

Advanced Programming
Graphical User Interface

(GUI)

Human-Machine Interfaces

The ways in which a software system
interacts with its users.

Command Line

Graphical User Interface - GUI

Touch User Interface - TUI

Multimedia (voice, animation, etc.)

Inteligent (gesture recognition, conversational,
etc.)

Graphical User Interfaces

AWT(Abstract Windowing Toolkit)

Swing – part of JFC (Java Foundation Classes)

SWT (IBM)

Java FX

XUL

...
 Java 2D
 Java 3D

Visual communication between software and users.

The Stages of Creating a GUI
Application

 Design
– Create the containers
– Create and arrange the components

Functionality
– Define the user-components interaction
– Attach actions to components
– Create the action handlers

Considerations
– Programatic – Declarative – Visual
– Separation between the GUI and application logic

AWT Library
import java.awt.*;
public class AWTExample {
 public static void main (String args []) {
 // Create the window (frame)
 Frame f = new Frame("O fereastra");

 // Set the layout of the frame
 f.setLayout (new FlowLayout());

 // Create the components
 Button b1 = new Button("OK");
 Button b2 = new Button("Cancel");

 // Add the components to the frame
 f.add(b1);
 f.add(b2);
 f.pack();

 // Show the frame
 f.setVisible(true);
 }
}

AWT is the original
Java GUI library.

AWT Components

✔ Button
✔ Canvas
✔ Checkbox
✔ CheckBoxGroup
✔ Choice
✔ Container
✔ Label

✔ List
✔ Scrollbar
✔ TextComponent
✔ TextField
✔ TextArea

AWT Components are platform-depended,
each of them having an underlying native peer.

Infrastructure
● Components: Button, CheckBox, etc.

– A component is an object having a graphical representation that
can be displayed on the screen and that can interact with the
user. Properties common to all components are:

location, x, y, size, height, width, bounds, foreground, background,
font, visible, enabled,...

● Containers: Window, Frame, Dialog, Panel, etc.

– A generic component containing other components.

● LayoutManagers: FlowLayout, GridLayout, etc.

– The interface for classes that know how to lay out Containers.

● EventObjects: ActionEvent, TextEvent, etc.

– An event indicates that a component-defined action occurred.

LayoutManager

A layout manager is an object that controls the size and
arrangement (position) of components inside a container.

Each Container object has a layout manager.

All classes that instantiate objects for managing
positioning implements LayoutManager interface.

Upon instantiation of a container it is created an implicit
layout manager associated with it:

➔ frames: BorderLayout
➔ panels: FlowLayout

Absolute positioning
container.setLayout(null);

Relative positioning

Arranging the Components

import java.awt.*;
public class TestLayout {
 public static void main (String args []) {

 Frame f = new Frame("Grid Layout");
 f.setLayout (new GridLayout (3, 2));

 Button b1 = new Button (" Button 1");
 Button b2 = new Button ("2");
 Button b3 = new Button (" Button 3");
 Button b4 = new Button ("Long - Named Button 4");
 Button b5 = new Button (" Button 5");
 f.add(b1); f.add (b2); f. add(b3); f.add(b4); f.add(b5);
 f.pack ();
 f.setVisible(true);
 }
}

 Frame f = new Frame("Flow Layout");
 f.setLayout (new FlowLayout ());

BorderLayout
import java.awt .*;
public class TestBorderLayout {
 public static void main (String args []) {

 Frame f = new Frame (" Border Layout ");
 // This is the default for frames
 f.setLayout (new BorderLayout());

 f.add(new Button(" North "), BorderLayout.NORTH);
 f.add(new Button(" South"), BorderLayout.SOUTH);
 f.add(new Button(" East"), BorderLayout.EAST);
 f.add(new Button(" West "), BorderLayout.WEST);
 f.add(new Button(" Center "), BorderLayout.CENTER);
 f.pack ();
 f.setVisible(true);
 }
}

User Interactions

Event: clicking a button, altering the text, checking an
option, closing a frame, etc.

Source: the component that generates an event.

Listener: the responsible for receiving and handling
(consuming) events.

