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Case-Control Data Collection Designs

Readings:

1. King, Gary and Langche Zeng. “Logistic
Regression in Rare Events Data,” Political Analysis,
Vol. 9, No. 2 (Spring, 2001): Pp. 137–163.

2. King, Gary and Langche Zeng. “Explaining Rare
Events in International Relations,” International
Organization, Vol. 55, No. 3 (Summer, 2001): Pp.
693–715. [a less technical version of the PA article.]

3. King, Gary and Langche Zeng. 2001. “Estimating Risk
and Rate Levels, Ratios, and Differences in
Case-Control Studies,” Statistics in Medicine, in press.

4. Tomz, Michael; Gary King; and Langche Zeng.
ReLogit: Rare Events Logistic Regression software. for
Gauss and Stata.

5. Copies of all are at http://GKing.Harvard.edu.
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Notation for Time-Varying Rare Events

1. Let T be a random variable representing the duration until the next
event (spells of peace, employment, longivity, etc.)

2. t is the realization

3. Probability density:

T ∼ P(t)

4. Cumulative density: probability of dying by time t

F (t) =

∫ t

0
P(s)ds = Pr(T ≤ t)

5. Survival function: probability of surviving (without an event) until at
least t

S(t) = 1− F (t) = Pr(T ≥ t)
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Notation for Time-Varying Rare Events

6. Conditional probability of making it to t + ∆ after having made it to t:

Pr(t ≤ T ≤ t + ∆|T ≥ t) =
F (t + ∆)− F (t)

S(t)

which follows the rule: Pr(A|B) = Pr(AB)/Pr(B).

7. Hazard rate (hard to understand at first, but important):

λ(t) = lim
∆→0

Pr(t ≤ T ≤ t + ∆|T ≥ t)

∆

= lim
∆→0

F (t + ∆)− F (t)

S(t)∆

=
P(t)

F (t)
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Notation for Time-Varying Rare Events

8. Understanding the hazard rate:

(a) Hazard rates are a probability per unit of time.
(b) Speed in a car can be measured by number of miles driven in one hour

(analogous to the average hazard rate). But how do we measure speed at
any one instant?

(c) The hazard rate is like the number on a car speedometer at one instant.
The MPH on the speedometer & the hazard rate both change
continuously.

(d) A raw probability is unhelpful with continuous T because at the limit,

lim
∆→0

Pr(t ≤ T ≤ t + ∆|T ≥ t) = 0

(e) For the same reason, we define densities (not probabilities) for continuous
variables and then compute probabilities from them.

(f) Think of it as the rate of event occurrence.
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Notation for Time-Varying Rare Events

9. Computing other quantities from the hazard rate: Let the integrated
hazard (usually an intermediate quantity, not of ultimate interest) be

Λ(t) =

∫ t

0
λ(t)dt

Then the survival function is

S(t) = e−Λ(t)

and the pdf is
P(t) = S(t)/λ(t)

Common practice: model the hazard rate directly and compute the
density and then log-likelihood function from it.
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Time Varying Quantities of Interest in Analyzing Rare
Events

1. Hazard rates:

λ0(t) ≡ lim
∆→0

Pr(Yi ,(t,t+∆) = 1|Y0s = 0,∀s < t,X0)

∆

λ`(t) ≡ lim
∆→0

Pr(Yi ,(t,t+∆) = 1|Y`s = 0,∀s < t,X`)

∆

2. Rate ratio,
rrt ≡ λ`(t)/λ0(t)

3. Rate difference,
rdt ≡ λ`(t)− λ0(t)
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Time Varying Quantities of Interest in Analyzing Rare
Events

4. Risk (or the Probability),

π0 ≡ Pr(Y = 1|X0) = 1− exp

(
−
∫ t+∆

t
λ0(s)ds

)
π` ≡ Pr(Y = 1|X`) = 1− exp

(
−
∫ t+∆

t
λ`(s)ds

)
5. Risk ratio,

rr ≡ Pr(Y = 1|X`)/ Pr(Y = 1|X0)

6. Risk difference (or First difference or Attributable risk),

rd ≡ Pr(Y = 1|X`)− Pr(Y = 1|X0)
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rd ≡ Pr(Y = 1|X`)− Pr(Y = 1|X0)
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Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

1. The model by specifying the hazard as not a function of time: Let yi be
the duration until an event. Then

λi (t) = λi = exiβ

and independence over i (after conditioning on xi ).

2. The model implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= e−Λ(yi )λ(yi )

= λ(yi )e
−

R t
0 λ(yi )dt i.e., using only λi (t)

= λie
−λiyi

= expon(yi |λi )

with systematic component λi = exiβ.

