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Cognitive models aim to explain complex human behavior in terms of hypothe-
sized mechanisms of the mind. These mechanisms can be formalized in terms of
mathematical structures containing parameters that are theoretically meaningful.
For example, in the case of perceptual decision making, model parameters might
correspond to theoretical constructs like response bias, evidence quality,
response caution, and the like. Formal cognitive models go beyond verbal
models in that cognitive mechanisms are instantiated in terms of mathematics
and they go beyond statistical models in that cognitive model parameters are
psychologically interpretable. We explore three key elements used to formally
evaluate cognitive models: parameter estimation, model prediction, and model
selection. We compare and contrast traditional approaches with Bayesian statisti-
cal approaches to performing each of these three elements. Traditional
approaches rely on an array of seemingly ad hoc techniques, whereas Bayesian
statistical approaches rely on a single, principled, internally consistent system.
We illustrate the Bayesian statistical approach to evaluating cognitive models
using a running example of the Linear Ballistic Accumulator model of decision
making (Brown and Heathcote 2008). © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Cognitive models aim to explain behavior by pos-
iting mechanisms that underlie perception, mem-

ory, decision making, and other fundamental aspects
of cognition. Formal cognitive models instantiate
these hypothesized mechanisms in terms of mathe-
matics, computations, and simulations, and models
are fitted, evaluated, and compared based on tools
and techniques from statistics. Formal cognitive
models go beyond verbal theories in that they are
precisely defined and make explicit predictions. They
go beyond statistical models that describe patterns of
behavior in that they attempt to explain patterns of
behavior in terms of hypothesized mechanisms of the
mind. While statistical models make parametric
assumptions about observed data, such as linearity

or a particular distributional form, cognitive models
make further assumptions about the underlying cog-
nitive processes hypothesized to cause observed
behavior, allowing differences across stimuli, condi-
tions, groups, or individuals to be quantitatively
characterized (e.g., Ref 1).

Such differences are often reflected in the values
of free parameters in cognitive models. In the case of
decision making, model parameters might describe
the quality of evidence driving the decision process,
how decisions are made more or less cautiously, and
whether decisions are biased or not (e.g., Ref 2). In
the case of object categorization, parameters might
describe attention weights to relevant or irrelevant
features, the relative strength of stored category rep-
resentations, and biases to chose particular categori-
zation responses over others (e.g., Refs 3,4). And in
the case of memory recall, parameters might reflect
how well items are stored in memory, how strongly
stored items are integrated with current context, and
when recall will terminate.5

Given a particular cognitive model and a set of
observed data, a first step is often parameter
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estimation, fitting a model to observed data, estimat-
ing model parameters that maximize the correspon-
dence between model predictions and observed data.
Once parameters are estimated, they might be related
to brain measures,6 used to explain individual
differences,7,8 or characterize psychiatric disorders.9

Best-fitting model parameters can be used to generate
model predictions. Does a model actually provide an
adequate account of observed data and does it gener-
ate novel predictions about yet-unseen data?

Often there are multiple competing models of
any particular aspect of cognition, and researchers
might do model selection based on how well or how
poorly different models account for observed data.
Parameter estimation and model prediction are often
repeated for competing models to determine which
model best explains the data. ‘Best’ usually means a
model that provides the best fit to data with the low-
est model complexity, a formal application of
Occam’s razor.10 This model comparison, which
leads to model selection, might pit a more general
model against a simpler special case of that general
model, or pit one model against a different model
making different mechanistic assumptions, or pit a
mechanistic model against a ‘saturated’ statistical
model to ask whether the mechanistic model leaves
any observed variance unexplained.

This article focuses on these three key elements
of formally testing a cognitive model: parameter esti-
mation, model prediction, and model selection. To
maintain a tight focus, we assume throughout that a
researcher has a formal cognitive model already in
hand, and is ready to fit that model to observed data
and evaluate its quality. There are many interesting
and important aspect of cognitive modeling that we
will not address, such as a discussion of why formal
cognitive models are developed and how they are
used to advance theory (e.g., Refs 11–13), how cog-
nitive models are initially developed or extended
(e.g., Ref 14), a survey different kinds of cognitive
models (e.g., Refs 1,15) and how they have been
applied to particular aspects of cognition (e.g.,
Refs 2,16,17), or how cognitive models can be
applied to neural data (e.g., Ref 18). This article first
describes how parameter estimation, model predic-
tion, and model selection have been traditionally car-
ried out in the cognitive modeling literature.1,11 The
bulk of the article describes how Bayesian statistics
can provide an alternative, coherent, and principled
approach to these elements of modeling.

To be clear, Bayesian principles have made
inroads into cognitive science and cognitive modeling
in two different ways: One way is assuming that the
mind and brain are inherently Bayesian, that human

learning and cognition follow the principles of Bayes-
ian probabilistic inference (e.g., Refs 19–21 but see
Ref 22). Such Bayes-in-the-head models are often
referred to as Bayesian cognitive models. Instead,
here we are using Bayesian statistics not as a princi-
ple to explain cognition, but as a tool to evaluate
models of cognition. Bayesian statistics can be used
to evaluate cognitive models, whether those cognitive
models are themselves Bayesian or not. In fact, while
there are indeed many successful Bayesian cognitive
models, the majority of cognitive models are non-
Bayesian, in the sense that learning and cognition are
not governed by Bayesian probabilistic inference. We
can test quantitatively the adequacy of non-Bayesian
models using Bayesian statistics.

The ideal intended audience for this article is
someone who is familiar with cognitive models and
how those models are traditionally fitted and evalu-
ated, and wants to understand how Bayesian statis-
tics might be used as a tool to do that fitting and
evaluating. This could be because they want to use
Bayesian statistics in their own work or merely want
to better understand how other researchers are using
Bayesian statistics in published articles. Some famil-
iarity with Bayes rule would be beneficial, but we
have tried to craft this article without requiring much
background knowledge of Bayesian statistics.
Because this article reflects the intersection of cogni-
tive modeling and Bayesian statistics, we recommend
readers new to both of these topics to read some of
the more introductory textbooks and articles we ref-
erence (e.g., Refs 1,11) for cognitive modeling, and
(e.g., Refs 23–25) for Bayesian statistics.

TRADITIONAL APPROACHES TO
EVALUATE COGNITIVE MODELS
Traditionally, parameter estimation, model predic-
tion, and model selection in cognitive modeling have
been carried out using various optimization and sta-
tistical techniques, each with their own advantages
and disadvantages.1,11

Estimating best-fitting parameters of a cognitive
model involves finding the values of model parame-
ters that minimize or maximize some objective func-
tion measuring how much the model predictions
mismatch the observed data. The earliest published
modeling work often minimized sum of squared error
or root mean squared error (RMSE), or maximized
correlation (r) between model and data or percent
variance accounted for by the model; while these
objective functions may be fine for linear statistical
and mechanistic models, they are often inappropriate
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for nonlinear models, which is a property of many
cognitive models.

