
advanced programming -- fall 2002
lecture #23 -- mon dec 2

Tcl / Tk
� current release: TTTTccccllll////TTTTkkkk 8888....4444
� slides from: http://www.tc l .tk and H. Schulzrinne (spring 2002)

� reference books:

� Tcl and the Tk Toolkit, by John Ousterhout, Addison-Wesley (only
covers Tcl 7.3 and Tk 3.6).

� Practical Programming in Tcl and Tk, by Brent Welch, Prentice
Hall, 1999, 3rd ed (covers Tcl/Tk 8.2).

� on-line command resources:
� http://www.tc l .tk /m a n /tc l 8 .4 /T c l C m d /c o n te n ts .htm

� http://www.i td .c l r c .a c .u k /P u b l i c a ti o n s /C o o k b o o k /

cs3157-fall2002-lect23

what is tcl?

� open source scripting language
� binary installers for Windows and Macintosh

� source releases for UNIX platforms
� runs interactively, using an application such as tclsh

� also runs as script files

� also runs with tk

cs3157-fall2002-lect23

tcl history

� developed in late 1980s by John Ousterhout
� first release ~1991

� tk usable around 1992
� see http://www.tc l .tk /d o c /tc l H i s to r y .htm l

cs3157-fall2002-lect23

basics (1)

� tcl scripts are made up of commands separated by newlines or
semicolons

� commands all have the same basic form, e.g.:
e x pr 2 0 + 1 0

� try this out:
u n i x $ tc l s h

% e x pr 2 0 + 1 0

3 0

% e x i t

u n i x $

cs3157-fall2002-lect23

basics (2)

� each Tcl command consists of one or more words separated by
spaces

� the first word is the name of a command and the other words
are arguments to that command

� all Tcl commands consist of words, but different commands
treat their arguments differently

� e x p r treats all of its arguments together as an arithmetic
expression, computes the result of that expression, and returns
the result as a string

cs3157-fall2002-lect23

basics (3)

� the division into words doesn't matter for e x p r :
e x pr 2 0 + 1 0

is the same as the previous example

e x pr 2 0 + 1 0

� but for most commands, the word structure is important, with
each word used for a distinct purpose

cs3157-fall2002-lect23

basics (4)

� all Tcl commands return results
� if a command has no meaningful result, then it returns an

empty string as its result

cs3157-fall2002-lect23

basics (5)

� p u ts writes its argument to the screen
� example script (to run on cunix), "a.tcl":

! /o pt/l o c a l /b i n /tc l s h

pu ts " he l l o wo r l d "

� execution:
u n i x $ a .tc l

he l l o wo r l d

u n i x $

cs3157-fall2002-lect23

syntax (1)

� for a scripting language, Tcl has a simple syntax

� cm d a r g a r g a r g

� a Tcl command is formed by words separated by white
space

� the first word is the name of the command

� the remaining words are arguments to the command

cs3157-fall2002-lect23

syntax (2)

� $ f o o

� the dollar sign ($) substitutes the value of a variable. In this
example, the variable name is foo.

cs3157-fall2002-lect23

syntax (3)

� [clo ck se co n d s]

� square brackets execute a nested command

� used to pass the result of one command as the argument to
another

� in above example, the nested command is

clock seconds

which gives the current time in seconds

cs3157-fall2002-lect23

syntax (4)

� "some stuff"

� double quotation marks group words as a single argument
to a command

� dollar signs $ and square brackets [] are interpreted
inside double quotation marks

cs3157-fall2002-lect23

syntax (5)

� { some stuff}

� curly braces also group words into a single argument

� but elements within the braces are not interpreted

cs3157-fall2002-lect23

syntax (6)

� example script (to run on cunix), "b.tcl":
#!/opt/local/bin/tclsh

puts [expr 20 + 10]

puts " expr 20 + 10"

puts { expr 20 + 10}

� execution:
unix$ b.tcl

30

expr 20 + 10

expr 20 + 10

unix$

cs3157-fall2002-lect23

syntax (7)

� \

� the backslash is used to quote special characters

� e.g., \ n generates a newline
� the backslash also is used to "turn off" the special meanings

of the dollar sign, quotation marks, square brackets, and
curly braces

cs3157-fall2002-lect23

syntax (8)
� example script (to run on cunix), "c.tcl":

