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Course Plan

• Multi-core Resource Management

• Many-core Resource Management

• GPU Resource Management

• Virtual Machines

• Distributed File Systems

• High-performance Networking

• Memory Management

• Network on a Chip

• Embedded Real-time OS

• Device Drivers

• Linux Kernel



Schedule
1. 2018.9.28 Introduction + Linux Kernel (Kato)

2. 2018.10.5 Linux Kernel (Chishiro)

3. 2018.10.12 Linux Kernel (Kato)

4. 2018.10.19 Linux Kernel (Kato)

5. 2018.10.26 Linux Kernel (Kato)

6. 2018.11.2 Advanced Research (Chishiro)

7. 2018.11.9 Advanced Research (Chishiro)

8. 2018.11.16 (No Class)

9. 2018.11.23 (Holiday)

10. 2018.11.30 Advanced Research (Chishiro)

11. 2018.12.7 Advanced Research (Kato)

12. 2019.12.14 (No Class)

13. 2018.12.21 Advanced Research (Kato)

14. 2019.1.11 (No Class)

15. 2019.1.18 10:25-12:10 Linux Kernel

16. 2019.1.25 13:00-14:45 Linux Kernel



GPU Resource Management

Abstracting GPUs as Compute Devices

/* The case for TimeGraph and Gdev */
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NVIDIA GPU Trend

• GPU for HPC by NVIDIA

• Kepler > Maxwell > Pascal > Volta

• Mfg. process of Pascal 16nm FinFET+

• Mfg. process of Volta 12nm FFN

• Newest breakout features Tensor Core



Performance increase by shrinking die size

• Up to 12x faster for deep learning applications on V100 
than P100 (FP16).

• DP(FP64), SP (FP32) is 1.5x performance 
improvement over P100.

• P100 was 3x faster than Kepler on FP64.

• Process shrink 16nm FinFET+ -> 12nm FFN.

• Retaining same power consumption (TDP 300W) for 
both P100 & V100.



Performance Comparison





NVIDIA DRIVE PX2

• On-board AI engine

• The AI car computer for autonomous driving

• Fuse data from multiple cameras, as well as 
LiDAR, radar, and ultrasonic sensors.

• Built to support ASIL-D

• 4 product family variants



Past cards performance change



Jetson: the low power embedded platform

• Latest TX2 offers 2x performance of the 
predecessor.

• Tegra X2 is ARM Cortex-A57 (2GHz 4 core) + 
NVIDIA Denver2 (2GHz 2 core).

• Can put 24 TX2 in 1U box!

• Tegra X1 is on the “hard to buy” Nintendo 
Switch.



For PC/Games(non critical)

• Pascal based GeForce GTX 1080 released on 
June 2016.

• Fast but memory bandwidth & amount less 
than Titan-X.

• Water cooling as well as overlocking variants 
are available.



GeForce GTX 1080

• GM200 → GP204 core change (Maxwell/Pascal)

• 16FinFET+ is more expensive

• GDDR5X is more expensive

• Already more advanced 1080TI is out



GeForce GTX 1080 Ti

• Premium version of the
GeForce GTX 1080

• 8GB → 11GB

• 8.2Gflops → 10.6Gflops FP

• 2560 cores → 3584 cores

• Same core, different world

• 30%+ price gap

• Shortage in supply



Titan-X (Pascal : Maxwell)

Spec comparison

• # of cores 3584 3072

• Core clock 1417MHz 1000MHz

• TFLOPs (FMA) 11 TF 6.1 TF

• Mem clock 10Gbps 7Gbps

• FP64 1/32 1/32

• FP16 (Native) 1/64 N/A

• INT8 4:1 N/A

• TDP 250W 250W



Shoot in a foot

• Look at this timeline

• 2AUG2016 TITAN-X released

• 10MAR2017 1080ti released

• 6APR2017 TITAN-Xp released
(Not released in Japan yet)

• Currently, TITAN-Xp is king of the consumer 
GPU

• Approx. US$2K in Japan



For high-end computing

• Volta announced at NVIDIA GTC in May.

• For NVLink, NVIDIA does not tell you but
needs mass-code change.