A better approach, used in both nonlinear sta-
tistical modeling and cognitive modeling, is maxi-
mum likelihood estimation (MLE26;). Formally, and
abstractly, the goal is to find the parameter vector, θ,
that maximizes the likelihood of the data, D, given
the parameters, or maximizing p(D|θ); practically
speaking, you will often see work minimizing the
negative of the log likelihood (minimizing the nega-
tive only because many optimization routines are set
up to minimize by default, and taking the log because
calculating likelihoods often involve numerous multi-
plications of small numbers that would lead to
numeric underflow without taking logs). Of course,
MLE assumes that this likelihood exists or can be
approximated, which we will assume to be the case
throughout the rest of this article.

Numerous methods exist for optimizing param-
eters given some objective function. For the majority
of cognitive models, direct application of calculus for
optimization is so unwieldy as to render it largely
impractical. For instance, a model with n parameters
requires n partial derivatives, a solution to a system
of n (often nonlinear) equations, and a series of tests
to rule out local minima. Use of optimization algo-
rithms that require the first or second derivatives can
be somewhat less cumbersome, but they quickly
become tedious to implement, computationally
expensive, and error-prone as dimensionality
increases (but see Ref 27).

So instead, optimization is often done using
techniques such as hill-climbing, such as the well-
known Simplex method;28 Simplex is the default
optimization algorithm in Matlab and Python when
derivative are unspecified or unavailable. Given a
starting point for the hill climb (often many different
starting points are used), maximizing likelihood or
minimizing RMSE yields a point estimate for the
best-fitting parameter vector. This omits any measure
of uncertainty we might want to know in the param-
eter estimate; for example, if we obtain a maximum
likelihood estimate of 1.03 for a given parameter, is
there any chance that the parameter could be 1.04 or
1.02 instead? To obtain estimates of uncertainty,
other procedure must be carried out such as paramet-
ric or nonparametric bootstrap sampling,29 which
gives an estimate of a confidence interval around a
maximum likelihood point estimate.

Best-fitting parameters generated by MLE or
other methods are often then used to generate model
predictions. Especially for models with stochastic ele-
ments, this may involve simulating the model hun-
dreds or thousands of times, aggregating the

predictions in some way, and then comparing predic-
tions against the observed data. Typical of a tradi-
tional approach, and a potential disadvantage as
well, is that these predictions are based on point esti-
mates alone, ignoring any uncertainty of the parame-
ter estimates.

Models are compared quantitatively according
to how well they fit the observed data. But a mere
comparison of quantitative fit, declaring the ‘winner’
as the model with the largest likelihood or with the
smallest RMSE, is nonsensical because doing so does
not take into account the relative complexity or flexi-
bility of the competing models. A more general
model is mathematically guaranteed to fit at least as
well, if not better, than a special case of that general
model. The question is not whether the special case
fits worse—it generally will—but whether it fits sig-
nificantly worse than the more general model. Also
in the case where one model is not a special case of
another model, a model with more free parameters
or with more flexibility in terms of the range of pre-
dictions it can make will undoubtedly fit better than
a model with fewer parameters and greater restric-
tions. The question is not whether the more complex
model fits better—it often will—but whether it fits
better even when that model is appropriately penal-
ized for its greater complexity. Traditional methods
that penalize likelihood measures of fit based on
complexity include the Bayesian Information Crite-
rion (BIC;30) and the Akaike Information Criterion
(AIC;31). While these methods are easy to
implement—they simply involve adding a penalty
term based on the number of free parameters—they
largely ignore other important aspects of model com-
plexity such as the functional form of the model and
the size of space of possible predictions (e.g.,10).

INTRODUCING THE BAYESIAN
STATISTICAL APPROACH
In this article, we outline a cognitive modeling
approach to parameter estimation, model prediction,
and model selection that uses Bayesian Statistics. The
Bayesian approach answers some of the limitations
of the traditional approaches outlined above. Interest
in Bayes has exploded over the past decade or more.
As noted earlier, we do not discuss ideas of how
human cognition might be based on Bayesian princi-
ples.19,20,32 We will also not discuss general aspects
of Bayesian data analysis,23,33 although there are cer-
tainly parallels to what we discuss here. Rather, we
will discuss how the Bayesian approach can be
applied to cognitive models in order to perform
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parameter estimation, model prediction, and model
selection in a manner that is arguably both logically
consistent and principled.34 Therefore, this article is
aimed at readers who are familiar with cognitive
modeling, but are less familiar with how the Bayesian
statistical approach can be applied to parameter esti-
mation, prediction, or model selection in the context
of cognitive modeling.

To state the obvious, Bayesian analysis is based
on Bayes’ rule. For example, we can use Bayes’ rule
to compute the full posterior probability distribution
of the parameters given the data, p(θ|D):

p θjDð Þ = p Djθð Þp θð Þ
p Dð Þ

ð1Þ

The posterior probability of the parameters given the
data is the product of the likelihood, p(D|θ), and the
prior probability of the parameters p(θ), normalized
by the probability of the data, p(D). The likelihood
of the data given the parameters is defined by the
cognitive model in exactly the same way it would be
specified for MLE. The prior distribution reflects a
subjective belief about parameter values before
observing the data.35 These beliefs could be vague in
the form of flat or relatively flat priors, they could be
based on previous data used to estimate the parame-
ters, or they could be based on values of the parame-
ters that are meaningful by some theoretical,
objective, or subjective criterion. Because Bayes’ rule
yields a posterior joint probability distribution of
parameter values, it provides naturally a measure of
parameter uncertainty, and hence an elegant solution
to model prediction that takes into account that
uncertainty. The Bayesian approach also allows a
means for model comparison and model selection
that takes into account model complexity in a natu-
ral, coherent, and comprehensive manner.

While traditional techniques of parameter esti-
mation require a search of parameter space to mini-
mize or maximize some objective function, Bayes’
rule tells us directly the probability of the parameter
values for a model given the observed data—at least
in principle. As we will see, despite its apparent sim-
plicity, even for models with only modest complexity,
Bayes’ rule cannot be solved analytically and requires
computational estimation. One reason for the rela-
tively recent explosion of interest in an idea first sug-
gested in the 1700s,36 and characterized and
formalized mathematically many decades ago, has
been the joint development of computational tech-
niques and the availability of powerful computer
hardware to make Bayesian analysis tractable. As

such, interest in the Bayesian approach to evaluating
cognitive models has grown significantly over the
past few years. Some applications include evaluating
variants of signal detection theory (e.g., Refs 37,38),
multinomial processing trees (e.g., Ref 39), individual
differences (e.g., Refs 7,40–42), decision making
(e.g., Refs 43,44), multidimensional scaling
(e.g., Refs 37,42), choice response time (e.g., Refs
45–48), memory (e.g., Refs 49–52), and joint model-
ing of neural and behavioral data (e.g., Refs 6,53).

What follows is a combination of a review and
tutorial of Bayesian approaches to evaluating cogni-
tive models, with an added aim of pointing the
reader to emerging new developments. We structure
the remainder of the article around the three key ele-
ments of cognitive modeling outlined earlier—
parameter estimation, model prediction, and model
selection. For each, we describe the underlying con-
cepts and mathematics, followed by the computa-
tional techniques used in practice. Throughout, we
use a cognitive model called the Linear Ballistic
Accumulator model (LBA;54) as a running example.
We chose the LBA because it is a general model of
choice response time that can be applied to a wide
variety of tasks; we also recently published a com-
panion paper45 that outlines how to implement the
LBA in a Bayesian statistical language called Stan.27

There are many excellent reviews and text-
books on Bayesian approaches to evaluating cogni-
tive models and Bayesian statistics more generally.
See Lee and Wagenmakers55 for a practical introduc-
tion to Bayesian approaches to cognitive modeling,
Rouder and Lu38 for a more mathematically rich
tutorial, Lee37,56 for illustrative examples of how the
Bayesian framework can be applied to cognitive
models, and Shiffrin et al.57 for a tutorial on Bayes-
ian model selection. For textbooks on Bayesian statis-
tics in general, see, for example, Kruschke23 for the
uninitiated and Gelman et al.25 for the more heroic;
Jackman24 and Lynch58 are texts specifically geared
toward social scientists.

