	Low-Voltage Differential Signaling			
LW HPS	Lightwatt High Pressure Sodium			
M/L BIST	Memory/Logic Built-In Self-Test			
MBMA	Model-Based Missions Assurance			
MGH	Massachusetts General Hospital			
Mil/Aero	Military/Aerospace			
MIPI	Mobile Industry Processor Interface			
MMC	MultiMediaCard			
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor			
MP	Microprocessor			
MP	Multiport			
MPFE	Multiport Front-End			
MPU	Microprocessor Unit			
Msg	message			
NAND	Negated AND or NOT AND			
NASA	National Aeronautics and Space Administration			
NASA STMD	NASA's Space Technology Mission Directorate			
Navy Crane	Naval Surface Warfare Center, Crane, Indiana			
NEPP	NASA Electronic Parts and Packaging			
NGSP	Next Generation Space Processor			
NOR	Not OR logic gate			

Acronym	Definition			
NRL	Naval Research Laboratory			
NRO	United States Navy National Reconnaissance Office			
NSWC Crane	Naval Surface Warfare Center, Crane Division			
OCM	On-chip RAM			
PBGA	Plastic Ball Grid Array			
PC	Personal Computer			
PCB	Printed Circuit Board			
PCle	Peripheral Component Interconnect Express			
PCIe Gen2	Peripheral Component Interconnect Express Generation 2			
PLL	Phase Locked Loop			
POL	point of load			
PoP	Package on Package			
PPAP	Production Part Approval Process			
Proc.	Processing			
PS-GTR	High Speed Bus Interface			
QDR	quad data rate			
QFN	Quad Flat Pack No Lead			
QSPI	Serial Quad Input/Output			
R&D	Research and Development			
R&M	Reliability and Maintainability			
RAM	Random Access Memory			
ReRAM	Resistive Random Access Memory			
RGB	Red, Green, and Blue			
RH	Radiation Hardened			
SATA	Serial Advanced Technology Attachment			
SCU	Secondary Control Unit			
SD	Secure Digital			
SD/eMMC	Secure Digital embedded MultiMediaCard			
SD-HC	Secure Digital High Capacity			
SDM	Spatial-Division-M ultiple xing			
SEE	Single Event Effect			
SESI	secondary electrospray ionization			
Si	Silicon			
SiC	Silicon Carbide			
SK Hynix	SK Hynix Semiconductor Company			
SLU	Saint Louis University			
SMDs	Selected Item Descriptions			
SMMU	System Memory Management Unit			
SNL	Sandia National Laboratories			
SOA	Safe Operating Area			
SOC	Systems on a Chip			
SPI	Serial Peripheral Interface			
STT	Spin Transfer Torque			
TBD	To Be Determined			
Temp	Temperature			
THD+N	Total Harmonic Distortion Plus Noise			
TRIUMF	Tri-University Meson Facility			
T-Sensor	Temperature-Sensor			
TSMC	Taiwan Semiconductor Manufacturing Company			
UMD	University of Maryland			
UART	Universal Asynchronous Receiver/Transmitter			
UFHPTI	University of Florida Proton Health Therapy Institute			
UltraRAM	Ultra Random Access Memory			
USB	Universal Serial Bus			
VNAND	Vertical NAND			
WDT	Watchdog Timer			

Outline

- Introduction Purpose & Priorities
- Roadmap
- Technology Evaluation and Test Results
 - ReRAM
 - STT-MRAM
 - 3D NAND Flash
- Upcoming Tests & Future Plans
- Summary

NEPP – Memories

New materials/ architectures

- Resistive
 - Fujitsu/Panasonic
- Spin torque transfer magnetoresistive
 - Avalanche, Everspin
- 3D Xpoint
 - Intel Optane
- Enabling "universal" memories