• SXM2 version(NVLink) needs special edition of
NCCL libs to obtain an optimized perf.
(Subscription req’d)



For workstations

• GP100

• Has display connector

• Can NVLink(up-to 2 cards)



Deep Learning DGX-1 Volta

• 8x V100

• Shipping now

• NVLink(SXM2)

• CPU-GPU NVLink ONLY by IBM Power9

• Previous P100 version is OLD already

• VERY EXPENSIVE



DGX-1 Pros/Cons

• Pros
• NVIDIA brand

• Better chassis design

• Access to optimized libraries

• Cons
• Too expensive (Low ROI, High TCO)

• Warranty separately provided as subscription
(Hostage)

• Can not reconfigure*



TCO & ROI on AI

• DGX-1 Volta in Japan, approx. ¼ million USD
plus 15% annual subscription.

• Fixed config.

• Smarter and bigger
3rd party solution with
more robust system
also available at lower
cost, higher ROI.

• 2x GPU at same $!!

• Think/Act SMART!



And beyond…with OSS

• 1 system up-to 32 GPU (31 by CUDA)

• Single Root Complex!

• 2x performance of DGX-1 by single node and
price of DGX-1

WORLD FIRST & ONLY
16 GeForce also possible!

• Customisable CPU/RAM/STORAGE

• 120GPU in single rack



How many GPUs do you need?

• Currently, keeping x16 performance, without
crossing CPUs, the maximum # of GPUs
supported is 16.

• 8 is NOT ENOUGH in many cases.

• TESLA is not always an answer.

• US vendor made 16 GeForce recognized
under Linux and running stable.

• Connecting 2 boxes can make 32 GPUs, but
CUDA can only see up-to 31 GPUs.



Problem solving

• Important point using GPUs
• Performance decrease due to heating, and under

current.
• When Multi GPU environment, other GPU too will

suffer throttling.
• Often, users do not notice throttling and ust wonder

why my code is slow!

• How to solve this?
• Deployment of water block and strengthen the air

cooling
• Utilizing proper cables and grounding
• Choose proper PSU and power source



Theme for future movements

• Die size shrink will bring
• Increase # of cores
• Increase performance
• Efficient energy consumption

• Deployment of faster memory (HBM2)

• Implementation of FP4/FP8

• Moving up to PCIe gen4/NVLink2

• Popularisation of NCCL2 and optimisation with 
NVLink

• Will be more expensive

• China to catch up to replace US technology
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GPU vs. Many-core
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GPU as Compute Device
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GPGPU

2008 2010
500 cores

250 cores

Tesla Fermi
Kepler

Maxwell

C

C++
Java

General-Purpose computation on Graphics Processing Units

Pascal

Low Power

2012
3000 cores

2014
5000 cores



GPGPU

8800 GTX
9800 GTX

GTX 285
GTX 480

GTX 580

GTX 680

GTX Titan

GTX Titan Black

GTX Titan X

X7350
X7460 X7560

E7-8870
E7-8890

0

1000

2000

3000

4000

5000

6000

7000

8000

2006 2008 2010 2012 2014 2016

G
F

L
O

P
S

RELEASE YEAR

Single Precision Performance

NVIDIA GTX

Intel Xeon

0

5

10

15

20

25

30

2006 2008 2010 2012 2014 2016

G
F

L
O

P
S

/W
A

T
T

RELEASE YEAR

Performance per Watt

NVIDIA GTX

Intel Xeon

Trend on Performance and Power

General-Purpose computation on Graphics Processing Units



GPGPU Computing Stack

User Programs

CUDA HMPP OpenCL
OpenGL

GPGPU Runtime Backend

Linux Kernel Device Driver

GPU

OS

Hardware

Runtime

Application
API

System Call

I/O

CPU CPU GPUCPUCPU



GPGPU Computing Model
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GPGPU Execution

Program 1

Program 2 GPU command

GPU driver

Blocked Blocked

CPU

GPU

time

time



Details
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CUDA
Compute Unified Device Architecture

Grid = (2, 2)

Block = (3, 3)

Thread

Abstracting computation by Grid/Thread/Block



Programing Example of CUDA

void multiply(double *a, double *b, double *c, int n)

{

double product = 0.0;

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

int i, idx;

for (i = 0; i < n; i++)

product += a[row * n + i] * b[i * n + col];

c[row * n + col] = product;

}



CUDA Profiler



State of the Art

• PTask: Operating System Abstractions To Manage GPUs as Compute Devices

• Rossbach et. al., SOSP 2011

• TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

• Kato et. al., USENIX ATC 2011

• Gdev: First-Class GPU Resource Management in the Operating System

• Kato et. al., USENIX ATC 2012

• GPUvm: Why Not Virtualizing GPUs at the Hypervisor?
• Suzuki et. al., USENIX ATC 2014

• GLoop: An Event-driven Runtime for Consolidating GPGPU Applications
• Suzuki et. al., ACM SOCC 2017