Event-Driven Programming

Observing the state of an entity within a system
(Publish-Subscribe)

many-to-many

Using Anonymous Classes
class MyFrame extends Frame {
 public MyFrame (String title) {
 ...
 button.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 MyFrame.this.setTitle(
 "You pressed the button " + e.getActionCommand());
 }
 });
 ...
 }
}

Using Lambda Expressions
 ...
 button.addActionListener((ActionEvent e) -> {
 MyFrame.this.setTitle(
 "You pressed the button " + e.getActionCommand());
 });
 ...
 }
}

Using Method References

class MyFrame extends Frame {

 public MyFrame (String title) {
 ...
 button.addActionListener(this::onButtonPressed);

 checkbox.addItemListener(this::onItemChanged);
 ...
 }

 //Your own, suggestively called, methods

 private void onButtonPressed(ActionEvent e) {
 this.setTitle("You pressed the button");
 }

 private void onItemChanged(ItemEvent e) {
 this.setTitle("Checkbox state: " + check.getState());
 }

}

Swing

Extends the core concepts and mechanisms of AWT;
we still have components, containers, layout
managers, events and event listeners.

Replaces completely the AWT componet set,
providing a new set of components, capable of sorting,
printing, drag and drop and other “cool” features.

Brings portability to the GUI level; no more native
peers, all components are “pure”.

Based on Separable Model-and-View design pattern.

"Component Oriented Programming"

Swing Components

Atomic Components
JLabel, JButton, JCheckBox, JRadioButton, JToggleButton,

JScrollBar, JSlider, JProgressBar, JSeparator

Complex Components
JTable, JTree, JComboBox, JSpinner, JList, JFileChooser,

JColorChooser, JOptionPane

Text Editing Components
JTextField, JFormattedTextField, JPasswordField, JTextArea,

JEditorPane, JTextPane

Menus
JMenuBar, JMenu, JPopupMenu, JMenuItem,

JCheckboxMenuItem, JRadioButtonMenuItem

Intermediate Containers
JPanel, JScrollPane, JSplitPane, JTabbedPane, JDesktopPane,

JToolBar

High-Level Containers
JFrame, JDialog, JWindow, JInternalFrame, JApplet

Similarities and Differences with
AWT

"J" Convention
java.awt.Frame – javax.swing.JFrame

java.awt.Button - javax.swing.JButton

java.awt.Label - javax.swing.JLabel

New Layout Managers
BoxLayout, SpringLayout, GroupLayout, OverlayLayout, etc.

HTML Aware Components
JButton simple = new JButton("Dull text");

JButton html = new JButton("<html><u>Cool</u> <i>text</i></html>");

JComponent

JComponent is the base class for all Swing components,
except top-level containers: JFrame, JDialog, JApplet.

JComponent extends Container

Support for tool tips - setToolTip

Support for borders - setBorder

Enhanced support for sizing and positioning

setPreferredSize, ...

Opacitiy control - setOpaque

Keyboard bindings

“Pluggable” look and feel

Double-Buffering, Support for accessibility, etc.

Swing Architecture

Swing architecture is “rooted” in the MVC design:

Model – the data for the application

View – the visual representation of the data

Controller – takes user input on the view and
translates that to changes in the model.

Separable Model Architecture

Model + (Presentation, Control)

Example: JTable
class MyTableModel extends AbstractTableModel {
 private String[] columns = {"Nume", "Varsta", "Student"};
 private Object[][] elements = {
 {"Ionescu", new Integer(20), Boolean.TRUE},
 {"Popescu", new Integer(80), Boolean.FALSE}};

 public int getColumnCount() {
 return columns.length;
 }
 public int getRowCount() {
 return elements.length;
 }
 public Object getValueAt(int row, int col) {
 return elements[row][col];
 }
 public String getColumnName(int col) {
 return columns[col];
 }
 public boolean isCellEditable(int row, int col) {
 // Doar numele este editabil
 return (col == 0);
 }
}

Customizing the View
CellRenderes and CellEditors

Intermission...

The “Drawing” Concept

● Graphical interfaces are built using components.

The “system” draws the components automatically:

– when they are displayed for the first time,
– at minimize, maximize operations,
– when resizing the display area;

● The support methods for defining the graphical
representation of a Component are:

– void paint(Graphics g)
– void update(Graphics g)
– void repaint()

Java 2D
● Two-dimensional graphics, text, and imaging

● A uniform rendering model for display devices and printers

● Geometric primitives: any geometric shape

● Hit detection on shapes, text, and images

● Ccontrol over how overlapping objects are rendered

● Enhanced color support that facilitates color management

● Support for printing complex documents

● Control of the quality of the rendering (hints)

The paint method

This method is called when the contents of the component should
be painted; such as when the component is first being shown or is
damaged and in need of repair. The clip rectangle in the Graphics
parameter is set to the area which needs to be painted.

public class MyFrame extends Frame {
 public MyFrame(String title) {
 super(title);
 setSize(200, 100);
 }

 public void paint(Graphics g) {
 super.paint(g);
 // Apelam metoda paint a clasei Frame
 g.setFont(new Font("Arial", Font.BOLD, 11));
 g.setColor(Color.red);
 g.drawString("DEMO Version", 5, 35);
 }
}

The paintComponent method

● JComponent.paint delegates the work of painting to three
protected methods: paintComponent, paintBorder, and
paintChildren. They're called in the order listed to ensure that
children appear on top of component itself.