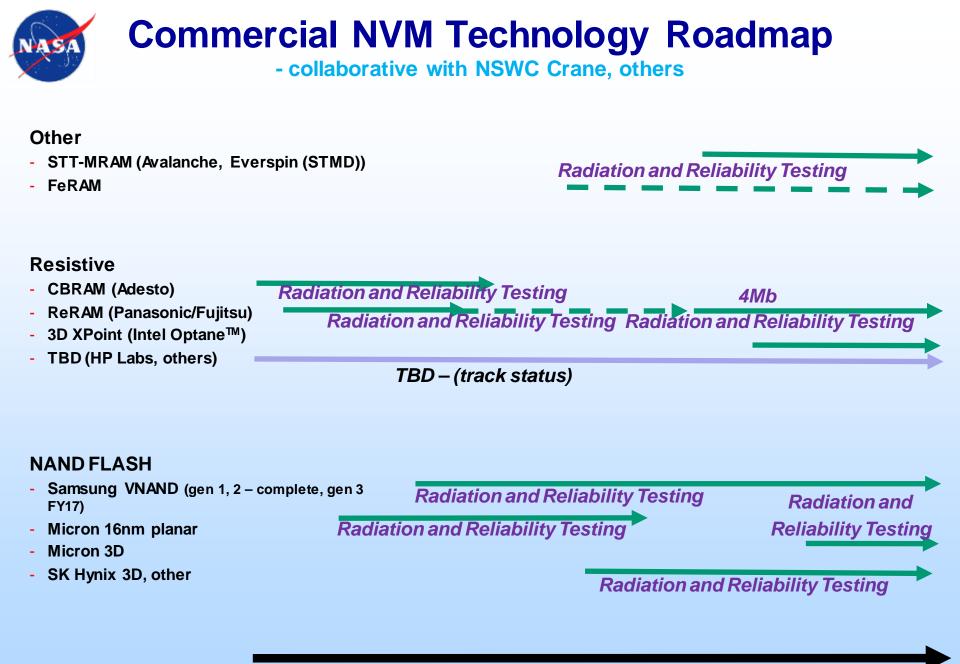
DRAMs

- DDR4 test capability (in progress)
- Commercial DDR (various)
- Tezzaron DiRAM
- Enabling high performance computing

Commercial Flash

- 3D
 - Samsung, Hynix, Micron
- Planar TBD
- Enabling data storage density

Best Practices and Guidelines

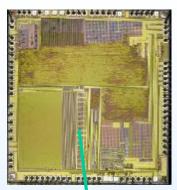

Partnering

- Navy Crane
- NASA STMD
- Avalanche
- University of Padova

Related task areas:

Deprocessing for single event testing (also w/processors, FPGAs,...) To be presented by Kenneth A: LaBel at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight

Center, Greenbelt, MD, June 26-29, 2017.


FY15FY16FY17To be presented by Jean Yang-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29, 2017

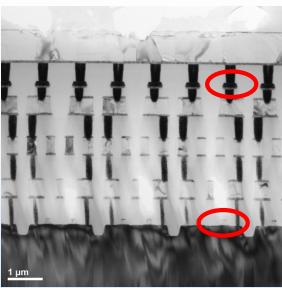
FY18

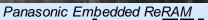
Resistive Memory (ReRAM)

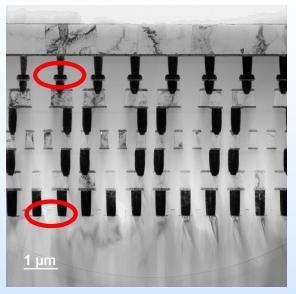
- Resistive Memory is a Long Term Storage Candidate Technology
 - Inherently TID-hard memory elements (Sandia, HP labs, etc)
 - Potential for high density storage memory
- Panasonic Embedded ReRAM
 - 512Kb embedded in microcontroller tested 2015/16
 - Pulsed laser testing shows robust cells but sensitivity in the sense amps
 - Memory reliability similar or better than flash
- Fujitsu/Panasonic ReRAM
 - 4Mb stand-alone ReRAM chip
 - Memory cell tech node same as previous embedded memory, but configured for high endurance with EDAC
 - Of interest to understand density scaling of ReRAM without microcontroller
 - Future 45 and 14nm planned by Fujitsu

Panasonic Enbedded ReRAM

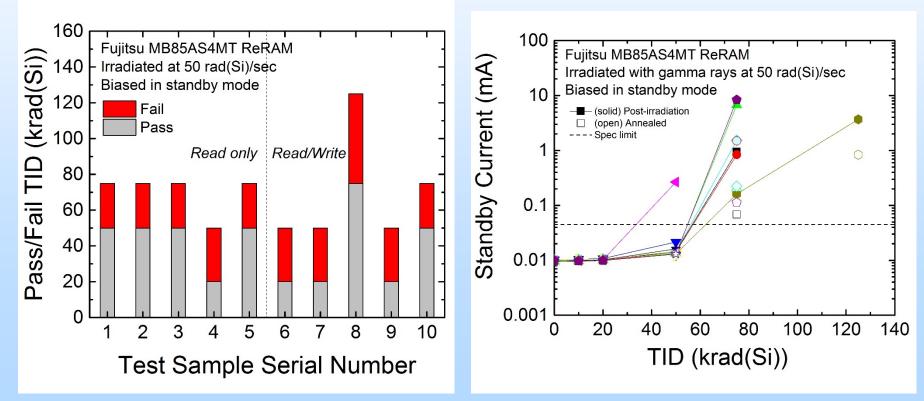
Location of pulsed laser bit upset sensitivity marked "1"


