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Introduction

Quantum theory, together with general relativity, represents humanity’s so-far deepest
understanding of the laws of nature. And quantum phenomena are not rare or difficult
to observe. In fact, we experience quantum phenomena constantly! For example, the
very stability of the desk at which you are sitting now has its origin in a quantum
phenomenon. This is because atoms are mostly empty space and the only reason
why atoms don’t collapse is due to the uncertainty relations. Namely, the uncertainty
relations imply that it costs plenty of momentum (and therefore energy) to compress
atoms. Also, for example, the spectrum of sunlight is shaped by quantum effects - if
Planck’s constant were smaller, the sun would be bluer.

Over the past century, the understanding of quantum phenomena has led to a
number of applications which have profoundly impacted society, applications ranging
from nuclear power, lasers, transistors and photovoltaic cells, to the use of MRI in
medicine. Ever new sophisticated applications of quantum phenomena are being de-
veloped, among them, for example, quantum computers which have the potential to
revolutionize information processing.

Also on the level of pure discovery, significant progress is currently being made, for
example, in the field of cosmology, where both quantum effects and general relativistic
effects are important: high-precision astronomical data obtained by satellite telescopes
over the past 15 years show that the statistical distribution of matter in the universe
agrees with great precision with the distribution which quantum theory predicts to have
arisen from quantum fluctuations shortly after the big bang. We appear to originate
in quantum fluctuations. New satellite-based telescopes are being planned.

The aim of this course is to explain the mathematical structure of all quantum the-
ories and to apply it to nonrelativistic quantum mechanics. Nonrelativistic quantum
mechanics is the quantum theory that replaces Newton’s mechanics and it is the sim-
plest quantum theory. The more advanced quantum theory of fields, which is necessary
for example to describe the ubiquitous particle creation and annihilation processes, is
beyond the scope of this course, though of course I can’t help but describe some of it.

For example, the first chapter of these notes, up to section 1.5, describes the history
of quantum theory as far as we will cover it in this course. The introduction goes
on, however, with a historical overview that outlines the further developments, from
relativistic quantum mechanics to quantum field theory and on to the modern day quest
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for a theory of quantum gravity with applications in quantum cosmology. Quantum
theory is still very much a work in progress and original ideas are needed as much as
ever!

Note: This course is also a refresher course for beginning graduate students, as
AMATH673 at the University of Waterloo. Graduate do the same homework and
write the same midterm and final but write also an essay. If you are a grad student
taking this course, talk with me about the topic.

Here at Waterloo, there are a number of graduate courses that build on this course.
For example, I normally teach every other year Quantum Field Theory for Cosmology
(AMATH872/PHYS785).



Chapter 1

A brief history of quantum theory

1.1 The classical period

At the end of the 19th century, it seemed that the basic laws of nature had been found.
The world appeared to be a mechanical clockwork running according to Newton’s laws
of mechanics. Light appeared to be fully explained by the Faraday-Maxwell theory of
electromagnetism which held that light was a wave phenomenon. In addition, heat had
been understood as a form of energy. Together, these theories constituted “Classical
Physics”. Classical physics was so successful that it appeared that theoretical physics
was almost complete, the only task left being to add more digits of precision. And so,
Max Planck’s teacher, Scholli, advised his student against a career in physics. Soon
after classical physics was overthrown.

1.2 Planck and the “Ultraviolet Catastrophe”

The limits to the validity of classical physics first became apparent in measurements
of the spectrum of heat radiation. It had been known that very hot objects, such
as a smith’s hot iron, are emitting light. They do because matter consists of charged
particles which can act like little antennas that emit and absorb electromagnetic waves.
This means that also cold objects emit and absorb electromagnetic radiation. Their
heat radiation is not visible because it too weak and too red for our eyes to see. Black
objects are those that absorb electromagnetic radiation (of whichever frequency range
under consideration) most easily and by time reversal symmetry they are therefore also
the objects that emit electromagnetic radiation of that frequency range most readily.
Tea in a black tea pot cools down faster than tea in a white or reflecting tea pot.

Now at the time that Planck was a student, researchers were ready to apply the
laws of classical physics to a precise calculation of the radiation spectrum emitted by
black bodies. To everybody’s surprise the calculations, first performed by Rayleigh and
Jeans, predicted far more emission of waves of short wavelengths (such as ultraviolet)
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8 CHAPTER 1. A BRIEF HISTORY OF QUANTUM THEORY

than what experimental measurements seemed to indicate. This was not a subtle
discrepacy: the laws of classical physics were found to predict that any object would
actually emit an infinite amount of heat radiation in an arbitrarily short time, especially
at very short wave lengths.

At first, this was not seen as a reason to doubt the laws of classical physics. It
seemed obvious that this nonsensical prediction could only be due to an error in the
calculation. Eventually, however, as time passed and nobody appeared to be able
to find a flaw in the calculation, the problem became considered serious enough to
be called the “ultraviolet catastrophe”. Scholli suggested to Planck to look into this
problem.

1.3 Discovery of h

From about 1890 to 1900, Planck dedicated himself to thoroughly analyzing all assump-
tions and steps in the calculations of Rayleigh and Jeans. To his great disappointment
and confusion he too did not find an error. In the year 1900, Planck then learned of a
new precision measurement of the heat radiation spectrum. Those measurements were
precise enough to allow curve fitting. Planck had so much experience with the calcu-
lations of the heat radiation that on the same day that he first saw the curve of the
heat radiation spectrum he correctly guessed the formula for the frequency spectrum of
heat radiation, i.e., the formula that is today called Planck’s formula. After two further
months of trying he was able to derive his formula from a simple but rather radical
hypothesis. Planck’s hypothesis was that matter cannot radiate energy continually,
but only in discrete portions of energy which he called “quanta”.

Concretely, Planck postulated that light of frequency f could only be emitted in
packets of energy Eq = hf , as if light was consisting of particles. He found that the
value of this constant, h, must be about 6.6 10−34Kg m2/s for the prediction of the
heat radiation spectrum to come out right. Planck’s quantum hypothesis was in clear
contradiction to classical physics: light was supposed to consist of continuous waves -
after all, light was known to be able to produce interference patterns1. Nevertheless,
most researchers, including Planck himself, still expected to find an explanation of his
quantum hypothesis within classical physics.

1It is easy to see these interference patterns: in a dark room, have a candle burning on a desk,
then sit a few meters away from it. Close one of your eyes and hold a hair in front of your other eye,
about 1cm in front of the eye, vertically. Align the hair with the flame of the candle. Do you see an
interference pattern, i.e., the flame plus copies of it to its left and right? From the apparent distance
between the copies of the flame and the distance of the hair to the flame you can work out the ratio
of the thickness of the hair to the wavelength of the light.
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1.4 Mounting evidence for the fundamental impor-

tance of h

The significance of Planck’s constant was at first rather controversial. Einstein, how-
ever, was prepared to take Planck’s finding at face value. In 1906, Einstein succeeded
in quantitatively explaining the photoelectric effect2. Then, he reasoned, the light’s
energy packets must be of high enough energy and therefore of high enough frequency
to be able to free electrons from the metal. For irrational reasons, Einstein’s expla-
nation of the photoelectric effect is the only result for which he was awarded a Nobel
prize.

At about the same time, work by Rutherford and others had shown that atoms
consist of charged particles which had to be assumed to be orbiting another. This
had led to another deep crisis for classical physics: If matter consisted of charged
particles that orbit another, how could matter ever be stable? When a duck swims in
circles in a pond, it continually makes waves and the production of those waves costs
the duck some energy. Similarly, an electron that orbits a nucleus should continually
create electromagnetic waves. Just like the duck, also the electron should lose energy
as it radiates off electromagnetic waves. A quick calculation showed that any orbiting
electron should rather quickly lose its energy and therefore fall into the nucleus.

Finally, in 1913, Bohr was able to start explaining the stability of atoms. However,
to this end he too had to make a radical hypothesis involving Planck’s constant h: Bohr
hypothesized that, in addition to Newton’s laws, the orbiting particles should obey a
strange new equation. The new equation says that a certain quantity calculated from
the particle’s motion (the so called “action”), can occur only in integer multiples of
h. In this way, only certain orbits would be allowed. In particular, there would be a
smallest orbit of some finite size, and this would be the explanation of the stability
of atoms. Bohr’s hypothesis also helped to explain another observation which had
been made, namely that atoms absorb and emit light preferably at certain discrete
frequencies.

1.5 The discovery of quantum theory

Planck’s quantum hypothesis, Einstein’s light quanta hypothesis and Bohr’s new equa-
tion for the hydrogen atom all contained Planck’s h in an essential way, and none of
this could be explained within the laws of classical physics. Physicists, therefore, came
to suspect that the laws of classical physics might have to be changed according to
some overarching new principle, in which h would play a crucial role. The new physics

2Under certain circumstances light can kick electrons out of a metal’s surface. Classical physics
predicted that this ability depends on the brightness of the light. Einstein’s quantum physics correctly
explained that it instead depends on the color of the light: Einstein’s radical idea was that light of
frequency ω comes in quanta, i.e., in packets of energy ~ω



10 CHAPTER 1. A BRIEF HISTORY OF QUANTUM THEORY

would be called quantum physics. The theoretical task at hand was enormous: One
would need to find a successor to Newton’s mechanics, which would be called quan-
tum mechanics. And, one would need to find a successor to Faraday and Maxwell’s
electromagnetism, which would be called quantum electrodynamics. The new quan-
tum theory would have to reproduce all the successes of classical physics while at the
same time explaining in a unified way all the quantum phenomena, from Planck’s heat
radiation formula, to the stability and the absorbtion and emission spectra of atoms.

The task took more than twenty years of intense experimental and theoretical re-
search by numerous researchers. Finally, in 1925, it was Heisenberg who first found
“quantum mechanics”, the successor to Newton’s mechanics. (At the time, Heisenberg
was a 23 year old postdoctoral fellow with a Rockefeller grant at Bohr’s institute in
Copenhagen). Soon after, Schrödinger found a seemingly simpler formulation of quan-
tum mechanics which turned out to be equivalent. Shortly after, Dirac was able to fully
clarify the mathematical structure of quantum mechanics, thereby revealing the deep
principles that underlie quantum theory. Dirac’s textbook “Principles of Quantum
Mechanics” is a key classic.

The new theory of ”Quantum Mechanics”, being the successor to Newton’s mechan-
ics, correctly described how objects move under the influence of electromagnetic forces.
For example, it described how electrons and protons move under the influence of their
mutual attraction. Thereby, quantum mechanics explained the stability of atoms and
the details of their energy spectra. In fact, quantum mechanics was soon applied to
explain the periodic table and the chemical bonds.

What was still needed, however, was the quantum theory of those electromagnetic
forces, i.e., the quantum theoretic successor to Faraday and Maxwell’s electromag-
netism. Planck’s heat radiation formula was still not explained from first principles!
Fortunately, the discovery of quantum mechanics had already revealed most of the
deep principles that underlie quantum theory. Following those principles, Maxwell’s
theory of electromagnetism was “quantized” to arrive at quantum electrodynamics so
that Planck’s formula for the heat radiation spectrum could be derived.

It then became clear that quantum mechanics, i.e., the quantization of classical
mechanics, was merely the starting point. Somehow, quantum mechanics would have
to be upgraded to become consistent with the brand new theory of relativity which
Einstein had discovered! And then it would have to be covariantly combined with
the quantization of electrodynamics in order to be able to describe both matter and
radiation and their interactions.

1.6 Relativistic quantum mechanics

Already by around 1900, Lorentz, Einstein and others had realized that Newton’s
mechanics was in fact incompatible with Faraday and Maxwell’s theory of electromag-
netism, for reasons unrelated to quantum theory, thereby contributing to the crisis of
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classical physics. In a daring move, Einstein accepted Faraday and Maxwell’s theory of
electromagnetism as correct and questioned the validity of Newton’s notion of absolute
space and time:

Maxwell was able to calculate the speed of electromagnetic waves from first prin-
ciples, and found it to match with the measured speed of light. His calculations also
showed, however, that a traveller would with some large constant velocity would find
the same speed of light. (Today we would say that this is because the Maxwell equa-
tions are covariant).

At the time, this was rather surprising as it clearly contradicted Newton’s classi-
cal mechanics which says that velocities are simply additive. For example, according
to Newton, a passenger who walks forward at v1 = 5km/h in a train travelling at
v2 = 100km/h has a speed of v3 = v1 +v2 = 105km/h relative to the ground. In fact, he
does not. His speed to the ground is v3 = (v1 +v2)/(1+v1v2/c

2) = 104.9999994...km/h.
Today, the nonadditivity of velocities is an easy-to-measure everyday phenomenon. At
the time, the nonadditivity of velocities was first confirmed experimentally by Michel-
son and Moreley, who compared the speed of two light rays travelling parallel and
orthogonal to the motion of the earth around the sun. The new theory that explained
it all was of course Einstein’s special relativity. By 1916, he developed it into general
relativity, which supersedes Newton’s laws of gravity. General relativity very elegantly
explains gravity as curvature of space-time.

Historically, the discovery of relativity therefore happened more or less simulta-
neously with the discovery of quantum theory. Yet, the two theories were developed
virtually independently of another. In actual experiments, special relativity effects
seemed of little importance to quantum mechanical effects and vice versa. For exam-
ple, it was easy to estimate that an electron which orbits the nucleus of a hydrogen
atom would travel at most at speeds smaller than one percent of the speed of light.
Also, since gravity is extremely weak compared to the electromagnetic forces that rule
the atom it was clear that general relativity would be even less important than spe-
cial relativity for those early quantum mechanical studies. Conversely, the uncertainty
principle appeared irrelevant at the astrophysical scales where general relativity was
applied.

Nevertheless, soon after quantum mechanics had been found in 1925 it became
apparent that at least the tiny special relativistic effect of the speed of an electron
orbiting a nucleus was indeed measurable. This meant that there was experimental
guidance for the development of an improved version of quantum mechanics that would
be compatible with special relativity. Indeed, Klein, Gordon, Dirac and others soon
developed “relativistic quantum mechanics3”. Dirac’s analysis, in particular, led him to
correctly predict surprising magnetic properties of electrons, and it led him to correctly

3This relativistic quantum mechanics is an improvement of quantum mechanics which is consistent
merely with special relativity. The search for a quantum theory that is consistent also with general
relativity is still on today.
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predict the existence and properties of antiparticles such as the positron!

However, the fact that particles are able to create and annihilate another in col-
lisions, which had clearly been observed, was beyond the power of even relativistic
quantum mechanics. It was clear that a significant enlargement of the framework of
quantum theory was needed.

1.7 Quantum field theory

The way forward was called “second quantization”. The starting observation was
that, in quantum mechanics, the wave functions behave completely deterministically,
namely according to the Schrödinger equation. Given the initial wave function, one can
calculate its evolution with absolute certainty. It was felt that to be able to predict the
evolution of something, here the wavefunction, with absolute certainty was unusual for
a quantum theory. The idea of second quantization was, therefore, to apply quantum
theory to quantum theory itself. To this end, the quantum mechanical wave functions
were to be treated as classical fields, much like the classical electromagnetic fields.
Then, the aim was to find the quantum version of those fields. Since quantum theory
was to be applied to the wave functions themselves, the amplitudes of wave functions
would no longer be numbers but they would be operators instead. (An operator is a
linear map on an infinite dimensional vector space). As a consequence, in quantum field
theory, the amplitudes of the wave functions would be subject to uncertainty relations.
One should not be able to be sure of the values of the wave function, nor should one
be able to be sure of the norm of the wave function. Since in quantum mechanics
the normalization of the wave function to norm one means that there is exactly one
particle, somewhere, i.e., one would with second quantization not necessarily be sure
how many particles there are. Roughly speaking, it is in this way that the quantum
fluctuations of the wave functions themselves would then account for the creation and
annihilation of particles4.

The problem of finding a quantum theory for fields had of course already been en-
countered when one had first tried to find the quantum theoretic successor to Faraday
and Maxwell’s electrodynamics (which was consistent with special relativity from the
start). As it turned out, guided by the general principles underlying quantum mechan-
ics the quantum theory of the electromagnetic fields alone was not too hard to find.
Following these lines, one was eventually able to write down a unifying quantum theory
both of charged particles and their antiparticles, and also of their interaction through
electromagnetic quanta, i.e., photons. While this theory succeeded well in describing
all the interactions, including annihilation and creation processes, it did yield much
more than one had bargained for. The reason was that, since now particle number
was no longer conserved, the time-energy uncertainty principle made it possible for

4Yes, third and higher quantization has been considered, but with no particular successes so far.
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short time intervals that energy (and therefore all kinds of particles) could be virtually
“borrowed” from the vacuum.

As a consequence, the new quantum field theory, called quantum electrodynam-
ics, necessarily predicted that, for example, that an electron would sometimes spon-
taneously borrow energy from the vacuum to emit a photon which it then usually
quickly reabsorbs. During its brief existence, this so-called “virtual” photon even has
a chance to split into a virtual electron-positron pair which shortly after annihilates to
become the virtual photon again. In fact, the virtual electron (or the positron) during
its short existence, might actually emit and quickly reabsorb a virtual photon. That
photon, might briefly split into an electron positron pair, etc etc ad infinitum. Even
more intriguing is that even without a real electron to start with, the vacuum alone is
predicted to have virtual particles continually appearing and disappearing!

In spite of all this new complexity, it turned out that the theory’s predictions for the
very simplest interactions and creation-annihilation processes were in very good agree-
ment with experimental results. However, the calculation of those predicted endless
chain reactions of virtual processes typically yielded divergent integrals! To take those
virtual processes into account should have increased the precision of predictions. In-
stead, one only obtained seemingly meaningless predictions of infinite numbers. It took
the combined efforts of numerous scientists, such as Feynman, Tomanaga, Weisskopf,
Dyson and others, over about twenty years, to solve this problem.

It turned out that those calculations that had yielded infinities did make sense after
all, if one suitably recalibrated the parameters of the theory, such as the fundamental
masses and charges. This process of recalibration, called renormalization, also occurs
in condensed matter physics, where it is easier to understand intuitively: Consider an
electron that is traveling through a crystal. It has the usual mass and charge. But if
you want to influence the electron’s motion you will find that the traveling electron
behaves as if it had a several times larger mass and a smaller charge. That’s because
the electron slightly deforms the crystal by slightly displacing the positive and negative
charges that it passes by. It is these deformations of the crystal, which travel with the
electron, which make the electron behave as if it were heavier and they also shield its
charge. Also, the closer we get to the electron with our measurement device, the less
is its charge shielded, i.e., the more we see of the bare charge of the electron.

The key lesson here is that the masses and charges that one observes in a crystal are
generally not the “bare” masses and charges that the particles fundamentally possesses.
The observed masses and charges even depend on how closely one looks at the electron.

Now when fundamental particles travel through the vacuum, then they deform
the distribution of those virtual particles that pop in and out of existence due to the
time-energy uncertainty principle. Again, this makes particles behave as if they had
a different mass and a different charge. The masses and charges that are observed
are not the “bare” masses and charges that the particles fundamentally possess. The
observed masses and charges actually depend again on how closely one looks at the
particles, i.e., at what energy one observes them, say with an accelerator. In quantum
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field theory, it turns out that the bare masses and charges may formally even tend to
zero or be divergent. This is OK, as long as the predicted measured values come out
right.

Technically, if you would like to know the gist of it already, renormalization consists
of the following steps: First, artificially render all predictions finite, say by cutting of
the divergent integrals. It turned out that this can be achieved by postulating the
existence of a smallest possible distance ε between any two particles and by calculating
virtual processes accordingly. Next, adjust the parameters of the theory (charges,
masses etc) such that a handful of predictions come out in agreement with experiment
(namely as many as there are free parameters such as masses and charges in the theory).
Now let ε→ 0, while at the same time letting the bare parameters of the theory run so
that the same handful of predictions comes out right. (The parameters of the theory
will thereby usually tend to 0 or ∞.) Crucially, all other (infinitely many!) possible
predictions of the theory will now also come out finite in the limit ε→ 0 - and they can
be compared to experiment. Indeed, predictions so-obtained through renormalization,
for example for the energy levels of the hydrogen atom, match the experimental results
to more than a dozen digits behind the comma!

Of course, renormalization has always been seen as mathematically and conceptu-
ally unsatisfactory. Nevertheless, it did open the door to the successful application of
quantum field theory for the description of all the many species of particles that have
been discovered since, from neutrinos and muons to quarks.

It is important also to mention two developments related to quantum field theory:
First, on the applied side, it turned out that quantum field theoretic methods can also
be used for the description of wave phenomena in solids. These are crucial, for example,
for the understanding of superconductivity. Second, on the theoretical side, Feynman
in his work on quantum electrodynamics, found an equivalent but very insightful and
mathematically powerful new formulation for the principles of quantum theory, called
the path integral formulation. I will briefly outline the path integral formulation of
quantum mechanics later in this course.

1.8 Beyond quantum field theory?

Today, quantum field theory has served as the basis of elementary particle physics (and
therefore as the basis for the description of all that we are made of) for about fifty years.
Even though numerous new particles and even new forces have been discovered over the
years, quantum field theory itself never needed to undergo any fundamental changes.
Similarly successful has been Einstein’s general relativity, which has now served as
the basis of all gravitational physics for over 80 years. Even the most sophisticated
experiments seem to merely confirm the validity of quantum field theory and general
relativity with more and more precision.

Could it be, therefore, that these two theories constitute the final laws of nature and
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that this is all there is? Should one discourage students from a career in the subject?
Certainly not! In fact, the situation resembles in many ways the situation at the time
Planck was a student. We have two highly successful theories - but they are inconsis-
tent! As long as we consider gravity to be a fixed background for quantum theory some
calculations can be performed. Hawking’s prediction of black hole radiation is of this
kind. However, once we fully take into account the dynamics of general relativity, we
face a problem: The predictions of infinities in quantum field theory appear to persist.
In the renormalization procedure, the limit ε → 0 does no longer seem to work (not
for lack of trying!).

This problem is very deep. Many believe that this indicates that there actually
exists a finite shortest length, ε, in nature, much like there is a finite fastest speed.
Indeed, if we put together what we know from general relativity and what we know
from quantum theory, we can conclude that we cannot even in principle devise an
experimental operation that would allow us to resolve distances as small as about
10−35m, which is the so-called Planck scale:

Consider the task of resolving some very small structure. To this end, we need to
shine on it some probing particles of very short wavelength. Due to quantum theory,
the shorter the wavelength, the higher is the energy uncertainty of the probing particle.
According to general relativity, energy gravitates and curves space. Thus, the probing
particles will randomly curve space to the extent of their energy uncertainty. Assume
now that a distance of 10−35m or smaller is to be resolved. A short calculation shows
that to this end the probing particles would have to be of such short wavelength, i.e., of
such high energy uncertainty that they would significantly curve and thereby randomly
disturb the region that they are meant to probe. It therefore appears that the very
notion of distance loses operational meaning at distances of 10−35m or so.

In order to describe the structure of space-time and matter at such small scales we
will need a unifying theory of quantum gravity. Much effort is being put into this. In
this field of research, it is widely expected that within the unified quantum gravity the-
ory there will be a need for renormalization, but not for infinite renormalization. This
yet-to-be found theory of quantum gravity may also solve several other major prob-
lems of quantum theory. In particular, it could yield an explanation for the particular
masses and charges of the elementary particles, and perhaps even an explanation for
the statistical nature of quantum theoretical predictions.