● Swing components should just override paintComponent.
/* Creating a custom component */
class MyCustomComponent extends JPanel {

 // Define the representation of the component
public void paintComponent(Graphics g) {

 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D) g;
 ...
 }

// Methods used by the layout managers
public Dimension getPreferredSize() { return ... };
public Dimension getMinimumSize() { return ... }
public Dimension getMaximumSize() { return ... }

}

Creating a Custom Component
public class MyComponent extends JPanel {
 private int x, y, radius;
 public MyComponent() {
 init();
 }
 private void init() {
 setPreferredSize(new Dimension(400, 400));
 this.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 x = e.getX(); y = e.getY();
 radius = 50 + (int) (100 * Math.random());
 repaint();
 }
 });
 @Override
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawOval(x - radius / 2, y - radius / 2, radius, radius);
 }
}

JFrame frame = new JFrame("demo");
frame.add(new MyComponent());
frame.pack();
frame.setVisible(true);

Graphics, Graphics2D
● Graphics is the base class for all graphics contexts that

allow an application to draw onto components realized on
various devices, as well as onto off-screen images.

● Graphics2D class extends the Graphics class to provide
more sophisticated control over geometry, coordinate
transformations, color management, and text layout.

● A graphic context offers:

– Methods for configuring the drawing properties:

color, paintMode, font, stroke, clip, renderingHints, ...

– Geometric primitives
– Support for working with texts and images
– Support for printing

Geometric Primitives
● Coordinates

– User space – in which graphics primitives are specified
– Device space – screen, window, or a printer
– The origin of user space is the upper-left corner

● Primitives:
– drawLine, drawPolyline, drawOval, fillOval,
drawPolygon, fillPolygon, drawRect, fillRect, …

– draw(Shape), fill(Shape)
– The Shape interface provides definitions for objects that represent some form of

geometric shape. The Shape is described by a PathIterator object, which can
express the outline of the Shape as well as a rule for determining how the outline
divides the 2D plane into interior and exterior points.

. . .

Working with Texts

● Font - A collection of glyphs (unique marks that collectively
add up to the spelling of a word) → name, style, size

 Label label = new Label("Some text");
 label.setFont(new Font("Dialog", Font.PLAIN, 12));

 void paint(Graphics g) {
 g.setFont(new Font("Courier", Font.BOLD, 10));
 g.drawString("Another text", 10, 20); }

● FontMetrics - encapsulates information about the
rendering of a particular font on a particular screen.

 Font f = new Font("Arial", Font.BOLD, 11);
 FontMetrics fm = g.getFontMetrics();
 int height = fm.getHeight();
 int width = fm.stringWidth("frog");
 int xWidth = fm.charWidth(’g’);

● TextLayout - highlighting, strings with mixed fonts, mixed languages, bidirectional text.

Using Colors

● Paint interface defines how color patterns can be
generated for Graphics2D operations.

● Color encapsulates colors in the sRGB space

 Color standardRed = Color.RED;
 Color plainWhite = new Color(1.0, 1.0, 1.0);
 Color translucentRed = new Color(255, 0, 0, 128);
● SystemColor encapsulate symbolic colors representing

the color of native GUI objects on a system.

 SystemColor.desktop

● GradientColor provides a way to fill a Shape with a linear
color gradient pattern.

● TexturePaint provides a way to fill a Shape with a texture
that is specified as a BufferedImage.

Red Green Blue Alpha
(0 − 255, 0.0 − 1.0)

Hello world!

Hello again...