Fujitsu ReRAM



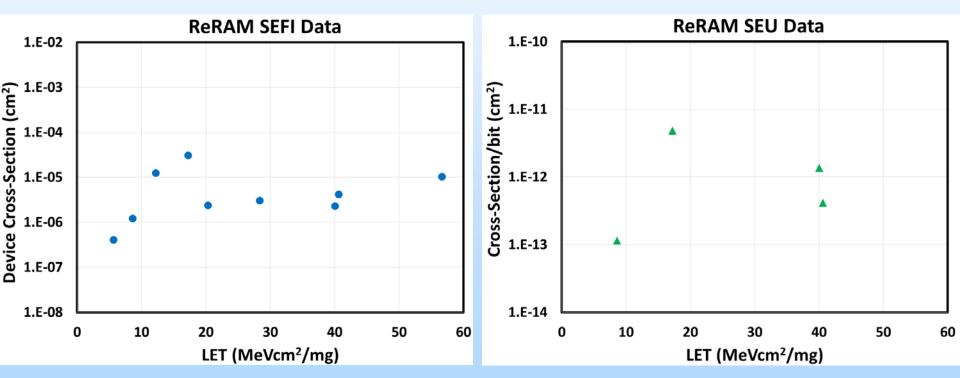

Fujitsu 4Mb 180nm ReRAM Test Collaborations

	NSWC Crane	NASA GSFC	NASA JPL
DPA			TEM complete; Memory organization similar to Panasonic
TID	Failure between No bit corruption observ failure. Similar results		
Heavy Ion		No SEU; SEFI LET _{th} < 5.6 MeVcm ² /mg One device failure at LET 5.6, cause TBD	
Proton		200 MeV: No SEU; SEFI CS ~2x10 ⁻¹¹ cm ²	
Reliability			Electrical and temperature stressing in progress



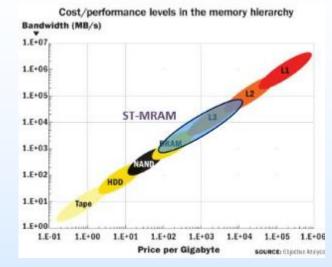
- Memory Array TEM for the Fujitsu chip shows the identical memory layout and feature size as the Panasonic Microcontroller ReRAM
- Memory element located between 3rd and 4th metal paired with transistor below for a 1T1R bit cell
- Expect intrinsic reliability performance to be similar
 - 3E7 endurance tested on 256Bytes with no read errors with EDAC
 - EDAC cannot be turned off so will see no failures until overwhelmed

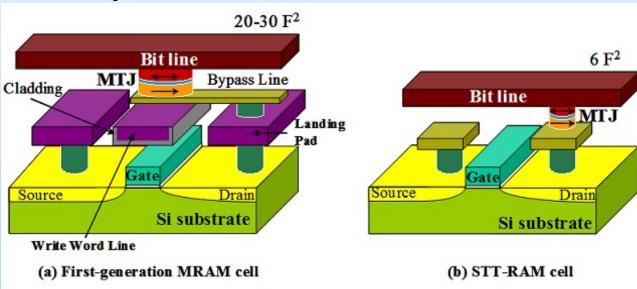
Fujitsu ReRAM (TID)


- No indication of data corruption during TID test
- Communication with device began failing after 20 krad (Si) step (SPI interface no longer responsive)

Fujitsu ReRAM (HI)

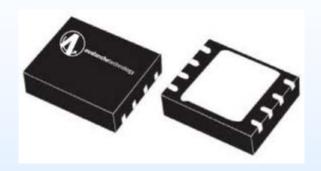
- No SEU observed during static irradiations up to LET of 56.6 MeV*cm²/mg.
- SEFI observed at lowest LET tested (5.6)
- Single errors noted after four dynamic runs
- Two devices permanently damaged (LET 40 and LET 5.6)


Fujitsu ReRAM Summary


- Stand alone chip with higher density for study comparison without microcontroller
- TID, HI, and proton testing do not show indications of data errors
- SEFI cross section for HI similar to the Panasonic embedded ReRAM
- Endurance reliability is significantly higher with EDAC but we will not see errors until EDAC is overwhelmed
- Resistive memory is still low density but has plans for density scaling for potential storage memory use

Spin Torque Transfer Magnetic Memory (STT-MRAM)

- STT-MRAM is a near term storage & working memory technology
 - MRAM already used in RH applications
 - MRAM can be used as (RH) system memory or storage memory replacing DRAM or NAND
- STT-MRAM enables further scaling of density well above current RH