#!/opt/local/bin/tclsh

puts $arg v

� execution:
unix$ c.tcl

unix$ c.tcl h ello

h ello

unix$ c.tcl hello world

hello world

u n ix$ c.tcl " hello world"

{ hello world}

u n ix$ c.tcl { hello world}

\ { hello world\ }

u n ix$

cs3157-fall2002-lect23

variables (1)

� Tcl allows you to store values in variables and use the values
later in commands

� set is used to write and read variables, e.g.:
set x 3 2

� the command returns the new value of the variable
� you can read the value of a variable by invoking set with only a

single argument:
set x

cs3157-fall2002-lect23

variables (2)

� you don't need to declare variables in Tcl
� a variable is created automatically the first time it is set

� Tcl variables don't have types
� any variable can hold any value.

cs3157-fall2002-lect23

variables (3)

� to use the value of a variable in a command, use variable
substitution, e.g.:
expr $ x* 3

� when a $ appears in a command, Tcl treats the letters and
digits following it as a variable name, and substitutes the value
of the variable in place of the name

� in the example above, the actual argument received by ex p r
will be 3 2 * 3 (assuming x was set as in previous example)

� you can use variable substitution in any word of any command,
or even multiple times within a word:

set cmd expr

set x 1 1
$ cmd $ x* $ x

cs3157-fall2002-lect23

command substitution (1)

� you can use the result of one command in an argument to
another command, e.g.:
set a 4 4

set b [expr $ a * 4]

� when a [appears in a command, Tcl treats everything between
it and the matching] as a nested Tcl command

� Tcl evaluates the nested command and substitutes its result
into the enclosing command in place of the bracketed text

� in the example above, the second argument of the second set
command will be 1 7 6

cs3157-fall2002-lect23

double quotes (1)

� double-quotes allow you to specify words that contain spaces,
e.g.:

set x 24

set y 1 8
set z " $ x + $ y is [expr $ x + $ y] "

after which, z = " 24 + 1 8 is 4 2"

� everything between quotes is passed to set as a single word

� command and variable substitutions are performed on the
text between the quotes

� the quotes themselves are not passed to the command
� if the quotes were not present, set would have received 6

arguments, which would have caused an error

cs3157-fall2002-lect23

braces (1)

� curly braces { } provide another way of grouping information
into words

� they differ from quotes in that no substitutions are performed
on the text between the curly braces, e.g.

set z { $ x + $ y is [expr $ x + $ y] }

after which, z = " $ x + $ y is [expr $ x + $ y] "

cs3157-fall2002-lect23

grouping and substitution (1)

� the Tcl parser goes through three steps:

((((1111)))) argument grouping

� determines how to organize the arguments to the
commands: white space separates arguments; double
quotation marks and braces group multiple words into
one argument

((((2222)))) result substitution

� after grouping arguments, Tcl performs string
substitutions

� e.g., $ f oo is replaced with the value of the variable
f oo

cs3157-fall2002-lect23

grouping and substitution (2)

((((3333)))) command dispatch

� after substitution, Tcl uses the command name as a key
into a dispatch table

� it calls the C procedure identified in the table

� the C procedure implements the command

� command procedures can also be written in Tcl

cs3157-fall2002-lect23

control structures (1)

� Tcl provides a complete set of control structures including
� conditional execution

� if /then /else

� switch

� looping
� f or

� f orea ch

� while

� procedures
� proc/retu rn

� Tcl control structures are just commands that take Tcl scripts
as arguments

cs3157-fall2002-lect23

control structures (2)

� if / e l s e if / e l s e

� syntax:
if condition0 e x p r e s s ion0 < el seif condition1
e x p r e s s ion1 > el se e x p r e s s ion2

� i.e., just like C

� { } delimit body of if and else clauses
� { } can also delimit conditional expression

� statements within body are separated by newlines

cs3157-fall2002-lect23

control structures (3)

� s w it c h

� syntax:
sw it c h op tions s tr ing { p a tte r n0 b ody 0 …
p a tte r nN b ody N }

� options:

� -exact: use exact matching for string to pattern
� -glob: use glob style matching for string to pattern

� -regexp: use regular expression matching for string to
pattern (like in Perl)

cs3157-fall2002-lect23

control structures (3a)

� glob style matching:
st ring mat c h p a tte r n s tr ing

� * matches any sequence of characters in string, including a
null string

� ? matches any single character in string.
� [c h ar s] matches any character in the set given by chars.