Example: The LBA Model
LBA belongs to a class of models known as sequen-
tial sampling models2 that describes an evidence
accumulation process of decision making over time
and can be used to predict both response probabili-
ties and response times. LBA assumes that after a
stimulus is presented, its representation is perceptu-
ally encoded and compared to some form of knowl-
edge that will drive a decision. The time to complete
this encoding process is given by the parameter τ (this
parameter also includes motor execution time to
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produce an overt response). After encoding, evidence
begins to accrue in independent accumulators that
each correspond to one response alternative, i.
Figure 1 shows an example of LBA with two accu-
mulators, one for Response A and one for Response
B. The rate at which evidence accumulates for
response i is given by its corresponding drift rate, di.
Drift rates are assumed to vary across trials, and are
sampled from a normal distribution with mean vi
and standard deviation s. The starting point of evi-
dence accumulation is also assumed to vary over tri-
als, sampled from a uniform distribution, U(0, a),
where a is the maximum (note that in some articles
that use LBA, the maximum is denoted by an

uppercase A; here we chose to instead use the lower-
case a to ensure no confusion with the response alter-
native A). The evidence accumulation terminates and
a response is made when the first accumulator
reaches its threshold a + k, where k is the relative
threshold.

Compared to other accumulator models that
assume noisy accumulation or lateral inhibition
(e.g., Ref 59), LBA assumes a linear rise to threshold,
which significantly simplifies its mathematical formu-
lation. Brown and Heathcote54 derived the likelihood
function for the LBA. If DA is a vector of observed
(Data) response times for Response A, and DB is a
vector of observed (Data) response times for
Response B, the likelihood for the combined
observed data vector, D, is the product of the two
likelihoods:

p Djθð Þ = p DAjθ
! "

p DBjθ
! "

: ð2Þ

For the full mathematical description of the likeli-
hoods we refer the reader to Brown and Heathcote.54

Bayesian Parameter Estimation
One key difference between traditional and Bayesian
approaches, is that Bayesian statistics treats data as
well as unknown parameters as random variables.
This allows us to write a joint distribution of the
data, D, and the parameter(s), θ:

p D,θð Þ: ð3Þ

We can re-express the joint distribution via the defi-
nition of conditional probability:

p D,θð Þ =p Djθð Þp θð Þ= p θjDð Þp Dð Þ: ð4Þ

Rearranging, we obtain Bayes’ rule:

p θjDð Þ= p Djθð Þp θð Þ
p Dð Þ

=
p Djθð Þp θð ÞÐ

p Djθ0ð Þp θ0ð Þdθ0
, ð5Þ

where p(θ|D) is the posterior distribution, p(D|θ) is
the likelihood function (the same as that found in
MLE), p(θ) is the prior distribution, and p(D) is a
normalization constant, which ensures the posterior
integrates to 1, and is referred to as the marginal like-
lihood, or sometimes as the evidence. Here, the
parameter vector θ’ has a prime within the integral to
make clear that θ’ is different from θ; for simplicity,
from now on, we will drop the superscript on param-
eters appearing within the integral.

Evidence for response A

Stimulus
onset

Time

τ

dA ~ Normal(vA,s)

k

a

Evidence for response B

dB ~ Normal(vA,s)

k

a

FIGURE 1 | The Linear Ballistic Accumulator (LBA) model is an
example of a formal cognitive model that predicts response
probabilities and distributions of response times. LBA can be used to
decompose response time and accuracy into core cognitive
parameters: evidence accumulation, response caution, and perceptual
encoding. LBA assumes that after the stimulus is perceptually encoded
after time τ, evidence toward each response alternative, i,
accumulates with drift rate di. Drift rates across trials are sampled
from normal distributions with mean vi and standard deviation s. In
our examples, we constrain mean drift rate for the Response B
accumulator to be 1 minus mean drift rate for the Response A
accumulator. The starting point of the evidence accumulation process
on each is sampled from a uniform distribution between 0 and a. The
response is determined by the first accumulator to reach
threshold a + k.

WIREs Cognitive Science Bayesian statistical approaches

© 2017 Wiley Per iodica ls , Inc. 5 of 20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110



Note that this form of Bayes’ rule can be
thought of as being implicitly conditioned on a given
model. For example, p(θ|D) under the LBA model
will be different than p(θ|D) under the diffusion
model. To make the model we are working with
explicit, sometimes Bayes’ rule will be written includ-
ing a model notation (ℳ) explicitly:

p θjD,ℳð Þ = p Djθ,ℳð Þp θjℳð Þ
p Djℳð Þ

: ð6Þ

This more complete formulation will be important
later when we discuss model selection. For now, we
will omit the explicit model notation.

Unlike traditional parameter estimation
approaches that result in point estimates, the Bayes-
ian approach results in a full posterior probability
distribution of the parameters. Summary statistics
like the mean, mode,a and standard deviation of a
parameter can be computed, as can the correlations

between parameters to detect potential parameter
trade-offs. One statistic often used to summarize the
amount of uncertainty in a Bayesian parameter esti-
mate is called the 95% Highest Density Interval
(HDI); this is the shortest interval that contains 95%
of the mass of the posterior distribution.60 Smaller
HDIs indicate a posterior distribution with concen-
trated mass over a smaller amount of parameter
space (and thus higher probability) than larger HDIs.
Although many loosely equate the HDI with confi-
dence intervals in traditional methods Q4,61,62 Bayesian
HDIs are not the same thing.53,55

As noted earlier, in addition to specifying the
likelihood of the data given the parameters, p(D|θ),
the Bayesian approach also requires us to specify
priors, p(θ). Broadly speaking, there are two types of
priors: informative and noninformative. An informa-
tive prior represents a strong a priori belief about the
parameter values. These prior beliefs might represent
expert knowledge about the parameters, previous fits
of the model to other data, biological or other con-
straints on possible parameter values, or theoretical
information regarding allowable parameter values. A
noninformative prior represents a similar degree of
belief across all possible parameter values (or a very
wide range of parameter values). For example, if a
parameter can only exist within a bounded range
(not including positive or negative infinity), a useful
noninformative prior might be a uniform distribution
over that bounded range.

How to set priors is hotly debated in the Bayes-
ian literature (e.g., Ref 63). For some, any informa-
tive prior is seen as too subjective, and has been part
of a general critique of Bayesian statistics.64 For
others, an informative prior is viewed as an integral
part of the model, forcing the theorist to formalize
assumptions about model parameters.65,66 In the case
of cognitive psychology, we often have too little prior
information to set informative priors in a way that
would be universally accepted, so we often use non-
informative priors. There is a large body of research
devoted to developing noninformative priors which
can be used as (at least arguably) a reasonable
default.67–69 Figure 2 shows examples of informative
and noninformative priors based on the beta
distributions.