Spin Torque Transfer Magnetic Memory (STT-MRAM)

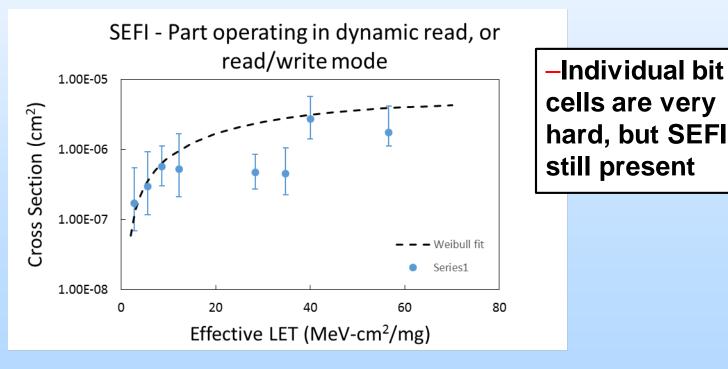
Avalanche Technology

- 1st Gen MRAM product "SPnvSRAM"
- 4Mb, 8Mb targeting high endurance, high data retention applications
- Initial heavy-ion data in. Production chip STT-MRAM testing scheduled for FY17E/FY18B
- Of interest to us for RH non-volatile memory uses

Everspin Technologies

- 1st Gen MRAM in 16Mb products by Honeywell and Cobham
- New STT-MRAM <u>256Mb DDR3</u> chip targeting high speed and high density
- Testing scheduled for STMD for FY17E
- Of interest for RH processor system memory

Avalanche STT-MRAM Test Collaborations


	NSWC Crane	NASA GSFC	NASA JPL
DPA			
TID		Late 2017	
Heavy lon		No SEU; SEFI LET _{th} < 2.8 MeVcm²/mg	
Laser		Late 2017	
Proton		200 MeV: No SEU; SEFI CS 1.24 x10 ⁻¹¹ cm ²	
Reliability			

Many remaining data gaps → pending additional parts for all parties!

Avalanche STT-MRAM (HI)

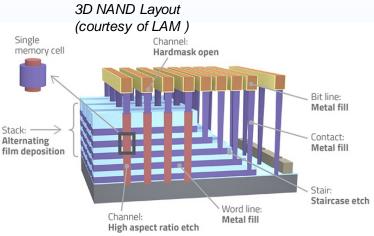
- No SEU observed during static, unpowered runs
- Some data corruption (in large blocks) after dynamic modes due to un-commanded write operations

Avalanche STT-MRAM (Proton)

- Three runs conducted with 200 MeV Protons:
- Static, Powered On: No SEU noted in memory after 1.14x10¹¹p/cm² static irradiation
- Dynamic Read Only: A single SEFI after 8x10¹⁰p/cm² fully recoverable with power cycle.
- Dynamic Read & Write: A single SEFI after 7x10¹⁰p/cm². Functionality recovered with power cycle, but two blocks (32KB) of memory no longer programmable (total 15.5 krad(Si))

Avalanche STT-MRAM Summary

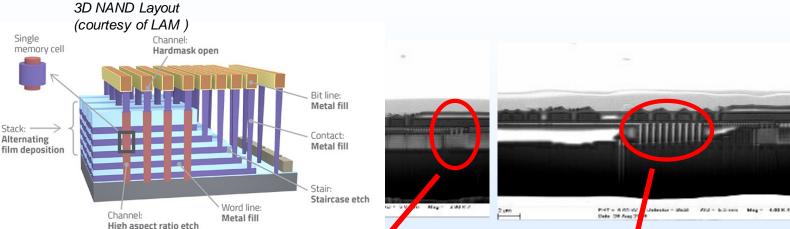
- Very limited HI and proton testing show no memory errors and some SEFI
- More chips from Avalanche needed for more complete SEE testing as well as TID and reliability


3D SLC/MLC/TLC NAND Flash

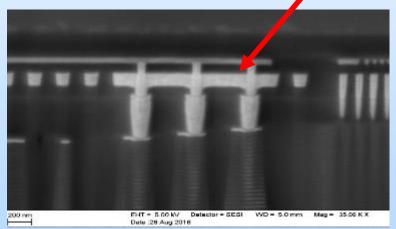
NAND Flash moving to 3D structures

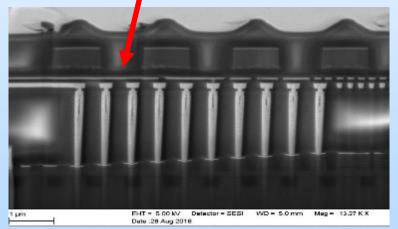
- Over 50% of NAND produced today
- By 2020 over 90% will be 3D
- Actual feature size is ~50nm
- Scaling will be by inc. # of stacks
- Massive density
 - Complex radiation/reliability tests