A very concrete major problem awaiting resolution in the theory of quantum grav-
ity is the derivation of the cosmological constant, which represents the energy of the
vacuum. Quantum field theory predicts the vacuum to possess significant amounts of
energy due to vacuum fluctuations: Each field can be mathematically decomposed into
a collection of quantum theoretical harmonic oscillators, each of which contributes a
finite ground state energy of ~ω/2. General relativity predicts that the vacuum energy
should gravitate, just like any other form of energy.

Evidence from recent astronomical observations of the expansion rate of the universe
indicates that the cosmological constant has a small but nonzero value. How much
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vacuum energy does quantum field theory predict? Straightforwardly, quantum field
theory predicts the vacuum energy density to be infinite. If we augment quantum
field theory by the assumption that the Planck length is the shortest length in nature,
then quantum field theory predicts a very large vacuum energy. In fact, it is by a
factor of about 10120 larger than what is experimentally observed. This is the today’s
“ultraviolet catastrophe”. It appears that whoever tries to reconcile quantum theory
with general relativity must be prepared to question the very foundations of all we
know of the laws of nature. Original ideas are needed that may be no less radical than
those of Planck or Einstein. Current attempts are, for example, string theory and loop
quantum gravity.

1.9 Experiment and theory

In the past, progress in the search for the theory of quantum gravity has been severely
hampered by the fact that one cannot actually build a microscope with sufficiently
strong resolving power to probe Planck scale physics. Even the best microscopes today,
namely particle accelerators, can resolve distances only down to at most 10−20m, which
is still very far from the Planck scale of 10−35m. Of course, guidance from experiments
is not strictly necessary, as Einstein demonstrated when he first developed general
relativity. Nevertheless, any candidate theory must be tested experimentally before it
can be given any credence.

In this context, an important recent realization was that there are possibilities
for experimental access to the Planck scale other than through accelerators! One
possibility could be the study of the very highly energetic cosmic rays that occasionally
hit and locally briefly light up the earth’s atmosphere. Another recently much discussed
possibility arises from the simple fact that the universe itself was once very small and
has dramatically expanded since. The idea is, roughly speaking, that if the early
expansion was rapid enough then the universe might have acted as a microscope by
stretching out everything to a much larger size. Astronomical evidence obtained over
the past few years indicate that this did happen.

The statistical distribution of matter in the universe is currently being measured
with great precision, both by direct observation of the distribution of galaxies, and
through the measurement of the cosmic microwave background. Experimental evidence
is mounting for the theory that the matter distribution in the universe agrees with what
one would expect if it originated as tiny primordial quantum fluctuations - which were
inflated to cosmic size by a very rapid initial expansion of the universe! It appears
that the universe itself has acted as a giant microscope that enlarged initially small
quantum phenomena into an image on our night sky! It is just possible that even the
as yet unknown quantum phenomena of Planck length size have left an imprint in this
image. Some of my own research is in this area. New satellite based telescopes are
currently further exploring these phenomena.



Chapter 2

Classical mechanics in Hamiltonian
form

2.1 Newton’s laws for classical mechanics cannot

be upgraded

When physicists first tried to find the laws of quantum mechanics they knew from
experiments that Planck’s constant h would have to play an important role in those
laws. Imagine yourself in the situation of these physicists. How would you go about
guessing the laws of quantum mechanics? Clearly, quantum mechanics would have
to strongly resemble classical mechanics. After all, quantum mechanics should be
an improvement over classical mechanics. Thus, it would have to reproduce all the
successful predictions of classical mechanics, from the motion of the planets to the forces
in a car’s transmission. So how if we try to carefully improve one or several Newton’s
three axioms of classical mechanics by suitably introducing Planck’s constant?

For example, could it be that F = ma should really be F = ma + h instead?
After all, h is such a small number that one could imagine that this correction term
might have been overlooked for a long time. However, this attempt surely can’t be
right on the trivial grounds that h does not have the right units: F and ma have the
units Kgm2/s2 while the units of h are Kgm2/s. But then, could the correct second
law perhaps be F = ma(1 + h/xp)? The units would match. Also this attempt can’t
be right because whenever x or p are small, the term h/xp would be enormous, and
we could therefore not have overlooked this term for all the hundreds of years since
Newton. Similarly, also F = ma(1 + xp/h) can’t be right because for the values of x
and p that we encounter in daily life the term xp/h would usually be big enough to
have been seen.

In fact, no attempt to improve on Newton’s laws in such a manner works. This is
why historically this search for the laws of quantum mechanics actually took a quarter
century! When the first formulations of quantum mechanics were eventually found by

17
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Heisenberg and Schrödinger, they did not at all look similar to classical mechanics.
It was Dirac who first clarified the mathematical structure of quantum mechanics

and thereby its relation to classical mechanics. Dirac remembered that a more abstract
formulation of classical mechanics than Newton’s had long been developed, namely
Hamiltonian’s formulation of classical mechanics. Hamilton’s formulation of classical
mechanics made use of a mathematical tool called Poisson brackets. Dirac showed
that the laws of classical mechanics, once formulated in their Hamiltonian form, can
be upgraded by suitably introducing h into its equations, thereby yielding quantum
mechanics correctly. In this way, Dirac was able to show how quantum mechanics
naturally supersedes classical mechanics while reproducing the successes of classical
mechanics. We will follow Dirac in this course1.

2.2 Levels of abstraction

In order to follow Dirac’s thinking, let us consider the levels of abstraction in math-
ematical physics: Ideally, one starts from abstract laws of nature and at the end one
obtains concrete number predictions for measurement outcomes. In the middle, there
is usually a hierarchy of mathematical problems that one has to solve.

In particular, in Newton’s formulation of classical mechanics one starts by writing
down the equations of motion for the system at hand. The equations of motion will
generally contain terms of the type mẍ and will therefore of the type of differential
equations. We begin our calculation by solving those differential equations, to obtain
functions. These functions we then solve for variables. From those variables we even-
tually obtain some concrete numbers that we can compare with a measurement value.
The hierarchy of abstraction is, therefore:

Differential equations
⇓

Functions
⇓

Variables
⇓

Numbers

This begs the question if there is a level of abstraction above that of differential equa-
tions? Namely, can the differential equations of motion be obtained as the solution of

1Actually, Schrödinger in his paper introducing the Schrödinger equation already tried to motivate
his equation by an analogy with some aspect of Hamilton’s work (the so called Hamilton Jacobi
theory). This argument did not hold up. In fact, he came to correctly guess his equation by following
his intuition that the discreteness of quantum phenomena might mathematically arise as discrete
eigenvalues - which had been known to arise in solving wave equations.
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some higher level mathematical problem? The answer is yes, as Dirac remembered:
Already in the first half of the 19th century, Lagrange, Hamilton and others had found
this higher level formulation of classical mechanics. Their methods had proven useful
for solving the dynamics of complicated systems, and some of those methods are still
being used, for example, for the calculation of satellite trajectories. Dirac thought that
if Newton’s formulation of classical mechanics was not upgradable, it might be worth
investigating if the higher level formulation of Hamilton might be upgradable to ob-
tain quantum mechanics. Dirac succeeded and was thereby able to clearly display the
similarities and differences between classical mechanics and the quantum mechanics of
Heisenberg and Schrödinger. To see this is our first goal in this course.

Remark: For completeness, I should mention that there are two equivalent ways to
present classical mechanics on this higher level of abstraction: One is due to Hamilton
and one is due to Lagrange. Lagrange’s formulation of classical mechanics is also
upgradable, i.e., that there is a simple way to introduce h to obtain quantum mechanics
from it, as Feynman first realized in the 1940s. In this way, Feynman discovered a whole
new formulation of quantum mechanics, which is called the path integral formulation.
I will explain Feynman’s formulation of quantum mechanics later in the course.

2.3 Classical mechanics in Hamiltonian formulation

2.3.1 The energy function H contains all information

What was Hamilton’s higher level of abstraction? How can classical mechanics be for-
mulated so that Newton’s differential equations of motion are themselves the solution
of a higher level mathematical problem? Hamilton’s crucial observation was the fol-
lowing: the expression for the total energy of a system already contains the complete
information about that system! In particular, if we know a system’s energy function,
then we can derive from it the differential equations of motion of that system. In
Hamilton’s formulation of classical mechanics the highest level description of a system
is therefore through its energy function. The expression for the total energy of a system
is also called the Hamiltonian. The hierarchy of abstraction is now:

Hamiltonians
⇓

Differential equations
⇓

Functions
⇓

Variables
⇓

Numbers
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As a very simple example, let us consider a system of two point2 masses, m1 and
m2, which are connected by a spring with spring constant k. We write their re-
spective position vectors as ~x(r) = (x

(r)
1 , x

(r)
2 , x

(r)
3 ) and their momentum vectors as

~p(r) = (p
(r)
1 , p

(r)
2 , p

(r)
3 ), where r is 1 or 2 respectively (we will omit the superscript (r)

when we talk about one mass only). The positions and momenta are of course func-

tions of time. Let us, therefore, keep in mind that for example x
(1)
3 is just a short hand

notation for the function x
(1)
3 (t). Since this is a simple system, it is easy to write down

its equations of motion:

d

dt
x

(r)
i =

p
(r)
i

mr

(2.1)

d

dt
p

(1)
i = −k(x

(1)
i − x

(2)
i ) (2.2)

d

dt
p

(2)
i = −k(x

(2)
i − x

(1)
i ) (2.3)

Here, r ∈ {1, 2} labels the objects and i ∈ {1, 2, 3} labels their coordinates. Hamil-
ton’s great insight was that these equations of motion (as well as those of arbitrarily
complicated systems) can all be derived from just one piece of information, namely
the expression for the system’s total energy H alone! This is to say that Hamilton
discovered that the expression for the total energy is what we now call the generator
of the time evolution. The Hamiltonian H, i.e., the total energy of the system, is the
kinetic energy plus the potential energy. In our example:

H =

(
~p(1)
)2

2m1

+

(
~p(2)
)2

2m2

+
k

2

(
~x(1) − ~x(2)

)2
(2.4)

Here,
(
~p(1)
)2

=
∑3

i=1

(
p

(1)
i

)2

etc. Now imagine that the system in question is instead

a complicated contraption with plenty of wheels, gears, discs, levers, weights, strings,
masses, bells and whistles. Using Newton’s laws it is possible to determine the equa-
tions of motion for that system but it will be complicated and will typically involve
drawing lots of diagrams with forces. Hamilton’s method promises a lot of simplifi-
cation here. We just write down the sum of all kinetic and potential energies, which
is generally not so difficult, and then Hamilton’s methods should yield the equations
of motion straightforwardly. In practice we won’t be interested in complicated con-
traptions. We’ll be interested in systems such as molecules, quantum computers or
quantum fields, which all can be quite complicated too.

2In this course, we will always restrict attention to point masses: all known noncomposite particles,
namely the three types of electrons and neutrinos, six types of quarks, the W and Z particles (which
transmit the weak force responsible for radioactivity), the gluons (which transmit the strong force
responsible for the nuclear force) and the photon are all point-like as far as we know.
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But what is the technique with which one can derive the equations of motion from
a Hamiltonian, for example, Eqs.2.1-2.3 from Eq.2.4? Exactly how does the generator,
H, of the time evolution generate the time evolution equations Eqs.2.1-2.3?

2.3.2 The Poisson bracket

The general procedure by which the equations of motion can be derived from a Hamil-
tonian H requires the use of a powerful mathematical operation, called “Poisson
bracket”3:

The Poisson bracket is a particular kind of multiplication: Assume that f and g
are polynomials in terms of the positions and momenta of the system, say f = −2p1

and g = 3x2
1 + 7p4

3 − 2x3
2p

3
1 + 6. Then, the Poisson bracket of f and g is written as

{f, g} and the evaluation of the bracket will yield another polynomial in terms of the
position and momenta of the system. In this case:

{−2p1 , 3x2
1 + 7p4

3 − 2x3
2p

3
1 + 6} = 12x1 (2.5)

But how does one evaluate such a Poisson bracket to obtain this answer? The rules for
evaluating Poisson brackets are tailor-made for mechanics. There are two sets of rules:

A) By definition, for each particle, the Poisson brackets of the positions and momenta
are:

{xi, pj} = δi,j (2.6)

{xi, xj} = 0 (2.7)

{pi, pj} = 0 (2.8)

for all i, j ∈ {1, 2, 3}. Here, δi,j is the Kronecker delta, which is 1 if i = j and is 0 if
i 6= j. But these are only the Poisson brackets between linear terms. How to evaluate
then the Poisson bracket between two polynomials? The second set of rules allow us
to reduce this general case to the case of the Poisson brackets between linear terms:

B) By definition, the Poisson bracket of two arbitrary expressions in the positions and
momenta, f(x, p) and g(x, p), obey the following rules:

{f, g} = − {g, f} antisymmetry (2.9)

{cf, g} = c {f, g}, for any number c linearity (2.10)

{f, g + h} = {f, g}+ {f, h} addition rule (2.11)

3Remark: In elementary particle physics there is a yet higher level of abstraction, which allows one
to derive Hamiltonians. The new level is that of so-called “symmetry groups”. The Poisson bracket
operation plays an essential role also in the definition of symmetry groups. (Candidate quantum
gravity theories such as string theory aim to derive these symmetry groups from a yet higher level of
abstraction which is hoped to be the top level.)
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{f, gh} = {f, g}h+ g{f, h} product rule (2.12)

0 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} Jacobi id. (2.13)

Let us postpone the explanation for why these definitions had to be chosen in exactly
this way4. For now, note that an immediate consequence of these rules is that the
Poisson bracket of a number always vanishes:

{c, f} = 0 if c is a number (2.14)

The point of the second set of rules is that we can use them to successively break
down the evaluation of a Poisson bracket like that of Eq.2.5 into sums and products of
expressions that can be evaluated by using the first set of rules, Eqs.2.6,2.7,2.8. Using
the product rule we immediately obtain, for example:

{x3, p
2
3} = {x3, p3}p3 + p3{x3, p3} = 1p3 + p31 = 2p3 (2.15)

Exercise 2.1 Prove Eq.2.14.

Exercise 2.2 Show that {f, f} = 0 for any f .

Exercise 2.3 Assume that n is a positive integer.
a) Evaluate {x1, p

n
1}

b) Evaluate {xn2 , p2}

Exercise 2.4 Verify Eq.2.5.

Exercise 2.5 Evaluate {3 + x1p
2
2 , p1x

2
2p3}.

Exercise 2.6 Show that the Poisson bracket is not associative by giving a counter
example.

So far, we defined the Poisson brackets of polynomials in the positions and momenta
of one point mass only. Let us now consider the general case of a system of n point
masses, m(r) with position vectors ~x(r) = (x

(r)
1 , x

(r)
2 , x

(r)
3 ) and momentum vectors ~p(r) =

(p
(r)
1 , p

(r)
2 , p

(r)
3 ), where r ∈ {1, 2, ..., n}. How can we evaluate the Poisson brackets of

expressions that involve all those positions and momentum variables? To this end, we
need to define what the Poisson brackets in between positions and momenta of different
particles should be. They are defined to be simply zero. Therefore, to summarize, we
define the basic Poisson brackets of n masses as

{x(r)
i , p

(s)
j } = δi,j δr,s (2.16)

{x(r)
i , x

(s)
j } = 0 (2.17)

{p(r)
i , p

(s)
j } = 0 (2.18)

4If the product rule already reminds you of the product rule for derivatives (i.e., the Leibniz rule)
this is not an accident. As we will see, the Poisson bracket can in fact be viewed as a sophisticated
generalization of the notion of derivative.
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where r, s ∈ {1, 2, ..., n} and i, j ∈ {1, 2, 3}. The evaluation rules of Eqs.2.9-2.13 are
defined to stay just the same.

Exercise 2.7 Mathematically, the set of polynomials in positions and momenta is an
example of what is called a Poisson algebra. A general Poisson algebra is a vector
space with two extra multiplications: One multiplication which makes the vector space
into an associative algebra, and one (non-associative) multiplication {, }, called the Lie
bracket, which makes the vector space into what is called a Lie algebra. If the two
multiplications are in a certain sense compatible then the set is said to be a Poisson
algebra. Look up and state the axioms of a) a Lie algebra, b) an associative algebra
and c) a Poisson algebra.

2.3.3 The Hamilton equations

Let us recall why we introduced the Poisson bracket: A technique that uses the Poisson
bracket is supposed to allow us to derive all the differential equations of motion of a
system from the just one piece of information, namely from the expression of the total
energy of the system, i.e., from its Hamiltonian.

To see how this works, let us consider an arbitrary polynomial f in terms of the
positions and momentum variables x

(r)
i , p

(s)
j of the system in question, for example,

something like f = 7x
(3)
2

(
x

(1)
3

)3

− 2 cos(4t2)(p
(1)
1 )7 + 3/2. This f depends on time for

two reasons: There is an explicit dependence on time through the cosine term, and
there is an implicit dependence on time because the positions and momenta generally
depend on time. According to Hamilton’s formalism, the equation of motion for f is
then given by:

df

dt
= {f,H}+

∂f

∂t
(2.19)

This famous equation is called the Hamilton equation. If you know how to evaluate
Poisson brackets then the Hamilton equation Eq.2.19 encodes for you all of classical
mechanics! Namely, given H, equation Eq.2.19 yields the differential equation of mo-
tion for any entity f by the simple procedure of evaluating the Poisson bracket on its
right hand side.

If f is dependent on time only through x and p (say if we choose for f a polynomial
in x and p’s with constant coefficients) then ∂f/∂t = 0 and Hamilton’s equation
simplifies to:

d

dt
f = {f,H} (2.20)

Unless otherwise specified, we will in the following choose f ’s that depend on time only
through the x and p’s. In particular, the most important choices for f are of this kind:
f = x

(r)
i or f = p

(r)
i . For these choices of f we immediately obtain the fundamental
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equations of motion:

d

dt
x

(r)
i = {x(r)

i , H} (2.21)

d

dt
p

(r)
i = {p(r)

i , H} (2.22)

Here is a concrete example: A single free particle of mass m possesses only kinetic
energy. Its Hamiltonian is:

H =
3∑
j=1

p2
j

2m
(2.23)

By using this H in Eqs.2.21,2.22, we obtain the following equations of motion for the
positions and momenta:

d

dt
xi =

{
xi ,

3∑
j=1

p2
j

2m

}
=

pi
m

(2.24)

and

d

dt
pi =

{
pi ,

3∑
j=1

p2
j

2m

}
= 0 (2.25)

They agree with what was expected: pi = mẋi and ẍi = 0, where the dot indicates the
time derivative. For another example, consider again the system of two point masses
m1,m2 which are connected by a spring with spring constant k. Its Hamiltonian H
was given in Eq.2.4. By using this H in Eqs.2.21,2.22 we should now be able to derive
the system’s equations of motion (as given in Eqs.2.1-2.3). Indeed:

d

dt
x

(r)
i = {x(r)

i , H} (2.26)

=
p

(r)
i

mr

(2.27)

d

dt
p

(1)
i = {p(1)

i , H} (2.28)

= −k(x
(1)
i − x

(2)
i ) (2.29)

d

dt
p

(2)
i = {p(2)

i , H} (2.30)

= −k(x
(2)
i − x

(1)
i ) (2.31)

Let us omit the proof that Hamilton’s formulation of classical mechanics always yields
the same equations of motion as Newton’s.



2.3. CLASSICAL MECHANICS IN HAMILTONIAN FORMULATION 25

Exercise 2.8 Verify Eqs.2.24-2.31.

Exercise 2.9 Consider f = gh, where g and h are some polynomial expressions in the
position and momentum variables. There are two ways to calculate df/dt: Either we
use the Leibnitz rule, i.e., ḟ = ġh+ gḣ, and apply Eq.2.20 to both ġ and ḣ, or we apply
Eq.2.20 directly to gh and use the product rule (Eq.2.12) for Poisson brackets. Prove
that both methods yield the same result.

This exercise shows that a property of the derivative on the left hand side of Eq.2.20
determines a rule for how the Poisson bracket had to be defined. In fact, such require-
ments of consistency are the main reason why the Poisson bracket is defined the way
it is.

Exercise 2.10 Use Eq.2.13 to prove that:

d

dt
{f, g} = {ḟ , g}+ {f, ġ} (2.32)

2.3.4 Symmetries and Conservation laws

Our reason for reviewing the Hamiltonian formulation of mechanics is that it will be
useful for the study of quantum mechanics. Before we get to that, however, let us ask
why the Hamiltonian formulation of mechanics was useful for classical mechanics. It
was, after all, developed more than half a century before quantum mechanics.

Sure, it was fine to be able to derive all the differential equations of motion from
the one unifying equation:

ḟ = {f,H} (2.33)

Ultimately, however, one obtained just the same equations of motion as Newton’s meth-
ods would yield. Was there any practical advantage to using Hamilton’s formulation of
mechanics? Indeed, there is an important practical advantage: The main advantage of
Hamilton’s formulation of mechanics is that it gives us powerful methods for studying
conserved quantities, such as the energy or angular momentum. To know conserved
quantities usually significantly helps in solving the dynamics of complicated systems.
This feature of Hamilton’s formulation of mechanics will carry over to quantum me-
chanics, so studying it here will later help us also in quantum mechanics.

Consider a polynomial f in x and p’s with constant coefficients. Then, ∂f/∂t = 0
and Eq.2.33 applies. We can easily read off from Eq.2.33 that any such f is conserved
in time if and only if its Poisson bracket with the Hamiltonian vanishes:

{f,H} = 0 ⇒ ḟ = 0 (2.34)

Consider, for example, a free particle. Its Hamiltonian is given in Eq.2.23. We expect
of course that its momenta pi are conserved. Indeed:

ṗi =

{
pi,

3∑
j=1

p2
j/2m

}
= 0 (2.35)
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For another example, consider a system whose Hamiltonian is any polynomial in x’s
and p’s with constant coefficients. The proof that this system’s energy is conserved is
now fairly trivial:

Ḣ = {H,H} = 0 (2.36)

In order to be able to find solutions to the equations of motion of complicated real-life
systems it is often crucial to find as many conserved quantities as possible.

For example, consider a 3-dimensional isotropic (i.e., rotation invariant) harmonic
oscillator. Because of its symmetry under rotations, it angular momentum is conserved.
But this oscillator has actually a much larger symmetry and therefore more conserved
quantities. This is because a harmonic oscillator, being of the form x2+p2 also possesses
rotation symmetry in phase space. I will here only remark that this means that the
3-dimensional isotropic harmonic oscillator possesses SO(3) rotational symmetry as
well as a larger SU(3) symmetry.

Powerful methods for discovering symmetries and constructing the implied con-
served quantities for arbitrary systems have been developed on the basis of Eq.2.33
and the Poisson bracket. A key technique is that of so-called canonical transforma-
tions, i.e., of changes variables for which the Poisson brackets remain the same. You
can find these methods in classical mechanics texts under the keywords “canonical
transformations” and “Hamilton Jacobi theory”.

In fact, Poisson bracket methods reveal a very deep one-to-one correspondence
between conserved quantities and so-called symmetries. For example, the statement
that an experiment on a system gives the same result no matter when we perform
the experiment, is the statement of a “symmetry” which is called time-translation
invariance symmetry. In practice, it means that the Hamiltonian of the system does
not explicitly depend on time: ∂H/∂t = 0. As we just saw, this implies energy
conservation: dH/dt = 0.

Similarly, the statement that an experiment on a system gives the same result
wherever we perform the experiment is the statement of space-translation symmetry.
It implies and is implied by momentum conservation. Further, the statement that an
experiment on a system gives the same result whatever the angular orientation of the
experiment is the statement of rotation symmetry. It implies and is implied by angular
momentum conservation.

