

Advanced SI Analysis – Layout Driven Assembly

Fluid Dynamics

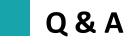
Structural Mechanics

Electromagnetics

Systems and Multiphysics

Tom MacDonald RF/SI Applications Engineer II

As the voracious appetite for technology continually grows, so too does the need for fast turn around times and efficient techniques for characterization. To improve timeliness of turns, ANSYS SI product suite offers new functionality to enhance the user experience with layout driven assembly. By combining HFSS for connectors and HFSS 3D Layout for boards, this methodology allows us to apply current best solving techniques to our problems for optimal turnaround time and accuracy.



Design Pressures

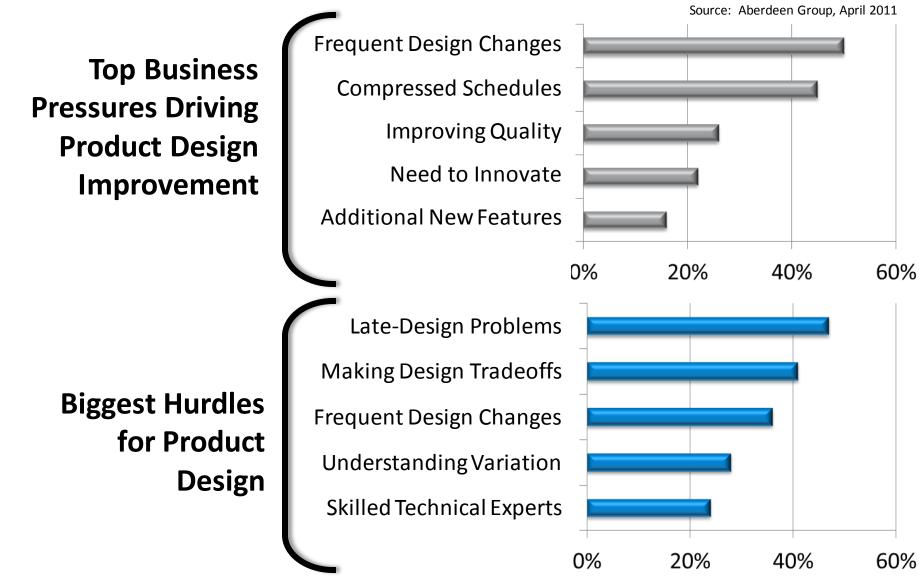
Layout Driven Assembly

Multiphyics Board Analysis

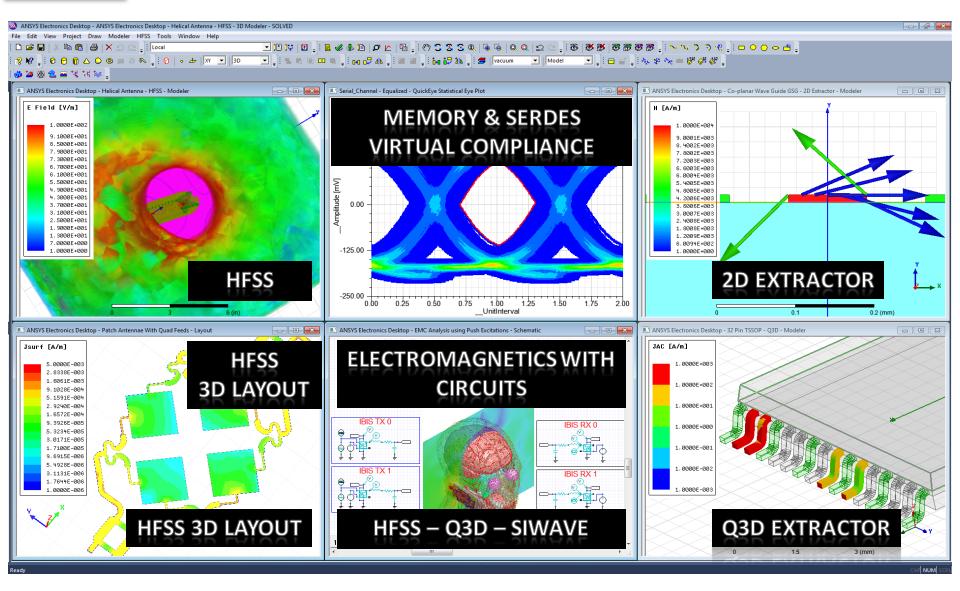
3 © 2016 ANSYS, Inc. April 25, 2016

ANSYS Customer Pressures

Energy Availability Time to Market Product Lifecycle Skilled Labor


Uncertainty

Margin for Error

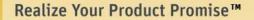

Complexity

Competition Cost Constraints Lawsuits/Warranty Product Innovation Customer Expectations

ANSYS Getting Product Designs Right

ANSYS ANSYS Electronics Desktop




ANSYS HFSS 3D Layout

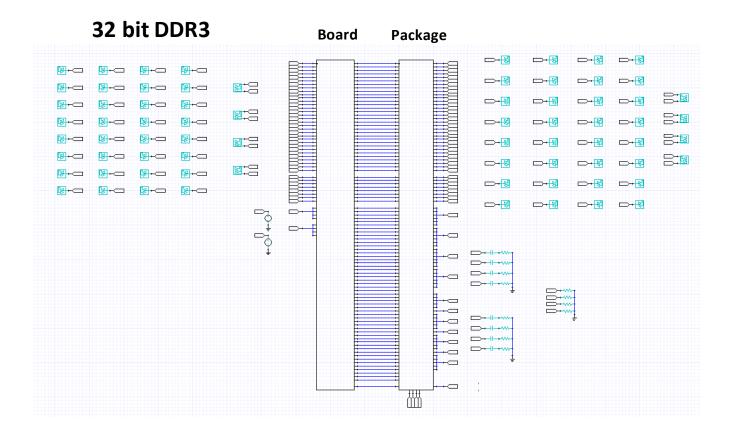
HFSS interface optimized for layout designs