The last part of Bayes’ rule is its denominator
(Eq. (6)), p(D). This marginal likelihood is obtained
by integrating the product of the likelihood and prior
over the entire parameter space. When, as usually is
the case for a cognitive model, θ is a vector of param-
eters, this will be a multivariate integral. For exam-
ple, the simplest version of the LBA posterior
distribution (fixing s for identifiability) expands to:

Prior

6

4

2

0

0.00 0.25 0.50

VA

p(
V

A
)

0.75 1.00

Noninformative

Informative

FIGURE 2 | Prior distributions represent our subjective a priori
beliefs about parameter values. This figure illustrates two different
prior distributions chosen for vA in the LBA model, which in one
common instantiation is constrained to fall between 0 and 1. Both
priors are beta distributions with different shapes (controlled by the
rate parameter α and the shape parameter β of the beta). When
α = β, the beta distribution is mathematically equivalent to the
uniform distribution, depicted in red. This prior is noninformative
because it represents the belief that all values of vA are equally likely.
Depicted in blue is a beta distribution with α = 5 and β = 20 and
represents the prior belief that relatively large values of vA are more
likely than relatively small values. This prior is informative because we
have concentrated a large amount of mass over a relatively small
range of parameter values.
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p v1,v2,a,τ,bjDð Þ

=
p Djv1,v2,a,τ,kð Þp v1,v2,a,τ,kð Þ

Ð b
v1

Ð b
v2

Ð b
a

Ð b
τ

Ð b
b p Djv1,v2,a,τ,kð Þp v1,v2,a,τ,kð Þdv1 dv2 dadτ dk

:

ð7Þ

This is LBA applied to a single subject and a single
experimental condition. Multiple conditions manipu-
lating difficulty, bias, and speed–accuracy trade-off
will significantly increase the number of model
parameters, and hence significantly increase the com-
plexity of the integral. Fitting a hierarchical model
with many subjects simultaneously will further
increase the number of model parameters and the
complexity of the integral by orders of magnitude.

Multivariate integrals of complex nonlinear
functions (such as likelihoods defined by cognitive
models multiplied by the priors on parameters)
nearly always defy any closed form solution. While
standard numeric integration techniques such quad-
rature exist, they can only be applied to numeric inte-
grals over a handful of variables. These techniques
are impractical for models with dozens or hundreds
of parameters, which are often the case with hierar-
chical cognitive models; in fact it is not hard to reach
a level of complexity that would require longer than
the lifetime of the universe to solve the resulting mul-
tivariate integral using standard numerical methods.

Thankfully, modern computer hardware per-
mits the use of Monte Carlo techniques (e.g., Ref 70).
These allow one to draw random samples, θi, directly
from the posterior, p(θ|D), without having to explic-
itly solve an intractable integral; from these samples,
summaries, and inferences about the underlying
parameter distribution are possible.

Computing the Posterior: Markov Chain
Monte Carlo
Markov Chain Monte Carlo (MCMC)
methods55,70–72 can efficiently sample from high-
dimensional probability density functions. Using ran-
dom numbers to solve (hard) problems in generally
are referred to as Monte Carlo techniques. With a
traditional random number generator—think rand()
or randn() in Matlab—sequential random samples
(random numbers) are statistically independent of
one another.b In MCMC, sequential samples are not
statistically independent, but depend on the previous
sample. Such dependency makes the process Markov.
The sequence of such random numbers forms the
chain in Markov Chain.

Perhaps the first MCMC method was the
Metropolis algorithm.73 In its simplest form, for the
case of a single parameter, it begins by picking a

random initial value of the chain, θ0. Each step of the
chain represents the next (potential) random sample
from the probability density function. On each step
i of the chain, a proposed random sample, θ*, is gen-
erated by adding random noise (often from a zero-
centered normal distribution), ϵi, to the previous ran-
dom sample, θi − 1. The proposed sample, θ*, is
always accepted if it has a higher probability density
than that of the previous sample, θi − 1. If the pro-
posed sample has a lower probability density than
the previous sample, then the proposed sampled is
accepted probabilistically, with an acceptance proba-
bility equal to the ratio of the probability density of
the proposed sample versus the probability density of
the previous sample.

The Metropolis algorithm is completely generic
and can be applied to any probability density func-
tion. For the case of sampling from posterior proba-
bilities in a Bayesian analysis, we can formalize the
probability of acceptance of the next random sample
in the chain as:

p acceptð Þ = min 1,
p θ*jDð Þ
p θi−1jDð Þ

$ %
: ð8Þ

If the sample is accepted then θi = θ*, otherwise θi =
θi − 1. The chain of θi values represents random sam-
ples drawn from p(θ| D). Those random samples
from the posterior can be used to calculate quantities
like the mean, MAP, or HDI of parameter θ. As
noted earlier, being a chain of samples, one random
number is not independent of the previous random
number, unlike standard, non-MCMC, random num-
ber generators; such autocorrelation is not always an
issue in practice, but techniques like thinning,
whereby only every 10th or 50th or 100th sample in
the chain are kept as true samples, are
sometimes used.

At first blush, it appears as if we have done
nothing to make the problem any more tractable.
After all, calculating the posterior distributions still
requires calculating an integral in the denominator of
Bayes’ rule. But note that the denominator is the
same whether calculating p(θ*| D) or calculating p
(θi − 1| D). Those two denominators cancel each other
in the ratio. Therefore, the acceptance formula sim-
plifies to:

p acceptð Þ= min 1,
p Djθ*ð Þp θ*ð Þ

p Djθi−1ð Þp θi−1ð Þ

$ %
, ð9Þ

with the integrals eliminated entirely. This is form of
the Metropolis acceptance ratio most commonly seen
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in the literature. Here we have illustrated the algo-
rithm assuming a single model parameter, but the
method can be extended to posteriors on many
parameters. This makes an intractable problem trac-
table, albeit at the computational cost of calculating
long chains of sampled random numbers (or sampled
vectors of random numbers in the case of multidi-
mensional posteriors).

The Metropolis algorithm was later generalized
to arbitrary proposal distributions, including those
that are asymmetric, in the Metropolis–Hastings
algorithm;74 asymmetric proposal distributions are
more efficient, for example, in the case of parameters
defined within bounded regions. MCMC was further
extended with the development of the Gibbs
sampler,75,76 a special case of Metropolis–Hastings
where the acceptance probability is always 1, where
proposals are drawn from the full conditional distri-
butions for each parameter one at a time.70 In
MCMC, it is valid to take Gibbs steps on some
parameters and Metropolis steps on others as in the
Metropolis-within-Gibbs Sampler.77 While some
modelers program their own MCMC algorithms by
hand, there are a variety of software toolboxes that
function as black box inference engines performing
‘automatic Bayesian inference’ via built-in
Metropolis–Hastings, Gibbs, and other samplers.
These include WinBUGS,78 JAGS,79 and Stan27 with
its advanced MCMC algorithm based on Hamilto-
nian Monte Carlo.80 These toolboxes only require
the user to specify the model (statistical or cognitive)
in a probabilistic programming language and then let
an automated inference engine generate samples from
the posterior distribution.