These are examples of the so-called “Noether theorem”, of Emmy Noether (1882-
1935). Noether’s theorem plays a crucial role both in practical applications, and in
fundamental physics5. We will later come back to Noether’s theorem.

5Mathematically, symmetries are described as groups (for example, the composition of two rotations
yields a rotation and to every rotation there is an inverse rotation). In elementary particle physics,
symmetry groups are one abstraction level higher than Hamiltonians: It has turned out that the
complicated Hamiltonians which describe the fundamental forces, i.e., the electromagnetic, weak and
strong force, are essentially derivable as being the simplest Hamiltonians associated with with three
elementary symmetry groups.
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Exercise 2.11 Show that in general, dH/dt = ∂H/∂t and give a nontrivial example.

Exercise 2.12 Consider the system with the Hamiltonian of Eq.2.4. a) Show that the
total momentum is conserved. b) Prove the conservation of angular momentum about
the center of mass by showing that its Poisson bracket with the Hamiltonian vanishes.

2.3.5 A representation of the Poisson bracket

In principle, we can evaluate any Poisson bracket {f, g} by using the rules Eqs.2.6-
2.12 if, as we assume, f and g are polynomials or well-behaved power series in the
position and momentum variables. This is because the product rule allows us to break
Poisson brackets that contain polynomials into factors of Poisson brackets that contain
polynomials of lower degree. Repeating the process, we are eventually left with having
to evaluate only Poisson brackets of linear terms, which can easily be evaluated using
the first set of rules.

This is all good and fine but when f or g contain high or even infinite powers of the
position and momentum variables, then the evaluation of the Poisson bracket {f, g}
can become rather tedious and cumbersome.

For practical purposes it is of interest, therefore, to have a shortcut for the evalua-
tion of Poisson brackets. Indeed, for complicated f and g, the Poisson bracket {f, g}
can be evaluated usually faster by the following formula:

{f, g} =
n∑
r=1

3∑
i=1

(
∂f

∂x
(r)
i

∂g

∂p
(r)
i

− ∂f

∂p
(r)
i

∂g

∂x
(r)
i

)
(2.37)

Exercise 2.13 Evaluate {x8p6, x3p4}.

Exercise 2.14 Show that Eq.2.37 is indeed a representation of the Poisson bracket,
i.e., that it always yields the correct answer. To this end, check that it obeys Eqs.2.6-
2.12.

Exercise 2.15 Find the representation of the Hamilton equations Eq.2.19 and Eqs.2.21,
2.22 obtained by using Eq.2.37.

Remark: Some textbooks start with these representations of the Hamilton equations,
along with the representation Eq.2.37 of the Poisson bracket - without reference to
the Hamilton equations’ more abstract origin in Eq.2.19 and Eqs.2.21, 2.22. This is
unfortunate because those representations using Eq.2.37 do not carry over to quantum
mechanics, while the more abstract equations Eq.2.19 and Eqs.2.21, 2.22 will carry
over to quantum mechanics unchanged, as we will see.
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2.4 Summary: The laws of classical mechanics

We already discussed that quantum mechanics must have strong similarities with clas-
sical mechanics, since it must reproduce all the successes of classical mechanics. This
suggested that the laws of quantum mechanics might be a slight modification of New-
ton’s laws which would somehow contain Planck’s constant h. Since this did not work,
we reformulated the laws of classical mechanics on a higher level of abstraction, namely
in Hamilton’s form. Before we now try to guess the laws of quantum mechanics, let us
restate Hamilton’s formulation of classical mechanics very carefully:

The starting point is the energy function H of the system in question. It is called the
Hamiltonian, and it is an expression in terms of the position and momentum variables
of the system. Then, assume we are interested in the time evolution of some quantity
f which is also a polynomial in the x and p’s (say with constant coefficients). Then we
can derive the equation of motion for f through:

d

dt
f = {f,H} (2.38)

In particular, f can be chosen to be any one of the position and momentum variables
of the system, and we obtain their equations of motion as Eqs.2.21,2.22. In order to
obtain explicit differential equations from Eqs.2.38,2.21,2.22 we evaluate the Poisson
bracket on its right hand side. To this end, we use the definitions Eqs.2.6-2.13. The
so-obtained differential equations are then solved to obtain the positions x

(r)
i (t) and

momenta p
(r)
i (t) as functions of time.

We note that the Poisson bracket which is defined by the axioms Eqs.2.6-2.12 possesses
an often convenient explicit representation through Eq.2.37. We need to keep in mind,
however, that Eq.2.37 merely provides a convenient shortcut for evaluating the Poisson
bracket. This shortcut only works in classical mechanics. In quantum mechanics, there
will also be a representation of the Poisson bracket but it will look very different from
Eq.2.37.

2.5 Classical field theory

This section is a mere comment. In classical mechanics, the dynamical variables are
the positions of particles, together with their velocities or momenta. For each particle
there are three degrees of freedom of position and momenta.

In a field theory, such as Maxwell’s theory, positions (and momenta) are not dynam-
ical variables. After all, unlike a particle that moves around, a field can be everywhere
at the same time. In the case of a field theory, what is dynamical is its amplitude.
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Consider say a scalar field φ. At every point x in space it has an amplitude φ(x, t)
that changes in time with a ‘velocity’ of φ̇(x, t) which we may call the canonically
conjugate momentum field: π(x, t) := φ̇(x, t). Unlike the three degrees of freedom that
particle possesses, a field therefore possesses uncountably many degrees of freedom,
one at each position x. Now one can define the Poisson brackets of the first kind for
them in analogy to the Poisson brackets for particles:

{φ(x, t), π(x′, t)} = δ3(x− x′) (2.39)

{φ(x, t), φ(x′, t)} = 0 (2.40)

{π(x, t), π(x′, t)} = 0 (2.41)

Here, δ3(x − x′) is the three dimanional Dirac delta distribution. The second set of
Poisson brackets is unchanged, i.e., it is still given by Eqs.2.9-2.13. The energy of the
classical field, i.e., its Hamiltonian, is:

H(φ, π) =

∫
d3x

1

2

(
π(x, t)2 +

3∑
i=1

(∂iφ(x, t))2 +m2φ(x, t)2

)
(2.42)

The Hamilton equation Eq.2.38 is unchanged.

Exercise 2.16 (Bonus question) Derive the equations of motion for φ(x, t) and
π(x, t). Combine the two equations by eliminating π(x, t).

The combined equation is the so-called Klein Gordon equation. The Dirac equation
and the Maxwell equations can be treated similarly, although with some small extra
complications because the amplitudes of these fields are not scalar but are vectorial
and spinorial respectively.
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Chapter 3

Quantum mechanics in Hamiltonian
form

We formulated the laws of classical mechanics on a higher level of abstraction, as
summarized in Sec.2.4 because classical mechanics appeared to be not upgradeable
when written in Newton’s formulation. We are now ready to upgrade the more abstract
Hamiltonian laws of classical mechanics to obtain quantum mechanics. A modification
is needed which is a small enough to preserve all the successes of classical mechanics
while it must also introduce h in order to correctly predict quantum mechanical effects.

For example, could it be that Eq.2.38 needs to be modified to obtain quantum
mechanics? Could the correct equation be, say, d

dt
f = {f,H} + h or d

dt
f = {f +

h2/f,H}, where h is Planck’s constant? Those two equations can’t be right, of course,
already because the units generally don’t match. Could it be then that to obtain
quantum mechanics we will have to change the definitions for the Poisson bracket?
Could it be that the definition Eq.2.12 needs to be changed? This, of course, is unlikely
too because the definitions for the Poisson bracket were fixed by consistency conditions
(recall e.g. Ex.2 of Sec.2.9). The structure of our Poisson algebra is quite tightly
constrained.

No, the necessary upgrade of the Hamiltonian formalism is actually much more
subtle! Let us remember that when we defined the Poisson algebra structure in the
previous section we did not make any assumptions about the mathematical nature of
the functions x(t) and p(t) (let us omit writing out the indices). In particular, we did
not make the assumption that these functions are number-valued. We can start with
a Hamiltonian, i.e., a polynomial in the x and p and then by using the rules of the
Poisson bracket we can derive the differential equations of motion. In the process, we
never need to assume that the functions x(t) and p(t) are number valued. Could it
be that the x(t) and p(t) need not be number valued and that this holds the key to
upgrading classical mechanics to obtain quantum mechanics? Actually yes!

Before we get to this, we have to consider though that we actually did assume the
x and p to be number valued at one specific point at the very end of the previous

31
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chapter. There, we wrote down a convenient representation of the Poisson bracket in
Eq.2.37, and there we needed the x and p to be number-valued - because to use this
convenient representation we needed to be able to differentiate with respect to the x
and p. We can conclude from this that if allowing the x(t) and p(t) to be something else
than number valued is the key to upgrading to quantum mechanics, then the Poisson
bracket will not be representable any more through Eq.2.37.

In fact, as we will see, this is how it will play out. Everything we did in the
previous chapter, except for the representation Eq.2.37 will still exactly hold true in
quantum mechanics. In particular, the differential equations of motion derived from
the Hamiltonian will look exactly the same in quantum and classical mechanics. That’s
because they are derived from the same Hamiltonian polynomial in the x and p by using
the same rules for the Poisson bracket. But then, if not in the equations of motion,
how does the upgrade involve h at all?

3.1 Reconsidering the nature of observables

At this point, let us reconsider the very basics: How do the symbols we write on paper
relate to real systems? We measure a system with concrete measurement devices
in the lab, for example, devices for the measurement of positions and devices for the
measurement of momenta. As usual, we invent for each kind of measurement a symbol,
say x

(r)
i and p

(r)
i . At this stage we need to be careful not to over-interpret these

symbols. At this stage, these symbols have nothing to do (yet) with numbers, vectors,
matrices, operators or bananas. Instead, these symbols are merely names for kinds of
measurement. We need to find out more about the nature of these x

(r)
i and p

(r)
i .

Now according to our everyday experience, the operation of a position measurement
device does not interfere with the operation of a momentum measurement device: it
seems that we can always measure both, positions and momenta. For example, GPS
units are able to tell both position and velocity at the same time to considerable
accuracy. It is tempting to assume, therefore, that there is no limit, in principle, to
how accurately positions and velocities can be determined. And that would mean that
we can let each of the symbols x

(r)
i (t) and p

(r)
i (t) stand for its measurement devices’s

output number at time t.

It is at this very point, namely when we make the assumption that positions and
momenta can be accurately measured simultaneously, that we make the assumption
that the symbols x

(r)
i (t) and p

(r)
i (t) can be represented mathematically as number-

valued functions of time. And number-valued functions have the property of being
commutative:

x
(r)
i p

(s)
j − p

(s)
j x

(r)
i = 0 (3.1)

Since measurement values cannot be just any number but always come out real, we
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also have the law: (
x

(r)
i

)∗
= x

(r)
i and

(
p

(s)
j

)∗
= p

(s)
j (3.2)

Similarly, we have H∗ = H. Technically, the *-operation is an example of was is called
an involution.

Exercise 3.1 Find and list the defining properties of an involution.

The statements above, namely that position and momentum measurements are
compatible and come out as real numbers are indeed a nontrivial part of the laws of
classical mechanics. For completeness we should have included them in the summary
of classical mechanics in Sec.2.4.

A reality property of the form of Eq.3.2 will still be true in quantum mechanics.
But the commutativity property expressed in Eq.3.1 and its underlying assumption
that the operation of position and momentum measurement devices do not interfere
with another needs to be abandoned and upgraded. It turns out that position and
momentum measurements are like taking a shower and doing sports. It matters in
which sequence one does them.

3.2 The canonical commutation relations

For the remainder of this course, we will need a way to make it transparent in every
equation whether a variable is number valued or not. To this end, we will decorate
variables that may not be number valued with a hat, for example, Ĥ, p̂, x̂, or more
specifically x̂

(r)
i and p̂

(r)
i for each position and momentum measurement device. Now

how can the interference of the measurement devices mathematically be expressed as
properties of the symbols x̂

(r)
i and p̂

(r)
i ?

According to classical mechanics one would be able to operate all measurement de-
vices all the time and they would not interfere with another. We could therefore choose
the x̂

(r)
i (t) and p̂

(r)
i (t) to stand for the number-valued outcomes of those measurements

as functions of time. Crucially, the fact that we can’t actually know positions and
momenta simultaneously means that we can no longer choose the x̂

(r)
i (t) and p̂

(r)
i (t) to

stand simply for number-valued outcomes of those measurements as functions of time.
Mathematically, it was the commutativity law of Eq.3.1 which expressed that in

classical mechanics the symbols x̂
(r)
i (t) and p̂

(r)
i (t) can be represented as number valued

functions. Could it be that Eq.3.1 has to be modified to include h so that the x̂
(r)
i (t)

and p̂
(r)
i (t) become non-commutative and therefore can no longer be number-valued

functions?
Are position and momentum measurements non commuting similar to how doing

sports and having a shower don’t commute?



34 CHAPTER 3. QUANTUM MECHANICS IN HAMILTONIAN FORM

It was Dirac who first realized that all of the Poisson algebra structure that we
defined above can be kept (and therefore the ability to derive the equations of motion),

while changing one little thing: allowing the symbols x̂
(r)
i (t) and p̂

(r)
i (t) to be non-

commutative, though only in a particular way. Consistency with the Poisson algebra
structure imposes strict conditions on the form that this noncommutativity can take.
Namely, following Dirac, let us consider the Poisson bracket

{û1û2, v̂1v̂2} (3.3)

where û1, û2, v̂1, v̂2 are arbitrary polynomials in the variables x̂
(r)
i and p̂

(s)
j . Expression

Eq.3.3 can be evaluated in two ways and, of course, any noncommutativity of the x̂
(r)
i

and p̂
(s)
j has to be such that both ways yield the same outcome:

{û1û2, v̂1v̂2} = û1{û2, v̂1v̂2}+ {û1, v̂1v̂2}û2 (3.4)

= û1(v̂1{û2, v̂2}+ {û2, v̂1}v̂2) + (v̂1{û1, v̂2}+ {û1, v̂1}v̂2)û2

This must agree with:

{û1û2, v̂1v̂2} = v̂1{û1û2, v̂2}+ {û1û2, v̂1}v̂2 (3.5)

= v̂1(û1{û2, v̂2}+ {û1, v̂2}û2) + (û1{û2, v̂1}+ {û1, v̂1}û2)v̂2

Thus:

{û1, v̂1}(v̂2û2 − û2v̂2) = (v̂1û1 − û1v̂1){û2, v̂2} (3.6)

Since this has to hold for all possible choices of û1, û2, v̂1, v̂2, we require all expressions
û, v̂ in the position and momentum variables to obey:

v̂û− ûv̂ = k{û, v̂} (3.7)

Here, k must be independent of û and v̂ and must be commuting with everything. But
what value does k take?

The case k = 0 would be classical mechanics, because it implies that all expressions
in the positions and momenta commute.

However, it turns out that in order to eventually yield the correct experimental
predictions (we will later see how), we have to set k = −ih/2π, i.e., we have

ûv̂ − v̂û = i~{û, v̂} (3.8)

where we used the convenient definition:

~ =
h

2π
(3.9)



3.2. THE CANONICAL COMMUTATION RELATIONS 35

In particular, choosing for û and v̂ the variables x
(r)
i and p

(s)
j using Eqs.2.6-2.8, we now

obtain the quantum mechanical commutation relations for n particles:

x̂
(r)
i p̂

(s)
j − p̂

(s)
j x̂

(r)
i = i~ δi,jδr,s (3.10)

x̂
(r)
i x̂

(s)
j − x̂

(s)
j x̂

(r)
i = 0 (3.11)

p̂
(r)
i p̂

(s)
j − p̂

(s)
j p̂

(r)
i = 0 (3.12)

Notice that we did not modify the rules of the Poisson bracket. We still have:

{xi, pj} = δi,j (3.13)

{xi, xj} = 0 (3.14)

{pi, pj} = 0 (3.15)

{f, g} = − {g, f} antisymmetry (3.16)

{cf, g} = c {f, g}, for any number c linearity (3.17)

{f, g + h} = {f, g}+ {f, h} addition rule (3.18)

{f, gh} = {f, g}h+ g{f, h} product rule (3.19)

0 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} Jacobi id. (3.20)

Because the rules for the Poisson bracket did not change with the upgrade to quantum
mechanics, one arrives in quantum mechanics at the same equations of motion as
in classical mechanics. This is as long as one does not unnecessarily commute any
variables.

The equations Eqs.3.10-3.12 are called the “Canonical Commutation Relations”
(CCRs). The appearance of the imaginary unit i will be necessary to ensure that mea-
surements are predicted as real numbers, as we will see below. Eqs.3.11,3.12 express
that position measurements among another and momentum measurements among an-
other do not interfere. Only positions and momenta of the same particle and in the
same direction, i.e., for i = j and r = s, are noncommutative.

In conclusion, we upgrade classical mechanics to quantum mechanics by first formu-
lating classical mechanics in Hamiltonian form to identify the Poisson algebra structure.
Then, we realize that while keeping all the rules for the Poisson bracket intact, there
is still the freedom to make the associative multiplication in the Poisson algebra non-
commutative, parametrized by some constant k. Nature chose the modulus of k to be
nonzero though very small, namely ~. The fact that the Poisson bracket stays the same
when quantizing explains why quantum mechanics has the same equation of motion
as does classical mechanics. The fact that ~ is so small explains why it took long to
discover quantum mechanics.

In spite of the tremendous similarity between classical and quantum mechanics from
this perspective, quantum mechanical calculations will in practise look rather different
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from classical calculations. This is because they will require representations of the
x̂

(r)
i (t) and p̂

(r)
i (t) variables as explicit non-number valued mathematical entities that

obey the commutation relations. Even though there is only a slight noncommutativity
in the Poisson algebra of quantum mechanics its representations will necessarily look
quite different from the representation of the classical commutative Poisson algebra.
This will explain why the Schrödinger equation looks rather different from Newton’s
equations.

3.3 From the Hamiltonian to the Equations of Mo-

tion

In quantum mechanics, as in classical mechanics, the energy function Ĥ encodes all
information about the system. It is still called the Hamiltonian and it is in general
some polynomial (or well-behaved power series) in the positions and momenta x̂

(r)
i

and p̂
(r)
i of the system. In quantum mechanics, the sequence of steps that lead from

the Hamiltonian down to concrete number predictions for experiments can be drawn
schematically in this form:

Hamiltonian
⇓

Equations of motion
⇓

Differential equations
⇓

Non-number-valued functions
⇓

Number-valued functions
⇓

Number predictions

So far, we can perform the first step, namely the derivation of the equations of motion
from the Hamiltonian: Assume that we are interested in the time evolution of some f̂
which is a polynomial in the x̂ and p̂’s (say with constant coefficients). Then we can
derive the equation of motion for f̂ through:

d

dt
f̂ = {f̂ , Ĥ} (3.21)

where {, } is the usual Poisson bracket, as defined in Eqs.2.6-2.12. In particular, f̂ can
be chosen to be any one of the position and momentum variables of the system, so that
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we obtain for their equations of motion, exactly as in Eqs.2.21,2.22:

d

dt
x̂

(r)
i = {x̂(r)

i , Ĥ} (3.22)

d

dt
p̂

(r)
i = {p̂(r)

i , Ĥ} (3.23)

By evaluating the Poisson bracket on the right hand side of Eqs.3.22,3.23 these equa-
tions of motion then become differential equations for the entities x̂

(r)
i (t) and p̂

(r)
i (t).

Clearly, the resulting equations of motion will be analogous to those of classical me-
chanics. The entities x̂

(r)
i (t) and p̂

(r)
i (t) must also still obey Eq.3.2, which in quantum

mechanics is usually written as:(
x̂

(r)
i

)†
= x̂

(r)
i and

(
p̂

(s)
j

)†
= p̂

(s)
j (3.24)

We will call any polynomial or well-behaved power series f̂ in the x̂ and p̂ an “observ-
able”, if it obeys f̂ † = f̂ . As we will see later, the condition f̂ † = f̂ will indeed imply
that measurement outcomes are predicted as real numbers. In addition to the position
variables x̂

(r)
i (t) and momentum variables p̂

(s)
j (t) also, e.g., the energy Ĥ(t) and the

angular momentum variables L̂i(t) are observables.

While classical mechanics requires the Poisson algebra to be commutative, quantum
mechanics requires that the equations of motion be solved by entities x̂

(r)
i (t) and p̂

(r)
i (t)

which are noncommutative:

x̂
(r)
i p̂

(s)
j − p̂

(s)
j x̂

(r)
i = i~ δi,jδr,s (3.25)

x̂
(r)
i x̂

(s)
j − x̂

(s)
j x̂

(r)
i = 0 (3.26)

p̂
(r)
i p̂

(s)
j − p̂

(s)
j p̂

(r)
i = 0 (3.27)

Technically, we will, therefore, need to solve differential equations of motion with non-
commutative entities. In practice, the task is then to start from the top level of
abstraction, the Hamiltonian of a system, then working one’s way down by calculat-
ing the equations of motion, and then solving them to obtain something from which
eventually predictions can be made of numbers that can be measured in experiments
on the system. In the next section, we will investigate what kind of noncommutative
mathematical objects, such as, for example, matrices, may represent the position and
momentum variables.

Exercise 3.2 For classical mechanics, formula Eq.2.37 provided a convenient repre-
sentation of the Poisson bracket. However, Eq.2.37 is not a valid representation of the
Poisson bracket in the case of quantum mechanics. In quantum mechanics, we have a
(not so convenient) representation of the Poisson bracket through Eq.3.8:

{û, v̂} =
1

i~
(ûv̂ − v̂û) (3.28)



38 CHAPTER 3. QUANTUM MECHANICS IN HAMILTONIAN FORM

Use this representation to evaluate the Poisson bracket {x̂2, p̂}.

Let us introduce an often-used notation, called “the commutator”:

[A,B] := A B − B A (3.29)

For simplicity, assume that Ĥ and f̂ are polynomials in the positions and momenta
which depend on time only through their dependence on the x̂ and p̂. Then the
Hamilton equation Eq.3.21 holds and takes the form:

i~
d

dt
f̂(t) = [f̂(t), Ĥ] (3.30)

(3.31)

and, in particular:

i~
d

dt
x̂

(r)
i (t) = [x̂

(r)
i (t), Ĥ]

i~
d

dt
p̂

(r)
i (t) = [p̂

(r)
i (t), Ĥ] (3.32)

These equations are called the Heisenberg equations of motion.

Remark: The particular method by which in the past few sections we upgraded
classical mechanics to quantum mechanics is called canonical quantization. I covered it
in some detail because of its importance: Essentially the same method was used to find
quantum electrodynamics starting from Faraday and Maxwell’s electromagnetism. All
the quantum field theories of elementary particles can be derived this way. Even string
theory and most other modern attempts at finding the unifying theory of quantum
gravity try to employ canonical quantization. I should mention too that the problem
of canonical quantization for constrained classical systems was also pioneered by Dirac
but is still not fully understood. A simple example of a constrained system would
be a particle that is constrained to move on a curved surface. The most important
constrained system is general relativity.

