Advanced Placement

# Chemistry <br> Acid Base Equilibrium 



NATIONAL
MATH + SCIENCE
initiative
Periodic Table of the Elements

| 1 <br> H <br> 1.0079 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4 |  |  |  |  |  |  |  |  |  |  | 5 | 6 | 7 | 8 | 9 | 10 |
| Li | Be |  |  |  |  |  |  |  |  |  |  | B | C | N | O | F | Ne |
| 6.941 | 9.012 |  |  |  |  |  |  |  |  |  |  | 10.811 | 12.011 | 14.007 | 16.00 | 19.00 | 20.179 |
| 11 | 12 |  |  |  |  |  |  |  |  |  |  | 13 | 14 | 15 | 16 | 17 | 18 |
| Na | Mg |  |  |  |  |  |  |  |  |  |  | AI | Si | P | S | Cl | Ar |
| 22.99 | 24.30 |  |  |  |  |  |  |  |  |  |  | 26.98 | 28.09 | 30.974 | 32.06 | 35.453 | 39.948 |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
| 39.10 | 40.08 | 44.96 | 47.90 | 50.94 | 52.00 | 54.938 | 55.85 | 58.93 | 58.69 | 63.55 | 65.39 | 69.72 | 72.59 | 74.92 | 78.96 | 79.90 | 83.80 |
| 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
| Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | 1 | Xe |
| 85.47 | 87.62 | 88.91 | 91.22 | 92.91 | 93.94 | （98） | 101.1 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.75 | 127.60 | 126.91 | 131.29 |
| 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |
| Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn |
| 132.91 | 137.33 | 138.91 | 178.49 | 180.95 | 183.85 | 186.21 | 190.2 | 192.2 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | （209） | （210） | （222） |
| 87 | 88 | ＋ 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | §Not yet named |  |  |  |  |  |
| Fr | Ra | ${ }^{+} \mathrm{Ac}$ | Rf | Db | Sg | Bh | Hs | Mt | § | § | § |  |  |  |  |  |  |
| （223） | 226.02 | 227.03 | （261） | （262） | （263） | （262） | （265） | （266） | （269） | (272) | (277) |  |  |  |  |  |  |


| 下 $\mathcal{\sim}$ | 은 |
| :---: | :---: |
| 악순 | 은 |
| （ $8 \leqslant \stackrel{M}{\circ}$ | $\bar{\circ} \bar{\sim})^{\circ} \stackrel{\sim}{\sim}$ |
| $\bigcirc \times \stackrel{\sim}{\sim}$ | 은 트N |
|  | カッ ¢ |
|  | ®u |
| ¢ $¢$ | か ¢ ¢ ¢ |
|  | ¢ E ¢ |
| ¢ ¢ ¢ | ¢ ¢ ¢ ¢ ¢ ¢ |
| ¢ ¢ ¢ ¢ | か a |
| ¢ ¢ ¢ ¢ ¢ ¢ | $\cdots \cdots$ |
|  | N $\sim$ ¢ |
|  | ¢ธ® |
| ¢®ல | ه닫 |

## AP Chemistry Equations \& Constants

Throughout the test the following symbols have the definitions specified unless otherwise noted.

$$
\begin{aligned}
\mathrm{L}, \mathrm{~mL} & =\operatorname{liter}(\mathrm{s}), \text { milliliter(s) } \\
\mathrm{g} & =\operatorname{gram}(\mathrm{s}) \\
\mathrm{nm} & =\text { nanometer(s) } \\
\mathrm{atm} & =\text { atmosphere(s) }
\end{aligned}
$$

$\mathrm{mm} \mathrm{Hg}=$ millimeters of mercury
$\mathrm{J}, \mathrm{kJ}=$ joule(s), kilojoule(s)
$\mathrm{V} \quad=\operatorname{volt}(\mathrm{s})$
$\mathrm{mol}=\operatorname{mole}(\mathrm{s})$

## ATOMIC STRUCTURE

$$
\begin{aligned}
& E=h v \\
& c=\lambda v
\end{aligned}
$$

$$
\begin{aligned}
& E=\text { energy } \\
& v=\text { frequency } \\
& \lambda=\text { wavelength }
\end{aligned}
$$

