

Advanced SOFC Stack for Hybrid Power Systems

Scott L. Swartz, Ph.D. (P.I.)
Nexceris LLC (Lewis Center, Ohio)

Project Vision

Nexceris will develop a pressure tolerant and ultra high efficiency solid oxide fuel cell stack (10-kW scale) that operates via internal reforming of methane and meets other requirements of hybrid power systems.

Project Overview

Federal Funding:

\$2.15M

Project Duration:

24 months

Innovation and Objectives

SOFC Stack Innovations

- Novel planar cell designs and high performance SOFC materials
- Improved stack sealing to enable stack to withstand pressure spikes
- Internal reforming technology to minimize thermal gradients

Task Outline

- Cell Development and Validation
- Internal Reforming Technology
- > Stack Design
- Stack Fabrication and Testing
- **≻** T2M

Tech-to-Market

- Nexceris aims to be an SOFC stack manufacturer
- Focusing on military markets as bridge to commercial markets
- Collaboration with system integrator partners as commercial path

About Nexceris

Nexceris, LLC

- Founded in 1994 as NexTech Materials, privately held
- ☐ Technology Developer advanced ceramics, electrochemical devices
- Product Developer sensors, fuel cells, and catalysts
- Manufacturer/Distributor sensors, fuel cells, and related products
- ☐ ISO 9001:2015 Certified covers all products and services

Our Brands

Nexceris' SOFC History

Planar SOFC Cell Designs

<u>FlexCell</u>

- U.S. Patent No. 8,192,888
- Two-layer structure with a perforated mesh layer mechanically supporting a thin electrolyte membrane

Hybrid Cell

- U.S. Patent No. 7,736,787
- Identical to FlexCell, except that an anode layer is located between the support and membrane layers

Internal Reforming Model

Modeling Approach

- Created a multi-physics (COMSOL) model of internal reforming
- Modeling approach based on literature model of anode supported cells. Replicated literature results to validate model.
- Assumptions and variables for internal reforming model:
 - Internal reforming of methane (not pre-formed natural gas)
 - Fuel composition: 50% anode exhaust recycling and 72% fuel utilization
 - Variables included anode inlet temperature and pressure
- Assessed impacts of grading catalytic activity of current collectors within anode channels

Model Results

High SMR catalyst activity throughout stack (P = 1 bar, $T_{AI} = 800 \text{ °C}$)

 $T_{MAX} = 818 \, ^{\circ}C$

T_{MIN} = 757 °C

 $\Delta T = 61 \,^{\circ}C$

Reduced SMR activity at front of stack (P = 1 bar, T_{AI} = 800 °C)

 $T_{MAX} = 818 \, ^{\circ}C$

T_{MIN} = 786 °C

 $\Delta T = 32 \,^{\circ}C$

Model Validation

Model Conditions: $T_{AI} = 800 \, ^{\circ}\text{C}$, $U_{F} = 72\%$

$$T_{IN} = 757 \,^{\circ}C$$

$$T_{\rm MID}$$
 = 810 °C

$$\Delta T = 61 \,^{\circ}C$$

Stack Data: $T_{AI} = 800 \, ^{\circ}\text{C}$, $U_{F} = 65\%$

$$T_{IN} = 763 \, ^{\circ}C$$

$$T_{MID} = 826 \, ^{\circ}C$$

$$\Delta T = 63 \, ^{\circ}C$$

SOFC Stack Development

Current Status

- Stack process modeling to determine operating conditions and stack sizing for a 10-kW scale stack at 65% efficiency
- Stack design established with following goals:
 - Open (flow-through) cathode
 - Hot box design with integrated insulation and compression
 - Cell-in-frame approach to get cells out of the stack periphery
 - Improved seals to enable near-hermetic anode cavities
- Established sub-scale (228-cm² active cell area) design to enable testing to prove viability of repeat unit design approach
- Stack design validation testing completed, scale-up to larger stack size is ongoing.

SOFC Stack Development

Stack meets expectations for performance and fuel utilization.

SOFC Stack Development

Risks

Technical Challenges and Current Status

- Achieving target stack performance with a new stack design platform.
 So far so good!
- Achieving sufficient stack sealing to facilitate pressurized operation.
 So far so good!
- Reducing thermal gradients via precise control of the internal methane reforming reaction. *Needs to be demonstrated in full-scale stacks.*
- Achieving long-term stack durability at high operating temperature and high current density. *Testing required to see where we are.*
- Achieving sufficient stack mechanical robustness for integrated systems. **Needs to be proven.**

Nexceris aims to be a SOFC stack supplier, initially in military markets, eventually in commercial markets:

- Aligned with Nexceris core competencies
- Smaller financial barrier to market entry
- > Strong value proposition for military power systems
- Leverages current customer base

Nexceris Transition Approach

- Continue to advance stack technology with DOE and DoD sponsored projects
- Collaborate with system integrators on system-level demonstrations
 - Define a detailed set of requirements
 - Customize the stack design to those requirements
 - Deliver stacks for customer testing and prototype system builds
- Identify the best approaches for scale-up as stack production volumes increase

Markets Served by the ARPA-E Stack Technology

- Military power (e.g., unmanned ground and aerial vehicles)
- Range extenders for electric vehicles (military and commercial)
- ➤ Industrial scale (100+ kW) combined heat and power
- Grid-scale power (100+ MW)
- Large-scale hydrogen production (via electrolysis)
- Reversible fuel cells for grid-level energy storage

Current Status of Product Development

- Military purpose stack being developed with DoD funding
- SOFC systems being designed for military power applications
- Breadboard system testing ongoing to increase stack TRL
- SOFC stacks being supplied to development partners
- Commercial stack platform being developed on this project
- Exploring other solid oxide applications (SOEC and RSOFC)

Value Proposition for Military Applications

- ➤ **Higher Efficiency:** Longer mission durations
- **Better Reliability:** Compared to currently used generators
- **Quiet Operation:** Enables silent watch missions
- Sulfur Tolerance: Facilitates use of military logistic fuels
- ➤ **High Power Density:** Essential for military applications

Stack Manufacturing Cost Analysis (500 MW/Year)

Cost Category	Yearly Cost	Cost Per Stack	Cost Per kW
Raw Materials	\$141,415,006	\$2,828.30	\$282.83
Depreciation	\$572,060	\$11.44	\$1.14
Labor	\$2,162,160	\$43.24	\$4.32
Utilities	\$15,420,845	\$308.42	\$30.84
Operating Supplies	\$7,070,750	\$141.42	\$14.14
Local Taxes	\$114,412	\$2.29	\$0.23
Maintenance & Repairs	\$2,828,300	\$56.57	\$5.66
Insurance	\$45,765	\$0.92	\$0.09
Totals	\$169,629,297	\$3,392.59	\$339.26

Questions?

Nexceris is grateful for the opportunity being provided by ARPA-E, and we look forward to working with all INTEGRATE program participants and stakeholders!