If a sequence of the form x-y appears in chars, then any
character between x and y, inclusive, will match

� \x matches the single character x. This provides a way of
avoiding the special interpretation of the characters *? []\
in the pattern.

cs3157-fall2002-lect23

control structures (4)

� for

� syntax:
f o r start test next body

� can also use c o nt i nue and br e ak , just like C

� test should almost always be enclosed in { }

� e.g.:
for {set x 0} {$x<10} {incr x} {

puts "x is $x"

}

� since variable substitution will be made before the loop is
executed…

cs3157-fall2002-lect23

control structures (5)

� foreach
� syntax:

� foreach varname list body
� foreach varlist1 list1 varlist2 list2 body

� can also use continue and break, just like with for

� example:
set x {}

foreach {i j } {a b c d e f} {

lappend x $j $i

}

� the value of x is "b a d c f e"

cs3157-fall2002-lect23

control structures (5a)

� another example:
set x {}

foreach i {a b c} j {d e f g} {

lappend x $i $j

}

� the value of x is "a d b e c f {} g"
� one more example:

set x {}

foreach i {a b c} {j k} {d e f g} {

lappend x $i $j $k

}

� the value of x is "a d e b f g c {} {}"

cs3157-fall2002-lect23

control structures (6)

� w h i l e takes two arguments:
� an expression ($p > 0)

� a body, which is another Tcl script
� w h i l e evaluates its expression argument using rules similar

to those of the C programming language and if the result is
true (nonzero) then it evaluates the body as a Tcl script

� it repeats this process over and over until eventually the
expression evaluates to false (zero)

cs3157-fall2002-lect23

control structures (7)

� p r oc takes three arguments:
� the name of a procedure

� a list of argument names
� the body of the procedure, which is a Tcl script

� example:
proc power {base p} {

set result 1
wh ile {$p > 0} {

set result [expr $result * $base]
set p [expr $p - 1]

}
return $result

}

cs3157-fall2002-lect23

control structures (8)

� everything between the curly brace at the end of the first line
and the curly brace on the last line is passed verbatim to p r oc
as a single argument

� p r oc creates a new Tcl command named power that takes
two arguments

� you can then invoke power as follows:
power 2 6

power 1 . 1 5 5

� when power is invoked, the procedure body is evaluated

� while the body is executing it can access its arguments as
variables (b as e = 1st arg, p = 2nd arg)

cs3157-fall2002-lect23

control structures (9)

� ret urn causes the procedure to exit with the value of
variable result as the procedure's result

cs3157-fall2002-lect23

commands (1)

� all interesting features in Tcl are represented by commands:

� statements are commands

� expressions are evaluated by executing commands

� control structures are commands

� procedures are commands

� Tcl commands are created in three ways:

� bbbbuuuuiiiillllttttiiiinnnn commands — provided by the Tcl interpreter itself
and are present in all Tcl applications.

� eeeexxxxtttteeeennnnssssiiiioooonnnn commands — created using the Tcl extension
mechanism

� commands created using proc

cs3157-fall2002-lect23

commands (2)

� Tcl provides APIs that allow creation of new commands by
writing procedures in C or C++ that implement the command

� then the command procedure is registered with the Tcl
interpreter by telling Tcl the name of the command that the
procedure implements

� then whenever that particular name is used for a Tcl command,
Tcl will call the command procedure to execute the command

� the bbbbuuuuiiiillllttttiiiinnnn commands are also implemented using this same
extension mechanism; their command procedures are simply
part of the Tcl library

cs3157-fall2002-lect23

commands (3)

� an application can incorporate its key features into Tcl using
the extension mechanism; thus

� the set of available Tcl commands varies from application
to application

� there are numerous extension packages that can be
incorporated into any Tcl application

� one of the best known extensions is TTTTkkkk, which provides
powerful facilities for building graphical user interfaces

� other extensions provide object-oriented programming,
database access, more graphical capabilities, etc.