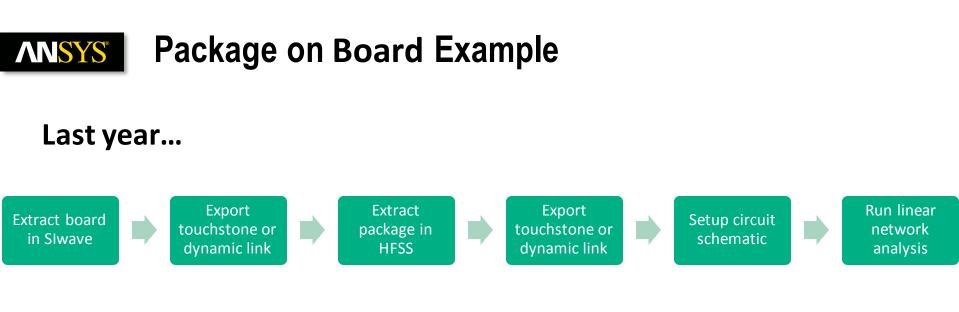
Stackup editor

Trace, pads, vias bond wires, solder bumps and balls Same 3D accuracy of HFSS in automated design flow

Layout Driven Assembly

Fluid Dynamics

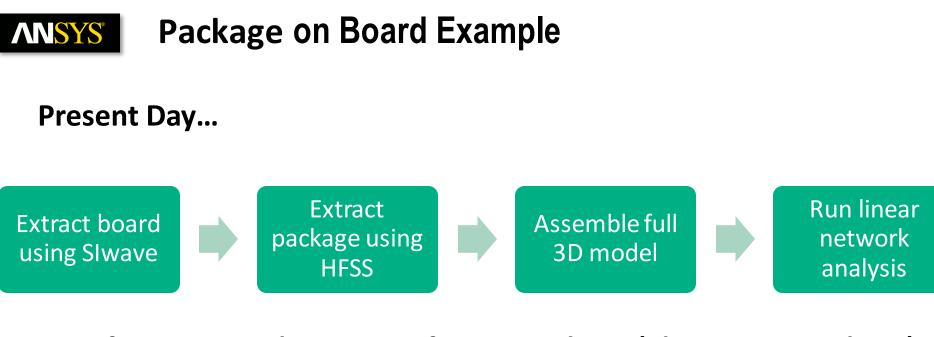

Structural Mechanics


Electromagnetics

Systems and Multiphysics

ANSYS From Schematic Capture to Layout Driven Assembly

The old way of analyzing a package system plus a board



Challenge: requires the use of 2-3 software packages

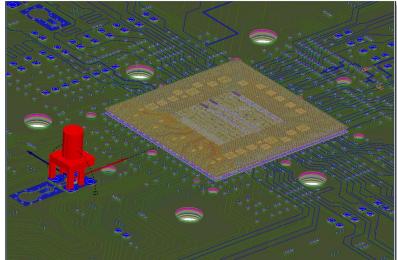
Next step: make a design change

Next step challenges:

- Keep track of touchstone revs
- Making changes to SIwave design (no variables)

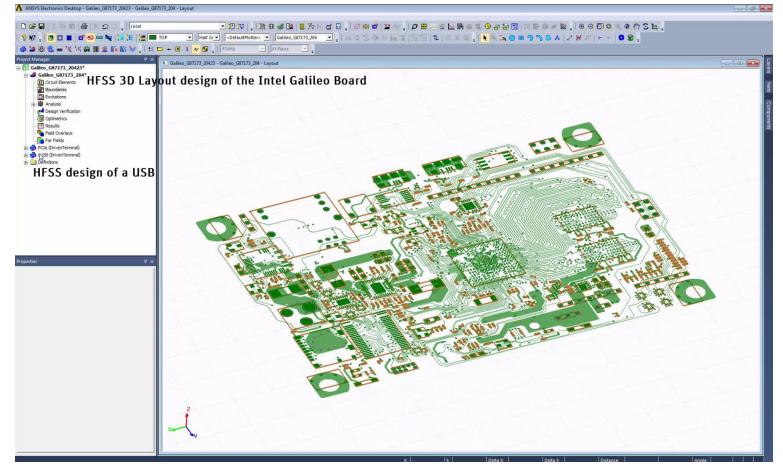
Benefit: requires the use 1 software package (Electronics Desktop)

Next step: make a design change


Benefits:

- No need to keep track of touchstone revs
- Layout interface enables parametric SIwave designs

Layout-Driven Assembly in ANSYS Electronics Desktop


Place and connect components in Layout Simulate components with 3D accuracy

ECAD and MCAD HFSS, Slwave, Q3D

Apply automated circuit simulation to capture full system behavior

Ease-of-use drive 3D simulation for design engineers

ANSYS Layout Driven Assembly

Reducing hands on engineering time

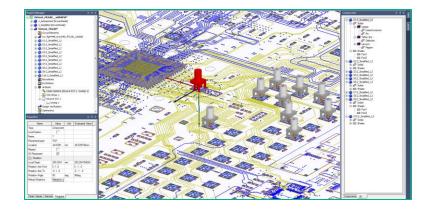
Eliminate error prone system wiring

ANSYS Virtual System Analysis with HFSS & SIwave

- Assemble ECAD & MCAD
- Select appropriate solver
 - HFSS, SIwave or PlanarEM
- Connect TX/RX up within
 Schematic circuit analysis
 - LNA
 - IBIS & IBIS-AMI
 - QuickEye & VerifEye
 - HSPICE*
 - PSPICE**