These toolkits have many built-in probability dis-
tributions that make programming Bayesian statistical
models fairly straightforward. However, cognitive
models, such as LBA, require specialized likelihood
functions that are not pre-packaged with any toolbox.
For many, if not most, cognitive models, it is necessary
to implement custom probability distributions. Win-
BUGS and JAGS allow this, but require relatively low-
level programming in C++81; Stan allows this within
the same Stan programming language directly.45

LBA Example
Here we illustrate component-wise Metropolis with
the LBA model, in a simple example assuming data
from a single subject in a single condition. The
MCMC chain begins by initializing model parame-
ters: v0A,v

0
B,s

0,τ0,b0, with a fixed at 1 for identifiabil-
ity.82 On each step i of a chain of length N, i = {1,…,
N}, we do a Metropolis step for each parameter of

the model in random order. For each parameter, ran-
dom noise (here normally distributed with mean zero
and a small standard deviation of .05) is added to
the previous sample to produce a proposed sample.
The variance of the proposal distribution was found
after some experimentation by running the chain for
a short time and observing whether the chain was
efficiently exploring the parameter space.

To give a concrete example of how the algo-
rithm works, suppose we update vA first:

v*A = vi−1A + ϵivA ð10Þ

The probability of accepting v*A is given by:

p acceptð Þ = min 1,
p Djv*A,θ

0! "
p v*A
! "

p Djvi−1A ,θ0
! "

p vi−1A

! "
 !

, ð11Þ

where θ’ contains all the most recently updated
parameters except for vA (not shown in the prior cal-
culation because these terms cancel out due to an
assumption of independent priors for different
parameters); in this case, θ’ = v0B,s

0,τ0,b0
! "

. If the
proposal is accepted, we set viA = v*A, otherwise
viA = vi−1A . We repeat for all parameters of the model
to constitute a single MCMC step. We continue sam-
pling, creating an MCMC of length N or until the
algorithm converges on the full posterior distribution
by some criterion (for best practices on diagnosing
MCMC chain convergence, e.g., Ref 25).

Figure 3 shows an example of an MCMC chain
and the resulting samples for two of the five LBA
parameters; while we plot only two variables, all five
parameters are sampled. Panel (a) shows that the
chain stepped toward a higher value of τ and a
slightly lower value of vA. Panel (b) shows the distri-
bution of samples that were obtained after letting the
chain run for 3000 iterations and discarding the first
100 samples as burn-in; ‘burn-in’ represents samples
at the beginning of the MCMC chain that may not
be representative of the posterior distribution because
they are sampled from an extremely low density
region and simply reflect the initialization point for a
chain. Panel (c) shows the individual chain for vA
over the course of the iterations and these samples
are plotted as a histogram in Panel (d); panels (e) and
(f ) show the same for τ.

These Bayesian approaches require a mathe-
matically specified likelihood function, p(D|θ), for
the cognitive model. Unfortunately, predictions from
many interesting and important models in cognitive
psychology are based on computer simulation, they

Advanced Review wires.wiley.com/cogsci

8 of 20 © 2017 Wiley Per iodica ls , Inc.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110



are not defined by an explicit closed-form likelihood
function. Traditionally, such models are fitted by
simulating the model thousands of times for a given
set of parameters, computing the discrepancy
between model predictions and observed data,
adjusting the parameters to minimize or maximize
some objective function by hill-climbing or some
other optimization technique. Fortunately, new
methods are being proposed to allow Bayesian
approaches to be applied to simulation-based cogni-
tive models without any explicitly specified likelihood
function (e.g., Refs 83–87).

BAYESIAN MODEL PREDICTION
Once a cognitive model’s parameters have been esti-
mated, a common next step is to generate model pre-
dictions and compare those qualitatively and
quantitatively with observed data. In a traditional

modeling approach, one obtains a point estimate of
the parameters, θ̂, that maximize likelihood or mini-
mize RMSE, and then uses that point estimate to gen-
erate model predictions.

Bayesian prediction is different because Bayes-
ian analysis produces a full joint posterior distribu-
tion of parameter values, p(θ|D). So cognitive model
predictions should be based on that full parameter
distribution, not a point estimate. The probability of
a prediction, D̂, is conditionalized on the model
parameters, θ, which in turn are conditionalized on
the observed data, D. By the law of total probability,
we can characterize model prediction as:

p D̂jD
& '

=
ð
p D̂jθ
& '

p θjDð Þdθ: ð12Þ

This is known as the posterior predictive distribution.
Consider an extreme case where the posterior, p(θ|
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FIGURE 3 | (a) The path of the Markov chain for τ and vA. The chain begins in low density region around τ = .2 and vA = .2 and quickly
moves to a higher density region as per the Metropolis acceptance probability ratio. (b) (below (a)) The resulting samples drawn from the joint
posterior distribution of τ and vA, excluding the first 100 samples as burn-in. (c) The path the chain took over the marginal distribution for vA at
each iteration of the algorithm. The resulting marginal distribution is plotted below in (d). The path of the chain over the marginal distribution of τ
and the resulting samples are shown in (e) and (f ), respectively.
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D), had all of its mass at a single point rather than a
distribution; after observing the data, only a single
vector of parameters, θ̂, is possible. In that case, the
posterior predictive would reduce to the likelihood,

p D̂j θ̂
& '

. For all other cases, the posterior predictive

distribution is effectively a weighted average of the

likelihood, p D̂jθ
& '

, with weights determined by the

posterior, p(θ|D).

COMPUTING THE POSTERIOR
PREDICTIVE
On the surface, calculating the posterior predictive in
Eq. (13) looks daunting. After all, it requires solving
a multivariate integral, which could well be com-
posed of hundreds or thousands of variables for a
complex hierarchical model. But it turns out this is a
fairly straightforward because a commonly used
Monte Carlo integration technique can be applied.
Since this technique might not be familiar to all
readers, we provide a brief introduction.

Consider first the definition of expected value:

E x½ $ =
ð
xp xð Þdx≈ 1

N

XN

i = 1

xi, ð13Þ

where p(x) is the probability of x. This can be gener-
alized to the expected value of a function g applied
to x as:

E g xð Þ½ $ =
ð
g xð Þp xð Þdx≈ 1

N

XN

i = 1

g xið Þ: ð14Þ

The expected value is, as the name suggests, the long-
run, expected theoretical mean for random variables
x having probability p(x), whereas the average is the
empirical mean of observed data points xi that have
been sampled from p(x).

Monte Carlo integration turns these formulae
on their heads. Imagine instead of trying to estimate
the theoretical mean or the empirical mean per the
definition of expected value, you are trying to solve
an integral. Suppose you need to solve an integral
that has the functional form of Eqs. (13) or (14),
where p(x) happens to be in the form of a probability
density function from which samples can be gener-
ated. This integral can be approximated by drawing
samples xi from p(x) and averaging all the xi
(Eq. (13)) or averaging all the g(xi) (Eq. (14)). By this
Monte Carlo method, integrals that could be difficult
or impossible to solve analytically are approximated
computationally by sampling lots of random
numbers.

In the present case,

ð
p D̂jθ
& '

p θjDð Þdθ≈ 1
N

XN

i = 1

p D̂jθi
& '

ð15Þ

where θi is randomly sampled from p(θ|D). This is a
form of Eq. (14). How do we generate those random
samples? Well, p(θ|D) is produced by the MCMC
procedures described in the previous section, which
in fact instantiates a random number generator for p
(θ|D).