Planck's constant, $h=6.626 \times 10^{-34} \mathrm{~J}$ s
Speed of light, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's number $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Electron charge, $e=-1.602 \times 10^{-19}$ coulomb

## EQUILIBRIUM

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}, \text { where } a \mathrm{~A}+b \mathrm{~B} \rightleftarrows c \mathrm{C}+d \mathrm{D} \\
K_{p} & =\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} \\
K_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{b} & =\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]} \\
K_{w} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\
& =K_{a} \times K_{b} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
14 & =\mathrm{pH}+\mathrm{pOH} \\
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{p} K_{a} & =-\log K_{a}, \mathrm{p} K_{b}=-\log K_{b}
\end{aligned}
$$

## Equilibrium Constants

$K_{c}$ (molar concentrations)
$K_{p}$ (gas pressures)
$K_{a}$ (weak acid)
$K_{b}$ (weak base)
$K_{w}$ (water)

## KINETICS

$$
\begin{aligned}
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0} & =-k t \\
\frac{1}{[\mathrm{~A}]_{t}}-\frac{1}{[\mathrm{~A}]_{0}} & =k t \\
t_{1 / 2} & =\frac{0.693}{k}
\end{aligned}
$$

$$
\begin{aligned}
k & =\text { rate constant } \\
t & =\text { time } \\
t_{1 / 2} & =\text { half-life }
\end{aligned}
$$

## GASES, LIQUIDS, AND SOLUTIONS

$$
\begin{aligned}
P V & =n R T \\
P_{A} & =P_{\text {total }} \times X_{\mathrm{A}}, \text { where } X_{\mathrm{A}}=\frac{\text { moles A }}{\text { total moles }} \\
P_{\text {total }} & =P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\ldots \\
n & =\frac{m}{\boldsymbol{M}} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273 \\
D & =\frac{m}{V}
\end{aligned}
$$

$K E$ per molecule $=\frac{1}{2} m v^{2}$
Molarity, $M=$ moles of solute per liter of solution

$$
A=a b c
$$

$P=$ pressure
$V=$ volume
$T=$ temperature
$n=$ number of moles
$m=$ mass
$\boldsymbol{M}=$ molar mass
$D=$ density
$K E=$ kinetic energy
$v=$ velocity
$A=$ absorbance
$a=$ molarabsorptivity
$b=$ path length
$c=$ concentration

Gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
\begin{aligned}
& =0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =62.36 \mathrm{~L} \text { torr mol} \\
-1 & \mathrm{~K}^{-1} \\
1 \mathrm{~atm} & =760 \mathrm{~mm} \mathrm{Hg} \\
& =760 \mathrm{torr} \\
\mathrm{STP} & =0.00^{\circ} \mathrm{C} \text { and } 1.000 \mathrm{~atm}
\end{aligned}
$$

## THERMOCHEMISTRY/ ELECTROCHEMISTRY

$$
\begin{aligned}
q & =m c \Delta T \\
\Delta S^{\circ} & =\sum S^{\circ} \text { products }-\sum S^{\circ} \text { reactants } \\
\Delta H^{\circ} & =\sum \Delta H_{f}^{\circ} \text { products }-\sum \Delta H_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\sum \Delta G_{f}^{\circ} \text { products }-\sum \Delta G_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\Delta H^{\circ}-T \Delta S^{\circ} \\
& =-R T \ln K \\
& =-n F E^{\circ} \\
I & =\frac{q}{t}
\end{aligned}
$$

$$
\begin{aligned}
q & =\text { heat } \\
m & =\text { mass } \\
c & =\text { specific heat capacity } \\
T & =\text { temperature } \\
S^{\circ} & =\text { standard entropy } \\
H^{\circ} & =\text { standard enthalpy } \\
G^{\circ} & =\text { standard free energy } \\
n & =\text { number of moles } \\
E^{\circ} & =\text { standard reduction potential } \\
I & =\text { current (amperes) } \\
q & =\text { charge (coulombs) } \\
t & =\text { time (seconds) }
\end{aligned}
$$

Faraday's constant, $F=96,485$ coulombs per mole of electrons

$$
1 \text { volt }=\frac{1 \text { joule }}{1 \text { coulomb }}
$$

$K_{\mathrm{a}}, K_{\mathrm{b}}$, and Salt Hydrolysis

## What I Absolutely Have to Know to Survive the AP Exam

The following might indicate the question deals with acid - base equilibrium:
$\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, strong and weak, salt hydrolysis, solubility product, $K_{\mathrm{a}}, K_{\mathrm{b}}$, acid or base dissociation constant, percent ionized, Bronsted-Lowry, Arrhenius, hydronium ion, etc...