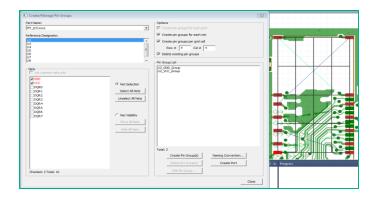
*HSPICE solver requires Synopsys license; Nexxim supports HSPICE syntax

** Uses Nexxim solver with PSPICE syntax


ANSYS 3D Layout: Key Features

- HFSS 3D Dynamic Link in Layout
- 3D Placement and Positioning
- Improved Capacity and Layout Rendering

			Vendor	Series	Part Name	Value
Component I			77	7	7	
art Name:	RES_0201_10.0	<_R0201_11	AVX	0201	02013A0R5	5e-013F
art Type:	Resistor		AVX	0201	02013A100	1e-011F
ef Des:	R608		AVX	0201	02013A120	1.2e-011F
lo. Pins:	2		AVX	0201	02013A150	1.5e-011F
	1		AVX	0201	02013A180	1.8e-011F
Model Info			AVX	0201	02013A1R0	1e-012F
Type:	Library		AVX	0201	02013A1R2	
	Library		AVX	0201	02013A1R5	
		E dit	AVX	0201	02013A1R8	
			AVX	0201	02013A220	2.2e-011F
					ОК	Cance


Slwave technology for large PCBs and packages

- SYZ Solver
- Geometry Checks

Linear Network Analysis for Co-simulation

- LNA Setup and automated Net listing
- Component Models

Realize Your Product Promise™

HFSS 3D Workflow Enhancements

Fluid Dynamics

Structural Mechanics

Electromagnetics

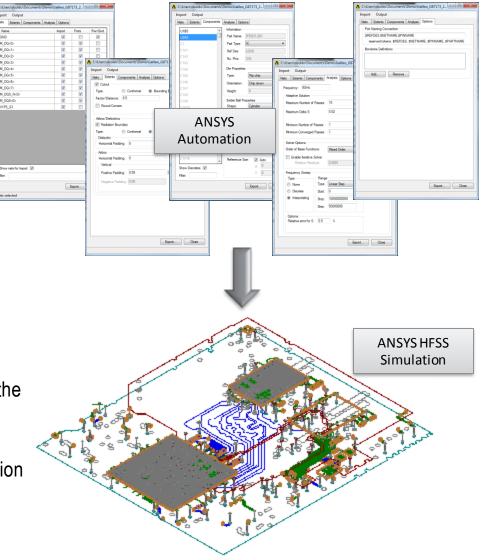
Systems and Multiphysics

• .Net utility written to highlight layout automation


</com

- Can be run with or without GUI
- Starts from .mcm or .brd

Nets Extents Cor	mponents Anal	ysis Options			Import					G\fga4
Name		Import	Ports	Pwr/Gnd	Nets			a Analys	is Options	1
A-MII-RXD0		\checkmark	✓				Component		option in	
A-MII-RXD1			1		Туре		Conf	omal	Boundr	an Bay
A-MII-RXD2			1			r. or/Distanci			. 00010	g bux
A-MII-RXD3			✓							
GND		V		7		Round Corr	iers			
					Airbe	x/Dielectri	cs			
						adiation B				
					x	1	Conf	omal	Boundir	ng Bax
ort Output						ctric				
s Extents Con	nponents An	alysis				tontal Pa	dding: 0			
		formation				x				_
:52	_	Part Name:	EDGA YOU	V FF784 FB	GA'		dding: 0			
53				V_FF704_FD		rtical				
1		Part Type:	IC		•	sitive Pa	dding: 0.0	5		sync sync
113		Ref Des:	U13			gative P	adding: 0.0	5		
1		No. Pins:	718							
2										
3	-0	ie Properties)								
4		Гуре:	Flip chip		•					
5		Drientation:	Chip dow	m ·	- I I					
6		leight:	0							
7		neight.	U							
ets selected									_	
										Export Clo


	Import Output	
	Nets Extents Components Analysis Options	
	Frequency: 10GHz	
	Adaptive Solution	
	Maximum Number of Passes: 10	
	Maximum Delta S: 0.02	
	Minimum Number of Passes: 1	
	Minimum Converged Passes: 1	
	Solver Options	
	Order of Basis Functions: Moved Order -	
	Enable Iterative Solver	
	Relative Residual: 0.0001	
	Frequency Sweep	
	Type Range	
	O None Type: Linear Step ▼	
	Discrete Start: 0	
Tatte://w	**************************************	
ATTRICC.	1.0">	
	ts with specific models> " Type="Resistor" 55 Value="2Sohs" 51 Value="0.1nff" />	
	1505A" Type="Caperitor" SC Value="100mF" SE Value="0.1obm" />	
tors should	d just be set to Other type, which requires setting to "Discrete" here. This allows for ea	ay ports
	**Discrete*/>	
Lett not m	atobing above filters will get whatever values might be present in the Cadence files, if an	y>
	Spir"fales" EnableDefaultComponentValues"fales"/>	

Simulation Democratization

- Time is best spent in design exploration and results analysis
- Unfortunately, a lot of time is spent preparing the model for simulation
- Automation of pre-processing would free up more of the engineer's time for design innovation