To generate predictions, we can simply simulate
data from the model given each posterior sample, θi,
of the Markov chain and take the average. Figure 4
shows the histogram of response time data to which
the LBA model was fit. Black lines plot a subset of

the distributions, p D̂jθi
& '

, and the red line plots the

posterior predictive distribution, p D̂jD
& '

. The vari-

ability across p D̂jθi
& '

is reflective of the uncertainty

associated with the parameters in the model. The
posterior predictive distribution takes into account
all of this uncertainty by averaging over all possible

p D̂jθi
& '

. The posterior predictive distribution can
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FIGURE 4 | Shows the predictive distribution for each of several
posterior samples (black lines) and the overall posterior predictive
distribution (red line) plotted against the response time distribution
simulated from the LBA (histogram bars).
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then be plotted over the relative frequency distribu-
tion given by the observed data to perform a poste-
rior predictive check. If the predictive distribution
aligns with the empirical distribution, then we can
make a qualitative judgment as to whether the model
adequately accounts for the data.

It is often the case that there are visual discrep-
ancies between the observed data and the model pre-
dictions. Sometimes these discrepancies may be large
enough to warrant rejection of the model. What is
‘large enough’? Sometimes it may be visually obvious
when to reject the model and start over and other
times it is not. One way to quantify these discrepan-
cies is to construct a so-called discrepancy function
between the observed and predicted data, denoted

T D̂,D
& '

. The discrepancy function measures how

different the predicted values are from the observed.
Using the same discrepancy function, one then mea-
sures the difference between the predictions, D̂, and

replications of the predictions D̂rep with T D̂,D̂rep

& '
.

The probability that T D̂,D̂rep

& '
is less than

T D̂,D
& '

is referred to as the Bayesian p value.88,89

The outcome of the Bayesian p value heavily relies
on the choice of the discrepancy function, which is
largely an arbitrary choice.90 While this is problem-
atic for the Bayesian p value, it might serve as a more
objective alternative to a visual posterior predictive
check.

BAYESIAN MODEL SELECTION
Often, there are several competing cognitive models
that the researcher would like to contrast, picking
the model that ‘best’ explains the observed data. In a
sense, while in parameter estimation we are inter-
ested in the probabilities of parameter values given
data, in model selection we are interested in probabil-
ities of models given data. In both the traditional and
Bayesian approaches, to determine the ‘best’ fitting
model, a trade-off must be made between overall
goodness-of-fit and model complexity.91

As noted earlier, one traditional approach to
model selection among non-nested models involves
computing the maximum likelihood and then penal-
izing the model based on its number of parameters.
The AIC31 and the BIC30 are both based on this type
of rule. The BIC is given by:

BIC = −2lnp Dj θ̂
& '

+ k ln nð Þ, ð16Þ

where k is the number of parameters in the model
and n is the number of data points (the AIC penalty
term is similarly additive, but only involves 2k).
These approaches are computationally simple to
implement, but they ignore both parameter uncer-
tainty and the functional forms of the models
(e.g., Ref 10).

By contrast, the Bayesian framework promises
to provide a principled—if computationally more
challenging—approach to select among competing
models while taking into account both parameter
uncertainty and the functional form of the model.
Bayesian model selection can be thought of as weigh-
ing the evidence provided by the data in favor of
alternative models.67 In Bayesian terms, we are inter-
ested in the probability of model k, ℳk, given data,
D. That probability can be found by a simple appli-
cation of Bayes’ rule:

p ℳkjDð Þ = p Djℳkð Þp ℳkð Þ
PM

j =1p Djℳj
! "

p ℳj
! " : ð17Þ

where p(ℳk) is the prior probability of model k, p
(D|ℳk) is the marginal likelihood for model k, and
the sum in the denominator is a normalizing constant
over all M possible models under consideration.

In the case of comparing two models, ℳ1 and
ℳ2, we consider the ratio of the posterior
probabilities:

p ℳ1jDð Þ
p ℳ2jDð Þ

=
p Djℳ1ð Þp ℳ1ð Þ

PM
j = 1p Djℳj

! "
p ℳj
! "=

p Djℳ2ð Þp ℳ2ð Þ
PM

j = 1p Djℳj
! "

p ℳj
! " :

ð18Þ

The normalizing constants in the denominators drop
out and we can rewrite the posterior odds as:

p ℳ1jDð Þ
p ℳ2jDð Þ

=
p Djℳ1ð Þ
p Djℳ2ð Þ

p ℳ1ð Þ
p ℳ2ð Þ

: ð19Þ

The transformation from prior to posterior odds is
determined by the ratio of the marginal likelihoods
for each model. This transformation is the weight of
the evidence provided by the data and is called the
Bayes Factor,10,92–94 denoted B12:

B12 =
p Djℳ1ð Þ
p Djℳ2ð Þ

: ð20Þ

Note that the Bayes factor does not depend on the
prior odds of the models. Arguably, this is convenient
because there might be disagreement among theorists
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as to the prior probability of the alternative models. If
it is principled, one could set the prior odds to give
each model equal footing.95–97 In that case, the p(ℳk)
terms in Eq. (19) cancel out, and the posterior odds
equal the Bayes factor. As a rule of thumb, a B12

greater than 3 is generally considered to be positive
evidence for Model 1, while a B12 greater than 10 is
generally considered to be strong evidence for Model
1 (e.g., Ref 93). Of course, reciprocals of these Bayes
factors provide corresponding levels of evidence for
Model 2; indeed, one of the great strengths of Bayes-
ian statistics in general is that it lets us evaluate both
sides a comparison, not just one.

While simple to write out, how do we calculate
p(D|ℳk)? Recall from earlier that we can rewrite
Bayes’ rule for parameter estimation in a form that
makes the assumed model, ℳ, explicit:

p θjD,ℳð Þ = p Djθ,ℳð Þp θjℳð Þ
p Djℳð Þ

: ð21Þ

Now it is the marginal likelihood in the denominator,
p(D|ℳ), that is the focus of attention. But recall that
we needed the development of MCMC techniques
because the marginal likelihood is nearly always
impossible to solve analytically and very difficult to
estimate computationally. The marginal likelihoods,
p(D|ℳk), integrate over the entire parameter space.
While computationally challenging to estimate, the
marginal likelihood takes into account both uncer-
tainty associated with the parameters and the func-
tional form of the model, providing a natural and
principled penalty for model complexity.