## Acids and Bases: By Definition!

Arrhenius

- Acids: Hydrogen ion, $\mathrm{H}^{+}$, donors
- Bases: Hydroxide ion, $\mathrm{OH}^{-}$donors

$$
\begin{aligned}
\mathrm{HCl} & \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
\mathrm{NaOH} & \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

## Bronsted-Lowry

- Acids: proton donors (lose $\mathrm{H}^{+}$)
- Bases: proton acceptors (gain $\mathrm{H}^{+}$)

$$
\begin{gathered}
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-} \\
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
\end{gathered}
$$

## Hydrogen Ion, Hydronium Ion, Which is it!!!?

Hydronium $-\mathrm{H}^{+}$riding piggy-back on a water molecule; water is polar and the + charge of the naked proton is greatly attracted to "Mickey's chin" (i.e. the oxygen atom)

- $\mathrm{H}_{3} \mathrm{O}^{+}$"Anthony"
- $\mathrm{H}^{+}$"Tony"
- Often used interchangeably in problems; if $\mathrm{H}_{3} \mathrm{O}^{+}$is used be sure water is in the equation!


## Bronsted-Lowry and Conjugate Acids and Bases: What a Pair!

Acid and conjugate base pairs differ by the presence of one $\mathrm{H}^{+}$ion.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is the acid; thus $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$is its conjugate base (what remains after the $\mathrm{H}^{+}$has been donated to the $\mathrm{H}_{2} \mathrm{O}$ molecule)
- $\mathrm{H}_{2} \mathrm{O}$ behaves as a base in this reaction. The hydronium ion is its conjugate acid (what is formed after the $\mathrm{H}_{2} \mathrm{O}$ accepts the $\mathrm{H}^{+}$ion)

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

- $\mathrm{NH}_{3}$ is the base; thus $\mathrm{NH}_{4}{ }^{+}$is it's conjugate acid (what is formed after the $\mathrm{NH}_{3}$ accepts the $\mathrm{H}^{+}$ion)
- $\mathrm{H}_{2} \mathrm{O}$ behaves as an acid in this reaction. The hydroxide ion is its conjugate base (what remains after the $\mathrm{H}^{+}$has been donated to $\mathrm{NH}_{3}$ )

Understanding conjugate acid/base pairs is very important in understanding acid-base chemistry; this concepts allows for the understanding of many complex situations (buffers, titrations, etc...)

Important Notes...
Amphiprotic/amphoteric--molecules or ions that can behave as EITHER acids or bases; water, some anions of weak acids, etc... fit this bill.
Monoprotic - acids donating one $\mathrm{H}^{+}$
Diprotic - acids donating two $\mathrm{H}^{+}$
Polyprotic - acids donating $3+\mathrm{H}^{+}$

Regardless, always remember: ACIDS ONLY DONATE ONE PROTON AT A TIME!!!

## Ionization: That's What it's All About!

## Relative Strengths

A strong acid or base ionizes completely in aqueous solution ( $100 \%$ ionized [or very darn close to it!])

- The equilibrium position lies far, far to the right (favors products)...
- Since a strong acid/base dissociates into the ions, the concentration of the $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$ion is equal to the original concentration of the acid/base respectively.
- They are strong electrolytes.
- Do Not confuse concentration ( $M$ or $\mathrm{mol} / \mathrm{L}$ ) with strength!
- Strong Acids
- Hydrohalic acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$; Nitric: $\mathrm{HNO}_{3}$; Sulfuric: $\mathrm{H}_{2} \mathrm{SO}_{4}$; Perchloric: $\mathrm{HClO}_{4}$
- Oxyacids! More oxygen atoms present, the stronger the acid WITHIN that group. The $\mathrm{H}^{+}$that is "donated" is bonded to an oxygen atom. The oxygen atoms are highly electronegative and are pulling the bonded pair of electrons AWAY from the site where the $\mathrm{H}^{+}$is bonded, "polarizing it", which makes it easier [i.e. requires less energy] to remove - thus the stronger the acid!