Realize Your Product Promise™

Multiphysics Board Analysis

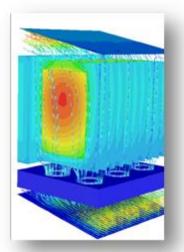
Fluid Dynamics

Structural Mechanics

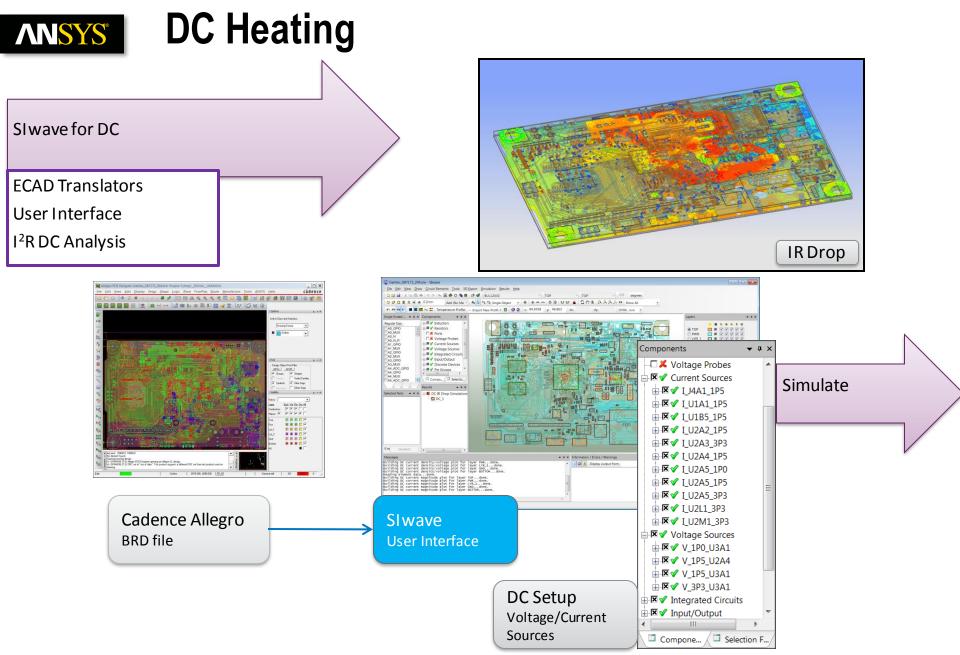
Electromagnetics

Systems and Multiphysics

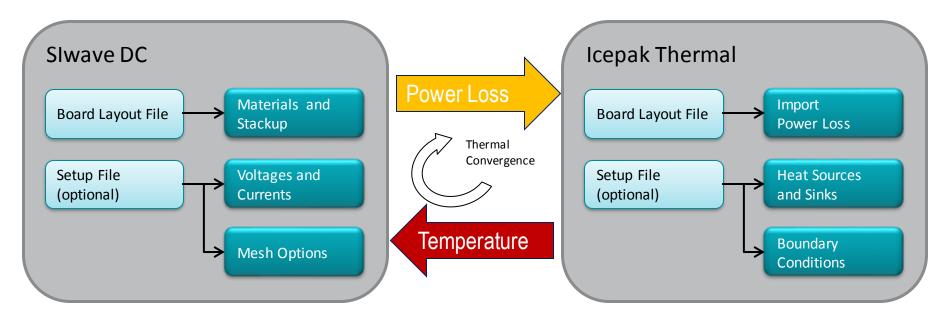
ANSYS ANSYS Icepak

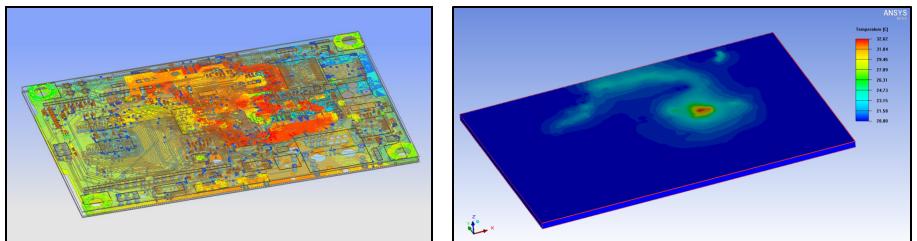

Solver Validated by Experts

ANSYS Icepak uses ANSYS Fluent as the solver engine, which is recognized as the market leader for both speed and accuracy of CFD

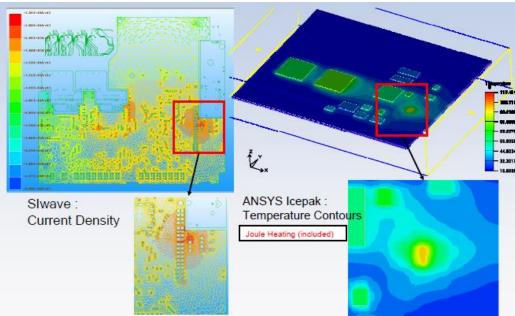

Customized for Thermal Management

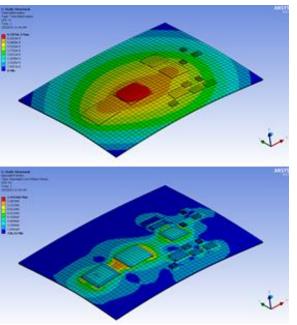
ANSYS Icepak contains a streamlined user interface with "smart objects" to rapidly create models of electronics assemblies


Coupling Electromagnetics, Mechanical & Thermal Simulations


ANSYS Icepak can be connected to ANSYS mechanical or electromagnetic simulation solutions inside the Workbench environments to simulate the complete performance of a product