Computing the Bayes Factor
As previously shown, the marginal likelihood is
obtained by integrating over the parameters:

p Djℳð Þ=
ð
p Djθ,ℳð Þp θjℳð Þdθ: ð22Þ

So the computation of the Bayes factor can be writ-
ten as:

B12 =
Ð
p Djθ,ℳ1ð Þp θjℳ1ð ÞdθÐ
p Djθ,ℳ2ð Þp θjℳ2ð Þdθ

ð23Þ

These integrals are intractable for complex models
with many parameters; standard numerical methods
for solving integrals may work for models with rela-
tively few parameters, but are not scalable to com-
plex nonlinear models with many parameters. What
about the Monte Carlo method we discussed earlier

for Bayesian prediction? Well, if we sample random
numbers from the prior, it is theoretically possible to
estimate marginal likelihoods thus:

ð
p Djθð Þp θð Þdθ≈ 1

N

XN

i = 1

p Djθið Þ, ð24Þ

where θi represent random samples from the prior.
Unfortunately, estimating marginal likelihood this
way turns out to be so highly inefficient as to be ren-
dered impractical; this is in part because priors are
often relatively flat, covering jointly a huge expanse
of possible parameter space.93

That said, recent advancements in specialized
computer hardware, referred to as graphical proces-
sing units (GPUs), have begun to make this task more
feasible for some models.98 GPUs were originally
designed for the efficient control of computer
graphics. Unlike CPUs, which process a single
instruction at a time, GPUs implement massively par-
allel architectures and are now applied to range of
scientific computing problems (e.g., Ref 99). The
Monte Carlo marginal likelihood estimator in
Eq. (24) is a perfect example of such a problem, in
which the sampling procedure and likelihood compu-
tation can both be parallelized on a GPU. Evans and
Brown,98 using the LBA as an example, showed that
a GPU can produce a marginal likelihood estimate
containing 100,000,000 samples in mere minutes.
For a typical CPU (around 2 GHz, circa 2017), that
same computation might take a couple of days.
Although the GPU method is promising, it is
unknown whether it reasonably scales with increases
in the dimensionality of the model. Evans and Brown
showed the marginal likelihood estimates were highly
variable for moderately sized models with multiple
subjects. The GPU method also requires specialized
hardware, which might be prohibitively expensive
for some. However, there are other methods avail-
able that provide ways of estimating the Bayes factor
with standard CPUs (for a tutorial, see Ref 100).

Nested Model Comparison
Model comparison can be broadly classified into
nested model comparison and non-nested model
comparison. In nested model comparison, the two
models being compared have the same parameters,
but restriction is placed on the parameters of one of
the models. For example, we might want to compare
a model in which a particular parameter θ is equal to
some specific value θ1 (e.g., in a model where θ acts
additively, the specific value might be θ1 = 0, and in
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a model where θ acts multiplicatively, the specific
value might be θ1 = 1) versus a model in which the
parameter θ is allowed to vary freely. For this nested
model situation, we can estimate the Bayes factor by
simply computing the ratio of the density of the pos-
terior and prior at θ1. This is known as the Savage–
Dickey Ratio Test.101

Consider two models, one nested within the
other, where a restriction is placed on one of the
parameters in one of the models, θ = θ1. We refer to
the restricted model as ℳR and the full model as ℳF.
It can be shown (e.g., Ref 102) that the Bayes factor
is the ratio of the posterior density at θ1 and the prior
density at θ1:

BRF =
p DjℳRð Þ
p DjℳFð Þ

=
p θ = θ1jDð Þ
p θ = θ1ð Þ

: ð25Þ

This entails that the Bayes factor can be computed by
sampling from the posterior as is done via MCMC
and determining the density at the desired point, here
θ1. Values of BRF greater than 1 indicate evidence for
the restricted model, while values less than 1 indicates
evidence for the full model, with strength of evidence
given by the size of those ratios.

As an example, consider a perceptual decision
task with two conditions in which the discriminabil-
ity of the target stimulus was manipulated. The
hypothesis is that drift rate should vary across condi-
tions. Let vL and vH denote the drift rate for correct
responses for the condition in which discriminability
is low and high, respectively. To test the hypothesis,
we must determine whether the difference between vL
and vH is equal to zero. One way to test this via the
Savage–Dickey ratio would be to determine the fol-
lowing quantity:

BRF =
p vH −vL = 0jDð Þ
p vH −vL = 0ð Þ

: ð26Þ

Values greater than 1 would indicate evidence for the
restricted model in which vL equals vH, while evi-
dence less than 1 indicates evidence for the full model
in which vL and vH are free to vary. Visually, the
numerator is the height of the marginal posterior dis-
tribution p(vH − vL = 0|D) when vL equals vH and
the denominator is the height of the prior when vL
equals vH. Figure 5 shows a graphical example of
what a Savage–Dickey test might look like after
obtaining MCMC samples. The dotted line shows
the density of the prior distribution p(vH − vL). The
black points show the height of the posterior and
prior when vH − vL = 0. The ratio of these heights is
equal to BRF. In this example, the height of the mar-
ginal posterior at zero is p(vH − vL = 0|D) ≈ .002.
For the prior, the density is roughly p(vH − vL) = .
40. Thus, BRF≈ :002

:40 = :005. This indicates that the
data are roughly 200 times (i.e., 1/.005) more likely
under the full model than they are under the
restricted model. There are several packages in R and
Python that can compute the height of the estimated
density from MCMC samples. In this example, we
use a nonparametric density estimator suggested by
Wagenmakers et al.101

Non-nested Model Comparison
With non-nested model comparison, the models are
completely different with different parameters, so
computational short-cuts like Savage–Dickey are not
available. For example, the LBA and the Leaky Com-
peting Accumulator model59 are both used to model
choice response times, but make different assump-
tions and have different sets of parameters. These
two models are therefore non-nested and if we
wanted to compare their performance using the
Bayes factor we would not be able to use the Savage–
Dickey test.

D
en

si
ty

VH–VL

–2

0.0

0.5

1.0

–1 0 1 2 3

Posterior

Prior

FIGURE 5 | Graphical depiction of the Savage-Dickey ratio test.
The dotted line is the prior placed on the effect size and solid line is
posterior. The black dots represent the height of the prior and
posterior when the effect size is 0. The ratio of these heights is the
Bayes factor, the weight of the evidence. The height of the posterior
at zero is 178 times less than the prior at zero, indicating the data
have decreased our belief in the effect size being zero by a factor
of 178.
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However, there are some general computational
methods that have been devised to compute the mar-
ginal likelihoods for any model (for a review, see Ref
103). Most of these methods are quite complex and we
will not detail them here, and only provide pointers for
interested readers. One class of methods computes an
estimate of the marginal likelihoods via Monte Carlo
sampling. These include importance sampling,104 recip-
rocal importance sampling,105 annealed importance
sampling,106 bridge sampling,107 Chib’s method,108,109

nested sampling,110 and thermodynamic integra-
tion.111,112 The thermodynamic approach has received
significant attention in fields like biology112 and ecology
(e.g., Ref 113) in part because it is a general method
that can be applied to any model with little modifica-
tion to existing model code.

Another class of methods is called transdimen-
sional MCMC, in which the competing models are
placed within one ‘supermodel.’ On each step of the
algorithm, a model index variable indicates one of
the two models. The ratio of the proportion of times
each model is visited equals the Bayes factor. Exam-
ples of transdimensional MCMC algorithms include
reversible-jump MCMC114 and the product space
method.115,116

Lastly, there are information criterion
approaches that are similar to BIC and AIC, but
takes into account the uncertainty in the parameter
estimates by considering the entirety of the MCMC
sample. Examples of such information criteria
include the Bayesian Predictive Information Criterion
(117), the Widely Applicable Bayesian Information
Criterion (WBIC;118,119), the Widely Applicable
Information Criterion (WAIC;120,121), and the Devi-
ance Information Criterion (DIC;122).c

Sensitivity to the Prior
Although the Bayes factor has gained significant trac-
tion in model selection in psychology,10,57,94,123 and
has been applied to model selection problems in a
variety of domains (e.g., Refs 41,124,125), one
potentially contentious issue is the Bayes factor’s sen-
sitivity to the priors on θ.93,96,97 This sensitivity con-
trasts with Bayesian parameter estimation, where any
influence of priors is largely overwhelmed by the like-
lihood given a sufficient amount of data.