Gary King () Duration Models 9 / 1



Deriving the Exponential Duration Model from a constant
Hazard Rate Model

3. The likelihood is

L(β|y) =
n∏

i=1

λie
−λiyi

4. The Log-likelihood is

ln L(β|y) =
n∑

i=1

{lnλi − λiyi}

and using the systematic component gives

=
n∑

i=1

{
Xiβ − eXiβyi

}
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Deriving the Exponential Duration Model from a constant
Hazard Rate Model

5. Hence, a constant hazard rate is equivalent to the exponential duration
model:

Yi ∼ expon(yi |λi )

E (Yi ) ≡
1

λi
=

1

e−xiβ
= exiβ

6. Censoring could be added as described previously.
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Interpreting a constant hazard rate model (and the
exponential duration model assumption)

1. The hazard rate varies over observations i .

2. The hazard rate is constant over time for any observation.

3. In other words, no matter how long we watch an observation the rate of
event occurance, or hazard of an event occuring, is constant.

4. How to violate the constant hazard rate assumption:

(a) Positive duration dependence or a rising hazard rate

i. Things that wear out or “rust”
ii. e.g., the longer people live (after ≈ 5 years of age), the higher their risk of

death.

(b) Negative duration dependence or a decreasing hazard rate

i. Things that get better with age
ii. e.g., the risk of being fired from a job drops the longer you have it.
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Interpreting a constant hazard rate model (and the
exponential duration model assumption)

5. Generalizations of the exponential model that allow duration
dependence:

(a) Weibull model: monotonically increasing or decreasing hazard (depending
on the value of an extra parameter it has)

(b) Log-normal model: hazard increases and then decreases
(c) Many others with different patterns parameterized in different ways.
(d) Some nonparametric methods exist. Leading example: Cox’s proportional

hazards model
(e) Frailty models: duration models with random effects
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The Weibull Duration Model

1. The Weibull Model, specified from the hazard rate, is:

λi (t) = λip(λi t)
p−1

with parameters λi ≡ e−Xiβ and p.

2. For any i , the hazard is not constant over t (like in the exponential
model). Its either monotonically increasing or decreasing, depending on
parameter p (which is estimated).
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3. Weibull is more general than the exponential, but it does not
encompass all functions. E.g., if a hazard for some application goes up
and then down, the Weibull would not be appropriate. Can you provide
a substantive example?

4. Assume Xi is a constant term and covariates that do not vary over time
t. Let yi be the duration until an event (number of days, etc.)

5. The model for the hazard implies a stochastic component:

P(yi ) = S(yi )λ(yi )

= pλi (λiyi )
p−1e−(λiyi )

p

= Weibull(yi |λi , p)

6. The systematic component is λi = e−Xiβ, but note that the expected
duration is

E (Yi |Xi ) =

∫ ∞
0

y ×Weibull(y |λi , p)dy

= eXiβΓ[1 + 1/p].

How would you simulate Quantities of Interest?
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7. The likelihood function is

L(β, p|y) =
n∏

i=1

Weibull(yi |λi , p)

=
n∏

i=1

pλi (λiyi )
p−1e−(λiyi )

p

Then substitute in for the systematic component λi = e−Xiβ and take
logs to get the log-likelihood.
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The Cox Proportional Hazards Model

1. Suppose you don’t know the hazard rate and are not willing to make an
assumption about it.

2. The basic assumption: the hazard factors into a piece that varies over t
but not i and a piece that varies with the covariates Xi over i but not t:

λi (t) = λ(t)× λi

and by assumption λi = eXiβ,

= λ(t)eXiβ

where λ(t) is known as the baseline hazard.
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3. This is known as the proportional hazards assumption because if we are
mainly interested in variation over i :

λi (t) = λ(t)× λi

∝ λi

or in other words for two values 0 and `, the rate ratio is:

rr =
λ0(t)

λ`(t)

=
λ(t)× λ0

λ(t)× λ`

=
λ0

λ`

and so the time component drops out.

4. Thus, if we are interested in rr, we do not need to know anything about
λ(t) other than that it does not vary by i — the proportional hazards
assumption.

5. Cox also devised an estimation strategy that made estimating the
baseline hazard (the constant term) unnecessary. We will discuss this
shortly.
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6. If the proportional hazards assumption does not hold, using this model
will lead to biased inferences. An example violation for government
durations: democratic governments build a coalitions of minorities and
have increasing hazard rates, whereas autocratic governments eliminate
opposition, consolidate support, and so have declining hazard rates.

7. The relationship between proportional hazards on the duration data and
logistic regression on binary data:

(a) Start by discretizing the horizontal axis in this figure. The size of each bin
must be small enough so that the hazard is essentially constant in the
bin, but not small enough to run into zero probabilities (set of measure
zero) problems.

(b) Turn all intersections between a bin and a line (representing a unit) as a 1
if we’re at the end point (representing an “event”) or 0 otherwise. These
0/1 observations then are the data for the logit model.
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(c) Using the rule for creating risks from rates, for bin of width ∆,

π0 ≡ Pr(Y = 1|X0)

= 1− exp

(
−
∫ t+∆

t

λi (s)ds

)

= 1− exp

(
−
∫ t+∆

t

λ(s)eXiβds

)

= 1− exp

(
−eXiβ

∫ t+∆

t

λ(s)ds

)

Letting the constant integral equal eβ0 ,

= 1− exp
(
−eXiβeβ0

)
= 1− exp

(
−eXiβ+β0

)
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and we can make a switch because

eXiβ/ ln[1 + eXiβ] → 1

given rare events in small time interval t, t + ∆,

= 1− exp
(
− ln[1 + eXiβ+β0 ]

)
=

1

1 + e−β0−Xiβ
, the logit model.