Two-way coupled Thermal Heating





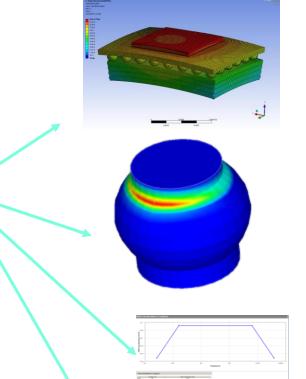
ANSYS ANSYS Solutions for Pkg/PCB

Thermal Management Design Challenges

- Thermal impact to IC
- Electric / Thermal Co-Analysis for PKG/PCB
- Automation of pre-processing would free up more of the engineer's time for design innovation
- Thermal impact for mechanical stress
- Optimization of power, weight, and thermal design requirements
 Electrical / Thermal Co-Simulation
 Thermal / Mechanical Co-Simulation

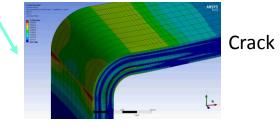

ANSYS Mechanical Reliability

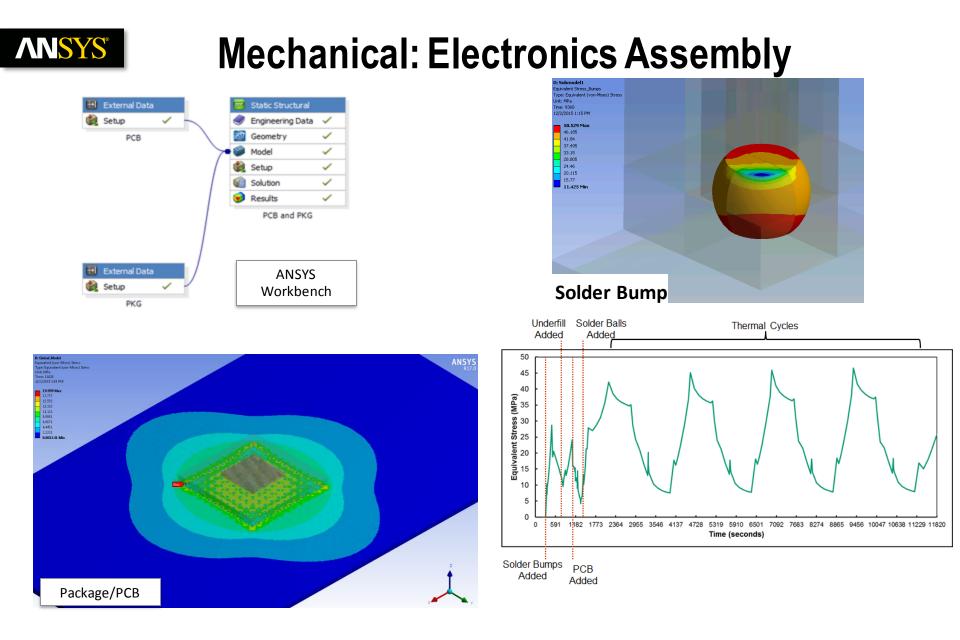
- ANSYS Mechanical can be used to predict stresses and deformation in the package during
 - Flip Chip Attachment
 - Crack Initiation and Crack Growth