Using Images
● Image is the superclass of all classes that

represent graphical images.
● BufferedImage

– Loadind from a file
BufferedImage image = ImageIO.read(new File("hello.jpg"))

– Creating in memory (off-screen)
BufferedImage image = new BufferedImage(w, h, type);

Graphics g = image.getGraphics();

– Drawing using a graphic context
graphics.drawImage(image);

– Saving in a file (GIF, PNG, JPEG, etc.)
ImageIO.write(image, "png", new File("drawing.png"));

Working with Large Images
● Displaying a large image
 BufferedImage img = ImageIO.read(

 new URL("http://www.remoteServer.com/hugeImage.jpg"));

 ...

 public void paint(Graphics g) {

 g.drawImage(img, 0, 0, this);

 }

● ImageObserver - an asynchronous update interface for
receiving notifications about information as the Image is constructed.

public boolean imageUpdate(Image image, int flags, int x, int y,
 int width, int height) {
 // If the image has finished loading, repaint the window.
 if ((flags & ALLBITS) != 0) {
 repaint();
 return false; // finished, no further notification.
 }
 return true; //not finished loading, need further notification.
}

Intermission...

JavaFX

● A set of graphics and media packages that
enables developers to design, create, test,
debug, and deploy rich client applications.

● High-performance, modern user interface that
features audio, video, graphics, and animation.

● Deployed across multiple platforms: desktop,
browsers, mobile, etc.

● Coexists with Swing – however, it may replace
Swing as the standard GUI library;

JavaFX Key Features
● FXML → MVC Pattern Support

● WebView (embed web pages within a JavaFX application)

● Built-in UI controls, CSS and Themes (Modena, Caspian, etc.)

● 3D Graphics Features (Shape3D)

● Multi-touch Support, Hi-DPI support, Rich Text Support

● Hardware-accelerated graphics (uses optimally the GPU)

● High-performance media engine (playback of web multimedia content)

● Self-contained application deployment model

● IDEs offer tools for rapid application development

→ JavaFX Scene Builder

Hello World
//The main class extends Application
public class HelloWorld extends Application {
 @Override
 public void start(Stage primaryStage) { //The main entry point
 Button helloBtn = new Button();
 helloBtn.setText("Hello World!");

 FlowPane root = new FlowPane();
 root.getChildren().add(helloBtn);

 Scene scene = new Scene(root, 300, 250);

 //The UI is defined by a stage and a scene.
 //Stage class is the top-level JavaFX container.
 //The Scene class is the container for all content.

 primaryStage.setTitle("Hello World Application");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args); //not required for JavaFX applications...
 }
}

Theater MetaphorTheater Metaphor

The Scene Graph
The JavaFX scene graph is a retained mode API

Group group = new Group();
Rectangle blueSquare = new Rectangle(50, 50);
blueSquare.setFill(Color.BLUE);
group.getChildren().add(blueSquare);

Circle redCircle = new Circle(50, new Color(1,0,0,0.5f));
group.getChildren().add(redCircle);

UI Component Hierarchy

Each item in the scene graph is called a Node.
Each node in the scene graph can be given a unique id.
Each node has a bounding rectangle and a style.
Any Node can have transformations applied to it: translation, rotation, scaling, or shearing.

javafx.scene.Parent
The base class for all nodes that
have children in the scene graph

javafx.scene.Node
Base class for scene graph nodes.

javafx.scene.Control
Base class for all user interface
controls.

javafx.scene.Pane
Base class for layout panes

javafx.scene.Region
The base class for all JavaFX
Node-based UI Controls, and all
layout containers.

javafx.scene.Parent
The base class for all nodes that
have children in the scene graph

Layout Management

● A “combo” of a Swing JPanel + LayoutManager
● javafx.scene.layout.Pane - Base class for layout

panes; used directly in cases where absolute
positioning of children is required.

● Uses preffered, minimum and maximum properties
● FlowPane, BorderPane,

AnchorPane, StackPane,
TilePane, GridPane,
TextFlow, HBox, VBox, etc.

● borderPane.setCenter(
new ListView());

 borderPane.setBottom(
 new Label("Hello"));

Setting the position and size for UI element.

Adding Functionality
public class HelloWorld extends Application {
 @Override
 public void start(Stage primaryStage) {
 Button helloBtn = new Button();
 helloBtn.setText("Hello World!");

 helloBtn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Hello Button was clicked!");
 }
 });

 //The anonymous inner class
 //can be turned into a lambda expression

 Button ciaoBtn = new Button("Ciao Mondo!");
 ciaoBtn.setOnAction((ActionEvent event) -> {
 System.out.println("Ciao Mondo e stato cliccato!");
 });
 }
}

JavaFX Events

javafx.event.Event - Base class for FX events.
– source → origin of the event
– target → the path through which the event will

travel when posted.
– type → hierarchy

An event represents an occurrence of something of interest to the application

Event Delivery Process

● Target Selection
– the node that has focus,
– the node location of the cursor, etc.