� key advantage of Tcl is ease with which it can be extended to
incorporate new features or communicate with other resources

cs3157-fall2002-lect23

commands (4)

� typically:
� extensions are used for lower-level functions where C

programming is convenient
� procedures are used for higher-level functions where it is

easier to write in Tcl

cs3157-fall2002-lect23

other features (1)

� string manipulation
� including a powerful regular expression matching facility

� arbitrary-length strings can be passed around and
manipulated just as easily as numbers

� I/O

� files on disk

� devices such as serial ports
� network sockets — Tcl provides particularly simple

facilities for socket communication over the Internet

cs3157-fall2002-lect23

other features (2)

� file management
� commands for manipulating file names

� reading and writing file attributes
� copying files

� deleting files

� creating directories

� subprocess invocation
� running other applications with the exec command and

communicating with them while they run

cs3157-fall2002-lect23

other features (3)

� lists:
� easy to create collections of values (lists) and manipulate

them in a variety of ways
� arrays:

� structured values can be created consisting of name-value
pairs with arbitrary string values for the names and values

� time and date manipulation

� events:

� allows scripts to wait for certain events to occur, such as an
elapsed time or the availability of input data on a network
socket

cs3157-fall2002-lect23

what is tk?

� provides a GUI for Tcl
� uses widgets

� interacts with window manager (placement, decoration)
� application = single widget hierarchy

� widgets have . names and are children of their parent widgets

� affects resizing, placement

� e.g., .main.frame.zip

� . is topmost widget

cs3157-fall2002-lect23

widgets (1)

� a widget is an user interface object/control
� e.g., pushbutton, label, scrollbar

� application user interacts with the widgets to communicate with
the application

� interaction is usually through mouse or keyboard

� each widget belongs to a class of its own defining:

� appearance
� configurable options such as its foreground color, font

� methods used to access and manipulate the widget

� e.g., modify configurabel options

cs3157-fall2002-lect23

widgets (2)

� can be nested, depending on their class/type
� e.g. menubars contain pulldown menus

� a widget-based application may contain one or more hierarchy
of widgets

� e.g., Fileselectionbox, a text editor with a menu item "open"
that pops up a fileselectionbox

cs3157-fall2002-lect23

widgets (3)

� there are three basic steps of widget programming:

1. create an instance of the widget (usually by calling a
widget creation function) and specify values for attributes
i.e.options for appearance (there will always be default
settings so you only need to set the ones you want to)

2. specify behavior (which user actions invoke which
functions)

3. tell the geometry manager to make the widget appear on
the screen in its position with respect to its parent

cs3157-fall2002-lect23

widgets (4)

� behavior may be a single command such as "exit" when a
"Quit" button is pressed

� or a set of commands with input parameters which invoke
complex behaviour (e.g., selecting a button labeled
"Beethoven" causes a search for a particular tape and playing
it).

cs3157-fall2002-lect23

widgets (5)

� geometry management is an independent process
� any widget can be managed by any geometry manager

� multiple geometry managers coexist providing consistent
behavior (e.g., resizing the parent resizes all the children
within the parents geometry)

� the geometry manager is invoked with options for positioning a
particular widget

� right/left justification
� placement at the top/bottom/left/right

� in relation to its parent/siblings

� if nothing is specified, the geometry manager decides the
positioning based on default algorithms

cs3157-fall2002-lect23

tk widgets (1)

� tk provides all the basic widget classes
� there are also many contributed widgets available

� tk widget classes are distinguished by three things:

((((1111)))) configuration options

� specify the appearance of the widget

� specify what happens to the widget when the user clicks
on it

cs3157-fall2002-lect23

tk widgets (2)

((((2222)))) widget command

� in Tk, when a widget is created, a unique command
associated with the widget is also created

� the widget command has the same name as the widget

� the widget command is used to communicate with the
widget to make it change its internal state - i.e. carry
out actions - for instance change the background color

� for complex widgets, the actions that can be specified
depend upon the class of the widget - for instance
accessing, inserting, deleting items within a listbox or
menu does not apply to a label widget class.

cs3157-fall2002-lect23

tk widgets (3)

((((3333)))) bindings

� Tk widget classes also have a set of default bindings
� a binding is a general mechanism for associating a

particular user action (event) with a specific application
defined behavior

� e.g., pressing the right mouse button in a particular
widget pops up a help window

cs3157-fall2002-lect23

e.tcl

� first tcl/tk program:
#!/opt/local/bin/wish - f

f rame .main

pack .main

button .main.b - text " hello" - f oreg round red - command
{ b_ press}

pack .main.b

proc b_ press { } {

.main.b conf ig ure - f oreg round blue - text " world"