Exercise 3.3 Reconsider the system with the Hamiltonian Eq.2.4, which consists of
two particles which are attracted to another through a harmonic force (a force which is
proportional to their distance). In practice, for example the force that binds diatomic
molecules and the force that keeps nucleons (i.e., neutrons and protons) inside a nucleus
are essentially harmonic. In those cases the effect of ~ cannot be neglected. One obtains
the correct quantum theoretic Hamiltonian from the classical Hamiltonian of Eq.2.4 by
simply placing hats on the x and p’s. Find explicitly all the equations which the x̂

(r)
i

and p̂
(r)
j (where r ∈ {1, 2}) of this system must obey.
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Exercise 3.4 To obtain the quantum Hamiltonian from the classical Hamiltonian and
vice versa by placing or removing hats on the x and p’s is generally not as straightfor-
ward as in the previous exercise! Namely, there can occur so-called “ordering ambigu-
ities”: Consider the two Hamiltonians Ĥ1 = p̂2/2m+ ax̂p̂2x̂ and Ĥ2 = p̂2/2m+ bp̂x̂2p̂,
where a and b are constants with suitable units. These Hamiltonians are identical
in classical mechanics. Check whether or not they differ in quantum mechanics, i.e.,
when x and p no longer commute. Give an example of two quantum Hamiltonians that
strongly differ but that are the same classically. Remark: In principle, experiments are
needed to decide how to resolve ordering ambiguities in the process of quantization of
a Hamiltonian.

3.4 From the Hamiltonian to predictions of num-

bers

In the framework of classical mechanics we know how to descend from the most abstract
level, where the system is described simply by giving its Hamiltonian H, down to
the concrete level of predicting numbers for measurement outcomes. We will now
have to develop methods for descending in quantum mechanics from the level of the
Hamiltonian down to the concrete predictions of numbers in experiments.

As the first step, we are able use the Hamiltonian to derive the equations of the
system. Since the Poisson brackets have not changed, the equations of motion resemble
those of classical mechanics. Due to the requirements of noncommutativity, in Eqs.3.25-
3.27, the equations of motion can no longer be interpreted as differential equations for
number-valued functions. For the next steps, in order to be able to solve the equations
of motion as explicit differential equations, the x̂

(r)
i (t) and p̂

(s)
j (t) must be viewed as

functions whose values are noncommutative mathematical objects.
What could those mathematical objects be? Let us recall that every mathematical

object can be viewed as a map, if need be, as a trivial map. We may, therefore, restrict
our search to maps. We should be able to represent the symbols x̂

(r)
i (t) and p̂

(s)
j (t) as

map-valued functions of time. A simple class of maps is formed by the linear maps.
For example, matrices are linear maps and they are generally noncommutative. Also,
for example, the derivative operator, D, acting on functions as D : g(λ) → ∂λg(λ) is
a linear map, because it obeys ∂λ (c g(λ)) = c ∂λg(λ) for all numbers c and because
∂λ(g1(λ) + g2(λ)) = ∂λg1(λ) + ∂λg2(λ).

Exercise 3.5 Verify that the multiplication operator, M , which maps M : g(λ) →
λg(λ) is linear.

Here, we use the definition that the term operator is used for any linear maps on
an infinite-dimensional vector space. Since spaces of functions are infinite dimensional
vectors spaces, the multiplication and differentiation maps are called operators. Simi-
larly, infinite by infinite matrices describe linear maps on infinite dimensional vector
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spaces. They are, therefore, also called operators.

Exercise 3.6 Show that D and M are noncommutative by calculating (DM−MD)g(λ).

Is it possible to represent the symbols x̂
(r)
i (t) and p̂

(s)
j (t) as linear map-valued functions

of time, say as matrix-valued functions in time? As we will see, the answer is yes. In
fact, essentially1 all linear representations are physically equivalent! This is the content
of the Stone von Neumann theorem, which we will later cover more precisely. But could
it be that one should use representations of the x̂

(r)
i (t) and p̂

(s)
j (t) as nonlinear maps

instead? Non-linear representations have been considered in the literature, see, e.g.,
articles by S. Weinberg. According to current knowledge, however, nonlinear quantum
theories generally lead to physically incorrect predictions and we will therefore here
only consider linear representations.

3.4.1 A matrix representation

As an example, let us consider how x̂
(r)
i (t) and p̂

(s)
j (t) can be represented as matrix-

valued functions in time, and how, therefore, the abstract equations of motion can
be represented as explicit matrix differential equations for matrix-valued functions of
time. For simplicity, we will restrict attention to the one-dimensional case with just
one x̂(t) and one p̂(t).

The canonical commutation relations are of course to hold at all times. To begin
with, let us ask whether it is possible to find two N × N matrices x̂(t0) and p̂(t0) so
that at the starting time, t0, of the experiment the canonical commutation relations
hold:

x̂(t0) p̂(t0) − p̂(t0) x̂(t0) = i~ 1 (3.33)

Here, 1 is the identity matrix. At this point it is useful to remember that the trace of
matrices Tr(A) =

∑
nAn,n is linear and cyclic:

Tr(A+B) = Tr(A) + Tr(B) and Tr(AB) = Tr(BA) (3.34)

Exercise 3.7 Verify Eqs.3.34.

We see that the trace of the left hand side of Eq.3.33 vanishes, while the trace of the
right hand side is i~N . Thus, there are in fact no N × N matrices, i.e., there are no
finite-dimensional matrices x̂(t0) and p̂(t0) that obey the commutation relation Eq.3.33!
For infinite dimensional matrices, however, the trace may be ill-defined on both sides,
and our argument then does not apply. In fact, there exist infinite-dimensional matrices
which do obey the commutation relation.

1There are exceptions but nature does not appear to make use of those.
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In order to find such matrices we start by defining the ∞×∞ dimensional matrix:

a =



0
√

1 0 0 0
0 0

√
2 0 0

0 0 0
√

3 0
0 0 0 0

√
4

0 0 0 0 0
. . .

 (3.35)

The hermitean conjugate is:

a† =



0 0 0 0 0√
1 0 0 0 0

0
√

2 0 0 0
0 0

√
3 0 0

0 0 0
√

4 0
. . .

 (3.36)

Their commutation commutation relation is:

aa† − a†a = 1 (3.37)

Since they are noncommutative we should decorate a and a† with hats but we will
follow convention by not putting hats on them.

Exercise 3.8 Verify Eq.3.37.

Using a and a†, we can now represent x̂(t0) and p̂(t0) as matrices that obey the canonical
commutation relation, namely by defining:

x̂(t0) = L(a† + a) (3.38)

and

p̂(t0) =
i~
2L

(a† − a) (3.39)

Here, L is some arbitrary real number with units of length, which we need because x̂
has a unit of length while a and a† do not have units. The definitions are such that
the realness conditions Eqs.3.24 are obeyed, i.e., such that the matrices are formally2

hermitean: x̂†(t0) = x̂(t0) and p̂†(t0) = p̂(t0).

Exercise 3.9 Verify that the two matrices defined in Eqs.3.38,3.39 are formally her-
mitean.

2I am writing here “formally” hermitean, because the issue of whether a matrix is hermitean,
symmetric or self-adjoint is quite subtle for infinite-dimensional matrices, as we will see later.
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Exercise 3.10 Show that the hermitean conjugation of matrices reverses the order,
i.e., that if A and B are linear maps, then (AB)† = B†A†.

Technically, † is a map from the Poisson algebra into itself which is called an involution
because it is its own inverse. Because it also reverses the order it is called and “anti”
algebra mapping: First multiplying and then applying † is the same as first applying †

and then multiplying, up to the reversal of the order.
We can now understand the appearance of the imaginary unit i in the canonical

commutation relations: If we apply † to the commutation relations x̂p̂ − p̂x̂ = k1 we
obtain p̂x̂ − p̂x̂ = k∗1, i.e., we obtain k = −k∗. Thus, k has to be imaginary. And of
course it is: k = i~.

Exercise 3.11 Verify that the two matrices defined in Eqs.3.38,3.39 do obey the com-
mutation relation Eq.3.33. You may use the results of Exercise 3.8.

3.4.2 Solving the matrix differential equations

In the case of the free particle which moves in one dimension, the Hamiltonian is
Ĥ = p̂2/2m. The Hamilton equations or, equivalently, the Heisenberg equations, yield
the abstract equations of motion:

d

dt
x̂(t) =

1

m
p̂(t) (3.40)

d

dt
p̂(t) = 0 (3.41)

Let us view these equations as matrix equations. Using the results of the previous
section, it becomes clear that these equations are solved through

x̂(t) = x̂(t0) +
(t− t0)

m
p̂(t0) (3.42)

and

p̂(t) = p̂(t0), (3.43)

where x̂(t0) and p̂(t0) are the matrices of Eqs.3.38,3.39. Concretely, by substituting in
the matrices a and a†, we have:

x̂(t) =


0

√
1
(
L− i~(t−t0)

2Lm

)
0

√
1
(
L+ i~(t−t0)

2Lm

)
0

√
2
(
L− i~(t−t0)

2Lm

)
0

√
2
(
L+ i~(t−t0)

2Lm

)
0

. . .

 (3.44)



3.4. FROM THE HAMILTONIAN TO PREDICTIONS OF NUMBERS 43

p̂(t) =


0 −

√
1 i~

2L
0√

1 i~
2L

0 −
√

2 i~
2L

0
√

2 i~
2L

0
. . .

 (3.45)

Exercise 3.12 Show that the matrices x̂(t) and p̂(t) obey at all times t > t0 all the
quantum mechanical conditions, i.e., the equations of motion, the hermiticity condition,
and the commutation relation.

Remark: We had arranged for the commutation relation and the hermiticity condition
to hold only at the initial time t0. Having solved the equations of motion we found
that the commutation relation and the hermiticity conditions continue to hold at all
times t. This is nontrivial but it is not a coincidence. As we will soon see, the quantum
mechanical time evolution of all systems3 preserves the commutation relations and
hermiticity. The preservation of the commutation relations is of course the preservation
of the Poisson bracket. And we have in classical and quantum mechanics that the
Poisson brackets between the positions and momenta are preserved by the dynamics
through the Hamilton equation: d/dt {x̂, p̂} = {{x̂, p̂}, Ĥ} = {1, Ĥ} = 0.

Exercise 3.13 The vibrational degree of freedom of a diatomic molecule such as HF,
CO or HCl can be described as a harmonic oscillator. If x is the deviation from the
equilibrium distance between the two nuclei, then:

Ĥ =
p̂2

2m
+
mω2

2
x̂2

a) Use the ansatz (an ansatz is an educated guess)

x̂(t) = ξ(t)a+ ξ∗(t)a†,

where ξ is a to-be-determined complex-valued function of time, to calculate x̂(t), p̂(t)
and Ĥ(t). Verify that your solution obeys the equations of motion, the CCRs and the
hermiticity conditions.
b) The function ξ is not unique. There is a particularly important choice of ξ: Find
that solution function ξ such that Ĥ is a diagonal matrix. Remark: Making such
choices wisely is particularly useful in quantum field theory where each wavelength (and
therefore frequency ω) has its own harmonic oscillator degree of freedom.

3.4.3 From matrix-valued functions to number predictions

Let us assume now that we have solved a quantum mechanical problem in the sense
that we have found explicit matrix-valued functions x̂

(r)
i (t) and p̂

(j)
j (t) which obey

3With the possible exception of systems that involve black hole horizons or other gravitational
horizons.
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the canonical commutation relations, the hermiticity conditions, and the equations of
motion. For example, the quantum mechanical problem of the free particle in one
dimension is solved by the matrix-valued functions given in Eqs.3.44,3.45.

How then are we to further descend the ladder of abstraction, down to the most
concrete level, namely that of predictions of numbers that will be measured in experi-
ments? How can we extract from those matrix-valued functions the information which
will let us predict the outcome of say a position or a momentum measurement at some
time t?

To this end, assume that we have solved the dynamics, i.e., that we have calculated
x̂(t) and p̂(t) as explicit matrix-valued functions of time. Then we can also immediately
write down the time evolution of any polynomial f(x̂(t), p̂(t)) of the x̂(t) and p̂(t)
that we may be interested in. For example, we can write down the time evolution of
the Hamiltonian Ĥ(x̂(t), p̂(t)) or say the third component of the angular momentum:
L̂3(t) = x̂2(t)p̂3(t)− p̂2(t)x̂3(t).

Mathematically, the problem now boils boils down to this question: Given such
a matrix valued function f̂(x̂(t), p̂(t)), let us pick a time t. Then f̂(x̂(t), p̂(t)) at the
time t is an explicit infinite by infinite matrix. How can we extract from that matrix
a prediction for the number-valued outcome, f̄(t), of an experiment that measures f̂?
For example, say we want to measure the position at time t. Given the matrix x̂(t) by
what method can we extract from that matrix a prediction for the position x̄(t)?

To find that method, let us start with the observation that the method by which
we extract a number-valued prediction f̄(t) from a matrix f̂(t) should not depend on
the basis in which we write down the matrix f̂(t). The reason is that a change of basis
in a vector space yields merely another way to write down the same linear map. And
physical predictions should not depend on any human choice of how (i.e., in which
basis) to write down a map. This means that f̄(t) should be a scalar formed from the
matrix f̂(t).

Now how can one get a scalar from a matrix? By using the scalar product of course.
So assume that we are given two column vectors with coefficients ψi and φi. Then

∞∑
n,m=1

ψ∗nf̂n,m(t)φm (3.46)

is scalar. Could this be the prediction for the measurement outcome? No this cannot
be quite right because this quantity is generally complex while measurement outcomes
are of course always real numbers. This leaves us with the conjecture that the predicted
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value f̄(t) for a measurement of f̂(t) at time t is4:

f̄(t) =
∞∑

n,m=1

ψ∗nf̂n,m(t)ψm (3.47)

This number is guaranteed to be real for all quantities f̂ which are hermitean, f̂ † = f̂ ,
i.e., for all quantities that in classical mechanics are real-valued, as it should be.

Let us check that Eq.3.47 always comes out real if f̂ is what is called an observable,
i.e., if f̂ obeys f̂ † = f̂ , i.e., if f̂ ∗s,r = f̂r,s. Indeed5:

f̄(t)∗ =

(
∞∑

r,s=1

ψ∗r f̂r,s(t)ψs

)∗
=

∞∑
r,s=1

ψrf̂
∗
r,s(t)ψ

∗
s =

∞∑
r,s=1

ψ∗s f̂s,r(t)ψr = f̄(t) (3.48)

So this works! And, for example, the predictions for measurements at time t of the
position, momentum, angular momentum or energy are, therefore:

x̄(t) =
∞∑

n,m=1

ψ∗nx̂n,m(t)ψm (3.49)

p̄(t) =
∞∑

n,m=1

ψ∗np̂n,m(t)ψm (3.50)

L̄(i)(t) =
∞∑

n,m=1

ψ∗nL̂
(i)
n,m(t)ψm (3.51)

H̄(t) =
∞∑

n,m=1

ψ∗nĤn,m(t)ψm (3.52)

4There is a more general possibility: clearly, f̄ should depend on f̂ linearly (they have the same

units) and this leaves the possibility that f̄(t) = Tr(ρf̂(t)) =
∑
i,j ρi,j f̂j,i(t) where ρ is some hermitean

matrix. As we will see, we will make use of this possibility when describing a system whose initial
conditions we are not quite sure of, where we can only give probabilities of initial conditions, i.e.,
where we don’t even know for sure even the initial expectation values of the various observables. In
this case, we say that the system is described by a mixed state and the matrix ρ is called the mixed
state matrix. The term “mixed” is used because the uncertainties in predictions then have mixed
origins - both from quantum effects but also from our ignorance of the system to start with. What we
consider so far are so-called pure states ψ, which are the special case where ρi,j = ψ∗

i ψj . For general
ρ, the normalization condition

∑
i ψ

∗
i ψi = 1 is replaced by Tr(ρ) = 1.

5This argument is correct for finite dimensional matrices only. Quantum mechanics requires
infinite-dimensional matrices where the sums are infinite sums and analytic issues therefore arise.
That there is a fundamental difference between finite and infinite dimensional vector spaces we saw
earlier when we found that the canonical commutation relations do not possess finite dimensional
representations. We will, therefore later revisit the issue of hermiticity.
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3.5 Initial conditions

In order to obtain those scalar functions for predictions, f̄(t), we had to introduce a
complex vector with infinitely many coefficients!

ψ =


ψ1

ψ2

ψ3
...

 (3.53)

We are free to choose ψ, and it is a convention to choose a vector ψ of unit length, i.e.,
for which

∑∞
n ψ∗nψn = 1. We call such vectors normalized. For example, the vector ψ

could be given by:

ψ =
1

5


4
3i
0
0
...

 (3.54)

There are, of course, infinitely many choices for such vectors ψ. But what does such a
vector ψ mean? What is the physics of it?

Obviously the choice of ψ determines the predictions that we make for all mea-
surements at any time t. The choice of ψ in fact even determines what the expected
outcome is for measurements at the initial time t0! And this observation is important:

Let us remember that when we solved the equations of motion to obtain those
matrix-valued functions x̂(t) and p̂(t), we did not have an opportunity to specify the
initial conditions of the experimental setup. We did not have an opportunity to specify,
for example, whether the particle was initially fast or slow, or where the particle was
at the initial time t0.

Now we have an opportunity to specify how the system started off at time t0: The
choice of ψ encodes our specification of the initial state of the system: by choosing a
vector ψ we are choosing an experimental starting condition at time t0. Namely, by
choosing ψ, we are choosing what measurement outcomes to expect if we measure right
at t0. For example:

x̄(t0) =
∞∑

n,m=1

ψ∗nx̂n,m(t0)ψm (3.55)

p̄(t0) =
∞∑

n,m=1

ψ∗np̂n,m(t0)ψm (3.56)

L̄(i)(t0) =
∞∑

n,m=1

ψ∗nL̂
(i)
n,m(t0)ψm (3.57)
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H̄(t0) =
∞∑

n,m=1

ψ∗nĤn,m(t0)ψm (3.58)

And of course also for any f̂ obeying f̂ † = f̂ , we have

f̄(t0) =
∞∑

n,m=1

ψ∗nf̂n,m(t0)ψm (3.59)

3.6 Emergence of probabilities

The fact that we have equations of motion and that initial conditions are to be specified
is not unusual of course, because this is also what one does in classical mechanics. But
what seems unusual here is that we have to specify so many initial conditions. In
order to choose a vector ψ that describes the initial state of our quantum system,
we get to choose its infinitely many coefficients ψi (with the only constraint being
that ψ should be normalized). Why are there so many initial conditions? In classical
mechanics, it sufficed to specify the initial position and the initial momentum and that
determined the initial state completely! And from that initial condition you could then
calculate x(t) and p(t). And, in classical mechanics, once you have x(t) and p(t) you
automatically also have the predictions for any f(x(t), p(t)).

So let us ask: in quantum mechanics, does it really matter which values we choose
for the infinitely many coefficients of ψ or do perhaps only two of these coefficients
matter? Isn’t it the case that once we can make a prediction x̄(t) and p̄(t) we can also
predict any f̄(x̂(t), p̂(t))? That would mean:

f̄(x̂(t), p̂(t)) = f(x̄(t), p̄(t)) (3.60)

Actually, this equation does not hold in quantum mechanics! Just because we have a
prediction for positions and momentum values does not mean that we have a prediction
for other measurements such as the energy or the momentum!

Exercise 3.14 Give a counter example for Eq.3.60. To this end, write out Eq.3.60
explicitly, i.e., in matrix form, for the case f̂(x̂(t), p̂(t) = x̂2. Then choose a suitable
normalized ψ so that Eq.3.60 is seen to be violated. (It is not difficult to find such a
ψ, almost every one will do.)

On one hand, this explains why, mathematically, we have to specify so many initial
conditions in quantum mechanics, namely all those coefficients ψi. But what is the
physics of this?

To see this, let us have a closer look at the observation that knowing the number-
valued predictions x̄(t), p̄(t) does not alone suffice to make predictions of the outcome
of other measurements f̄ . Namely, this means, in particular, that even if we have
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a prediction for, say, the position, x̄(t), we actually don’t automatically have also a
prediction for the square of the position: x2(t).

From the perspective of classical mechanics this is weird. If we have a prediction for
the position shouldn’t we have a prediction for the square of it too? Well yes. Except,
if the prediction is not certain, if it has some statistical spread or uncertainty. Then,
even in classical physics, the square of the expectation value of a measurement need
not be the expectation value of the square. In fact, as is well known, the statistical
variance (∆(Q))2 of any variable Q is defined as the difference between the two

(∆(Q))2 :=
(
Q− Q̄

)2
= Q2 − Q̄2 (3.61)

which, as the middle term shows, is also the mean squared deviation from the mean.
∆Q is called the uncertainty in Q.

Exercise 3.15 Spell out the step of the second equality in Eq.3.61.

Now in quantum mechanics, if f̂ is an observable, i.e., if it is hermitean, so is f̂ 2. This
is because if f̂ † = f̂ then (f̂ 2)† = f̂ 2. It is important that in quantum mechanics
they are independent observables. For example, their initial values can be specified
independently. This is because, as always in statistics, we generally have f 2 6= f̄ 2.
The average of some squared numbers is rarely the same as the square of the average
of those numbers: generally, e.g. (a2

1 + a2
2)/2 6= ((a1 + a2)/2)2. Interestingly, this

means that quantum mechanics also allows us to calculate the variance in the set of
measurement outcomes of each observable f̂ , namely through this mean value:

(∆f(t))2 = (f(t)− f̄(t))2 = f 2(t)− f̄ 2 (3.62)

For example, from Eq.3.62:

(∆x(t))2 =
∞∑

r,s,t=1

ψ∗r x̂r,sx̂s,tψt −

(
∞∑

u,v=1

(ψ∗ux̂u,vψv)

)2

(3.63)

Here, the number x̂r,s is the matrix element of the matrix x̂ with indices r, s. Similarly,
given ψ, also all the higher moments of the probability distributions of positions and
momenta are predictable, such as xn(t) and pn(t).

What we have found, therefore, is that in quantum mechanics, since the predictions
generally (i.e., except for special cases) obey

f̄(x̂(t), p̂(t)) 6= f(x̄(t), p̄(t)), (3.64)

the predictions should come with uncertainty. They should be statistical. Our predic-
tions for observables f̄(t) such as x̄(t), p̄(t), H̄(t), L̄i(t), ... can only be predictions for
expectation values. There will generally be a spread of outcomes, i.e., there will be
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nontrivial variances. This crucial finding, namely that the predicted expectation values
of observables f̂ are largely independent, also explains why it takes so many numbers,
namely all the coefficients ψi to specify initial conditions in quantum mechanics. In
effect, one has to specify all the initial expectation values of all the possible observ-
ables. And there are infinitely many polynomials f̂(x̂, p̂) that obey f̂(x̂, p̂)† = f̂(x̂, p̂).
In effect, we need to specify so many initial conditions because we need to fix an entire
probability distribution.

We therefore arrive at this interpretation: Assume we run an ensemble of experi-
ments, each with the same initial experimental setup, i.e., all described by the same
initial state vector ψ. Then, having calculated the solutions to the equations of motion
as in Eqs.3.44,3.45, we can calculate the means of any observable f̄(t), such as, for
example, position x̄(t) and momentum p̄(t) that will be measured in an ensemble of
measurements by using Eqs.3.49,3.50. In fact, we can only predict means. But this
also includes the ability to predict the variance of any variable, because the variance
of an observable is a mean value too, as see Eq.3.62 shows.

Remark: Also for systems of many particles, such as a molecule, all observables f̂(t),

such as x̂
(r)
i and p̂

(s)
j , can be represented as matrices acting in the same vector space.