(d) Thus, the Cox proportional hazards model on durations is a logit model
on the discretized binary data.

8. Estimating β without the baseline (constant) term:

(a) The model assigns a hazard rate λi (t) to each point on each line (i.e., for
each i and t).

(b) Reconceptualize the data from durations into risk sets, one defined at
each event occurrence. A subject may appear in more than one.

(c) For each unit within a risk set, compute the probability of being an event,
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(d) To do this, we use almost the same logic as Chamberlain’s clogit or
multinomial logit (see notes Part 3). Suppose we have exactly 1 event in
each risk set:

∑
i Yit = 1, where i = 1, . . . , nt indexes events in the risk

set, and t indexes risk sets. This is typical, since events happen at
discrete points in a continuum of time.

(e) Then calculate the conditional probability:

Pr(Yit = 1|Rt) =
Pr(Yit = 1, Rt)

Pr(Rt)

=
πi

Q
j∈Rt ,j 6=i (1− πj)P

k∈Rt
πk

Q
j 6=k(1− πj)

Where πi = Pr(yi = 1). so the numerator is the probability that Yi = 1, and all
other Yj = 0. The denominator is the probability that the total number of 1s in
Rt is 1, which happens if Ykt is 1 and all other Yjt (j 6= k) are 0, for any k in
the risk set (hence the sum).

If πi = [1 + eXi β ]−1, then the above reduces to:

Pr(Yit = 1|Rt) =
eXi βP

j∈Rt
eXj β

=
λiP

j∈Rt
λj
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(f) The likelihood is then the product over risk sets k = 1, . . . ,K (each k
taking place at one time t):

L(β|y) =
K∏

k=1

Pr(Yit = 1|Rt)

=
K∏

k=1

eXiβ∑
j∈Rk

eXiβ

9. Unfortunately, no quantity of interest other than rr can be calculated
without some estimate of the baseline hazard, λ(t).

10. Estimates of λ(t) can come from models like the Weibull or
exponential, or under Cox’s model via a post-hoc analysis. To do the
latter:

(a) Information comes from the proportion of units within each risk set that
are events: (1 event)/(number of non-events + 1event).

(b) For the baseline hazard estimate, let b be the MLE of β, and

λ(tj) =
1∑

k∈Rj
(eXkb)

=
1∑

k∈Rj
eXkb

,
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(c) And with this we can estimate the rate,

λi (tj) = λ(tj)λi =
eXib∑

k∈Rj
eXkb

,

(d) And from this we can get the risk by computing the cumulative rate,

H(Ti ,Xi ) =
∑
tj∈Ti

λi (tj) =
∑
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(e) From the rate or the risk, we can then compute any other quantity of
interest.
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Density Case-Control Designs

1. Combines the idea of case-control with Cox’s proportional hazards
model.

2. Makes data collection easier when cases are occurring in real time and
you need to find appropriate controls

3. We can control for some confounders nonparametrically.

4. Collect data as sampled risk sets: Rj (j = 1, . . . ,M)

(a) M is the total number of cases (Yi t = 1) in the data
(b) A sampled risk set in this case includes one case matched with a small

(≈ 6− 7) set of nj controls (Y1t , . . . ,Ynj t) randomly sampled from all
those at risk

(c) A subject may appear in multiple risk sets
(d) t is usually time, but can be any continuous variable or variables.

5. Through matching, the procedure controls, without functional form
assumptions, for any confounder related to t.
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6. In classic case-control data, the missing information is the population
fraction of ones. In density case-control, the information is the risk set
sampling fraction: the fraction of each risk set included in each
sampled risk set.

7. The statistical model is built in two stages.

(a) Estimate β by predicting which of the nj sampled observations in the risk
set is the case, using Cox’s proportional hazard model.

(b) Use the post-hoc method of estimating the constant term, but correct it
with knowledge of the risk set sampling fraction at each risk set τj . To do
this, estimate the baseline hazard as

λ(tj) =
1∑

k∈Rj
(eXkb)(1/τj)

=
1∑

k∈Rj
eXkb−ln(τj )

,

(c) If τj = 1, this estimate is the same as under Cox’s model.
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8. If τj is not known, we can follow the same procedures as under classic
case-control. The options:

(a) assume knowledge of τj .
(b) assume τj could be anything and from that compute bounds on the

quantities of interest (like Manski).
(c) assume τj falls within a given range and apply Robust Bayesian methods.

9. All methods are part of ReLogit Software, available at
http://GKing.Harvard.edu.

10. When a risk set includes multiple cases, because of timing ties, the
conditional probability expression is more complicated, but the
approach remains the same.
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