- Micron producing 6Tb LBGA chips
- Impractical to test entire addr space
- Secondary concerns:
 - Harder to acquire discrete devices as SSD market consumes all (few users of individual 1Tb+ chips!)
 - Rapid development / production / obsolescence cycle is not ideal for mil/aero COTS applications



Hynix 3D NAND Flash Collaborations

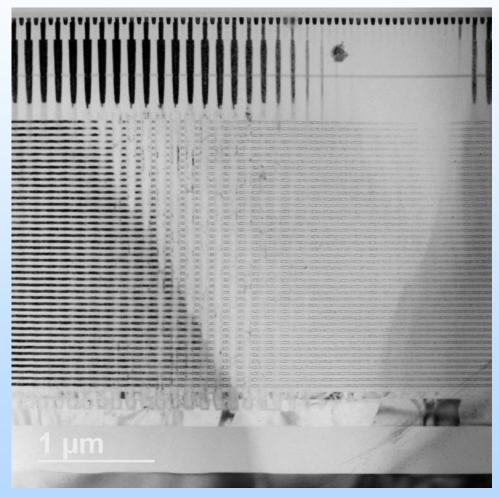

	NSWC Crane	NASA GSFC	NASA JPL
DPA	Completed: X-ray, die markings, FIB, SEM		Completed: Bit Cell Analysis, Comparisons to VNAND
TID	In Progress		
Heavy lon		MLC SEU: $LET_{th} < 3.5$ SLC SEU: $3.5 < LET_{th} < 7$ SEFI: $LET_{th} < 3.5$ Destructive: $35 < LET_{th} < 86$ *Inverse fluence dependence in MLC mode observed *Low MBU rate compared to 16nm planar, roll dependence observed	
Laser		Plans TBD: Identify sources of SEFI	
Proton		60/200 MeV Proton: MLC SEU CS: 1x10 ⁻¹⁴ cm ² /bit SLC SEU CS: 2.5x10 ⁻¹⁸ cm ² /bit 200 MeV SEFI CS: ~1x10 ⁻¹¹ cm ²	
Reliability			Complete: Endurance (fail at 50k prog/erase cycles) Electrical and temperature stressing on going



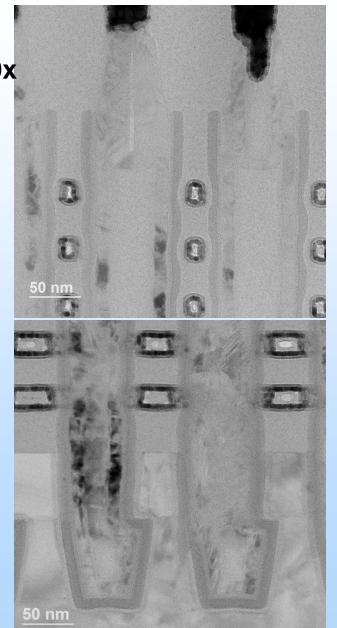
Hynix 3D 1X nm NAND equivalent FIB Cross-Section- 128Gb

Cross section showing FLASH array transition to periphery. Connections are identified for reference to higher magnification images below. Cross sections were taken along the Y-Axis

Higher magnification images of array connections


Hynix 3D NAND (128Gb, MLC) initial construction SEM analysis reveals a single die with 3D construction comprising of 40 physical device layers and staircase array edge connection.

To be presented by Jean Yang-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29 2017

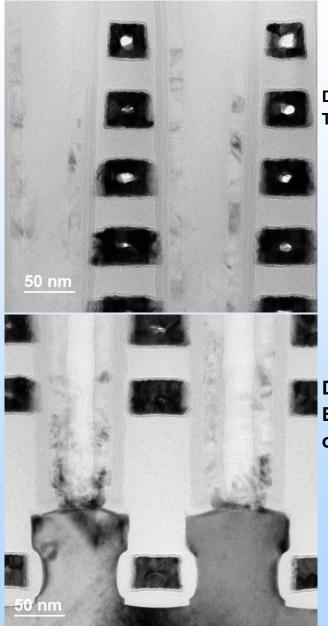


Hynix 3D NAND Y Direction Top and Bottom Details

Overview of the Vertical Stack @ 4500x

To be presented by Jean Yang-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29, 2017