The choice of ψ in this vector space determines how all the constituent particles start
off, because all f̄(t0) are determined, including, e.g., x̄

(r)
i (t0) =

∑
i ψ
∗
i x̂

(r)
i (t0)ψi etc.

Remark: We say that ψ is the so-called state vector of the system. It is clear from
Eqs.3.47 that if two state vectors ψ and φ differ only by a phase, ψn = eiαφn for all
n, then they yield the same predictions and are, therefore, describing the same state.
The state vector of any system is defined only up to an overall phase.

Remark: Conversely, assume we prepare an experimental setup for which we know
the ensemble mean values at initial time f̄(t) for all observables f̂ :

x̄(t0) = a1, p̄(t0) = a2, x2(t0) = a3, p2(t0) = a4, x3(t0) = a5, ... (3.65)

There are, clearly, infinitely many observables f̂ (with f̂ † = f̂) whose initial values can
be specified. Which ψ describes a system with so-specified initial conditions? ψ can be
calculated from Eqs.3.65, which are infinitely many equations for the unknown vector
components {ψi} in terms of the given coefficients {aj}:∑
i,j

ψ∗i x̂i,j(t0)ψj = a1,
∑
i,j

ψ∗i p̂i,j(t0)ψj = a2,
∑
i,j,k

ψ∗i x̂i,kx̂k,j(t0)ψj = a3, ... (3.66)

Mathematically, we are dealing with a so-called moment problem. We must ask, in
particular, what conditions the coefficients {ai} must obey for there to exist a matching
state ψ. Physically, this is the question which initial conditions can actually occur
in an experimental setup. We anticipate, of course, that the {ai} cannot be chosen
completely arbitrarily because some observables are interfering variables. This question
will later lead us to Heisenberg’s famous uncertainty relations.
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Exercise 3.16 Verify that ψ of Eq.3.54 is normalized. For this choice of ψ, calculate
explicitly the expectation values x̄(t), p̄(t) as well as the uncertainties in those predic-
tions, i.e., the standard deviations ∆x(t) and ∆p(t) for the free particle. Your results
should show that neither the position nor the momentum are predicted with certainty at
any time, not even at the initial time t0. The fact that ∆x(t) grows in time expresses
that a momentum uncertainty over time leads to increasing position uncertainty. ∆p(t)
remains constant in time, expressing that the momentum of a free particle, no matter
what value it has, remains unchanged.

Finally, we also have to conclude that if we measure our system at time say t1 then
we gain information and we have to update our initial state vector accordingly to a
new initial state vector ψ′ which is such as to encode our knowledge of the initial state
of the system at t1. We will later revisit the question of this so-called wave function
collapse.

3.7 The Hilbert space and Dirac’s notation

So far, we solved the equations of motion for matrix-valued functions x̂(t)ij, p̂(t)ij from

which for every observable f̂ = f̂ †, we get a matrix-valued function f̂(t)ij. And we
imposed the initial conditions by choosing vector coefficients ψi.

Of course, the coefficients ψi themselves are numbers and not vectors. The ψi are
the coefficients of a vector which, following Dirac, we will call a “ket” and denote by
|ψ〉. The numbers ψi are the coefficients of |ψ〉 in a basis given by some kets |bn〉:

|ψ〉 =
∑
n

ψn|bn〉 (3.67)

Similarly, the matrix elements x̂(t)ij themselves are numbers. They are the coefficients
of a linear map x̂(t) from the vector space into itself, in the basis of the |bn〉. If we
change basis in the vector space then the coefficients of the matrices x̂(t)ij, p̂(t)ij etc
and the coefficients ψi of the vector ψ will change accordingly.

We say that the abstract vector |ψ〉 is an element of the vector space that is repre-
sented as a column of vector coefficients. And we say that the abstract x̂(t), p̂(t), ... are
abstract maps of the vector space into itself which are represented by matrices. When
the vector space in question is infinite dimensional, one also calls these maps of the
vector space into itself “operators”. Every choice of basis6 gives us a representation of
operators and vectors as matrices and columns of numbers respectively.

By design, the predictions of a quantum theory only depend on the abstract x̂(t), p̂(t), ...
and on the abstract ψ. This is because the predictions, x̄(t), p̄(t), etc are scalars, as we
discussed in the previous section.

6Notice that this also means, because ψ has unit length, that we could always rotate whichever
our starting basis may be so that in the new basis the vector |ψ〉 is the vector with the coefficients
ψi = δi,0. This is usually not convenient but it is possible.



3.7. THE HILBERT SPACE AND DIRAC’S NOTATION 51

For practical calculations, one usually chooses a convenient basis to work in and
this will include also so-called continuous representations that one may loosely think
of as working with matrices and columns that have continuous indices. But it is often
also possible, and conceptually much clearer, to work directly with the vectors |ψ〉 and
operators x̂(t), p̂(t), etc rather than through their coefficients in a basis. In order to
be able to do these abstract calculations, we will need to clarify exactly what the rules
are for the manipulation of these vectors and the operators that act on them.

3.7.1 Hilbert spaces

We begin by reviewing the definition of a complex vector space. In brief, it is a set, H,
which is an abelian group over the complex numbers:

Definition: Any set H is called a complex vector space, if it a) possesses an operation
H × H → H called “addition” which obeys the rules for a commutative (i.e., also
called abelian) group and if b) the set H has a multiplication C×H → H obeying the
following axioms for all |v〉, |w〉 ∈ H and for all α, β ∈ C:

(α + β)|v〉 = α|v〉+ β|v〉 (3.68)

α(|v〉+ |w〉) = α|v〉+ α|w〉 (3.69)

(αβ)|v〉 = α(β|v〉) (3.70)

1|v〉 = |v〉 (3.71)

Notice that every set obeying these axioms is a complex vector space. To illustrate
this point, consider, for example, the set of 3 × 2 matrices with complex entries. We
can add such matrices and we can multiply them with complex numbers. It is easy
to check that the above axioms are obeyed, so this set is a complex vector space.
Also, consider, for example, the set of complex-valued continuous functions on R4,
such as g(x1, x2, x3, x4) = x1 cos(x2x

x
3)eix2x4 or h(x1, x2, x3, x4) = x1 + i(x2 + x3

4). We
can add such functions and we can multiply them with complex numbers and we will
always get yet another continuous function on R4. It is easy to check that the set of
complex-valued continuous functions on R4 is a complex vector space (which is infinite
dimensional). Also, and this will be very important, given any complex vector space
one can construct another complex vector space, called the dual vector space, H∗.

Definition: For any complex vector space, H, we define the complex vector space
called its dual space, H∗, as the set of continuous7 linear maps v̂ → C. We call the

7Aren’t all linear maps continuous? Well no, not necessarily in infinite-dimensional spaces! Con-
sider for example the map φ : H → C that maps vectors into numbers through |ψ〉 →

∑
n n!ψn in

some basis. φ is linear but clearly arbitrarily small changes to the vector it acts on can change the
image arbitrarily strongly.
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elements of H∗ “bra” vectors and use the notation 〈r| ∈ H∗. They linearly map
elements of H into complex numbers:

〈r| : H → C (3.72)

〈r| : |v〉 → 〈r|v〉 (3.73)

That they are linear maps means:

〈r| : (α|v〉+ β|w〉)→ α〈r|v〉+ β〈r|w〉 (3.74)

(3.75)

Exercise 3.17 Verify that H∗ is a complex vector space.

Definition: A complex vector space is said to possess a scalar product or also called
inner product if it possesses a map H×H → C. Among other conditions listed below,
the map is required to be linear in the right argument. This means that a scalar
product provides a so-called hermitean conjugation map, denoted † : H → H∗: Feed
the scalar product the left argument and you obtain an element of H∗. The hermitean
conjugation maps every element |v〉 ∈ H to an element in H∗, which we choose to call
by the same name, i.e., 〈v| ∈ H∗:

† : H → H∗ (3.76)
† : |v〉 → 〈v| (3.77)

Using this definition, we can express the full list of requirements on a scalar prod-
uct using the bra-ket notation: A scalar product is required to map any two vectors
|v〉, |w〉 ∈ H into a complex number denoted by 〈v|w〉 ∈ C, obeying the conditions:

〈u| (α|v〉+ β|w〉) = α〈u|v〉+ β〈u|w〉 (3.78)

〈v|w〉∗ = 〈w|v〉 (3.79)

〈v|v〉 ≥ 0 (3.80)

〈v|v〉 = 0 only if |v〉 = 0 (3.81)

Definition: A complex vector space equipped with a scalar product is called a unitary
vector space or inner product space or also pre-Hilbert space.

Definition: The “length” or “norm”, || |v〉||, of a vector |v〉 ∈ H is defined as
|| |v〉|| = 〈v|v〉1/2. We say that |v〉 is normalized if || |v〉|| = 1.

Definition: The distance d(|v〉, |w〉) between two vectors is defined as ||(|v〉 − |w〉)||.
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Since quantum mechanics requires infinite-dimensional representations, we will have to
be concerned with sequences of vectors and their convergence. For example, if we are
to make sense of a series such as Eq.3.67 we need to define what it means to sum up
an infinite number of basis vectors.

Definition: We say that a sequence of vectors converges, i.e., limn→∞ |vn〉 = |v〉, iff
(i.e., if and only if) it is true that limn→∞ d(|ψn〉, |ψ〉) = 0.

Definition: A sequence {|vn〉} is called fundamental (or Cauchy), if and only if
limn,m→∞ d(|vn〉, |vm〉) = 0.

Definition: A pre-Hilbert space is called a Hilbert space if all its fundamental se-
quences converge. In particular, all vectors in a Hilbert space have finite length.

How then, do these abstract concepts relate to the concrete vector components ψn and
explicit matrix elements x̂r,s, p̂r,s and more general f̂r,s?

To see this connection, we need the concept of Hilbert basis:

3.7.2 Hilbert bases

Definition: We say that a set of orthonormal vectors {|bn〉} (i.e., a set of vectors obey-
ing 〈bn|bm〉 = δn,m) is a Hilbert basis for H, if all |ψ〉 ∈ H have a unique representation
of the form:

|ψ〉 =
∑
n

ψn|bn〉 (3.82)

Definition: A Hilbert space H is called “separable”, if it possesses a countable Hilbert
basis.

Since we have succeeded above in representing the canonical commutation relations
in a representation of matrices and column vectors we know already that in quantum
mechanics we can work with a separable Hilbert space. In fact, in quantum mechanics,
it always suffices to consider a separable Hilbert space. Separable Hilbert spaces are
the smallest Hilbert spaces if we disregard finite-dimensional cases. Recall that there
are different kinds of infinity: following Cantor, we say that two sets have the same
number of elements, or have the same “cardinality”, if their elements can be mapped
bijectively into another. For example, there are just as many even numbers, as there are
natural numbers, as there are rational numbers. There are, however, many more real
numbers, i.e., their cardinality is higher. Quantum field theory does appear to require
nonseparable Hilbert spaces whose bases have the cardinality of the real numbers. If
nature possesses a shortest length scale then a separable Hilbert space could suffice for
quantum field theory as well.

Theorem: All Hilbert bases of a given Hilbert space have the same cardinality.
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This theorem implies for quantum mechanics, because we know its Hilbert space is
separable, that all its Hilbert bases are countable. This means that whatever Hilbert
basis we may choose, our vectors will always be represented as column vectors and
our x̂, p̂ and general f̂ will be represented as matrices. It also means that the Hilbert
space of a 1-dimensional harmonic oscillator has the same dimension (namely countable
infinity) as does the Hilbert space of an elephant8.

As we will see later, there is a way to use what amounts to a continuous basis, but
these come at the cost of the “basis vectors” having infinite length and therefore not
being in the Hilbert space.

3.7.3 Discrete wave functions and matrix representations

Following up on Eq.3.82, it is important now to note that the coefficients ψn of the
vector |ψ〉 in the {|bn〉} basis can be calculated through the scalar products:

ψn = 〈bn|ψ〉 (3.83)

Eq.3.83 is easily verified by applying 〈bm| from the left in Eq.3.82:

〈bm|ψ〉 = 〈bm|
∑
n

ψn|bn〉

=
∑
n

ψn〈bm|bn〉

=
∑
n

ψnδn,m

= ψm

Definition: We call the set of coefficients ψn = 〈bn|ψ〉 the “wave function” of the
state |ψ〉 in the basis {|bn〉}.

Remark: We have not yet introduced “continuous bases” such as the “position basis”
|x〉 because they come with another set of issues to discuss. But it may be worth
mentioning already that for them the corresponding definition will be: We call the set
of coefficients ψ(x) = 〈x|ψ〉 the “wave function” of the state |ψ〉 in the basis of the |x〉.

8In quantum field theory, which supersedes quantum mechanics, the Hilbert space is, in principle,
non-separable. That’s because every wave vector, of which there are continuously infinitely many,
has its own harmonic oscillator. To avoid this problem, in practice we can consider a finite region of
spacetime so that the set of wave vectors becomes discrete. If we further consider only wavelengths
larger than some very small cutoff then only finitely many wave vectors remain and the Hilbert space
is then separable. It is generally considered likely that there is a smallest length scale in nature, due
to quantum gravity effects.
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A very useful observation is that the elements |bn〉 of any Hilbert basis can be used to
provide a representation of the identity map in this way:

1 =
∑

n

|bn〉〈bn| (3.84)

This is called the resolution of the identity in terms of the basis vectors |bn〉. For
example, using Eq.3.83:

1|ψ〉 =
∞∑

n=1

|bn〉〈bn|ψ〉 =
∑

n

ψn|bn〉 (3.85)

Resolutions of the identity are commonly used for the important task of turning ab-
stract equations into equations for concrete matrices and concrete vector coefficients.
For example, let us insert the identity in the expression for the length of a vector:

〈ψ|ψ〉 = 〈ψ|1|ψ〉 (3.86)

=
∑
n

〈ψ|bn〉〈bn|ψ〉 (3.87)

= ψ∗nψn (3.88)

Since all vectors |ψ〉 ∈ H are of finite length, we conclude that the vector components
must be square summable: ∑

n

ψ∗nψn <∞ (3.89)

Further, if matrix elements f̂r,s are given in the {|bn〉} basis, then they define a linear

map f̂ :

f̂ =
∞∑

r,s=1

|br〉 f̂r,s 〈bs| (3.90)

Conversely, the matrix elements of a linear map f̂ in the basis of the |bn〉 can be
calculated as scalar products:

f̂r,s = 〈br|f̂ |bs〉 (3.91)

This equation follows from Eq.3.90 by applying to it 〈bn| and |bm〉 from the left and
right respectively.

3.7.4 The domain of operators

We need to be careful because in infinite-dimensional Hilbert spaces linear maps nor-
mally cannot be allowed to act on all vectors of the Hilbert space! This is because if
|ψ〉 ∈ H and if therefore

∑
n ψ
∗
nψn <∞, this does not imply that f̂ |ψ〉 ∈ H, as is clear

because the coefficients φn =
∑

m f̂n,mψm may not be square summable:
∑

n φ
∗
nφn =
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divergent, i.e., we may have |φ〉 /∈ H.

For example, consider the matrix:

f̂n,m =


11 0 0 0
0 22 0 0
0 0 33 0
0 0 0 44

. . .


n,m

(3.92)

While the column vector

ψn =


1/1
1/2
1/3
1/4

...


n

(3.93)

is square summable and therefore defines a |ψ〉 ∈ H, the action of the matrix (f̂)n,m
on this column vector would yield a column vector with components φn = nn−1, which
is clearly not square summable and therefore does not correspond to a vector in the
Hilbert space.

Definition: We call the set Df ⊂ H of vectors on which f̂ is allowed to act the

“domain of f̂”.

Note that we can allow the matrix (f̂)n,m of Eq.3.92 to act on all column vectors which
possess only finitely many nonzero components, i.e., all the corresponding states are
in the domain of the linear map f̂ =

∑
n,m f̂n,m|bn〉〈bm| that is defined by the matrix

elements of Eq.3.92.

Questions regarding the domains of operators are very important, for example, for the
uncertainty principle, as we will see. For now, we will postpone further discussion of
the domain of operators until we arrive at the notion of self-adjoint operators.

3.7.5 Changes of basis

Using the Dirac bra-ket notation, we can now rewrite equations such as Eq.3.47 in a
much more compact form:

f̄(t) = 〈ψ|f̂(t)|ψ〉 (3.94)

We can easily recover Eq.3.47 from Eq.3.94, simply by twice inserting the resolution
of the identity:

f̄(t) = 〈ψ|f̂(t)|ψ〉 (3.95)

= 〈ψ|1f̂(t)1|ψ〉 (3.96)
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=
∑
n

∑
m

〈ψ|bn〉〈bn|f̂ |bm〉〈bm|ψ〉 (3.97)

=
∑
n,m

ψ∗nf̂n,mψm (3.98)

The beauty of Dirac’s notation is that it does not refer to any particular choice of
basis. If we do want to work in a particular basis we simply suitably insert resolutions
of the identity in terms of the basis vectors. If we wish to change basis then we can
implement this through a linear map

Û =
∑
r,s

|br〉 Ur,s 〈bs| (3.99)

which maps the old basis vectors |bn〉 into new basis vectors |cn〉

Û : |bn〉 → |cn〉 (3.100)

where
|cn〉 = Û |bn〉 =

∑
r,s

|br〉 Ur,s 〈bs|bn〉 =
∑
r

Ûr,n|br〉 (3.101)

Exercise 3.18 Show that if the new vectors |cn〉 are to form an orthonormal basis then
Û has to be unitary, i.e., that Û † = Û−1.

The power of Dirac’s notation is that it clearly shows that all the physical predic-
tions f̄(t) = 〈ψ|f̂ |ψ〉 only depend on f̂(t), which is a linear map, and on the choice
of state vector |ψ〉. The predictions do not depend on the basis which we choose in
the vector space: Crucially, the physically relevant numbers f̄(t) do not depend on
the choice of basis, while the coefficients ψn of |ψ〉 as a column vector and the matrix
elements f̂r,s of f̂(t) as a matrix strongly depend on the choice of basis.

Recall, in particular, that in solving the equations of motion we encountered the
arbitrary constant L. In fact, the very choice of matrices a and a† was merely conve-
nient, but not unique. In general, there are infinitely many solutions to the quantum
mechanical equations of motion, canonical commutation relations and hermiticity con-
ditions in terms of matrix-valued functions. As we mentioned already, the Stone von
Neumann theorem assures us that all those different matrix-valued function solutions
to the quantum mechanical problem merely differ by a choice of basis. All physical
predictions f̄(t) are obtained basis independently and are, therefore, identical.

Exercise 3.19 Assume that b, b† are linear maps on a Hilbert space and are obeying
[b, b†] = 1, where 1 is the identity map. Assume that there is a normalized9 vector,
which we denote by |0〉, which obeys b|0〉 = 0. a) Calculate the norm of the vector

9Notice that |0〉 is normalized, i.e., that it is of length one. This means that, in spite of its
misleading (but usual) name, |0〉 is certainly not the zero-length vector of the Hilbert space.
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(b†)n|0〉. b) Further, show that the vector |z〉 which is defined through |z〉 = ezb
†|0〉

is an eigenvector of b if z is any complex number. These vectors are related to so-
called coherent states which are of practical importance, for example, in quantum optics
(light is often found in a similar quantum state). These states are also of importance
regarding the problem of “decoherence” in quantum measurement theory, as we will
discuss later. c) Calculate 〈z1|z2〉.



Chapter 4

Uncertainty principles

4.1 The Heisenberg uncertainty relations

To solve a quantum mechanical problem is to choose or determine the initial state
vector |ψ〉 and to calculate the position and momentum operators x̂(t), p̂(t) subject
to the equations of motion, the canonical commutation relations and subject to the
hermiticity conditions x̂(t) = x̂(t)† and p̂(t) = p̂(t)†.

Once the x̂(t), p̂(t) (usually with indices indicating dimensions and particle number)
and the initial state vector |ψ〉 of the system are known, we can calculate everything:
Consider any observable f̂(t), i.e., any polynomials or well-behaved power series in
the positions and momenta obeying f̂ †(t) = f̂(t). Then we can calculate its ensemble
expectation values f̄(t) = 〈ψ|f̂(t)|ψ〉. Here, the term ensemble expectation value means
the average outcome of the measurement of the observable f̂(t) if the same experiment
(i.e., with the same initial conditions) is either repeated many times, or is performed
many times simultaneously. An ensemble of experimental runs can be an ensemble in
time or an ensemble in space.

Now if f̂(t) is an observable, i.e., if it obeys f̂(t) = f̂(t)† then also f̂(t)2 is an
observable, i.e., it obeys f̂(t)2 = (f̂(t)2)†. Thus, for any observable f̂(t) we can predict
not only its ensemble average f̄(t), but we can also predict the ensemble average value
f 2(t) of the square of that observable.

In classical mechanics, this would not be surprising. For example, when the initial
conditions for throwing an object (such as a ball or a particle) are known then the dis-
tance that the object will fly (say in vacuum) before hitting the ground is an observable
that can be predicted. Let’s say the prediction is 50m. Well then clearly we can also
predict the square of that distance: It will be 2500m2. Since in classical mechanics we
are sure about the distance we are also sure about the square of the distance.

In quantum mechanics, we saw that the prediction for the squares of the distance
measurements is generally not the square of the prediction for the distance measure-
ments! Knowing the average outcome of the measurement of an observable does not

59
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automatically tell us the average outcome of the square of that observable: In general
(i.e., in most cases), we have f̄ 2 6= f 2. This means that the predictions cannot be
certain, there must be a spread of the measurement outcomes. For example, the mea-
surement outcomes for the distance might be 49m, 50m and 51m with probabilities
1/3 each. Then the prediction is 50m but the predicted square of the distances is then
(492 + 502 + 512)/3 m2 = (2500 + 2/3)m2.

We conclude that quantum mechanics implies that when performing an ensemble of
identical experiments, each time measuring f̂ at the end, then the measurement values
for f must have a spread. Only this way can we have that f̄ 2 6= f 2. The predictions
of quantum mechanics are generally probabilistic. We can only predict the outcome of
a measurement with certainty if the observable in question happens to obey f̄ 2 = f 2.

The extent to which the equation f̄ 2 = f 2 is violated quantifies how large the spread
of the outcomes of the f̂ measurements will be in an ensemble of experimental runs.

In fact the difference between the left hand side and the right hand side of that
equation coincides with the variance of the measurement outcomes. Remember that
the variance of a statistical distribution is the average of the squared deviation from
the average. Here, in Dirac notation:

(∆f(t))2 = (f̂(t)− f(t))2 (4.1)

= 〈ψ|
(
f̂(t)− 〈ψ|f̂(t)|ψ〉

)2

|ψ〉 (4.2)

= 〈ψ|f̂ 2(t)|ψ〉 − 〈ψ|f̂ |ψ〉2 (4.3)

= f(t)2 − f(t)
2

(4.4)

We can now derive Heisenberg’s famous uncertainty relations for the variances and the
square roots of the variances (the so called standard deviation) between any pairs of
observables:

Proposition: Assume f̂(t) and ĝ(t) are observables and assume that the system is in
the state |ψ〉. Then:

∆f(t) ∆g(t) ≥ 1

2
|〈ψ|[f̂(t), ĝ(t)]|ψ〉| (4.5)

In particular, we have for all states |ψ〉:

∆x(t) ∆p(t) ≥ 1

2
|〈ψ|i~|ψ〉| = ~

2
(4.6)

In this way, the noncommutativity of the positions and momenta directly imply that in
a state in which the position x̄(t) is predicted sharply, i.e., with small standard deviation
∆x(t), the prediction p̄(t) of the momentum must come with a correspondingly large
standard deviation ∆p(t), and vice versa. In general, we have of course:

∆x
(r)
i (t) ∆p

(s)
j (t) ≥ ~

2
δi,jδr,s (4.7)
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Recall that initial conditions can be posed by specifying the mean values f̄(t0), ḡ(t0)
etc. of all observables f̂(t0), ĝ(t0) including their arbitrary powers. We asked under
which conditions so-posed initial conditions determine a state |ψ〉. We see now that
the Heisenberg uncertainty relations impose restrictions on which so-described initial
conditions can occur.

