
Advanced Programming in 
the UNIX Environment 

Week 04, Segment 2: Links

Department of Computer Science 
Stevens Institute of Technology 

Jan Schaumann 
jschauma@stevens.edu 

https://stevens.netmeister.org/631/

mailto:jschauma@stevens.edu
mailto:jschauma@stevens.edu


Jan Schaumann 2020-09-19

link(2)

CS631 - Advanced Programming in the UNIX Environment

2

 #include <fcntl.h> 
 #include <unistd.h> 

 int link(const char *path1, const char *path2); 
 int linkat(int fd1, const char *path1, int fd2, const char* path2, int flags);


Returns: 0 on success, -1 on error 

• creates a (hard) link to an existing file, incrementing st_nlink in the process

• POSIX allows hard links across filesystems, most implementations don’t

• only euid 0 can create links to directories (loops in filesystem are bad)



Jan Schaumann 2020-09-19

unlink(2)

CS631 - Advanced Programming in the UNIX Environment

3

 #include <fcntl.h> 
 #include <unistd.h> 

 int unlink(const char *path); 
 int unlinkat(int fd, const char *path, int flags);


Returns: 0 on success, -1 on error 

• removes the given directory entry, decrementing st_nlink in the process

• if st_nlink == 0, free data blocks associated with file (...unless processes have the 

file open)



Jan Schaumann 2020-09-19

link(2) / unlink(2)

CS631 - Advanced Programming in the UNIX Environment

4



Jan Schaumann 2020-09-19

unlink(2)

CS631 - Advanced Programming in the UNIX Environment

5



Jan Schaumann 2020-09-19

unlink(2)

CS631 - Advanced Programming in the UNIX Environment

6



Jan Schaumann 2020-09-19

unlink(2)

CS631 - Advanced Programming in the UNIX Environment

7



Jan Schaumann 2020-09-19

unlink(2)

CS631 - Advanced Programming in the UNIX Environment

8



Jan Schaumann 2020-09-19

rename(2)

CS631 - Advanced Programming in the UNIX Environment

9

 #include <stdio.h> 
 #include <unistd.h> 

 int rename(const char *from, const char *to); 
 int renameat(int fromfd, const char *from, int tofd, const char* to, int flags);


Returns: 0 on success, -1 on error 

If from refers to a file:

• if to exists and it is not a directory, it’s removed and from is renamed to

• if to exists and it is a directory, an error results

• must have w+x perms for the directories containing from/to



Jan Schaumann 2020-09-19

rename(2)

CS631 - Advanced Programming in the UNIX Environment

10

 #include <stdio.h> 
 #include <unistd.h> 

 int rename(const char *from, const char *to); 
 int renameat(int fromfd, const char *from, int tofd, const char* to, int flags);


Returns: 0 on success, -1 on error 

If from refers to a directory:

• if to exists and is an empty directory (contains only . and ..), it is removed; from is 

renamed to

• if to exists and is a file, an error results

• must have w+x perms for the directories containing from/to 
• if from is a prefix of to an error results



Jan Schaumann 2020-09-19

rename(2)

CS631 - Advanced Programming in the UNIX Environment

11



Jan Schaumann 2020-09-19

symlink(2)

CS631 - Advanced Programming in the UNIX Environment

12

 #include <stdio.h> 
 #include <unistd.h> 

 int symlink(const char *name1, const char *name2); 
 int symlinkat(const char *name1, int fd, const char *name2);


Returns: 0 on success, -1 on error 

• a symbolic link is a special file that contains as its data the pathname of another file

• symlinks can point to any other type of files, including directories

• recall syscalls dereferencing symlinks versus those operating on the link



Jan Schaumann 2020-09-19

rename(2)

CS631 - Advanced Programming in the UNIX Environment

13



Jan Schaumann 2020-09-19

readlink(2)

CS631 - Advanced Programming in the UNIX Environment

14

#include <unistd.h> 

 ssize_t readlink(const char *path, char *buf, size_t bufsiz); 
 ssize_t readlinkat(int fd, const char *path, char *buf, size_t bufsiz);


Returns: number of bytes placed into buf on success, -1 on error 

• determine the target of a symbolic link

• buf is not NULL terminated




Jan Schaumann 2020-09-19

Links

You now can implement ln(1), mv(1), and rm(1).


The link count (st_nlink) keeps track of how many names for a file exist; if this count is 
0 and no process has a file handle open for this file, the data blocks may be released.


Renaming a file on the same filesystem is trivial, but renaming across filesystems and 
between files and directories requires a little bit more work.


Symbolic links can link to any file regardless of type, existence, or filesystem / device 
location.


Coming up: even more details about creating, filling, and removing directories.

CS631 - Advanced Programming in the UNIX Environment

15