- Strong Bases
- Group IA and IIA (1 and 2) metal hydroxides; be cautious as the poor solubility of $\mathrm{Be}(\mathrm{OH})_{2}$ and $\mathrm{Mg}(\mathrm{OH})_{2}$ limits the effectiveness of these 2 strong bases.
- IT'S A 2 for 1 SALE with the Group 2 (IIA) ions), i.e. $0.10 \mathrm{MCa}(\mathrm{OH})_{2}$ is $0.20 \mathrm{M} \mathrm{OH}^{-}$


## Where the fun begins...

A weak acid or base does not completely ionize (usually < 10\%)

- They are weak electrolytes.
- The equilibrium position lies far to the left (favors reactants)...
- $\quad\left[\mathrm{H}^{+}\right]$is much less than the acid concentration - thus to calculate this amount and the resulting pH you must return to the world of EQUILIBRIUM Chemistry!
- The vast majority of acid/bases are weak. Remember, ionization not concentration!!!!
- Acids and Bases ionize one proton (or $\mathrm{H}^{+}$) at a time!
- For weak acid reactions: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { where } K_{a} \text { is typically much less than } 1
$$

- For weak base reactions: $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-}$

$$
K_{b}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \text { where } K_{b} \text { is typically much less than } 1
$$

## Ionization: That's What it's All About! con't.

## Working it Out!

Calculating the pH of weak acids simply requires some quick problem solving...

- MONUMENTAL CONCEPT...
- On the AP Exam the weak acid will be significantly weak so that the initial [HA $]_{o}$ is mathematically the same as the equilibrium concentration - i.e. there is no need to subtracting the amount of weak acid ionized as it is mathematically insignificant.
- If given the concentration of the weak acid, HA and the ionization constant for the acid, $K_{\mathrm{a}}$, plug both into the equilibrium expression and solve. Both $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{A}^{-}$are equal (remember it's $1: 1$ always) so call them $x$ and solve.

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

- Thus all you need to know is...

$$
K_{a}=\frac{[\mathrm{x}][\mathrm{x}]}{\left[\mathrm{M}_{\mathrm{o}}\right]} \text { where } \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \text { or } \quad K_{b}=\frac{[\mathrm{x}][\mathrm{x}]}{\left[\mathrm{M}_{\mathrm{o}}\right]} \text { where } \mathrm{x}=\left[\mathrm{OH}^{-}\right]
$$

- Never forget $K_{a} \times K_{b}=1 \times 10^{-14}$
- Very important when you are given the ionization constant for the acid but need the conjugate base and vice-versa.
- Percent Ionization
- Often will be asked to determine how ionized the weak acid or base is...

$$
\%=\frac{[\mathrm{x}]}{\left[\mathrm{M}_{0}\right]} \times 100 \quad \text { where } \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {or }\left[\mathrm{OH}^{-}\right]
$$

## Salts and pH: It's all about Hydrolysis

A salt is the PRODUCT of an acid base reaction; SOME salts affect the pH of the solution.
So... an easy way to tell, you ask...?

- Ask yourself, which acid and which base are needed to make that salt?....were they strong or weak?

1. A salt such as $\mathrm{NaNO}_{3}$ does not affect the pH of the solution; if it could hydrolyze water the following would happen:
$\mathrm{Na}^{+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{OH}^{-}$

- Neither of the salt's ions can hydrolyze water because it would result in the formation of a strong acid $\left(\mathrm{HNO}_{3}\right)$ or a strong base $(\mathrm{NaOH})$, which would ionize $100 \%$ back into the ions.

2. $\mathrm{K}_{2} \mathrm{~S}$ would make the solution more basic- $\mathrm{SB}(\mathrm{KOH}) \& W A\left(\mathrm{H}_{2} \mathrm{~S}\right)$

- NOTE: Only the ion that forms a weak acid or base through water hydrolysis can actaully hydrolyze water.
In this case:
$\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{OH}^{-}$
The increase in $\mathrm{OH}^{-}$ions means the anion of this salt makes the solution more basic...

3. $\mathrm{NH}_{4} \mathrm{Cl}$ would make the solution more acidic-since $\mathrm{WB}\left(\mathrm{NH}_{4} \mathrm{OH}-\right.$ or $\left.\mathrm{NH}_{3}\right) \& \mathrm{SA}(\mathrm{HCl})$

In this case:
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
The increase in $\mathrm{H}_{3} \mathrm{O}^{+}$ion means the solution is more acidic...