}

cs3157-fall2002-lect23

tk widgets (4)

� most widgets are inside the toplevel window, but some can be
toplevel themselves

� widgets are created at run time:
button .main.b – text " click" – f oreg round red

� widgets can be deleted at run time:
destroy .main.b

� widgets can be modified after creation:
.main.b conf ig ure – f oreg round blue – text world

� widgets can be invoked, e.g., invoke button as if it were
pressed:
.main.b inv oke

cs3157-fall2002-lect23

tk widgets (5)

� ffffrrrraaaammmmeeeessss
� colored rectangular region, with 3D borders

� typically, containers for other widgets
� no response to mouse or keyboard

#!/opt/local/bin/wish - f
f oreach relief { raised sunken f lat g roov e ridg e} {
f rame .$relief - width 15 m - heig ht 10m - relief

$relief - borderwidth 4
pack .$relief - side lef t - padx 2m - pady 2m

}
.f lat conf ig ure - backg round blue

cs3157-fall2002-lect23

tk widgets (6)

� llllaaaabbbbeeeellllssss
#!/opt/local/bin/wish - f

proc watch name {

label .main.label - text " V alue of $name: "

label .main.v alue - textv ar $name

pack .main.label .main.v alue - side lef t

}

f rame .main

pack .main

set country F inland

watch country

cs3157-fall2002-lect23

tk widgets (8)

� bbbbuuuuttttttttoooonnnnssss,,,, cccchhhheeeecccckkkkbbbbuuuuttttttttoooonnnnssss,,,, rrrraaaaddddiiiioooobbbbuuuuttttttttoooonnnnssss
button .ok - te x t O K - c om m a nd ok

button .a p p l y - te x t A p p l y - c om m a nd a p p l y

f r a m e .c

c h e c kbutton .c .bol d - te x t B ol d - v a r bol d - a nc h or w

c h e c kbutton .c .i ta l i c - te x t I ta l i c - v a r i ta l i c - a nc h or w

c h e c kbutton .c .und e r l i ne - te x t U nd e r l i ne - v a r und e r l i ne - a nc h or w

p a c k .c .bol d .c .i ta l i c .c .und e r l i ne - s i d e top - f i l l x

f r a m e .f

r a d i obutton .ti m e s - te x t T i m e s - v a r i a bl e f ont - v a l ue ti m e s - a nc h or w

r a d i obutton .h e l v e ti c a - te x t H e l v e ti c a - v a r f ont - v a l h e l v e ti c a \

- a nc h or w

r a d i obutton .c our i e r - te x t C our i e r - v a r i a bl e f ont - v a l ue c our i e r \

- a nc h or w

p a c k .ti m e s .h e l v e ti c a .c our i e r - s i d e top - f i l l x - i n .f

p a c k .ok .a p p l y .c .f - s i d e l e f t from Ousterhout

cs3157-fall2002-lect23

tk widgets (9)

� mmmmeeeessssssssaaaaggggeeeessss
� like labels, but display multi-line strings
m e s s a g e .m s g - width 8c -j u stify left \

-relief raised -b d 2 \

-font -Adob e-Helvetica-M ediu m-R -N ormal--* -1 80 -* \

-text " Y ou have made changes to this docu ment since the last
time it was saved. Is it OK to discard the changes? "

pack .msg

from Ousterhout

cs3157-fall2002-lect23

tk widgets (10)

� lllliiiissssttttbbbbooooxxxxeeeessss
listb ox .colors

pack .colors

set f [open / opt/ CUCS X 1 1 R 6 / lib / X 1 1 / rgb .txt]

while { [gets $ f line] > = 0 } {

.colors insert end [lrange $ line 3 end]

}

close $ f

b ind .colors < D ou b le-Bu tton-1 > {

.colors configu re -b ackgrou nd [selection get]

}

from Ousterhout

cs3157-fall2002-lect23

tk widgets (11)

� ssssccccrrrroooollllllllbbbbaaaarrrrssss
listb ox .files -relief raised \
-b orderwidth 2 \
-yscroll " .scroll set"

pack .files -side left
scrollb ar .scroll -command " .files yview"
pack .scroll -side right -fill y
foreach i [lsort [glob *]] {
.files insert end $ i