ANSYS

Mechanical

- Thermal Cycling
 - Solder Joint Reliability
- Shock Analysis


Layout Tool*

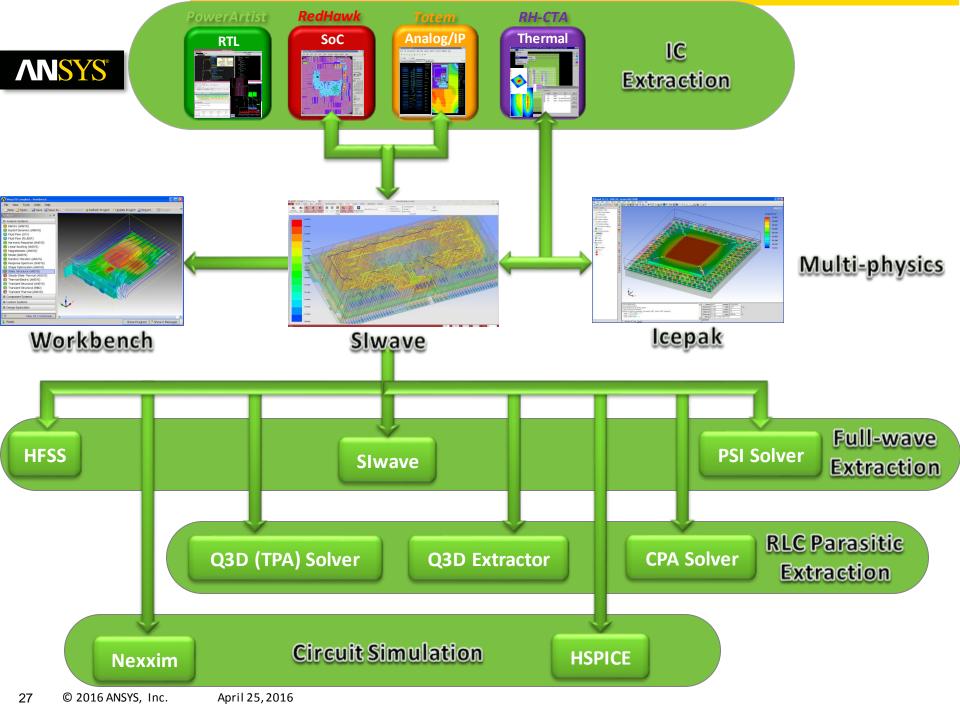


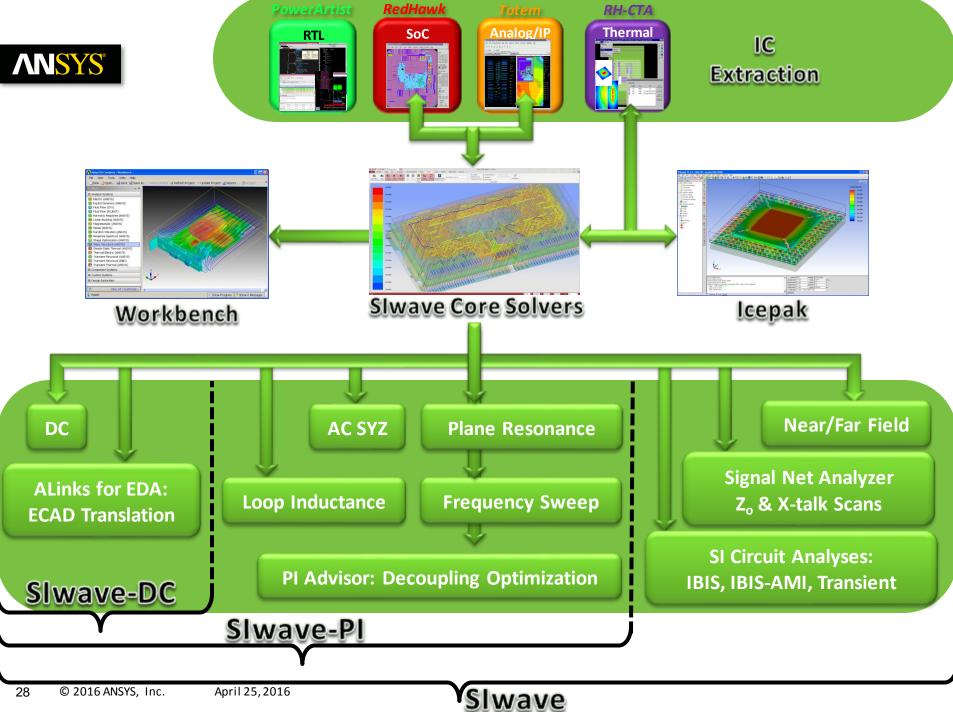
Flip chip Attachment

Solder Joint Reliability

> Shock Analysis

Realize Your Product Promise™

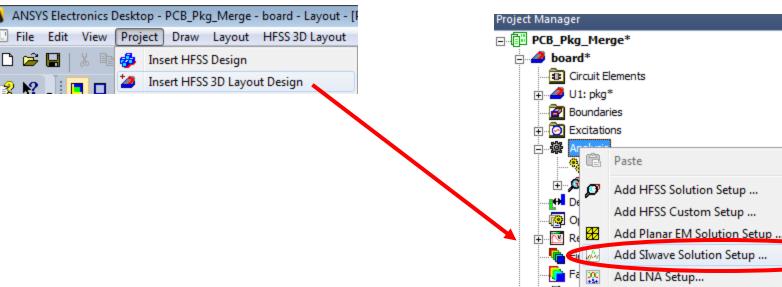

Slwave Workflow Enhancements


Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics


ANSYS Slwave SYZ Solver Integration into AEDT 3D Layout

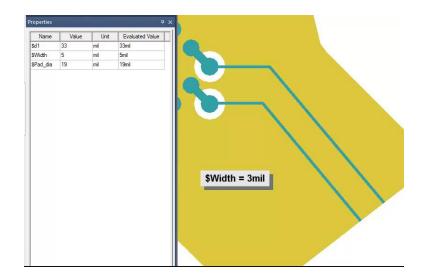
Slwave Solution Setups are now part of ANSYS Electronics Desktop 3D Layout

Enables parametric solves

Enables usage of Electromagnetics RSM

Insert HFSS 3D Layout Design

Add SIwave AC SYZ Solution

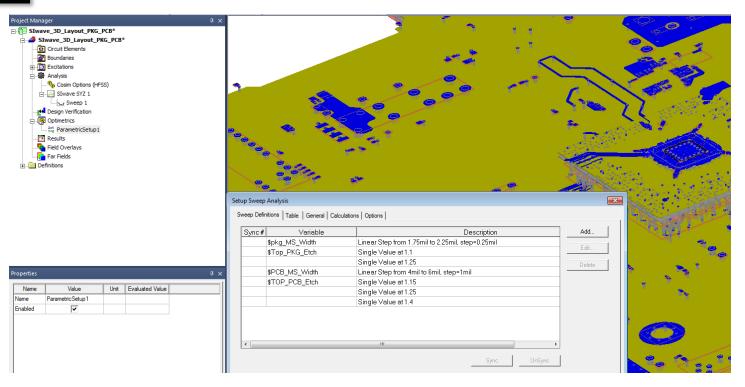

Ctrl+V

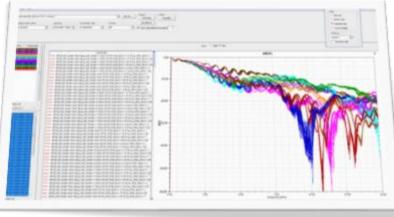
ANSYS Slwave SYZ Solver Integration into AEDT 3D Layout

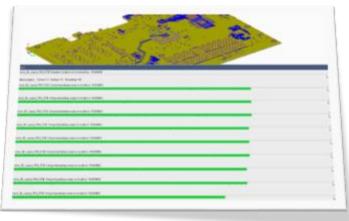
Slwave Solution Setups are now part of ANSYS Electronics Desktop 3D Layout