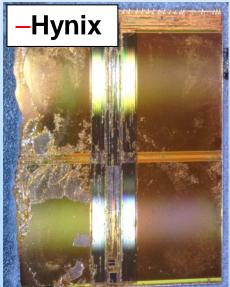
Detail View Top of Array

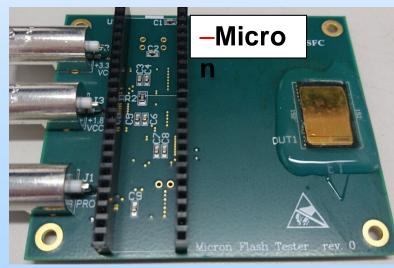

Detail View Bottom of Array

Samsung VNAND 2014 Y Direction Top and Bottom Details

Overview of the Vertical Stack @ 4500x

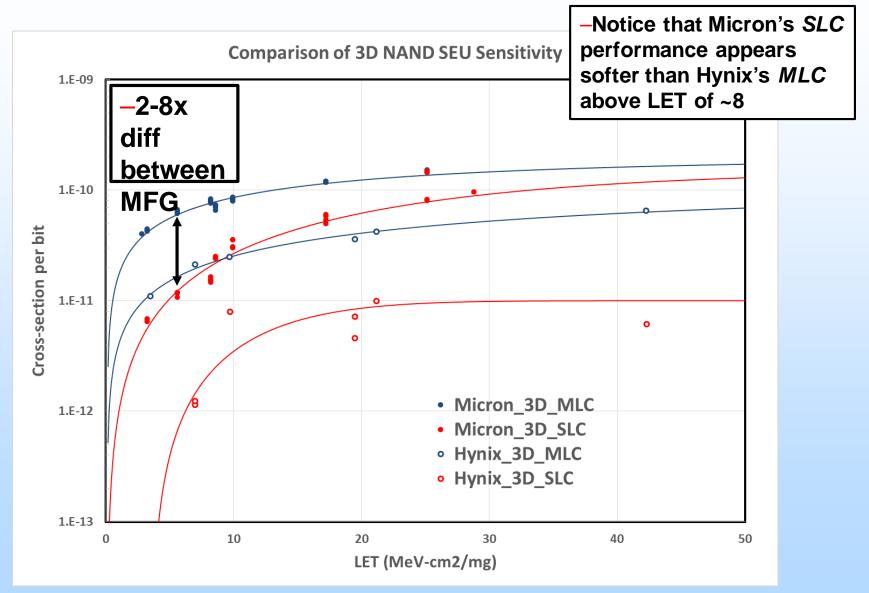
To be presented by Jean Yang-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29, 2017




Detail View Top of Array

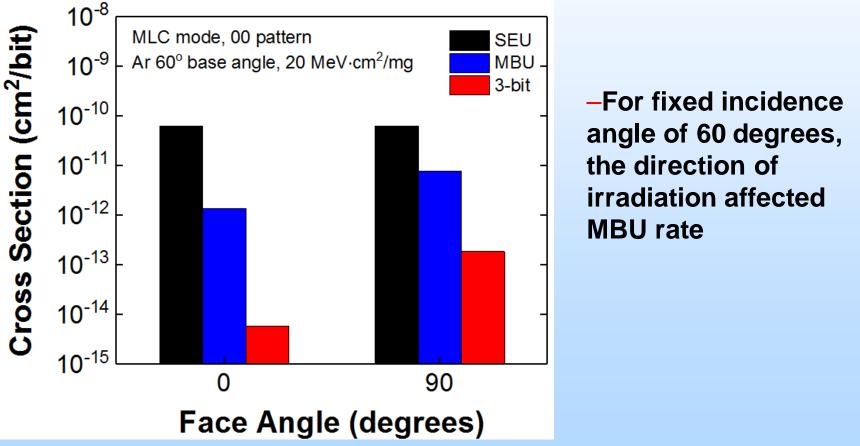
Detail View Bottom of Array

Comparison of 3D NAND Flash Tech


- Hynix 3D NAND (H27QDG822C8R-BCG)
 - Single die, MLC with SLC mode, 1x128Gb, charge trapping
- Micron 3D NAND (MT29F1T08CMHBBJ4)
 - Stacked die, MLC with SLC mode, 4x256Gb, floating gate
- Full data set tested for Hynix
- Limited data so far for Micron (static SEU only)