}

from Ousterhout

cs3157-fall2002-lect23

tk widgets (12)

� ssssccccaaaalllleeeessss
scale .red -lab el R ed -from 0 -to 2 5 5 -length 1 0 c \
-orient horiz ontal -command newColor

scale .green -lab el G reen -from 0 -to 2 5 5 -length 1 0 c \
-orient horiz ontal -command newColor

scale .b lu e -lab el Blu e -from 0 -to 2 5 5 -length 1 0 c \
-orient horiz ontal -command newColor

frame .sample -height 1 .5 c -width 6 c
pack .red .green .b lu e -side top
pack .sample -side b ottom -pady 2 m
proc newColor valu e {
set color [format " # % 0 2 x% 0 2 x% 0 2 x" [.red get] [.green get]
[.b lu e get]]
.sample config -b ackgrou nd $ color

}

cs3157-fall2002-lect23

tk widgets (13)

� ggggeeeettttttttiiiinnnngggg vvvvaaaalllluuuueeeessss
� -c o m m a n d : e.g., scale invokes with new value, as in newColor

43
� . w i d g e t g e t : get value

� -v a r i a b l e : set variable

� event bindings

cs3157-fall2002-lect23

tk widgets (14)

� eeeennnnttttrrrryyyy
label .label - t ex t " F i le n am e: "

en t r y .en t r y - w i d t h 2 0 - r eli ef s u n k en - bd 2 - t ex t v ar i able n am e

p ac k .label .en t r y - s i d e lef t - p ad x 1 m - p ad y 2 m

cs3157-fall2002-lect23

tk widgets (15)

� ccccaaaannnnvvvvaaaassss
� display and manipulate graphical objects

� rectangles
� circles

� lines

� bitmaps

� text strings
� tagged objects

� manipulate all objects with same tag (drag)
� event bindings for objects

cs3157-fall2002-lect23

tk widgets (16)

canvas .c -widt h 1 2 c -heig ht 1 .5 c

pack .c

.c creat e line 1 c 0 .5 1 c 1 c 1 1 c 1 c 1 1 c 0 .5 c

fo r { set i 0 } { $ i < 1 0 } { incr i} {

set x [expr $ i+ 1]

.c creat e line $ { x} c 1 c $ { x} c 0 .6 c

.c creat e line $ { x} .2 5 c 1 c $ { x} .2 5 c 0 .8 c

.c creat e line $ { x} .5 c 1 c $ { x} .5 c 0 .7 c

.c creat e line $ { x} .7 5 c 1 c $ { x} .7 5 c 0 .8 c

.c creat e t ext $ { x} .1 5 c .7 5 c -t ext $ i -ancho r sw

}

cs3157-fall2002-lect23

a more complex example

� canvas items generate names:
set mc [.c create circle
...]

� canvas items can be tagged:
.c create ov al ... \

– tag s myov al

.c delete myov al

.c itemconf ig ure circle –
f ill red

� several items can have the same tag

� one item can have multiple tags

cs3157-fall2002-lect23

the selection

� mechanism for passing information between widgets and
applications

� first select, then get information about selection

� copy & paste, but also actions

cs3157-fall2002-lect23

window managers

� each X display has a window manager
� controls arrangements of top-level windows on screen

� basically the same as a geometry manager
� provides decorative frames

� allows iconify and de-iconify of windows

� examples: mwm, twm, fvwm95, KDE, Gnome, ...

cs3157-fall2002-lect23

tk wm

� e.g., add title:
wm title . "W indow T itle"

� iconify a toplevel window
wm iconif y .w

� normally, user cannot resize Tk windows, but
wm minsiz e .w 100 5 0

wm maxsiz e .w 4 00 15 0

cs3157-fall2002-lect23

tk modal interactions

� usually, user can select input focus (which widget the user is
sending input to)

� modal interactions = restrict user choice
� example: dialog box forces user to fill it out before continuing
� grab restricts interaction to few windows
� t k w ai t suspends script until an event happens
� use only in exceptional cases

cs3157-fall2002-lect23

modal interaction example

button .panel.ok -text ok -command {

s et label OK

des tr oy .panel

}

button .panel.cancel -text cancel -command {

s et label C ancel

des tr oy .panel

}

pack .panel.ok -s i de lef t

pack .panel.cancel -s i de lef t

g r ab s et .panel

tkw ai t w i ndow .panel

puts " label = $ label"

cs3157-fall2002-lect23

getting information about widgets

� winfo provides information about widgets:

winfo exist s .w

� returns 0 or 1

winfo ch ildren .w

� returns .w.a .w.b

winfo class .w

� returns Button

cs3157-fall2002-lect23

Tcl in C (1)