● Route Construction
– the event dispatch chain →

● Event Capturing
– passed down to the target
– filters are invoked

● Event Bubbling
– the event returns up from the target to the root
– handlers are invoked

Event Handling

● EventHandler functional interface
● Filters (going down...)
 redCircle.addEventFilter(
 MouseEvent.MOUSE_CLICKED, (MouseEvent e) -> {
 System.out.println("Click: going down");
 //e.consume();
 });

● Handlers (going up...)
 redCircle.addEventHandler(
 MouseEvent.MOUSE_CLICKED, (MouseEvent e) -> {
 System.out.println("Click: going up");
 });

● Convenience methods
setOnEvent-type(EventHandler<? super event-class> value)

 helloBtn.setOnAction(new EventHandler<ActionEvent>() {…});
 redCircle.setOnMouseEntered(new EventHandler<MouseEvent>() {…});

Intercepting Filter Design Pattern

Transitions and Animations
TranslateTransition translate =
 new TranslateTransition(Duration.millis(750));
translate.setToX(300); translate.setToY(250);

FillTransition fill = new FillTransition(Duration.millis(750));
fill.setToValue(Color.RED);

RotateTransition rotate = new
 RotateTransition(Duration.millis(750));
rotate.setToAngle(360);

ScaleTransition scale =
 new ScaleTransition(Duration.millis(750));
scale.setToX(0.1); scale.setToY(0.1);

ParallelTransition transition =
 new ParallelTransition(blueSquare,
 translate, fill, rotate, scale);
transition.setCycleCount(Timeline.INDEFINITE);
transition.setAutoReverse(true);
transition.play();

Pulse
● A pulse is an event that indicates to the JavaFX scene graph

that it is time to synchronize the state of the elements on the
scene graph with Prism.

● A pulse is throttled at 60 frames per seconds (fps) maximum
and is fired whenever animations are running or when
something in the scene graph is changed. For example, if a
position of a button is changed, a pulse is scheduled.

● When a pulse is fired, the state of the elements on the scene
graph is synchronized down to the rendering layer.

● A pulse enables application developers a way to handle events
asynchronously. This important feature allows the system to
batch and execute events on the pulse.

● The Glass Windowing Toolkit is responsible for executing the
pulse events. It uses the high-resolution native timers to make
the execution.

Styling withs CSS

● Define Style Sheets Files
 .root {
 -fx-background-image: url("background.jpg");
 }
 .label {
 -fx-font-size: 12px;
 -fx-font-weight: bold;
 -fx-text-fill: #333333;
 }
● Specify the CSS
 scene.getStylesheets().add("path/stylesheet.css");

● Inline
 helloBtn.setStyle(
 "-fx-background-color: slateblue; " +
 "-fx-text-fill: white;");

Cascading Style Sheets

FXML

● XML-based language that provides the structure for
building a user interface separate from the
application logic of your code.

● Java (Programatic)
 BorderPane border = new BorderPane();
 Label helloLabel = new Label("Hello");
 border.setTop(helloLabel);
 Label worldLabel = new Label ("World");
 border.setCenter(worldLabel);
● FXML (Declarative)
 <BorderPane>
 <top>
 <Label text="Hello"/>
 </top>
 <center>
 <Label text="World"/>
 </center>
 </BorderPane>

JavaFX Scene Builder

Using FXML to Create UI
● FXML Loader
 Parent root = FXMLLoader.load(
 getClass().getResource("example.fxml"));
 Scene scene = new Scene(root, 300, 275);

● Create the link between view and control
 <GridPane fx:controller="FXMLExampleController">
 <Button text="Sign In"
 onAction="#handleSubmitButtonAction"/>
 <Text fx:id="actiontarget" />
 </GridPane>

● Define the code to handle events
 public class FXMLExampleController {
 @FXML
 private Text actiontarget;

 @FXML
 protected void handleSubmitButtonAction(ActionEvent event) {
 actiontarget.setText("Sign in button pressed");
 }
 }

Swing or JavaFX?
● Swing

➢ Maturity, Stability
➢ Component Libraries and Frameworks
➢ Large amount of resources

● JavaFX
➢ Modern, MVC friendly, CSS, FXML
➢ Spectacular (3D, Animations, etc.)
➢ May not be “rock-solid” in production, yet
➢ Not so many resources

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