## Salts and pH: It's all about Hydrolysis con't

## Working it Out!

Calculating the pH of a salt solution

- A salt in solution is either behaving as a weak acid or a weak base.
- Remember, this means they do not ionize much. So treat them just like any other weak acid or base.
- The MAJOR DIFFERENCE; no $K_{\mathrm{a}}$ or $K_{\mathrm{b}}$ value will be provided. The salt is the conjugate acid or base to some weak acid or base that is provided - that $K$ will be given you need to convert it.
- Example, the salt $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$; the $K_{\mathrm{a}}$ for $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is typically provided. The $K_{\mathrm{b}}$ needs to be calculated.
- $K_{a} \times K_{b}=1 \times 10^{-14}$ Very important!
- Then solve as shown below to find the pH ...

$$
K_{b}=\frac{[\mathrm{x}][\mathrm{x}]}{\left[\mathrm{M}_{\mathrm{o}}\right]} \text { where } \mathrm{x}=\left[\mathrm{OH}^{-}\right]
$$

## Relationships

Equilibrium Expression

$$
\begin{array}{ll}
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} & K_{b}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \\
K_{a}=\frac{[\mathrm{x}][\mathrm{x}]}{\left[\mathrm{M}_{\mathrm{o}}\right]} \text { where } \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & K_{b}=\frac{[\mathrm{x}][\mathrm{x}]}{\left[\mathrm{M}_{\mathrm{o}}\right]} \text { where } \mathrm{x}=\left[\mathrm{OH}^{-}\right] \\
& \%=\frac{[\mathrm{x}]}{\left[\mathrm{M}_{\mathrm{o}}\right]} \times 100
\end{array} \quad \text { where } \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {or }\left[\mathrm{OH}^{-}\right] .
$$

| $K_{a} \times K_{b}=1 \times 10^{-14}$ | $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$ |
| :---: | :---: |
| $\mathrm{pH}+\mathrm{pOH}=14$ | $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$ |
| $K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} @ 25^{\circ} \mathrm{C}$ | Acidic $\mathrm{pH}<7 \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$ |
| Neutral pH=7 $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$ | Basic $\mathrm{pH}>7 \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$ |
| Conjugate acids and bases | $K_{s p}=\left[\mathrm{M}^{+}\right]^{\mathrm{x}}\left[\mathrm{A}^{-}\right]^{\mathrm{y}} \quad \mathrm{MA}(s) \rightleftharpoons \mathrm{xM}^{+}(a q)+\mathrm{yA}^{-}(a q)$ |
| Connections |  |
| Equilibrium | Buffers and Titrations |
| Precipitation and Qualitative Analysis | Bonding and Lewis Structures - justify oxyacid strengths |
| Potential Pitfalls |  |
| $K_{\mathrm{a}}$ or $K_{\mathrm{b}}$ with salt pH |  |
| Weak acids and bases - be sure you know what you are using, acid or base $-K_{\mathrm{a}}$ or $K_{\mathrm{b}}$; solving a $K_{\mathrm{b}}$ problem gives $\left[\mathrm{OH}^{-}\right]$thus you are finding the pOH ! | Weak is about IONIZATION not CONCENTRATION |

## NMSI SUPER PROBLEM

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad K_{\mathrm{b}}=1.80 \times 10^{-5}
$$

1. Ammonia reacts with water as indicated in the reaction above.
(a) Write the equilibrium constant expression for the reaction represented above.
(b) Calculate the pH of a 0.150 M solution of $\mathrm{NH}_{3}$
(c) Determine the percent ionization of the weak base $\mathrm{NH}_{3}$.
(d) Calculate the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, concentration in the above solution. Be sure to include units with your answer.

When a specified amount of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is dissolved in water, the ammonium ions hydrolyze the water according to the partial reaction shown below. The resulting solution has a pH of 4.827 .

(e) Complete the reaction above by drawing the complete Lewis structures for both products of the hydrolysis reaction.
(f) Determine the
(i) molarity $(M)$ of the ammonium ions in this solution
(ii) number of moles ammonium ions in 250 mL of the above solution.