Enables parametric solves

Enables usage of Electromagnetics RSM so that jobs can be submitted to a cluster

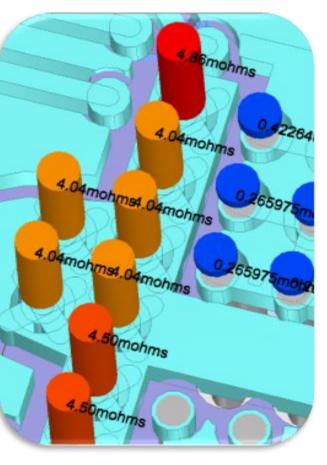

PCB_Pkg_Merge - board - Layout]			
Tools Window Help			
Edit Libraries	۲		0: 🥩 🖋 🕼 🔡 📴 🕂 🖬 🖬
Library Tools	۲		oard 💽 🔤 👍 🚭
Project Tools	۲		Plane
Run Script			
Pause Script			
Record Script To File			
Record Script to Project			
Open Command Window			
Password Manager			
Options	×		General Options
Keyboard Shortcuts		ų	HPC and Analysis Options
Customize			Export Options Files
E. 17.1			

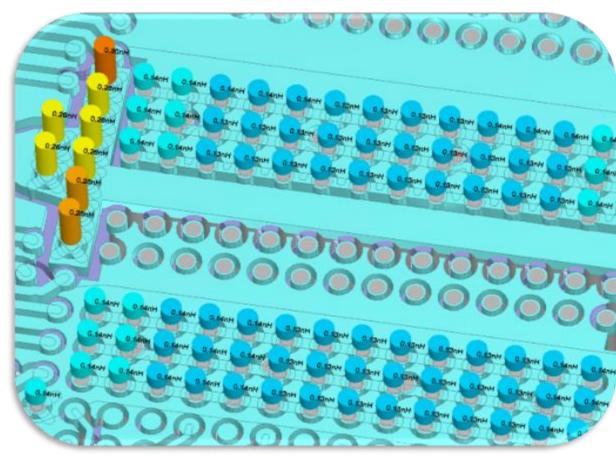

[PCB_Pkg_Merge - board - Layout]	
Tools Window Help	
Edit Libraries Library Tools Project Tools Run Script Pause Script Record Script To File Record Script To File Open Command Window	→ 目 御 父 父 隆 玲 水 → board
Password Manager Options Keyboard Shortcuts Customize External Tools	,
 Show Queued Simulations Edit Active Analysis Configurat Import Array from Table 	ion
Job Management	Select Scheduler
Calibration Wizard Network Data Explorer PEmag	Submit Job Monitor Jobs


HPC and Analysis Options	X	Analysis Configuration
Configurations Options Design Type: 2 HFSS 3D Layout Design Available Configurations:	Configuration Details: Make Active Configuration Name: Local Add Machine List:	Configuration name: Local The local and interactive job configurations (7 Use Automatic Scittings Machines Job Distribution Options Machines for Distributed Analysis Total Enabled Tasks: 12 Total Enabled Cores: 12 Name Tasks Cores RAM Link (10) Enabled Remove
-	Edit	Move som Machine Details:
	OK Cancel	C DNS Name format: www.server.com): C UNC Name (format: \\server): Import Machines from File Add Machine to List

ANSYS[®]

Slwave Parametric Design within AEDT 3D Layout





ANSYS What is Slwave-CPA?

The CPA (Chip-Package-Analysis) solver is a 3D full-wave, FEM based solver for fast and accurate extraction of RLC parasitics.

It is optimized to analyze power and signal nets on packages

ANSYS Slwave-CPA

- Automated .html reporting for partial and loop resistance/inductance
- The CPA solver is capable of producing per bump/ball resolution RLC extracted parasitics
- Visual Bar graph plotting is available for solderball/bump and Pin Groups

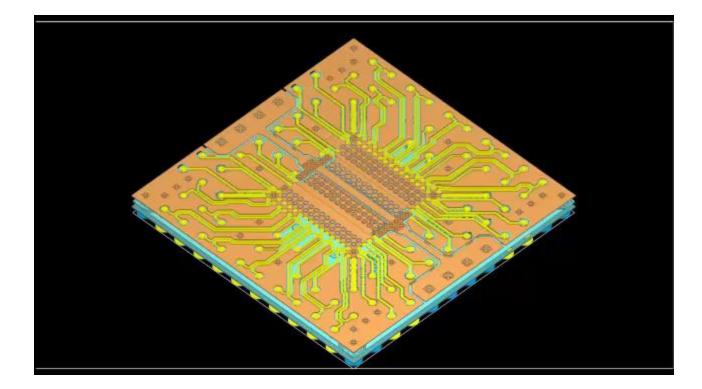
Solver	Net	R (mΩ)	L (nH)	C (pF)	Solve Time (minutes)	Speed Up	RAM (MB)	RAM Reduction
Q3D (TPA)	PDN A	12.3	310.6	24.8	4.51	-	748	-
CPA	PDN A	12.9	312.4	25.8	0.4	11x	210	4x
Q3D (TPA)	PDN B	9.1	224.8	24.8	4.51	-	748	-
CPA	PDN B	9.2	230.7	25.9	0.4	11x	210	4x