Proof of the Heisenberg uncertainty principle: Assume |ψ〉 is normalized and
assume that f̂ and ĝ are observables at some time t. (To keep the formulas from getting
too long we will simply write ĝ, f̂ instead of ĝ(t), f̂(t)). We start by considering the
vector

|φ〉 =
(
f̂ − f̄1 + iα(ĝ − ḡ1)

)
|ψ〉 (4.8)

where α is an arbitrary real number. No vector’s norm is negative. In particular,
〈φ|φ〉 ≥ 0, i.e.:

〈ψ|
(

(f̂ − f̄1)− iα(ĝ − ḡ1)
)(

(f̂ − f̄1) + iα(ĝ − ḡ1)
)
|ψ〉 ≥ 0 (4.9)

Thus:

〈ψ|(f̂ − f̄1)2|ψ〉+ α2〈ψ|(ĝ − ḡ1)2|ψ〉+ α〈ψ|i(̂fĝ − ĝf̂)|ψ〉 ≥ 0 (4.10)

Therefore:

(∆f)2 + α2(∆g)2 + α〈ψ|i[f̂ , ĝ]|ψ〉 ≥ 0 (4.11)

Thus, completing the squares for α:

(∆f)2 + (∆g)2

(
α +
〈ψ|i[f̂ , ĝ]|ψ〉

2(∆g)2

)2

−

(
〈ψ|i[f̂ , ĝ]|ψ〉

)2

(2(∆g)2)2 (∆g)2 ≥ 0 (4.12)

We note that
(
i[f̂ , ĝ]

)†
= i[f̂ , ĝ], which implies that 〈ψ|i[f̂ , ĝ]|ψ〉 is a real number.

We observe that if we were to choose α very large, then the big bracket is large and
the inequality is trivially obeyed. Conversely, for any given |ψ〉, we obtain the most
stringent inequality for the standard deviations by choosing α such that the big bracket
vanishes, i.e., if we choose α = −〈ψ|i[f̂ , ĝ]|ψ〉/(2(∆g)2). We obtain:

(∆f)2(∆g)2 − 〈ψ|i[f̂ , ĝ]|ψ〉2

4
≥ 0 (4.13)

and therefore, finally:

∆f(t) ∆g(t) ≥ 1

2
|〈ψ|[f̂(t), ĝ(t)]|ψ〉| (4.14)
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Exercise 4.1 There are indications from studies of quantum gravity1, that the uncer-
tainty relation between positions and momenta acquire corrections due to gravity effects
and should be of the form: ∆x∆p ≥ ~

2
(1 + β(∆p)2 + ...), where β is expected to be a

small positive number. Show that this type of uncertainty relation arises if the canon-
ical commutation relation is modified to read [x̂, p̂] = i~(1 + βp̂2). Sketch the modified
uncertainty relation ∆x∆p ≥ ~

2
(1 + β(∆p)2) in the ∆p versus ∆x plane. Show that

this resulting uncertainty relation implies that the uncertainty in position can never be
smaller than ∆xmin = ~

√
β.

Technical remark: In this case, the position observables x̂ cannot possess eigen-
vectors nor close approximations to eigenvectors, because they would have vanishing
position uncertainty. Such x̂ therefore cannot be diagonalizable and therefore, by the
so-called spectral theorem, they cannot be self-adjoint (i.e., the domains of x and x†

do not coincide). Such position operators are what is called symmetric operators,
i.e., they obey only the bare minimum condition on an observable namely that all
its expectation values are real: f̂ is called symmetric iff 〈ψ|f̂ |ψ〉 ∈ R ∀|ψ〉 ∈ Df̂ .
In linear algebra, i.e., when the Hilbert spaces are finite dimensional, the notions of
self-adjoint operator and symmetric operator coincide. In infinite-dimensional Hilbert
spaces, all self-adjoint operators are also symmetric but not all symmetric operators are
self-adjoint. In the international mathematical literature, the definitions of self-adjoint
operator and symmetric operator are generally agreed upon. Unfortunately, however,
there is no agreement on the definition of the term hermitean operator, which can mean
either self-adjoint or symmetric operator, depending on the author. In the physics lit-
erature, the term hermitean is often used but its definition is rarely specified. Here,
we will use the hermitean operator as synonymous to symmetric operator. The term
describes the bare minimum requirement on any observable: Its expectation values
must be real. We will write f̂ = f̂ † with the tacit understanding that the domains of
f̂ and f̂ † may not coincide.

1Gravity comes in this way: Momentum, just like energy, gravitates by curving space. Assume
that we want to measure positions very precisely, i.e., we try to make ∆x very small. This, however,
leads to a large momentum uncertainty ∆p and therefore ultimately to a large uncertainty in the
curvature of space at the location where we try to resolve the position. It can be shown that if ∆x
were about 10−35m or smaller, the resulting curvature uncertainty would significantly disturb the
precision of the position predictions. Thus, in simple models, a finite lower bound ≈ 10−35m to the
uncertainty in positions is expected. The critical length 10−35m is called the Planck length. In my
thesis, I happened to find the first Hilbert space representations for such minimal-length uncertainty
relations. This then led to a lot of follow-up papers that calculated the impact on atoms, black holes
and in cosmology.
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4.2 The impact of quantum uncertainty on the dy-

namics

The fact that, in general, (f̄)n 6= fn is also important for the dynamics of quantum
systems. Namely, notice that, in spite of all the subtleties of quantum mechanics, the
mean values x̄

(r)
i , p̄

(s)
j of the positions and momenta sometimes obey exactly the same

equations of motion as the those of Newton. Consider, for example, the harmonic
oscillator Ĥ = p̂2

2m
+ k

2
x̂2. Using the Heisenberg equations, we obtain

dx̂

dt
=

p̂

m
and

dp̂

dt
= −kx̂ (4.15)

and, therefore:

〈ψ|dx̂
dt
|ψ〉 = 〈ψ| p̂

m
|ψ〉 and 〈ψ|dp̂

dt
|ψ〉 = −k〈ψ|x̂|ψ〉 (4.16)

Since the state |ψ〉 does not depend on time, we obtain these Ehrenfest equations:

dx̄

dt
=

p̄

m
and

dp̄

dt
= −kx̄ (4.17)

Thus, the mean values x̄(t), p̄(t) obey exactly Newton’s equations. Without even solv-
ing the canonical commutation relations we can quickly solve Eqs.4.17 to obtain that

x̄(t) and p̄(t) oscillate with frequency ω =
√
k

2π
√
m

.
Do the mean values always obey Newton’s equations? No! Consider, for example,

the non-harmonic oscillator Ĥ = p̂2

2m
+ αx̂4, which leads to

dx̂

dt
=

p̂

m
and

dp̂

dt
= −4αx̂3 (4.18)

and, therefore:

d

dt
〈ψ|x̂|ψ〉 = 〈ψ| p̂

m
|ψ〉 and

d

dt
〈ψ|p̂|ψ〉 = −4α〈ψ|x̂3|ψ〉 (4.19)

We obtain these equations for the expectation values:

dx̄

dt
=

p̄

m
and

dp̄

dt
= −4αx3 (4.20)

We remember now that, in general, 〈ψ|x̂3|ψ〉 6= 〈ψ|x̂|ψ〉3, i.e., x3 6= x̄3. Therefore,
the equations Eqs.4.20 do not match Newton’s equations, which would be: dx̄

dt
=

p̄
m

and dp̄
dt

= −4αx̄3.

We now observe that the equations for the mean values x̄
(r)
i (t) and p̄

(s)
j (t) of positions



64 CHAPTER 4. UNCERTAINTY PRINCIPLES

and momenta obey Newton’s equation if and only if the Hamiltonian is a polynomial
of degree at most two in the positions and momenta.

The proof is simple. The Hamilton equations hold true also in quantum mechanics:

dx̂
(r)
i (t)

dt
= {x̂(r)

i (t), Ĥ} = f̂(x̂, p̂) and
dp̂

(r)
i (t)

dt
= {p̂(r)

i (t), Ĥ} = ĝ(x̂, p̂) (4.21)

Here, x̂, p̂ stand for all position and momentum variables. If Ĥ is a polynomial of
degree ≤ 2 in the positions and momenta, then the right hand sides f̂(x̂, p̂), ĝ(x̂, p̂) of
these equations are linear functions in the positions and momenta. This implies that
f(x̂, p̂) = f(x̄, p̄) and g(x̂, p̂) = g(x̄, p̄), so that we obtain that the expectation values
obey equations whose form is identical to Newton’s equations:

dx̄
(r)
i

dt
= f(x̄, p̄) and

dp̄
(s)
j

dt
= g(x̄, p̄) (4.22)

Remark: Examples of such systems are free particles, particles in harmonic oscillator
potentials as well as particles exposed to constant magnetic fields.

Remark: For Hamiltonians of the form Ĥ = p̂2

2m
+ V (x̂) where V is not a polynomial

of degree ≤ 2, the dynamics of the mean values of positions and momenta is generally
quite different from Newton’s dynamics. However, if the particle is well-localized, then
the variance (∆x)2 is small, i.e., we have (∆x)2 = x2 − x̄2 ≈ 0 and, more generally:
xn ≈ x̄n. We conclude that as long as such a particle is well localized, its position and
momentum expectation values x̄(t) and p̄(t) approximately obey the Newton equations.

4.3 The time and energy uncertainty relation

We have seen that in quantum mechanics the position coordinates are observables
whose uncertainties can be calculated through ∆x = 〈ψ|(x̂− 〈ψ|x̂|ψ〉)2|ψ〉1/2. In con-
trast, quantum mechanics treats the time coordinate t as a mere parameter. Therefore,
if we are looking to derive an uncertainty relation that involves time, we first need to
clarify what we mean by an uncertainty ∆t in time.

To this end, consider an observable f̂(t). Its expectation value changes over time:
f̄(t). Starting from some time t, how much time, ∆t do we have to wait until this
expectation value has changed appreciably, i.e., until the change exceeds the quantum
uncertainty? Namely, how much time does it take for the expectation value f̄(t) to
change by one standard deviation ∆f(t)? Clearly, ∆t obeys:

∆t

∣∣∣∣df̄dt
∣∣∣∣ = ∆f (4.23)

Interestingly, quantum mechanics implies a stringent relation between the time ∆t that
it takes for any observable f̂ to change by a noticeable amount (i.e., by more than
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∆f) on one hand and the uncertainty in the energy ∆H on the other. Namely, from

∆f∆H ≥ 1

2

∣∣∣〈ψ|[f̂ , Ĥ]|ψ〉
∣∣∣ (4.24)

and
df̂

dt
=

1

i~
[f̂ , Ĥ] (4.25)

we obtain:

∆f∆H ≥ ~
2

∣∣∣∣∣〈ψ|df̂dt |ψ〉
∣∣∣∣∣ =

~
2

∣∣∣∣ ddt〈ψ|f̂ |ψ〉
∣∣∣∣ (4.26)

We used that the initial state vector |ψ〉 does not depend on time. We obtain:

∆f∆H ≥ ~
2

∣∣∣∣df̄dt
∣∣∣∣ (4.27)

With Eq.4.23, we finally obtain the time-energy uncertainty relation:

∆t ∆H ≥ ~
2

(4.28)

What this means is that if the energy of a system has uncertainty ∆H, defined as usual
for an observable such as the Hamiltonian, then for every observable f̂ it takes at least
an amount of time ∆t that obeys Eq.4.28 for the mean value f̄ of the observable to
change appreciably, i.e., for it to change by at least the amount ∆f . If we know the
energy of a system precisely, then none of its observables possesses any time variation.
Consider, for example, a system in its lowest energy state, say a hydrogen atom. If we
know that the hydrogen atom is in its lowest energy state and if we are sure, therefore,
what its energy is, ∆H = 0, then none of the observables f̂ of the hydrogen atom
changes over time! In particular, there is no rotation of the electron about the proton
in the sense that all observables’ expectation values are constant. Conversely, if a
system possess any observables f̂ which do change appreciably on a short time scale
∆t, say if we have built a fast quantum computer, then the system must be in a state
in which its energy is uncertain by a large amount ∆H, obeying Eq.4.28.

Exercise 4.2 There are quantum mechanical systems that have a bounded energy spec-
trum E1 ≤ E2 ≤ E3 ≤ ... ≤ Emax. For systems with a bounded energy spectrum, the
uncertainty in the energy cannot be larger than the spread of the spectrum, i.e., for all
physical states |ψ〉 we have ∆E ≤ Emax−Emin. One can use small quantum systems as
a clock (for example, in a quantum computer, the precessing spin of a nucleus, electron,
atom or molecule). Assume that the quantum system of such a clock has a bounded
energy spectrum with En − E1 = 1eV (1eV=1electronvolt). Calculate the maximally
achievable accuracy for this clock. I.e., what is shortest time interval within which
any observable property of the clock could change its expectation value by a standard
deviation?
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Chapter 5

Pictures of the time evolution

5.1 The time-evolution operator

A system of N particles possesses 3N degrees of freedom in the sense that it has 3N
pairs of position and momentum observables x̂

(r)
i , p̂

(s)
j . These obey the 6N equations

of motion Eqs.3.32,3.32, which are in practice 6N coupled differential equations for
3N matrix-valued functions of time. Obviously it becomes very difficult to solve all
those equations if N is large. Fortunately, there is a technique that allows us to avoid
having to solve all that many differential equations: In fact, it suffices to solve just one
differential equation of motion for just one matrix-valued function Û(t)!

Definition: The solution, Û(t), to the equations

i~
d

dt
Û(t) = Û(t)Ĥ(t) (5.1)

and

Û(t0) = 1 (5.2)

where 1 is the identity matrix (or identity map) is called the system’s time-evolution
operator.

Proposition: Assume we have found matrices x̂
(r)
i (t0), p̂

(s)
j (t0) which obey the canon-

ical commutation relations and hermiticity conditions at the initial time t0. Then, the
solutions x̂

(r)
i (t), p̂

(s)
j (t) can easily be obtained from the time-evolution operator:

x̂
(r)
i (t) = Û †(t)x̂

(r)
i (t0)Û(t) (5.3)

p̂
(s)
j (t) = Û †(t)p̂

(s)
j (t0)Û(t) (5.4)

Proof: The proof is straightforward. For example, let us check that the x̂(t) defined
in terms of the initial x̂(t0) and the time evolution operator in equation Eq.5.3 does

67
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obey the correct equation of motion:

i~
d

dt
x̂(t) = i~

d

dt

(
Û †(t)x̂(t0)Û(t)

)
= i~

(
˙̂
U
†
x̂(t0)Û(t) + Û †(t)x̂(t0)

˙̂
U(t)

)
= −Ĥ(t)Û †(t)x̂(t0)Û(t) + Û †(t)x̂(t0)Û(t)Ĥ(t)

(we used that i~ ˙̂
U = ÛĤ implies − i~ ˙̂

U
†

= ĤÛ †)

= −Ĥ(t)x̂(t) + x̂(t)Ĥ(t)

= [x̂(t), Ĥ(t)] (5.5)

The proof for p̂(t) is similar.

Exercise 5.1 Assume that f̂(t) is any observable which does not explicitly depend on
time (i.e., which is a polynomial or a well-behaved power series in the position and
momentum operators with constant coefficients). Show that the time evolution of any
such f̂(t) is given by:

f̂(t) = Û †(t)f̂(t0)Û(t) (5.6)

In Sec.5.1.2, we will see that the time evolution also automatically conserves the her-
miticity conditions and the canonical commutation relations.

Remark: Not only does the Hamiltonian determine the time-evolution operator Û(t),
but conversely Û(t) also determines the Hamiltonian. From Eq.5.1, we obtain:

Ĥ(t) = i~Û−1(t)
d

dt
Û(t) (5.7)

Finally, let us remember that the Hamiltonian encodes all there is to know about a
given system. Once we know the Hamiltonian, all equations of motion can be derived.
Eq.5.7 shows that also the time-evolution operator encodes all information about a
quantum system. This observation is the starting point in Feynman’s formulation of
quantum mechanics which we will discuss later in the course.

5.1.1 Calculating Û(t)

We are left with having to solve Eqs.5.1,5.2. For systems whose Hamiltonian Ĥ does
not depend on time we can immediately write down the solution! Namely:

Û(t) = e
1
i~ Ĥ(t−t0) (5.8)

Of course, to make sense of this formula, we need to define what we mean by the
exponentiation of a matrix or operator. This is easy. We exponentiate matrices the
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same way that we exponentiate numbers, namely through the power series: ex =∑∞
n=0

xn

n!
. In our case:

Û(t) =
∞∑
n=0

1

n!

(
(t− t0)

i~

)n
Ĥn (5.9)

Here, we also defined that the zero’th power of the matrix Ĥ is the identity matrix:
Ĥ0 = 1. This ensures that the initial condition Eq.5.2 holds true for the Û(t) defined
by Eq.5.9. Let us check that also Eq. 5.1 is obeyed:

i~∂tÛ(t) =
i~
i~
e

1
i~ Ĥ(t−t0)Ĥ = Û(t)Ĥ (5.10)

In the main step, we differentiated the power series Eq.5.9 term by term.

We must ask whether there is any chance that we could actually sum up this power
series for a given Hamiltonian matrix Ĥ. The answer is yes: First of all, if we are given
a Hamiltonian which happens to be a diagonal matrix then its exponentiation is easy
to obtain Û(t)! That is because if

Ĥ =


E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4

. . .

 (5.11)

then

Ĥn =


En

1 0 0 0
0 En

2 0 0
0 0 En

3 0
0 0 0 En

4
. . .

 (5.12)

and, therefore:

Û(t) =


e

(t−t0)
i~ E1 0 0 0
0 e

(t−t0)
i~ E2 0 0

0 0 e
(t−t0)

i~ E3 0
0 0 0 e

(t−t0)
i~ E4

. . .

 (5.13)

Of course, if Ĥ is given as a non-diagonal matrix, then the calculation of its arbitrary
powers to obtain Û(t) may not be doable. However, as we will later see, Hamiltoni-
ans are self-adjoint operators and for those there is always a basis in the vector space
in which they are in fact diagonal. The problem of finding a basis in which a time-
independent Hamiltonian is diagonal is, therefore, of great practical importance and
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various methods to this end have been devised.

In practice, Hamiltonians often possess an explicit time-dependence. For example,
when working with nuclei, atoms or molecules in a quantum computer, the experi-
menter may want to be able to turn a knob to change and control the energy levels of
nuclei, atoms or molecules so that, for example, the gaps between certain energy levels
can be made at will to go in or out of resonance with incoming photons. To manip-
ulate the energy levels of a nucleus, atom or molecule requires that the Hamiltonian
has parameters in it that can be tuned externally. This can be achieved by applying
from the outside, for example, a suitable magnetic or electric field whose strengths
can be changed at will. For example, for a free charged particle exposed to a classical
electromagnetic field the Hamiltonian Ĥ = p̂2/2m becomes:

H =
1

2m

(
~̂p+

e

c
~A(~̂x, t)

)2

− eΦ(~̂x, t) (5.14)

Here, the vector potential ~A and the potential Φ can be made to suitably change
over time. When the application of an external electric field changes the energy levels
of an atom or molecule, it is called the Starck effect. When the application of an
external magnetic field changes the energy levels of an atom or molecule then it is
called a Zeman effect1. We have to keep in mind, however, that there are limitations
to the validity of Eq.5.14. In particular, the electromagnetic field is itself a quantum
system and therefore the ~A and φ should obey suitable field commutation relations and
be operator valued2. We will later see why it is that the electromagnetic field often
behaves approximately as if it were a classical field, justifying that Eq.5.14 is then a
good approximation.

Given that time-dependent Hamiltonians are important, for example, for the control
of quantum systems, the question must be addressed if one can give a closed formula
for the time evolution operator Û(t) also for systems whose Hamiltonian, Ĥ(t), is time
dependent. The answer is yes, but it is complicated because the Hamiltonian Ĥ(t1) at
a time t1 and the Hamiltonian Ĥ(t2) at time t2 are then generally quite different and
have no reason to commute with another! The time-evolution operator is then:

Û(t) = Te
1
i~

∫ t
t0
Ĥ(t) dt

(5.15)

Its simple looks are deceiving. Here, T is the so-called time-ordering operator. Applied
to a product of Hamiltonians it orders them with respect to time:

T
(
Ĥ(t1)Ĥ(t2)...Ĥ(tn)

)
= Ĥ(t̃1)Ĥ(t̃2)...Ĥ(t̃n) (5.16)

1The Zeman effect is used to measure, for example, magnetic fields in far away galaxies: these fields
change the absorption and transmission spectra of light that passes through gases in the galaxies.

2The full quantum theory of the electromagnetic field is called quantum electrodynamics.
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The set of times {t̃i}ni=1 is the same as the set of times {ti}ni=1, but it is ordered:
t̃1 ≤ t̃2 ≤ ... ≤ t̃n. So, for example:

T
(
Ĥ(3.4s)Ĥ(4.1s)Ĥ(2.7s)

)
= Ĥ(2.7s)Ĥ(3.4s)Ĥ(4.1s). (5.17)

The time ordering operator T is needed because Ĥ(t) and Û(t) generally don’t commute
when Ĥ(t) depends on time. Explicitly, Eq.5.15 reads:

Û(t) =
∞∑
n=0

1

n!

(
1

i~

)n ∫ t

t0

∫ t

t0

...

∫ t

t0

T
(
Ĥ(t1)Ĥ(t2)...Ĥ(tn)

)
dt1 dt2 ... dtn (5.18)

Exercise 5.2 Show that Eq.5.18 solves Eq.5.1, i.e., show that, in this way, we achieve
that differentiation of Û(t) yields a factor of Ĥ(t) to the right of Û(t).

Of course, if Ĥ does not depend on time, we recover the formula Eq.5.9 for Û(t). Notice
that if Ĥ does not depend on time the Hamiltonian commutes with Û(t), because the
Hamiltonian Ĥ commutes with any power of itself (as does every matrix: [A,An] = 0).

5.1.2 Significance of Û(t)

The general expression for the time-evolution operator Û(t) given in Eq.5.18 is of course
difficult to use in practical calculations. But it can be very useful for abstract studies.
For example, it can be used to show that the time-evolution operator is what is called
“unitary”, i.e., that it obeys:

Û(t)† = Û(t)−1 (5.19)

In the simpler case of Eq.5.9 this is easy to see:

Û(t)† =

(
∞∑
m=0

1

m!

(
(t− t0)Ĥ

i~

)m)†
(5.20)

=
∞∑
m=0

1

m!

