
Advanced Operating Systems

#9

Shinpei Kato

Associate Professor

Department of Computer Science

Graduate School of Information Science and Technology

The University of Tokyo

<Slides download>
http://www.pf.is.s.u-tokyo.ac.jp/class.html

http://www.pf.is.s.u-tokyo.ac.jp/class.html

Course Plan

• Multi-core Resource Management

• Many-core Resource Management

• GPU Resource Management

• Virtual Machines

• Distributed File Systems

• High-performance Networking

• Memory Management

• Network on a Chip

• Embedded Real-time OS

• Device Drivers

• Linux Kernel

Schedule
1. 2018.9.28 Introduction + Linux Kernel (Kato)

2. 2018.10.5 Linux Kernel (Chishiro)

3. 2018.10.12 Linux Kernel (Kato)

4. 2018.10.19 Linux Kernel (Kato)

5. 2018.10.26 Linux Kernel (Kato)

6. 2018.11.2 Advanced Research (Chishiro)

7. 2018.11.9 Advanced Research (Chishiro)

8. 2018.11.16 (No Class)

9. 2018.11.23 (Holiday)

10. 2018.11.30 Advanced Research (Chishiro)

11. 2018.12.7 Advanced Research (Kato)

12. 2019.12.14 (No Class)

13. 2018.12.21 Advanced Research (Kato)

14. 2019.1.11 (No Class)

15. 2019.1.18 10:25-12:10 Linux Kernel

16. 2019.1.25 13:00-14:45 Linux Kernel

GPU Resource Management

Abstracting GPUs as Compute Devices

/* The case for TimeGraph and Gdev */

Acknowledgement:
Linux Nouveau Community

Graphics Processing Unit (GPU)

L2 Cache
L1 L1 L1 L1 L1 L1 L1

Device Memory

Host MemoryCPU

NVIDIA GPU Trend

• GPU for HPC by NVIDIA

• Kepler > Maxwell > Pascal > Volta

• Mfg. process of Pascal 16nm FinFET+

• Mfg. process of Volta 12nm FFN

• Newest breakout features Tensor Core

Performance increase by shrinking die size

• Up to 12x faster for deep learning applications on V100
than P100 (FP16).

• DP(FP64), SP (FP32) is 1.5x performance
improvement over P100.

• P100 was 3x faster than Kepler on FP64.

• Process shrink 16nm FinFET+ -> 12nm FFN.

• Retaining same power consumption (TDP 300W) for
both P100 & V100.

Performance Comparison

NVIDIA DRIVE PX2

• On-board AI engine

• The AI car computer for autonomous driving

• Fuse data from multiple cameras, as well as
LiDAR, radar, and ultrasonic sensors.

• Built to support ASIL-D

• 4 product family variants

Past cards performance change

Jetson: the low power embedded platform

• Latest TX2 offers 2x performance of the
predecessor.

• Tegra X2 is ARM Cortex-A57 (2GHz 4 core) +
NVIDIA Denver2 (2GHz 2 core).

• Can put 24 TX2 in 1U box!

• Tegra X1 is on the “hard to buy” Nintendo
Switch.

For PC/Games(non critical)

• Pascal based GeForce GTX 1080 released on
June 2016.

• Fast but memory bandwidth & amount less
than Titan-X.

• Water cooling as well as overlocking variants
are available.

GeForce GTX 1080

• GM200 → GP204 core change (Maxwell/Pascal)

• 16FinFET+ is more expensive

• GDDR5X is more expensive

• Already more advanced 1080TI is out

GeForce GTX 1080 Ti

• Premium version of the
GeForce GTX 1080

• 8GB → 11GB

• 8.2Gflops → 10.6Gflops FP

• 2560 cores → 3584 cores

• Same core, different world

• 30%+ price gap

• Shortage in supply

Titan-X (Pascal : Maxwell)

Spec comparison

• # of cores 3584 3072

• Core clock 1417MHz 1000MHz

• TFLOPs (FMA) 11 TF 6.1 TF

• Mem clock 10Gbps 7Gbps

• FP64 1/32 1/32

• FP16 (Native) 1/64 N/A

• INT8 4:1 N/A

• TDP 250W 250W

Shoot in a foot

• Look at this timeline

• 2AUG2016 TITAN-X released

• 10MAR2017 1080ti released

• 6APR2017 TITAN-Xp released
(Not released in Japan yet)

• Currently, TITAN-Xp is king of the consumer
GPU

• Approx. US$2K in Japan

For high-end computing

• Volta announced at NVIDIA GTC in May.

• For NVLink, NVIDIA does not tell you but
needs mass-code change.

• SXM2 version(NVLink) needs special edition of
NCCL libs to obtain an optimized perf.
(Subscription req’d)

For workstations

• GP100

• Has display connector

• Can NVLink(up-to 2 cards)

Deep Learning DGX-1 Volta

• 8x V100

• Shipping now

• NVLink(SXM2)

• CPU-GPU NVLink ONLY by IBM Power9

• Previous P100 version is OLD already

• VERY EXPENSIVE

DGX-1 Pros/Cons

• Pros
• NVIDIA brand

• Better chassis design

• Access to optimized libraries

• Cons
• Too expensive (Low ROI, High TCO)

• Warranty separately provided as subscription
(Hostage)

• Can not reconfigure*

TCO & ROI on AI

• DGX-1 Volta in Japan, approx. ¼ million USD
plus 15% annual subscription.