Flip-Chip PDN System

Slwave-CPA

Wirebond Package PDN System

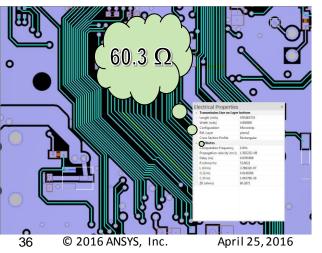
Solver	Net	R (mΩ)	L (pH)	C (pF)	Solve Time (Hours)	Speed Up	RAM (GB)	RAM Reduction
Q3D (TPA)	PDN C	1.58	79.2	128.4	48	-	71	-
CPA	PDN C	1.61	79.9	129.3	0.1	480x	13	5x
Q3D (TPA)	PDN D	0.16	12.6	973.4	48	-	71	-
CPA	PDN D	0.16	12.9	979.3	0.1	480x	13	5x

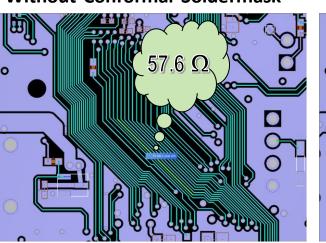

Coupled Microstrip Lines

Solver	Net	R (mΩ)	L (nH)	C (pF)	Solve Time (Minutes)	Speed Up	RAM (MB)	RAM Reduction
NPE	Trace A	386	3.42	1.17	3.0	-	450	_
CPA	Trace A	386	3.22	1.17	1.0	3х	300	3x
NPE	Trace B	386	3.44	1.19	3.0	_	450	_
CPA	Trace B	386	3.30	1.17	1.0	3х	300	3х

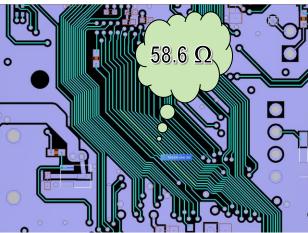
ANSYS Slwave-Q3D (TPA) Improvements

Added DC Adaptive Meshing

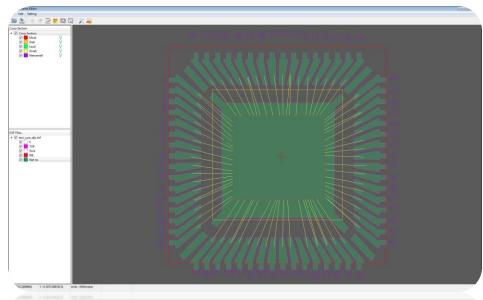

Added the ability to use Pin Groups with Q3D (TPA) solver


ANSYS Slwave Conformal Soldermasks

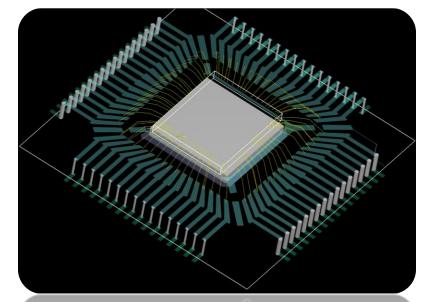
	Color	Name	Туре		🖓 Material	Conductivity (S/m)	猗 Dielectric Fill	Dielectric constant	Loss tangent	Translucency	Elevation (mils)	Roughness (mi
		Top_Conformal_SM	CONFORMAL COAT		SolderMask	0			0.035		64.5	
		top	METAL	1.1	EDB_copper	5.8E+07	SolderMask				63.4	HJ: 0 , HJ:
		Dielectric_1	DIELECTRIC	4	EDB_FR4_epoxy	0			0.02		59.4	
		plane1	METAL	0.65	EDB_copper	5.8E+07	EDB_FR4_epoxy				58.75	HJ: 0 , HJ:
201700000000000000000000000000000000000		Dielectric_2	DIELECTRIC	52	EDB_FR4_epoxy	0			0.02		6.75	
15115		plane2	METAL	0.65	EDB_copper	5.8E+07	EDB_FR4_epoxy			0	6.1	HJ: 0 , HJ:
		Dielectric_3	DIELECTRIC	4	EDB_FR4_epoxy	0			0.02		2.1	
		bottom	METAL	1.1	EDB_copper	5.8E+07	SolderMask		0.000	0	1	HJ: 0 , HJ:
		Bottom_Conformal_SM	CONFORMAL COAT	1	SolderMask	0		3.1	0.035		0	
				1	SolderMask	0		3.1	0.035		0	
	Add / Del	lete / Move Layer(s)	Edit Selected Layer(s)	3)	SolderMask	0		3.1	0.035		0	
	Add / Del		Edit Selected Layer(s)		-				0.035		0	
	Add / Del Add	lete / Move Layer(s)	Edit Selected Layer(s) Color		Update D	Nelectric Fill SolderMask		Update	0.035		0	
	Add / Del Add Add	iete / Move Layer(s) Above Selected Layer Below Selected Layer	Edit Selected Layer(s)		Update D		• • • • • • • • • • • • • • • • • • •		0.035		0	
	Add / Del Add Add Dei	kete / Move Layer(s) Above Selected Layer Below Selected Layer Jete Selected Layers	Edit Selected Layer(s) Color The top		Update D Update Tr	Velectric Fill SolderMask	0%	Update Update	0.035		0	
	Add / Del Add Add Dei	iete / Move Layer(s) Above Selected Layer Below Selected Layer	Edit Selected Layer(s) Color	464	Update D Update T Update T	Velectric Fill SolderMask		Update	0.035		0	


Single Ended Zo Without Trace-Trace Coupling Without Conformal Soldermask

Single Ended Zo With Trace-Trace Coupling Without Conformal Soldermask



Single Ended Zo With Trace-Trace Coupling With Conformal Soldermask



Lead Frame Editor

- Creates Slwave & 3D Layout .anf Geometries
- Creates HFSS & Q3D .sat Geometries

Lead Frame Editor

• Slwave QFP Package from Lead Frame Editor