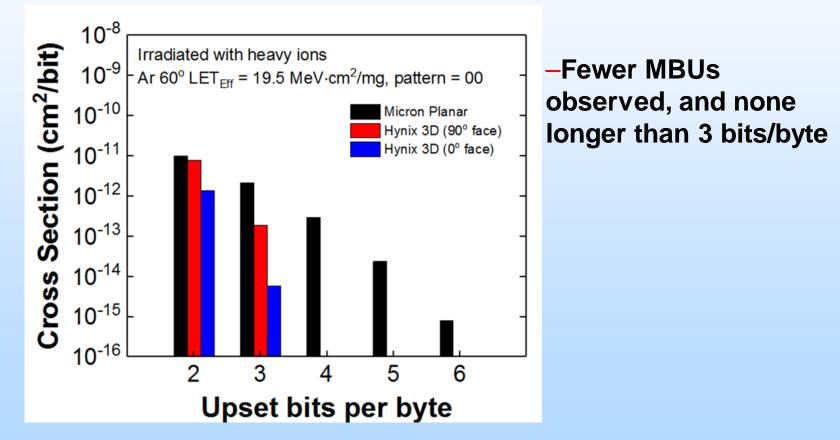
g-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29, 2017

3D NAND Static SEU Comparison:

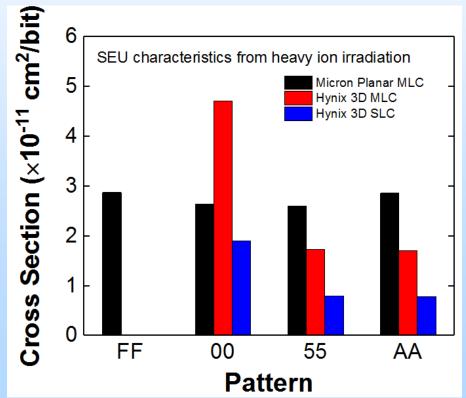


To be presented by Jean Yang-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29, 2017

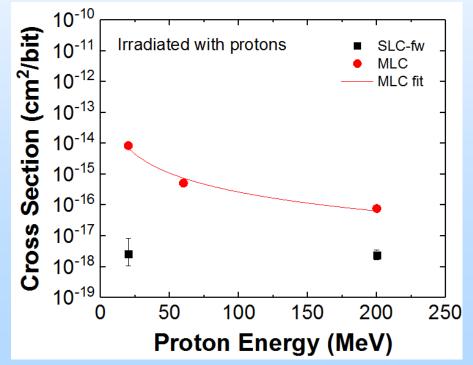
Hynix 3D NAND Flash (HI)


- First tests of 3D NAND Flash
 - Explored MBU dependence on direction of irradiation:

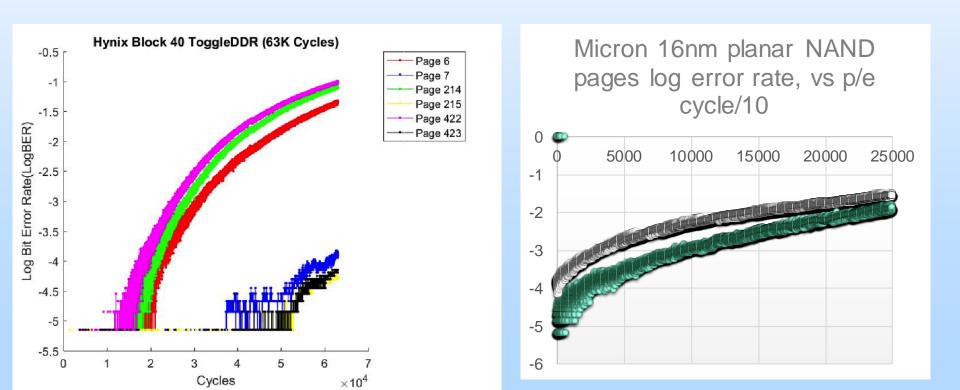
Hynix 3D NAND Flash (HI)


 Data compared to Micron 16nm planar NAND Flash (also 128Gb and MLC)

Hynix NAND Flash (HI)


 A strong pattern dependence was observed with Hynix 3D NAND. Erased (logic HIGH) bits can not be upset. Micron 16nm planar (and preliminarily, 3D NAND) has no pattern dependence).

Hynix 3D NAND Flash (Proton)


- Devices were irradiated with multiple proton energies at Massachusetts General Hospital.
- Same pattern dependence (only 0 -> 1 errors)
- Two SEFI observed, CS ~ 5.8x10⁻¹¹/cm² at 60 MeV and 1.1x10⁻¹¹/cm² at 200 MeV

Hynix 3D NAND

- Program/Erase Endurance
 - Fails at 50-60K writes due to erase failure vs ~250K cycles for Micron 16nm planar NAND was still functional
 - Upper pages (even pages, second bit in the MLC) have significantly higher error rate