• Fixed config.

• Smarter and bigger
3rd party solution with
more robust system
also available at lower
cost, higher ROI.

• 2x GPU at same $!!

• Think/Act SMART!

And beyond…with OSS

• 1 system up-to 32 GPU (31 by CUDA)

• Single Root Complex!

• 2x performance of DGX-1 by single node and
price of DGX-1

WORLD FIRST & ONLY
16 GeForce also possible!

• Customisable CPU/RAM/STORAGE

• 120GPU in single rack

How many GPUs do you need?

• Currently, keeping x16 performance, without
crossing CPUs, the maximum # of GPUs
supported is 16.

• 8 is NOT ENOUGH in many cases.

• TESLA is not always an answer.

• US vendor made 16 GeForce recognized
under Linux and running stable.

• Connecting 2 boxes can make 32 GPUs, but
CUDA can only see up-to 31 GPUs.

Problem solving

• Important point using GPUs
• Performance decrease due to heating, and under

current.
• When Multi GPU environment, other GPU too will

suffer throttling.
• Often, users do not notice throttling and ust wonder

why my code is slow!

• How to solve this?
• Deployment of water block and strengthen the air

cooling
• Utilizing proper cables and grounding
• Choose proper PSU and power source

Theme for future movements

• Die size shrink will bring
• Increase # of cores
• Increase performance
• Efficient energy consumption

• Deployment of faster memory (HBM2)

• Implementation of FP4/FP8

• Moving up to PCIe gen4/NVLink2

• Popularisation of NCCL2 and optimisation with
NVLink

• Will be more expensive

• China to catch up to replace US technology

Memory

Multi-core

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

GPU vs. Many-core

L2 Cache
L1 L1 L1 L1 L1 L1 L1L1

Memory

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Core

L1
L2

Memory Memory

Memory Memory

GPU as Compute Device

Host Memory
L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

PCI Bus

Host CPU
L2 Cache

L1 L1 L1 L1 L1 L1 L1L1

Memory

Memory Bus

GPU

GPGPU

2008 2010
500 cores

250 cores

Tesla Fermi
Kepler

Maxwell

C

C++
Java

General-Purpose computation on Graphics Processing Units

Pascal

Low Power

2012
3000 cores

2014
5000 cores

GPGPU

8800 GTX
9800 GTX

GTX 285
GTX 480

GTX 580

GTX 680

GTX Titan

GTX Titan Black

GTX Titan X

X7350
X7460 X7560

E7-8870
E7-8890

0

1000

2000

3000

4000

5000

6000

7000

8000

2006 2008 2010 2012 2014 2016

G
F

L
O

P
S

RELEASE YEAR

Single Precision Performance

NVIDIA GTX

Intel Xeon

0

5

10

15

20

25

30

2006 2008 2010 2012 2014 2016

G
F

L
O

P
S

/W
A

T
T

RELEASE YEAR

Performance per Watt

NVIDIA GTX

Intel Xeon

Trend on Performance and Power

General-Purpose computation on Graphics Processing Units

GPGPU Computing Stack

User Programs

CUDA HMPP OpenCL
OpenGL

GPGPU Runtime Backend

Linux Kernel Device Driver

GPU

OS

Hardware

Runtime

Application
API

System Call

I/O

CPU CPU GPUCPUCPU

GPGPU Computing Model

CMD_HtoD CMD_HtoD CMD_LAUNCH CMD_DtoH

GPU
Code

Input
Data

Host Memory

GPU
Code

Input
Data

Device Memory

GPU
Code

Input
Data

Host Memory

GPU
Code

Input
Data

Device Memory

GPU
Code

Input
Data

Host Memory

GPU
Code

Device Memory

GPU
Code

Input
Data

Host Memory

Device Memory

GPU
Code

Output
Data

Output
Data

copy

Input
Data

copy

Output
Data

copy

GPGPU Execution

Program 1

Program 2 GPU command

GPU driver

Blocked Blocked

CPU

GPU

time

time

Details
Command Buffer

Indirect Buffer (IB)

GPU Command

GPU Command

GPU Command

microcontroller

Processing Cores

Kernel Execution Unit OthersGPU

CPU

Code
address offsetbuffer size

24 bits 40 bits

Data

IB Packet Format

Unified Addressing Memory Space

Refer to

Page Table Page Table

& GART

Write commands

Read commands

Device

Memory

Host

Memory

MMIO

Space

(PCI)
Control registers

CUDA
Compute Unified Device Architecture

Grid = (2, 2)

Block = (3, 3)

Thread

Abstracting computation by Grid/Thread/Block

Programing Example of CUDA

void multiply(double *a, double *b, double *c, int n)

{

double product = 0.0;

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

int i, idx;

for (i = 0; i < n; i++)

product += a[row * n + i] * b[i * n + col];

c[row * n + col] = product;

}

CUDA Profiler

State of the Art

• PTask: Operating System Abstractions To Manage GPUs as Compute Devices

• Rossbach et. al., SOSP 2011

• TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

• Kato et. al., USENIX ATC 2011

• Gdev: First-Class GPU Resource Management in the Operating System

• Kato et. al., USENIX ATC 2012

• GPUvm: Why Not Virtualizing GPUs at the Hypervisor?
• Suzuki et. al., USENIX ATC 2014

• GLoop: An Event-driven Runtime for Consolidating GPGPU Applications
• Suzuki et. al., ACM SOCC 2017