� C implements objects
� manipulated by Tcl commands

� often, action oriented:

robot turn r17

� object oriented: one command for each object (e.g., Tk
widgets)

� slides from Henning Schulzrinne, coms w3995, spring 2002

cs3157-fall2002-lect23

Tcl in C (2)

� two modes:
� enhance wish or tclsh with additional C commands

� use Tcl_AppInit()
� add Tcl interpreter to existing C program

� create interpreter

cs3157-fall2002-lect23

Tcl in C: example Tcl_AppInit

#include <tcl.h>

/ * fo rce inclusio n o f main fro m T cl library * /

extern int main() ;

int * tclD ummyM ainP tr = (int *) main;

int C md1(C lientD ata c, T cl_ I nterp * interp, int arg c, char * arg v[]) {

/ * implement co mmand here * /

}

int T cl_ A ppI nit(T cl_ I nterp * interp) {

if (T cl_ I nit(interp) = = T C L _ E R R O R) {

return T C L _ E R R O R ;

}

T cl_ C reateC o mmand(interp, "cmd1", C md1, N U L L , N U L L) ;

tcl_ R cFileN ame = "/ .myapprc";

return T C L _ O K ;

}

cs3157-fall2002-lect23

Tcl in C: creating Tcl interpreters

� Tcl_I n t e r p * Tcl_C r e a t e I n t e r p (v o i d)

� Tcl_E v a l(Tcl_I n t e r p * interp, char * s c ript)

� T cl_EvalF ile(interp, char * f il eN a m e)

cs3157-fall2002-lect23

Tcl in C: creating new Tcl commands

� ty pedef int T cl_Cm dP roc(ClientD ata c l ientD a ta ,
T cl_Interp *interp, int a rg c , char *a rg v []);

� T cl_CreateCom m and(T cl_Interp *interp, char * c m d N a m e,
T cl_Cm dP roc * c m d P ro c , ClientD ata c l ientD a ta ,
T cl_Com m andD eleteP roc *d el eteP ro c);

cs3157-fall2002-lect23

Tcl in C: example

int EqCmd(cl i e n t Da t a c, Tcl _In t e rp *i n t e rp, i n t a rgc, cha r
*a rgv[]) {

i f (st rcmp(a rgv[1], a rgv[2]) == 0) {

i n t e rp- >re sul t = " 1" ;

} e l se {

i n t e rp- >re sul t = " 0" ;

}

re t urn TCL_OK;

}

i n t e rp = Tcl _Cre a t e In t e rp();

Tcl _Cre a t e Comma n d(i n t e rp, " e q" , EqCmd, (Cl i e n t Da t a)NULL,
(Tcl _CmdDe l e t e Proc *)NULL);

cs3157-fall2002-lect23

Tcl in C: Tcl results

� typedef struct Tcl_I n terp {

ch a r * result;

Tcl_F reeP ro c * freeP ro c;

i n t erro rL i n e;

}

� i n terp- > result for constant strings

� Tcl_Result(interp, "string", TCL_STATIC);
� TCL_VOLATILE: on stack frame

� TLC_D Y N AM IC: allocated via malloc

cs3157-fall2002-lect23

Tcl in C: Tcl variables from C

� Tcl_SetVar(Tcl_Interp *interp, char *varName, char
*newValue, int flags)

� typically, global variable, but local if executed within
function unless flags = TCL_GLOBAL_ONLY

� Tcl_SetVar(interp, "a", "44", 0);
� char *Tcl_GetVar(Tcl_Interp *interp, char *varName, int flags)

� value = Tcl_GetVar(interp, "a", 0);

cs3157-fall2002-lect23

Tcl in C: variable linking

� associate Tcl variable with C variable
� whenever Tcl variable is read, will read C variable

� writing Tcl variable � write C variable
� e.g.,

int value = 32;

Tcl_LinkVar(interp, "x", (char *)&value, TCL_LINK_INT);