In Bayesian model selection, the average predic-
tive performance of the model over the entire param-
eter space is assessed. Any prior that assigns low
weight to high likelihood areas or high weight to low
likelihood areas will penalize the model. And infor-
mative priors that end up in line with the likelihood
will reward a model more so than vague priors or

one with informative priors that are not in line with
the likelihood. Unlike parameter estimation, effects
of the prior are not significantly diminished by hav-
ing large amounts of data. Some argue that subjective
prior belief about parameters should not significantly
affect model selection.

In response, others have argued that priors
placed on model parameters are a vital component of
the theory, and therefore model selection should be
sensitive to the priors.65,97,126 Theoretical develop-
ment could reflect different theoretical assumptions
of the priors on θ and model selection could be per-
formed over these different instantiations. For exam-
ple, Vanpaemel and Lee66 formalized different
assumptions about optimal dimensional attention
weight parameters in the generalized context model
of categorization using different priors (GCM127;);
the Bayes factor was then used select among the
alternatives. The Bayes factor’s sensitivity to the prior
can be seen as advantageous when testing different
theoretical assumptions.

Other times, we do not have strong theoretical
assumptions that we can instantiate in priors. For
example, if we are just beginning to develop a new
model, we usually do not know what sort of parame-
ter values we should expect, or do not have a theory
of how those parameters might be set. In these cases,
we are more concerned about the robustness of the
inference made under a particular prior. To test the
robustness of inference, we can conduct a sensitivity
analysis10,93,128 in which the Bayes factor is com-
puted over a range of different priors. If the Bayes
factor is qualitatively consistent across different prior
settings, then we know that our inferences are robust
under different assumptions about the prior.

CONCLUSION AND SUMMARY
Formal cognitive models describe psychological
mechanisms in terms of mathematical structures. We
contrasted traditional and Bayesian approaches to
cognitive modeling, focusing on issues of parameter
estimation, model prediction, and model selection.
The goal of parameter estimation is to determine
those parameters which provide the best fit of a cog-
nitive model to the data. While traditional
approaches, such as maximum likelihood, treat
parameters as point estimates, the Bayesian approach
quantifies uncertainty about the parameter estimates
in terms of complete probability distributions. The
goal of model prediction is to predict new data based
on what has been observed. While traditional
approaches use point estimate values to predict new
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data, the Bayesian approach takes into account the
uncertainty in the entire posterior distribution to gen-
erate model predictions. Lastly, the goal of model
selection is to select the cognitive model which best
explains the data. Traditional approaches use infor-
mation theoretic measures, such as AIC and BIC, that
do not take into account parameter uncertainty and
function form. The Bayesian approach, based on the
Bayes factor, takes into account the uncertainty over
the entire parameter space and balances complexity
versus fit to accomplish model selection.

An important topic we did not have space to
discuss is Bayesian hierarchical approaches. The
Bayesian approaches we discussed here could be
applied to individual participants i, separately obtain-
ing posterior distributions θijD for each participant.
Although this approach is useful for estimating
parameters at the individual level, we are often inter-
ested in both individual-level and group-level perfor-
mance. We can model both via a conceptually
straightforward extension to the Bayesian approach
that treats unknown parameters at the group level as
random variables as well as those that describe each
individual participant (e.g.,25).

By simultaneously estimating both group and
individual-level parameters, such hierarchical Bayes-
ian methods largely solve the problem of
aggregation,129 which has been a key issue in cogni-
tive modeling for decades (e.g., Ref 130). When fit-
ting a model to data, often data will be aggregated
over trials or subjects depending on whether the
interest lies in group-level or individual-level conclu-
sions. However, the conclusions that one might draw
from a model fitted to aggregated data must be
drawn carefully because models can behave differ-
ently when fit to group and individual data.8,131

Bayesian hierarchical methods have provided a solu-
tion to problems associated with aggregation in a
wide range of different areas including recognition
memory,52 multidimensional scaling,132,133 and cate-
gory learning.7 In addition, hierarchical Bayesian
approaches offer various avenues for cognitive
modeling including modeling multiple tasks within a
single model, assigning subjects to latent classes, and

modeling individual differences (for reviews, see Refs
8,56,129).

While Bayesian approaches to cognitive model-
ing clearly provide advantages over many traditional
approaches, one thing that should be clear from this
review is that Bayesian approaches carry the cost of
being more computationally intensive. We discussed
how MCMC algorithms have allowed Bayesian
models with hundreds or thousands of parameters—
especially in the case of hierarchical models—to be
fitted to data. The Bayesian approach provides a
coherent way to update beliefs in light of data and
offers an extremely flexible framework to fit
individual- and group-level parameters not only in
theory but also in practice.

NOTES
a The mode of the posterior is often called the maximum a
posteriori (MAP) estimate in Bayesian analysis.
b Technically, of course, the pseudo-random number gener-
ators used in nearly all programming environments are
based on a completely deterministic algorithm; they pro-
duce a sequence of random samples that cannot be distin-
guished statistically from those produced by a true random
process.
c While the WBIC requires samples from the posterior
raised to the power of 1/ ln(n), where n is the number of
data points, the WAIC and DIC only require samples from
the posterior and are, therefore, easily computed. The DIC
is known to have problems penalizing the model for com-
plexity, as it is known to sometimes yield a negative esti-
mate for the number of effective parameters in the model.
The WAIC does not suffer from this and has many other
advantages.120 The WAIC is given by:

WAIC=
Xn

i = 1

ln
1
S

XS

s = 1

p Dijθsð Þ

 !

−
Xn

i = 1

VS
s = 1 lnp Dijθsð Þð Þ,

where n is the number of data points, S is the number of
posterior samples, and VS

s= 1 lnp Dijθsð Þð Þ is the sample vari-
ance of the log likelihood of the data point, Di, under all
the posterior samples. The first term acts as the goodness-
of-fit measure, while the second term penalizes the model
for its complexity.
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Graphical abstract

BayesianQ2 statistical approaches to evaluate cognitive models

Q1 Jeffrey Annis1, Thomas J. Palmeri1

Cognitive models aim to explain complex human behavior, such as choice
response time, in terms of hypothesized mechanisms of the mind (e.g.,
response threshold, evidence quality, and perceptual encoding time).

This allows one to perform three
key elements of cognitive

modeling in a coherent manner.

Parameter estimation

Model selection

Prediction

Response time

Evidence

M1

M2

M3

Response threshold A

By casting the model in a bayesian
framework, the data, D, and parameters, θ,

are treated as random variables.

Response threshold B

Time

Stimulus
onset

Encoding

Evidence for response A

Evidence for response B

p(θ  ⃒D) α p(D  ⃒θ)p(θ)

θ

Cognitive models aim to explain complex human behavior such as chance response time, in terms of hypothe-
sized mechanisms of the mind (e.g., response threshold, evidence quality, and perceptual encoding time).
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