3DNAND Hynix Summary

- Wafer level 3D structures with ~50nm feature size
- For static SEU, Hynix 3DNAND has 2-8x lower cross section per bit than Micron 3DNAND
- Lots of interesting results in these first tests of the Hynix 3DNAND
 - For fixed incidence angle see MBU rate change as function of irradiation angle
 - No >3bit/byte MBUs as compared to 16nm 2D NAND (could be due to feature size)
 - HI and proton tests both show very strong pattern dependence (only 0 -> 1 errors) potentially simplifying error correction
- Endurance reliability well above specification but prone to catastrophic failure at ~50K writes

Upcoming Radiation Tests

	Manufacturer	Technology	Device Description	Plans
ng Soon	Micron	3D NAND, MLC/SLC	256Gb NAND Flash	Heavy Ion: June 2017 Investigate fluence dependence on MLC operation and roll/tilt angular effects on 3D/MLC structures
Coming	Intel	Optane (3D Xpoint)	16GB PCIe SSD	Proton: Fall 2017 First look at new technology
Future Interest	Avalanche	STT-MRAM	Production version, serial memory	Expand on initial data with larger quantity of production parts
	Everspin	STT-MRAM	DDR3-interface high-speed NVM	Coordinate with NEPP DDR task!
	Any	Advanced 2D/3D NAND	NAND Flash Memory	Continued TID/SEE Testing
ц	Any futur	e NVM of relevance to	mil/aero community san	nples always welcome!

Future Objectives

- Enhance collaboration with NASA STMD and Navy Crane
- Continue to track and test new NVM products and technologies for radiation and reliability
- Collaborate with NEPP DDR/SDRAM task as technologies promise to "bridge the gap" between system memory and storage memory
- Provide data analytics radiation/reliability trends versus
 - CMOS nodes, manufacturers, etc..
 - Architecture (SLC, MLC, TLC)
 - Planar vertical (3D), etc...
- Update NEPP test guidelines *https://nepp.nasa.gov*

To be presented by Jean Yang-Scharlotta at the NEPP Electronic Technology Workshop, June 26-29, 2017

3D XPoint[™] Technology: An Innovative, High-Density Design

Cross Point Structure

Perpendicular wires connect submicroscopic columns. An individual memory cell can be addressed by selecting its top and bottom wire.

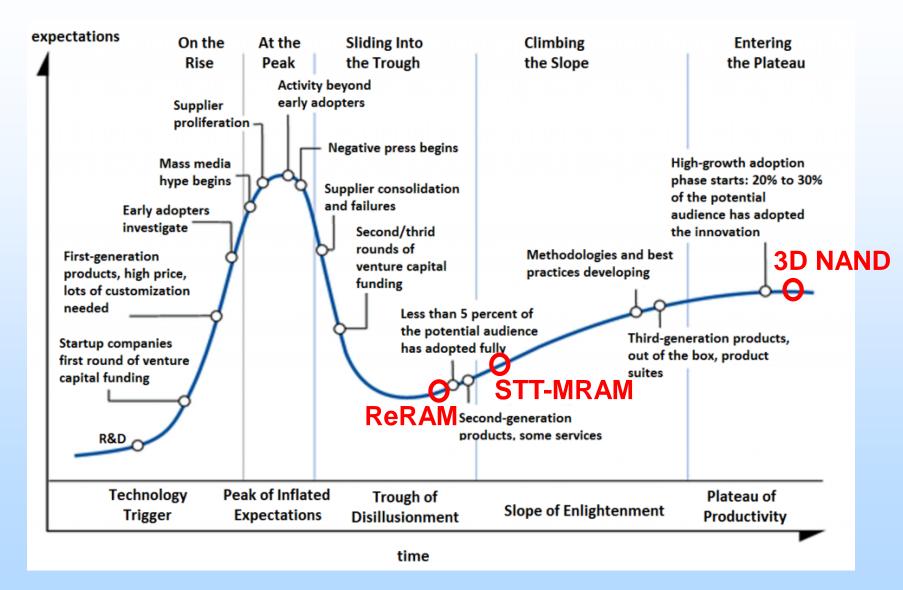
Non-Volatile

3D XPoint[®] Technology is non-volatile—which means your data doesn't go away when your power goes away—making it a great choice for storage.

High Endurance

Unlike other storage memory technologies, 3D XPoInt* Technology is not significantly impacted by the number of write cycles it can endure, making it more durable.

Stackable


These thin layers of memory can be stacked to further boost density.

Selector

Whereas DRAM requires a transistor at each memory cell—making it big and expensive—the amount of voltage sent to each 3D XPoint[™] Technology selector enables its memory cell to be written to or read without requiring a transistor.

Memory Cell Each memory cell can store a single bit of data.

Diatribe: Gartner Hype Cycle Concept