(
−(t− t0)Ĥ

i~

)m

(5.21)

= Û(t)−1 (5.22)

The last step is justified because even for power series of matrices we have eAe−A = 1.
The reason is that there is only one matrix A involved, i.e., noncommutativity does
not come into play and the power series in the matrix A therefore behaves just like a
power series in a number. The fact that the time evolution operator Û(t) is unitary3

3If a number obeys u∗ = u−1 the number must be a phase, i.e., it must be of the form eiα for a
real α. Unitary operators behave in many ways like phases. In particular, there is always a basis in
which a given unitary operator is diagonal. Then, its diagonal elements are all phases. We saw an
example of this in Eq.5.13.
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is in many ways of great mathematical and physical significance4. In particular, this
fact allows us to prove:

Proposition: Assume that x̂
(r)
i (t0) and p̂

(s)
j (t0) obey the canonical commutation rela-

tions and the hermiticity conditions at the initial time t0. Then, the quantum mechan-
ical time evolution operator Û(t) yields x̂

(r)
i (t) and p̂

(s)
j (t) which obey the canonical

commutation relations and the hermiticity conditions at all subsequent times.

Proof: In the case of the hermiticity conditions we have to show, for example, that(
x̂

(r)
i (t)

)†
= x̂

(r)
i (t). Indeed:

(
x̂

(r)
i (t)

)†
=

(
Û †(t)x̂

(r)
i (t0)Û(t)

)†
(5.23)

= Û †(t)
(
x̂

(r)
i (t0)

)†
Û(t) (5.24)

= Û †(t)x̂
(r)
i (t0)Û(t) (5.25)

= x̂
(r)
i (t) (5.26)

Similarly, any f̂ obeying f̂(t0) = f̂ †(t0) will also obey f̂(t) = f̂ †(t) for all subsequent t.

Exercise 5.3 (a) Use the time evolution operator to prove that the canonical com-
mutation relations are conserved, i.e., that, for example, [x̂(t0), p̂(t0)] = i~ implies
[x̂(t), p̂(t)] = i~ for all t. (b) Consider the possibility that (due to quantum gravity
effects) at some time t0 the xp commutation relations take the form [x̂(t0), p̂(t0)] =
i~(1 +βp̂(t0)2) (where β is a small positive constant). Assume that the Hamiltonian is
self-adjoint, i.e., that the time evolution operator is still unitary. Will these commuta-
tion relations be conserved under the time evolution?

Exercise 5.4 Consider a system with a Hamiltonian that has no explicit time depen-
dence. Assume that we prepare the system in a state so that its energy at the initial
time t0 is known precisely. a) Show that the energy of the system will stay sharp, i.e.,
without uncertainty, at that value. b) Consider now the specific example of a harmonic
oscillator system. Its positions and momenta evolve according to Eqs.4.17. Given the
time-energy uncertainty relations, what more can you conclude for the time-evolution
of x̄(t) and p̄(t) if the system is in a state with sharp energy?

4Possible exceptions to the unitarity of time evolution are being considered for the case of black
holes horizons. There is a conundrum because unitary matrices are always invertible, but a fall into
a black hole appears to be nonreversible. I think it could be that the resolution of the conundrum
will involve time evolution that is described not by a unitary operator but by a merely isometric
operator. Isometric operators preserve the hermiticity and canonical commutation relations without
being invertible. In finite dimensional Hilbert spaces, isometry and unitarity are the same. Unitary
and isometric operators are closely related (namely via the so-called Cayley transform) to self-adjoint
and symmetric operators respectively, which we discussed before.
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5.2 The pictures of time evolution

5.2.1 The Heisenberg picture

We had found that to solve a quantum mechanical problem of N particles we can solve
the 6N equations of motion Eqs.3.32,3.32 for its 6N basic observables x̂

(r)
i (t), p̂

(s)
j (t). In

practice, this requires solving 6N coupled differential equations for infinite by infinite
matrices. This method goes back all the way to when Heisenberg first discovered
quantum mechanics. When working this way, we say we are working in the “Heisenberg
picture”.

In the last section we saw that the number of matrix differential equations that
need to be solved in the Heisenberg picture, namely 6N , can be reduced to a single
differential equation, namely Eq.5.1 for the time-evolution operator, Û(t). The time

evolution of the 6N observables x̂
(r)
i (t), p̂

(s)
j (t) is then immediately obtained through

Eqs.5.3,5.4.

In fact, the computational effort in solving a quantum mechanical problem can be
further reduced. Namely, instead of solving this one matrix differential equation, it
actually suffices to solve just one vector-differential equation:

5.2.2 The Schrödinger picture

A key observation about the mathematics of quantum mechanics is that we never di-
rectly measure either the matrix elements f̂(t)n,m of an observable f̂(t) nor do we ever
directly measure the vector components ψn of the system’s state vector |ψ〉. We can
only measure the scalar expectation values f̄(t) = 〈ψ|f̂(t)|ψ〉 =

∑
n,m ψ

∗
nf̂(t)n,mψm.

The deeper reason for this is that physical predictions cannot depend on the basis
which we choose in the vector space. Of course, only scalars are basis independent,
while vector and matrix components depend on the choice of basis in the vector space.

Therefore, in order to make physical predictions, our primary goal is to find the mea-
surable functions f̄(t). And there is a shortcut to calculating these! To see this, first
we use

f̂(t) = Û †(t)f̂(t0)Û(t) (5.27)

to write f̄(t) in the form:

f̄(t) = 〈ψ|
(
Û †(t)f̂(t0)Û(t)

)
|ψ〉 (5.28)

=
∑
i,j,n,m

ψ∗i

(
Û †i,j(t)f̂j,n(t0)Ûn,m(t)

)
ψm (5.29)
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Since the multiplication of matrices and their action on vectors is associative, i.e.,
a(bc) = (ab)c, we can place the brackets also differently:

f̄(t) =
(
〈ψ|Û †(t)

)
f̂(t0)

(
Û(t)|ψ〉

)
(5.30)

=
∑
i,j,n,m

(
ψ∗i Û

†
i,j(t)

)
f̂j,n(t0)

(
Ûn,mψm

)
(5.31)

This suggests to define time-dependent states |ψ(t)〉:

|ψ(t)〉 = Û(t)|ψ〉 (5.32)

These states are called “Schrödinger states”, as opposed to the time-independent states
|ψ〉 that we have dealt with so far and that are called “Heisenberg states”. From Eq.5.2
we have that at the initial time t0 the Schrödinger state starts out as identical to the
Heisenberg state: |ψ(t0)〉 = |ψ〉.
Using the Schrödinger states we have:

f̄(t) = 〈ψ(t)|f̂(t0)|ψ(t)〉 (5.33)

So we have now reformulated the calculation of f̄(t) so that we no longer need to know
the time evolution of any observable f̂(t). It suffices to know the operators f̂(t0) of an
observable only at the initial time.

Now, however, we need instead to calculate the time-dependent vectors |ψ(t)〉.
Have we really gained any advantage? Don’t we still first have to calculate Û(t) to
then obtain |ψ(t)〉 through Eq.5.32? Actually, no, there is a way to calculate |ψ(t)〉
without calculating Û(t) first. To see this, let us rewrite the differential equation Eq.5.1
for Û(t), using Û †(t)Û(t) = 1, to obtain:

i~
d

dt
Û(t) = Û(t)Ĥ(t)Û †(t)Û(t) (5.34)

Applying this equation to the Heisenberg state |ψ〉 we obtain:

i~
d

dt
Û(t)|ψ〉 = Û(t)Ĥ(t)Û †(t)Û(t)|ψ〉 (5.35)

This yields for the Schrödinger state |ψ(t)〉:

i~
d

dt
|ψ(t)〉 = Û(t)Ĥ(t)Û †(t)|ψ(t)〉 (5.36)

This suggests to define:

ĤS(t) = Û(t)Ĥ(t)Û †(t) (5.37)
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The operator Hs(t) is called the “Hamilton operator in the Schrödinger picture”. With
this definition, we conclude that the time-dependent Schrödinger state |ψ(t)〉 can be
calculated by solving the differential equation:

i~
d

dt
|ψ(t)〉 = ĤS(t)|ψ(t)〉 (5.38)

This is the famous Schrödinger equation. It is a differential equation for a vector-
valued function, namely |ψ(t)〉. It is, therefore, a good deal simpler than the differential
equations for matrix-valued functions that we had dealt with so far. Choosing a basis,
the Schrödinger equation reads in components:

i~
d

dt
ψn(t) =

∑
m

ĤS(t)n,mψ(t)m (5.39)

Once we obtain the Schrödinger state |ψ(t)〉, the prediction for the mean value of any
observable f̂ follows from:

f̄(t) = 〈ψ(t)|f̂(t0)|ψ(t)〉 (5.40)

=
∑
n,m

ψn(t)f̂n,m(t0)ψm(t) (5.41)

Of course, in order to be able to solve the Schrödinger equation we first need know
the Hamiltonian ĤS(t) in the Schrödinger picture. And we found in Eq.5.37 that the
Schrödinger picture Hamiltonian ĤS(t) generally differs from the Heisenberg picture
Hamiltonian Ĥ(t). If quantization of classical mechanics primarily yields the Heisen-
berg operator, then we now have to ask how we can find the Schrödinger Hamiltonian.
Will we have to first calculate the unitary time evolution operator Û(t) so that we
can then use Eq.5.37? Having to first calculate the time evolution operator would of
course defeat the purpose - because the whole point of using the Schrödinger picture is
to avoid having to calculate an operator-valued function Û(t) and instead only having
to calculate a vector-valued function |ψ(t)〉.

Indeed, there is a direct way to obtain the Schrödinger Hamiltonian from the Heisen-
berg Hamiltonian: In Eq.5.37, the Heisenberg Hamiltonian is, as always, a polynomial
or suitable power series of the position and momentum operators (with generally time-
dependent coefficients):

ĤS(t) = Û(t)Ĥ(x̂(t), p̂(t), t)Û †(t) (5.42)

Since Û †(t)Û(t) = 1, we can also write:

ĤS(t) = Ĥ
(
Û(t)x̂(t)Û †(t), Û(t)p̂(t)Û †(t), t

)
(5.43)
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For example, Û(t) (p̂(t)p̂(t)) Û †(t) =
(
Û(t)p̂(t)Û †(t)

)(
Û(t)p̂(t)Û †(t)

)
.

Now from Eqs.5.3,5.4 we have

Û(t)x̂(t)Û †(t) = x̂(t0) and Û(t)p̂(t)Û †(t) = p̂(t0) (5.44)

so that we finally obtain:
ĤS(t) = Ĥ (x̂(t0), p̂(t0), t) (5.45)

We conclude that the Schrödinger Hamiltonian is the exact same polynomial or power
series in the position and momentum operators as the Heisenberg Hamiltonian, i.e.,
its polynomial or power series has the same generally time-dependent coefficients. The
only difference is that the position and momentum operators in the Schrödinger Hamil-
tonian are frozen at the initial time.

Finally, let us recall the equation of motion for the time evolution operator:

i~
d

dt
Û(t) = Û(t)Ĥ(t) (5.46)

Using Eq.5.37, which is also Ĥ(t) = Û †(t)ĤS(t)Û(t), in Eq.5.46, we find that Û(t) can
also be calculated directly from the Schrödinger Hamiltonian, namely through:

i~
d

dt
Û(t) = HS(t)Û(t) (5.47)

Exercise 5.5 Eq.5.37 shows that, in general, Ĥ 6= ĤS because in general the Heisen-
berg Hamiltonian does not commute with the time evolution operator. And this is
because time dependent Heisenberg Hamiltonians generally don’t even commute with
themselves at different times. Show that if the Heisenberg Hamiltonian Ĥ does not
explicitly depend on time then it coincides with the Schrödinger Hamiltonian.

Exercise 5.6 Show that the following equation holds true in the Schrödinger picture
and in the Heisenberg picture:

i~
d

dt
〈ψ|f̂ |ψ〉 = 〈ψ|[f̂ , Ĥ]|ψ〉 (5.48)

5.2.3 The Dirac picture

Working in the “Heisenberg picture”, we calculate predictions f̄(t) through:

f̄(t) = 〈ψ|f̂(t)|ψ〉 = 〈ψ|
(
Û †(t)f̂(t0)Û(t)

)
|ψ〉 (5.49)

To this end, we have to solve the Heisenberg equation i~ d
dt
f̂(t) = [f̂(t), Ĥ(t)] (at

least for the basic position and momentum operators) to obtain the time-dependent
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operators f̂(t). The state |ψ〉 is time independent. In contrast, when working in the
“Schrödinger picture”, we calculate predictions f̄(t) through:

f̄(t) = 〈ψ(t)|f̂(t0)|ψ(t)〉 =
(
〈ψ|Û †(t)

)
f̂(t0)

(
Û(t)|ψ〉

)
(5.50)

Here, we have to solve the Schrödinger equation i~ d
dt
|ψ(t)〉 = ĤS(t)|ψ(t)〉, to obtain

the time-dependent states |ψ(t)〉. The position and momentum operators are time
independent.

One might think that it is always easiest to work in the Schrödinger picture, be-
cause in it we have to solve merely a vector differential equation rather than a matrix
differential equation. Actually, under certain circumstances, it is possible to further
simplify the calculation of the predictions, f̄(t). This is, when the system possesses a
Schrödinger Hamiltonian Hs(t) which consists of two parts

ĤS(t) = Ĥ
(e)
S (t) + Ĥ

(d)
S (t) (5.51)

where Ĥ
(e)
S (t) is an easy-to-handle Hamiltonian (hence the superscript (e)) and Ĥ

(d)
S (t)

is a Hamiltonian that is difficult to handle (hence the superscript (d)). For example,

Ĥ
(e)
S (t) might be the Hamiltonian that contains only the kinetic energy terms of a bunch

of particles, and Ĥ
(d)
S (t) could contain terms that describe complicated interactions

of these particles. Or, Ĥ
(e)
S (t) might describe the time evolution of a gate within

a quantum computer. The additional term Ĥ
(d)
S (t) might describe a special kind of

interaction that the gate has with its environment. In such cases one would often call
Ĥ

(e)
S (t) a “free” Hamiltonian while calling Ĥ

(d)
S (t) an “interaction Hamiltonian”. So if

the interaction Hamiltonian Ĥ
(d)
S (t) were absent we could easily solve the dynamics of

the system in either the Heisenberg or the Schrödinger picture. Only the presence of
Ĥ

(d)
S (t) makes it difficult to calculate f̄(t).

This raises the question: Is there a way that we can make use of the fact that Ĥ
(e)
S (t)

is easy, i.e., that we can easily obtain the time-evolution operator Û (e)(t) that solves:

i~
d

dt
Û (e)(t) = Ĥ

(e)
S (t)Û (e)(t) (5.52)

The answer is yes: As Dirac first recognized, we can choose to work in what is called the
“Dirac picture” which is also called the “interaction picture”. Just like the Heisenberg
and the Schrödinger pictures, also the Dirac picture is obtained by a clever bracketing
in the expression:

f̄(t) = 〈ψ|Û †(t)f̂(t0)Û(t)|ψ〉 (5.53)

(For simplicity, let us continue to consider only observables f̂(t) which do not possess an
explicit manually-introduced time dependence). Namely, to obtain the Dirac picture,
the time evolution operator in this expression is first written as the product of two
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evolution operators. One will be bracketed so that it goes with the state and one will
be bracketed so that it goes with the observables.

The overall idea for Dirac picture is that the simple time evolution according to
Ĥ(e)(t) is given to the operators through an equation similar to the Heisenberg equation.
The remaining, more difficult time evolution is then given to the state vectors through
an equation similar to the Schrödinger equation.

We begin by defining the unitary operator Û ′(t) that expresses the difference be-
tween the full time evolution and the simple time evolution of only the easy-to-handle
part of the Hamiltonian:

Û ′(t) := Û (e)†(t)Û(t) (5.54)

Notice that in the special case where the full Hamiltonian consists of only the easy-
to-handle Hamiltonian, i.e., if ĤS(t) = Ĥ

(e)
S (t), then Û(t) = Û (e)(t) and therefore

Û ′(t) = 1.

Exercise 5.7 Show that Û ′(t) is unitary.

From Eq.5.54, we have:
Û(t) = Û (e)(t)Û ′(t) (5.55)

Inserted into Eq.5.53, we obtain:

f̄(t) = 〈ψ|Û ′†(t)Û (e)†(t)f̂(t0)Û (e)(t)Û ′(t)|ψ〉 (5.56)

Now in order to obtain the Dirac picture, we choose to place brackets this way:

f̄(t) =
(
〈ψ|Û ′†(t)

)(
Û (e)†(t)f̂(t0)Û (e)(t)

)(
Û ′(t)|ψ〉

)
(5.57)

Accordingly, we define the operators and states in the Dirac picture through:

f̂D(t) = Û (e)†(t)f̂(t0)Û (e)(t) (5.58)

and
|ψ(t)〉D = Û ′(t)|ψ〉 (5.59)

In the Dirac picture, the time evolution operator Û (e)(t) solves Eq.5.52 and is by
assumption easy to obtain. Therefore, f̂D(t) is by assumption easy to obtain via
Eq.5.58. Similar to the Heisenberg picture, the f̂D(t) obey this equation:

i~
d

dt
f̂D(t) = [f̂D(t), Ĥ

(e)
D (t)] (5.60)

as is easy to show. Notice that, in H
(d)
D (t), the position and momentum operators

possess the time evolution of the Dirac picture, i.e., they evolve according to Eq.5.58,
as do all observables in the Dirac picture.
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Now, the remaining part of the time evolution, namely the by assumption more
difficult to handle part is described through the time evolution of the Dirac states. As
we will now see, this time evolution is governed by an equation that is similar to a
Schrödinger equation:

Proposition: The time evolution of the states |ψ(t)〉D in the Dirac picture obeys the
equations

i~
d

dt
|ψ(t)〉D = Ĥ

(d)
D |ψ(t)〉D (5.61)

|ψ(t0)〉D = |ψ〉 (5.62)

where Ĥ
(d)
D is given by:

Ĥ
(d)
D (t) = Û (e)†(t)Ĥ

(d)
S (t)Û (e)(t) (5.63)

In Ĥ
(d)
D , (as we saw for Ĥ

(e)
D (t) above) the position and momentum operators evolve

according to the Dirac picture, i.e., according to the time evolution generated by the
easy-to-handle part of the Hamiltonian: From Eq.5.58 we see that Ĥ

(d)
D (t) is the same

polynomial or power series in the positions and momenta as is Ĥ
(d)
S (t) - except that

in Ĥ
(d)
D (t) the position and momentum operators evolve according to the easy time

evolution operator Û (e). Since in the Dirac picture all observables evolve according the
easy time evolution operator Û (e), we can also say that Ĥ

(d)
D (t) is Ĥ

(d)
S (t) after writing

it in the Dirac picture.

Proof: We begin with:

i~
d

dt
Û(t) = ĤS(t)Û(t) (5.64)

Thus, with the dot denoting the time derivative:

i~
(

˙̂
U (e)Û ′ + Û (e) ˙̂

U ′
)

=
(
Ĥ

(e)
S +H

(d)
S

)
Û (e)Û ′

i~ ˙̂
U (e)Û ′ + i~Û (e) ˙̂

U ′ = i~ ˙̂
U (e)Û (e)†Û (e)Û ′ + Ĥ

(d)
S Û (e)Û ′

i~Û (e) ˙̂
U ′ = Ĥ

(d)
S Û (e)Û ′

i~ ˙̂
U ′ = Û (e)†Ĥ

(d)
S Û (e)Û ′

i~ ˙̂
U ′ = Ĥ

(d)
D Û ′

i~ ˙̂
U ′|ψ〉 = Ĥ

(d)
D Û ′|ψ〉

i~
d

dt
|ψ(t)〉D = Ĥ

(d)
D |ψ(t)〉D

To summarize, in the Dirac picture, we first split the Hamiltonian as in Eq.5.51 into
an “easy” and a “difficult” Hamiltonian. We let the operators f̂D(t) evolve according
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to the easy Hamiltonian as given by Eqs.5.52,5.58 and we let the states |ψ(t)〉D evolve
with respect to the difficult Hamiltonian according to Eqs.5.61,5.63. All predictions
are then obtained through

f̄(t) = D〈ψ(t)|f̂D(t)|ψ(t)〉D (5.65)

where D〈ψ(t)| denotes the dual (i.e., bra-) vector to |ψ(t)〉D.

For example, consider the Schrödinger Hamiltonian

ĤS(t) :=
p̂(t0)2

2m
+
mω2

2
x̂(t0)2 + e−αt

2

p̂(t0)x̂(t0)3p̂(t0) (5.66)

In this case, the first two terms amount to a harmonic oscillator, which, on its own, is
solvable. We could, therefore, work with these definitions for the Dirac picture:

Ĥ
(e)
S (t) :=

p̂(t0)2

2m
+
mω2

2
x̂(t0)2 (5.67)

Ĥ
(d)
S (t) := e−αt

2

p̂(t0)x̂(t0)3p̂(t0) (5.68)

In practice, the Dirac picture is in fact used ubiquitously. For example, when studying
the interaction between an atom and the quantized electromagnetic field, the easy-
to-handle part of the total Hamiltonian consists of the Hamiltonian of the atom and
the Hamiltonian of the electromagnetic field. The difficult-to-handle part of the total
Hamiltonian is the part that describes the interaction between the photon field and
the atom.

In fact, notice that our treatment of the Heisenberg, Schrödinger and Dirac pic-
tures of time evolution in this chapter is not restricted to quantum mechanics. We
obtained those pictures of time evolution by shifting around brackets in formula for
the calculation of any quantum theoretic prediction:

f̄(t) = 〈ψ|Û †(t)f̂(t0)Û(t)|ψ〉

= 〈ψ|
(
Û †(t)f̂(t0)Û(t)

)
|ψ〉 (Heisenberg picture)

=
(
〈ψ|Û †(t)

)
f̂(t0)

(
Û(t)|ψ〉

)
(Schrödinger picture)

= 〈ψ|Û ′†(t)Û (e)†(t)f̂(t0)Û (e)(t)Û ′(t)|ψ〉

=
(
〈ψ|Û ′†(t)

)(
Û (e)†(t)f̂(t0)Û (e)(t)

)(
Û ′(t)|ψ〉

)
(Dirac picture)

This formalism applies, for example, unchanged also to quantum field theories. There,
the Dirac picture is used, with the free evolution of all particles described by an “easy”
Hamiltonian while the particle interactions are described by a difficult Hamiltonian.



Chapter 6

Measurements and state collapse

6.1 Ideal measurements

In this chapter, it will not matter which picture of the time evolution we choose, because
will not consider any dynamics. Instead, we will only consider the state and operators
at a fixed point in time, tm, at which we perform a measurement.

So let us assume that at the time tm the state of a quantum system is given by a
vector |ψ〉 and that we measure an observable f̂ . Let us further assume that the state
|ψ〉 is an eigenvector to f̂ with an eigenvalue that we call f ∈ R. This means that we
assume that |ψ〉 = |f〉 with:

f̂ |f〉 = f |f〉 and 〈f |f〉 = 1 (6.1)

We already saw that, in this case, we can predict the outcome of the measurement of
the observable f̂ at the measurement time tm with certainty. The predicted value is:

f̄ = 〈ψ|f̂ |ψ〉 = 〈f |f̂ |f〉 = 〈f |f |f〉 = f〈f |f〉 = f (6.2)

The uncertainty in this prediction is indeed vanishing:

(∆f)2 = 〈ψ|
(
f̂ − 〈ψ|f̂ |ψ〉

)2

|ψ〉 = 〈f |
(
f̂ − 〈f |f̂ |f〉

)2

|f〉 = 〈f | (f − f)2 |ψ〉 = 0

(6.3)
More generally now, assume that at the time tm, i.e., when we measure the observable
f , our quantum system is some general state |ψ〉 which is not necessarily an eigenstate
of f̂ . In a single run of the experiment, the measurement of the observable f at time
tm will now give us some number f (that we cannot be sure about ahead of time).
Let us further assume that our measurement apparatus is ideal in the sense that it
measures the observable f̂ with absolute accuracy. This means that if, right away, we
measure the observable f̂ again then the prediction for that measurement is the same
value f̄ = f again, and with vanishing uncertainty, ∆f = 0.

81
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Let us stress something important here: The outcome of an ideal measurement
allows us to predict the outcome of an immediate repeat measurement. This means
that the ideal measurement at time tm changed the state of the system to a new state
|ψafter〉. Namely, the state |ψafter〉 must be such that the outcome of an immediate
re-measurement could be predicted with certainty. We say that at the time tm of the
measurement the previous state |ψ〉 of the quantum system collapsed into the new
state |ψafter〉. In spite of the term collapse, of course not only |ψ〉 but also |ψafter〉 is
normalized.

But which is the vector |ψafter〉? Let us now show that if the measurement outcome

was the number f then the new state |ψafter〉 is eigenvector to f̂ with eigenvalue f . To

see this, we recall that |ψafter〉 must be such that the uncertainty in f̂ vanishes:

0 = (∆f)2 (6.4)

= 〈ψafter|
(
f̂ − 〈ψafter|f̂ |ψafter〉

)2

|ψafter〉 (6.5)

=
[
〈ψafter|

(
f̂ − 〈ψafter|f̂ |ψafter〉

)] [(
f̂ − 〈ψafter|f̂ |ψafter〉

)
|ψafter〉

]
(6.6)

= 〈φ|φ〉 (6.7)

where

|φ〉 =
(
f̂ − 〈ψafter|f̂ |ψafter〉

)
|ψafter〉 (6.8)

Since the length of this vector vanishes, || |φ〉 || = 0, we can conclude that |φ〉 = 0 and
therefore that:

f̂ |ψafter〉 = f |ψafter〉 (6.9)

where f = 〈ψafter|f̂ |ψafter〉. Therefore, due to the measurement, the state |ψ〉 of the
system collapses into a state |ψafter〉 which is eigenstate of the measured observable
with the eigenvalue being the value that was found in the measurement.

Corollary: A very important conclusion that we can draw from the above is that
an ideal measurement of an observable f̂ can only ever produce an outcome that is
among the eigenvalues of the operator f . For example, the set of eigenvalues of the
quantized harmonic oscillator, which is its spectrum, is known to consist of the values
En = ~ω(n + 1/2) with n = 0, 1, 2, .... An ideal measurement of the energy of the
harmonic oscillator can therefore only ever find any one of these values.

Proposition (spectral theorem in finite dimensions): Assume f̂ is an N - dimen-
sional matrix obeying f̂ † = f̂ . Then it possesses an eigenbasis of vectors {|f̂n〉}Nn=1.
While we saw earlier that quantum mechanics requires its Hilbert spaces to be finite
dimensional, the finite-dimensional case is still important because it frequently applies
to subsystems. In infinite dimensions, the spectral theorem is more complicated, as we
will see.
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Exercise 6.1 (a) From f̂ † = f̂ , show that the eigenvalues of any observable f̂ are real.
(b) Assume that |f1〉 and |f2〉 are eigenvectors of f̂ with eigenvalues f1, f2 respectively.
Show that the if f1 6= f2 then the two vectors are orthogonal, i.e., 〈f1|f2〉 = 0.

6.2 The state collapse

Let us now assume that the measurement of f̂ yielded an eigenvalue f which is non-
degenerate, i.e., that the corresponding eigenspace of the operator f̂ is one-dimensional.
Our aim is to calculate the map that describes the collapse of the wave function:

|ψafter〉 = C (|ψ〉) (6.10)

To this end, let us introduce the notion of projection operator:

Definition: An operator P̂ is called a projection operator, if it obeys:

P̂ = P̂ † and P̂ 2 = P̂ (6.11)

Exercise 6.2 Since projection operators are self-adjoint, they can be diagonalized.
(a) Calculate which eigenvalues a projection operator can possess. (b) Schematically,
how does a projection operator look like as a matrix in its eigenbasis?

Using the projection operator onto the eigenspace with eigenvalue f , we can now write:

|ψafter〉 =
1

|| P̂f |ψ〉 ||
P̂f |ψ〉 (6.12)

This means that C (|ψ〉) =
(
|| P̂f |ψ〉 ||

)−1

P̂f |ψ〉. The denominator is needed to ensure

that ψafter〉 is normalized. Notice that, because the denominator contains |ψ〉, the map

C is a nonlinear map. Sometimes it is possible to express P̂f directly in terms of f̂ :

Exercise 6.3 Consider a self-adjoint operator f̂ in an N-dimensional Hilbert space.
Assume that its eigenvalues are f1, ..., fN and that they are all different, i.e., assume
that they are non-degenerate. In the eigenbasis {|fn〉}Nn=1 of f̂ , the operator f̂ takes the
form:

f̂ =
N∑
n=1

fn |fn〉〈fn|. (6.13)

We are interested in the projector P̂r onto the eigenvector |fr〉, i.e., in the operator
which obeys: P̂r|fn〉 = δn,r|fn〉. Show that P̂r can be expressed in terms for f̂ through:

P̂r =
∏

j=1...N,j 6=r

f̂ − fj 1̂
fr − fj

(6.14)

Here, 1̂ is the N ×N identity matrix.
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6.3 Simultaneous measurements

Partial measurements: Let us now consider the case that the measurement value
f ∈ R that was measured is an eigenvalue of f which is degenerate. In this case, we
conclude by the above arguments that the state collapses into a vector in the eigenspace
of f̂ of eigenvalue f . But now that eigenspace is multi-dimensional. Which state in this
multi-dimensional eigenspace does the system collapse into in this case? The answer
is still that the state |ψ〉 collapses into the state:

|ψafter〉 =
1

|| P̂f |ψ〉 ||
P̂f |ψ〉 (6.15)

Here, P̂f is the projector onto the eigenspace of f̂ for the eigenvalue f and the denom-
inator is needed to make sure that |ψafter〉 is normalized. The prescription Eq.6.15
expresses that the state is collapsed to the eigenspace but not within the eigenspace.
This is because, by assumption, nothing has been measured that could distinguish the
eigenstates within that eigenspace. The measurement has only been partial.

Complete measurements: We saw that if we measure an observable, f̂ (1), that pos-
sesses degenerate eigenvalues then the wave function will collapse onto the eigenspace
of the measured value. But we could have measured more. We could have mea-
sured another observable, say f̂ (2), that further collapses the wave function, within the
eigenspace. In general, we may be able to measure a whole number of observables f̂ (i)

simultaneously, namely if they commute:

[f̂ (i), f̂ (j)] = 0 (6.16)

Intuitively, this is because then the uncertainty principle poses no constraint to having
states that are simultaneously of zero uncertainty for both observables ∆f̂ (i)∆f̂ (j) ≥ 0.
Concretely:

Proposition: Self-adjoint matrices can be simultaneously diagonalized if and only if
they commute.

Proof: Assume that they can be jointly diagonalized. In this case, they are simulta-
neously diagonal in a basis (their joint eigenbasis) and they do, therefore, commute.
This proves one direction of the proposition. To see the other direction, assume they
commute. First, diagonalize f̂ (1). Pick the degenerate subspace V to an eigenvalue,
say λ. I.e., we have that f̂ (1)|φ〉 = λ|φ〉 for all |φ〉 ∈ V . We now show that f̂ (2) maps
this eigenspace into itself: f̂ (2) : V → V . This is important because it means that f̂ (2)

is represented on V as a self-adjoint matrix. We have to show that if |φ〉 ∈ V then

also f̂ (2)|φ〉 ∈ V , i.e., we have to show that f̂ (1)
(
f̂ (2)|φ〉

)
= λ

(
f̂ (2)|φ〉

)
. But this is

the case because f̂ (1) and f̂ (2) commute:

f̂ (1)f̂ (2)|φ〉 = f̂ (2)f̂ (1)|φ〉 = f̂ (2)λ|φ〉 = λ
(
f̂ (2)|φ〉

)
(6.17)
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Now that we know that f̂ (2) maps V into itself and is therefore a self-adjoint matrix
on V , we can choose a basis in that subspace that diagonalizes f̂ (2). If there is still a
degenerate subspace, we proceed by also diagonalizing a third commuting observable
f̂ (3), and so on. This completes the proof of the proposition.

State collapse: Let us now assume that we measure r commuting observables simul-
taneously. What is the state collapse? Each measurement contributes a projection
operator P̂f (i) . The state |ψ〉 then collapses into the state

|ψafter〉 =
1

||
∏r

i=1 P̂f (i)|ψ〉 ||

r∏
i=1

P̂f (i) |ψ〉 (6.18)

Notice that the sequence of operators in the product does not matter because the
projectors P̂f (i) commute. And this is because the projectors are diagonal in the same

joint eigenbasis in which the operators f̂ (i) are diagonal.

Notation: After simultaneously measuring a sufficiently large set of r commuting
observables f̂ (1), f̂ (2), ..., f̂ (r) and obtaining r measurement values f (1), f (2), ..., f (r), the
state |ψafter〉 that the system collapses into is fully characterized by the r measured
eigenvalues, i.e., i.e., joint eigenspaces of all these observables are all one-dimensional.
These joint eigenvectors are then commonly denoted by their joint eigenvalues:

|ψafter〉 = |f (1), f (2), ..., f (r)〉 (6.19)

Remark: In the quantum mechanics of a finite number of particles, there always ex-
ist finite maximal sets of commuting observables. When such a set of observables is
measured simultaneously, any state collapses onto one-dimensional subspaces. Mea-
suring more commuting observables would not bring more information in this case: In
Eq.6.18, we would be multiplying more projectors but any additional projectors would
merely act as the identity on the already one-dimensional space on which the other
projectors are already projecting.

Exercise 6.4 In quantum mechanics, in principle, one suitably-chosen observable f̂
always suffices to perform a complete measurement, i.e., a measurement that projects
the state onto a one dimensional subspace. Write down such an observable f̂ in terms
of its eigenvectors and eigenvalues.

In the quantum mechanics of N particles in three dimensions, a maximal set of com-
muting observables is, for example, given by the set of their 3N momentum operators.
For an electron in the Hydrogen atom (omitting the spin for now), a maximal set is also
(Ĥ, L̂2, L̂3) and their joint eigenvectors are then denoted by |f (1), f (2), f (3)〉 = |En, l,m〉.

6.4 States versus state vectors

Comment regarding the uniqueness of |ψafter〉: The vector |ψafter〉, because it
has to be normalized, 〈ψafter|ψafter〉 = 1, is unique only up to a phase: If |ψafter〉 is a
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normalized eigenvector to the eigenvalue f , then so is eiα|ψafter〉 for any α ∈ R. It does
not matter which of these vectors we pick to represent the state after the measurement
because these vectors all yield the same predictions for every observable, ĝ:

ḡ = 〈ψafter|ĝ|ψafter〉 = 〈ψafter|e−iα ĝ eiα|ψafter〉 (6.20)

We say that these vectors represent the same state, i.e., a state is actually an equiva-
lence class of normalized vectors that differ only by a phase.



Chapter 7

Quantum mechanical
representation theory

We saw early on in this course that quantum mechanics requires its Hilbert spaces
to be infinite dimensional. The reason was that if commutation relations of the form
[x̂, p̂] = i~1 had a representation in terms of N -dimensional matrices then the trace
could be taken on both sides of the equation, yielding the contradiction 0 = i~N .

Exercise 7.1 Are there any values of β for which the commutation relation [x̂, p̂] =
i~(1 + βp̂2) may possess a finite-dimensional Hilbert space representation?

We will now study in more detail the properties that operators in infinite dimensional
Hilbert spaces can possess. In particular, we know that every self-adjoint matrix Q̂ in
a finite-dimensional Hilbert space can be diagonalized, i.e., that there exists a basis of
eigenvectors of Q̂ and that these eigenvectors are in the Hilbert space. The full spectral
theorem for self-adjoint operators on general Hilbert spaces shows that the situation
is more subtle in infinite dimensions. Physicists speak of self-adjoint operators that
possess non-normalizable eigenvectors which are not in the Hilbert space. What is the
underlying mathematics?

7.1 Self-adjointness

What we have to look out for when defining self-adjointness in the infinite dimensional
case is that the domain DQ̂ of an operator Q̂ may be somewhat smaller than entire
the Hilbert space, because an operator can maximally only act on those Hilbert space
vectors that it maps into the Hilbert space.

Remember that it happens easily that the domain of an operator is smaller than
the Hilbert space. All it takes for a Hilbert space vector to be excluded from the
domain is that the operator would map it into a non-normalizable vector and there-
fore ot into the Hilbert space. For example, consider the vector with the coefficients

87
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(1, 1/2, 1/3, 1/4, ...). Its coefficients are square-summable and so the vector is in the
Hilbert space. But this vector is not in the domain of the matrix which is diagonal with
the diagonal entries being 1, 25, 35, 45, .... That’s because the image would be the vector
with the coefficients (1, 24, 34, 44, ...) and this vector is not normalizable and therefore
not in the Hilbert space.

As a consequence, in the case of infinite-dimensional Hilbert spaces we have to
carefully define the domain of all operators. Here is the definition of what we mean by
the adjoint operator of an operator Q̂, which is careful enough to be applicable also
for infinite-dimensional Hilbert spaces:

Definition (adjoint operator): Assume that Q̂ is an operator on a Hilbert space H
with domain DQ̂, the domain being the maximal set of Hilbert space vectors that Q̂

maps into the Hilbert space. Then the domain of the adjoint operator, denoted Q̂† is:

DQ̂† =
{
|φ〉 ∈ H | ∃ |ϕ〉 so that 〈ϕ|ψ〉 = 〈φ|Q̂|ψ〉 ∀|ψ〉 ∈ DQ̂

}
(7.1)

Then, Q̂† is defined to act on its domain as:

Q̂†|φ〉 = |ϕ〉 (7.2)

Definition (self-adjoint operator): An operator Q̂ is called self-adjoint if it is the
same operator as its adjoint, and this includes that the requirement that their domains
agree: DQ̂ = DQ̂† .

7.2 The spectrum of an operator

Going back to the basics, we begin by reviewing the concept of eigenvector.

Definition (eigenvector): For a self-adjoint operator Q̂ on a Hilbert space H (finite
or infinite dimensional), an eigenvector is any vector |ψ〉 ∈ H for which there is a
number λ, called an eigenvalue, such that:

Q̂|ψ〉 = λ|ψ〉 (7.3)

The notions of eigenvector and eigenvalue are useful for infinite-dimensional Hilbert
spaces too but we need the more general notions of spectrum and spectral resolution.
To arrive at these notions, it will be useful to rewrite Eq.7.3 in this form:

(Q̂− λ1)|ψ〉 = 0 (7.4)

This equation shows us that the eigenvector |ψ〉 is a vector that the operator (Q̂− λ1)
maps into the zero-vector. As a consequence, the operator (Q̂ − λ1) maps any set of
vectors that differ only by multiples of the vector |ψ〉 to the same vector. Therefore,
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we can draw the important conclusion that for any eigenvalue λ, the operator (Q̂−λ1)
is not invertible1.

This is a very useful observation because this property of eigenvalues, namely that
they make (Q̂−λ1) non-invertible, is a defining property that does not require writing
down an eigenvector in the Hilbert space. Indeed, we are now ready to define the
spectrum of an operator on a Hilbert space H.

Definition (spectrum): For any operator Q̂ on a Hilbert spaceH, any number λ ∈ C
is said to be in the spectrum of Q̂, if the operator (Q̂−λ1) does not possess an inverse
that is defined on the entire Hilbert space H.

According to this definition, eigenvalues clearly are part of the spectrum because for
them, as we just saw, (Q̂− λ1) does not possess an inverse. We define:

Definition (point spectrum): The set of eigenvalues forms the subset of the spec-
trum that is called the point spectrum.

So what other values can there possibly be in the spectrum, besides eigenvalues? The
answer is that - in infinite-dimensional Hilbert spaces - in can happen that there are
values λ for which (Q̂− λ1) does have an inverse (Q̂− λ1)−1, but it cannot be defined
on the entire Hilbert space H, i.e., its domain is smaller than the Hilbert space. By
the way, (Q̂− λ1)−1 is also called the resolvent.

Definition (continuous spectrum): The set of λ ∈ C for which (a) the resolvent
(Q̂ − λ1)−1 exists but (b) the domain of (Q̂ − λ1)−1 is smaller than H and (c) no
Hilbert space vector is orthogonal to the domain of the resolvent, forms the subset of
the spectrum that is called the continuous spectrum.

Definition (residual spectrum): In principle, for arbitrary operators Q̂ on a Hilbert
space, there is also the possibility that (a) (Q̂ − λ1)−1 exists but (b) the domain of
(Q̂ − λ1)−1 is smaller than H (c) there are Hilbert space vectors orthogonal to its
domain (in this case, we say that the domain of (Q̂ − λ1)−1 is not dense in H). Such
λ for what is called the residual spectrum of Q̂.

Proposition: The residual spectrum of self-adjoint and unitary operators is the empty
set.

Therefore, we won’t be concerned much with residual spectra.

Remark: It can be shown that the values in the continuous spectrum never arise as
isolated points (unlike in the case of the point spectrum) but that they arise in con-
tinuous intervals, hence the naming.

1Technically, the operator is not injective. Recall the relevant definitions: A map is called injective
(or one-to-one) if every element of the target set is hit at most once. Injectivity is the condition needed
for invertibility. A map is called surjective (or onto) if every element of the target set is hit at least
once. A map is called bijective if it is both injective and surjective, i.e., if every element of the target
set is hit exactly once.



90 CHAPTER 7. QUANTUM MECHANICAL REPRESENTATION THEORY

It is clear that the values of the continuous spectrum are not eigenvalues because eigen-
values possess eigenvectors in the Hilbert space. Instead, we have:

Definition (approximate eigenvalues): The elements, λ of the continuous spec-
trum are called approximate eigenvalues.

This terminology is justified because it can be shown that:

Proposition: If λ is in the continuous spectrum, i.e., if it is an approximate eigenvalue,
then:

∀ε > 0 ∃|ψ〉 ∈ H with || |ψ〉 || = 1 so that ||(Q̂− λ1)|ψ〉|| < ε (7.5)

Therefore, there will always be Hilbert space vectors that approximate what would be
eigenvectors arbitrarily closely, namely in the sense of Eq.7.5.

In quantum mechanics, there are plenty of operators which possess a continuous
spectrum, such as the position and momentum operators. We see here already that
these operators will not have eigenvectors for their continuous spectrum. However the
fact that the continuous spectrum consists of approximate eigenvalues will translate
into the important statement that their “eigenfunctions”, such as Dirac deltas, can
always be approximated with square integrable functions. For example, the Dirac
delta can be approximated in this way:∫ b

a

f(x) δ(x) dx = lim
ε→0

∫ b

a

f(x)
ε

π

1

x2 + ε2
dx (7.6)

Terminology (bound and scattering states): In quantum mechanics, one often
encounters operators that possess both a point spectrum and a continuous spectrum.
For example, the Hamilton operators for systems such as an atom or a molecule will
have both a point spectrum and a continuous spectrum. This is because these systems
have bound states and scattering states. For example, the electron of a Hydrogen atom
is not able to escape a nucleus if it is in a low energy eigenstate. Its wave function
decays away from the nucleus and is normalizable. The energy levels of bound states
belong to the point spectrum and are discrete, therefore. However, we can also shoot
an electron very fast by a proton. Since we can do so with arbitrary increments of the
energy we expect that this is the case of the continuous spectrum. And yes, in this
case, the wave function is coming in from infinitely far, getting scattered off the proton
and also spreading away infinitely far. Such wave functions are not normalizable. If
they are energy eigenstates they can therefore only be approximate eigenvectors and
belong to the continuous spectrum.

7.3 Stieljes Integration

In the case of self-adjoint operators on finite-dimensional Hilbert spaces, there is only
a point spectrum. The spectral theorem in finite dimensions guarantees that the cor-
responding eigenvectors span the Hilbert space. For example, consider a self-adjoint
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operator Q̂ in an N -dimensional Hilbert space and its eigenbasis {|qn〉}Nn=1 and the
corresponding (point) spectrum of eigenvalues q1, ..., qN . In this case, it is easy to write
down a resolution of the identity by summing over the values of the spectrum:

1 =
N∑
n=1

|qn〉〈qn| (7.7)

Similarly, we have the spectral representation of Q̂:

Q̂ =
N∑
n=1

qn |qn〉〈qn| (7.8)

On infinite-dimensional Hilbert spaces, however, the spectra will generally contain both
continuous and discrete parts. Resolutions of the identity and spectral representations
of operators should therefore contain also integrals. In practice, most physicists simply
write down sums and integrals as needed with a tacit understanding that there may
be subtleties.

But there is a mathematically rigorous way to treat these sums and integrals in a
unified way, namely through the notion of Stieltjes integral. We will here not treat all
the details of how to Stieltjes integrate over Hilbert space operators but let us have a
look at the key ideas.

Definition (Stieltjes integral): The Stieltjes integral∫ b

a

f(x) dm(x) (7.9)

requires an integrand, i.e., a function f(x) to be integrated over and a function m(x),
called the integrator (or measure). The integration is performed by considering parti-
tions x0 < x1 < x2 < ... < xn of the interval [a, b], i.e., x0 = a and xn = b. We then
define ∫ b

a

f(x) dm(x) = lim
ε→0

∑
i

f(x̃i) (m(xi+1)−m(xi)) (7.10)

Here, f(x̃i) ∈ [xi, xi+1] and the limit is a limit in which the maximum spacing, ε
occurring in a sequence of partitionings goes to zero. How does this definition relate
to ordinary Riemann integration?

Proposition: Assume that the derivative m′(x) of m(x) is continuous. Then the
Stietjes integral can be expressed in terms of the ordinary Riemann integral:∫ b

a

f(x) dm(x) =

∫ b

a

f(x)
dm(x)

dx
dx (7.11)
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So in particular, if we choose the integrator function to be m(x) = x then we have
simply the ordinary Riemann integral over f .

But what then is the advantage of the Stieltjes integration method? The key advantage
is that the integrator function m need not have a continuous derivative. For example,
consider the case of m being a Heaviside step function:

m(x) = θ(x) (7.12)

A little thought shows that the Stieltjes integral in this case yields:∫ b

a

f(x) dm(x) = f(0) (7.13)

Exercise 7.2 Show Eq.7.13.

Similarly, we can generate a sum by using an integrator function with multiple steps.
For example, m(x) =

∑
i θ(x− xi) yields.∫ b

a

f(x) dm(x) =
∑
i

f(xi) (7.14)

More generally, by using an integrator function that is in some parts of the real line
smooth and in some parts part of the real line with steps of various sizes, one single
Stieltjes integral can express arbitrarily complicated combinations of sums and Rie-
mann integrals.

Exercise 7.3 Plot an integrator function m(x) which integrates over the intervals [3, 6]
and [9, 11] and sums over the values of the integrand at the points x = 5 and x = 6.

Notice that the use of the Stieltjes integral made it unnecessary to use the Dirac Delta.
Using the Dirac Delta, we could formally write:∫ b

a

f(x) dm(x) =

∫ b

a

f(x)
dm(x)

dx
dx =

∫ b

a

f(x)
∑
i

δ(xi) dx =
∑
i

f(xi) (7.15)

Here, we used that the derivative of the Heaviside function is the Dirac Delta.


