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ABSTRACT 

 
As the acquisition, operating and support costs rise for mission-critical ground and 

air vehicles, the need for new and innovative life prediction methodologies that 
incorporate emerging probabilistic lifing techniques as well as advanced physics-of-
failure durability modeling techniques is becoming more imperative. This is because 
of interest in not only extending the life of current structures, but also in optimizing 
the design for new components and subsystems for next generation vehicles that are 
smaller, lighter, and more reliable with increased agility, lethality, and survivability. 

The component level physics-based durability models, although widely adopted 
and used in various applications, are often based on simplifying assumptions and their 
predictions may suffer from different sources of uncertainty. For instance, one source 
of uncertainty is the fact that the model itself is often a simplified mathematical 
representation of complex physical phenomena. Another source of uncertainty is that 
the parameters of such models should be estimated from material-level test data which 
itself could be unavailable, noisy or uncertain. At the system level, most modeling 
approaches focus on life prediction for single components and fail to account for the 
interdependencies that may result from interactive loading or common-cause failures 
among components in the system. 

In this paper, a hybrid approach for structural health prediction and model 
updating for a multi-component system is presented. This approach uses physics-of-
failure and reliability modeling techniques to predict the underlying degradation 
process and utilizes field data coming from findings of scheduled maintenance 
inspections (or potentially, a real-time onboard health monitoring data) as feedback to 
update the model and improve the predictions. The integration of field data and model 
updating is realized via the Bayesian updating technique. The approach is being 
evaluated by an OEM to a ground vehicle suspension design enhancement. 

Two different failure mechanisms, corrosion and thermal mechanical fatigue, are 
taken into consideration for physics-of-failure modeling. Finite element analysis 
(FEA) is performed on the components to calculate the stress values needed as inputs 
to the life prediction models. Once the expected life of individual components is 
calculated (considering multiple failure modes and composite of usage profiles), a 
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14. ABSTRACT 
As the acquisition, operating and support costs rise for mission-critical ground and air vehicles, the need
for new and innovative life prediction methodologies that incorporate emerging probabilistic lifing
techniques as well as advanced physics-offailure durability modeling techniques is becoming more
imperative. This is because of interest in not only extending the life of current structures, but also in
optimizing the design for new components and subsystems for next generation vehicles that are smaller,
lighter, and more reliable with increased agility, lethality, and survivability. The component level
physics-based durability models, although widely adopted and used in various applications, are often based
on simplifying assumptions and their predictions may suffer from different sources of uncertainty. For
instance, one source of uncertainty is the fact that the model itself is often a simplified mathematical
representation of complex physical phenomena. Another source of uncertainty is that the parameters of
such models should be estimated from material-level test data which itself could be unavailable, noisy or
uncertain. At the system level, most modeling approaches focus on life prediction for single components
and fail to account for the interdependencies that may result from interactive loading or common-cause
failures among components in the system. In this paper, a hybrid approach for structural health prediction
and model updating for a multi-component system is presented. This approach uses physics-offailure and
reliability modeling techniques to predict the underlying degradation process and utilizes field data coming
from findings of scheduled maintenance inspections (or potentially, a real-time onboard health monitoring
data) as feedback to update the model and improve the predictions. The integration of field data and model
updating is realized via the Bayesian updating technique. The approach is being evaluated by an OEM to a
ground vehicle suspension design enhancement. Two different failure mechanisms, corrosion and thermal
mechanical fatigue, are taken into consideration for physics-of-failure modeling. Finite element analysis
(FEA) is performed on the components to calculate the stress values needed as inputs to the life prediction
models. Once the expected life of individual components is calculated (considering multiple failure modes
and composite of usage profiles), a reliability model is used to calculate the system-level reliability from the
reliability of individual components. To perform the Bayesian updating, the Markov Chain Monte Carlo
(MCMC) technique is employed to ’tune’ the model parameters based on available field data and update
the reliability estimates. This process results in an enhanced life prediction model that compensates for the
aforementioned modeling uncertainties by utilizing feedback from the field behavior of an actual structure
to tune the life-prediction model parameters. 
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reliability model is used to calculate the system-level reliability from the reliability of 
individual components. To perform the Bayesian updating, the Markov Chain Monte 
Carlo (MCMC) technique is employed to 'tune' the model parameters based on 
available field data and update the reliability estimates. This process results in an 
enhanced life prediction model that compensates for the aforementioned modeling 
uncertainties by utilizing feedback from the field behavior of an actual structure to 
tune the life-prediction model parameters. 

 
 

INTRODUCTION 
 

A software framework for performing component and system durability 
calculations at the design stage has been developed. The initial target for this software 
is ground vehicles. This framework incorporates the following aspects: 

• System Durability Explorer – Combines reliability predictions across multiple 
components and failure modes in an assembly to estimate the system 
reliability. The system level assessment is based on a system relational model, 
component level reliabilities, and a user defined usage or mission profile. 

• Durability Analysis Enhancement Modules – Compute component life and 
reliability under corrosion and thermo-mechanical fatigue for specific 
combinations of finite element results (composite usage profiles). Parameters 
for life-prediction models are considered probabilistically via the use of Monte 
Carlo simulations. 

• Parameter Updating – Incorporates feedback from field observations to 
enhance the prediction accuracy using Bayesian theory. 

 

 
 

Figure 1:  Architecture of the Advanced System Durability Analysis Software. 
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SYSTEM DURABILTY EXPLORER  
 

The System Durability Explorer is a software tool that conducts system level 
reliability computations given the reliability of individual components or subsystems, 
considering various failure modes. The component or subsystem reliability is “rolled 
up” to a higher system level by combining reliability of each individual component 
that comprises the system. In order to accomplish this task, information about the 
internal system connectivity and the expected usage or mission profiles is required, in 
addition to component and failure mode specific reliability curves with uncertainty 
bounds. The specific reliability curves can be determined from a lifing calculation, 
experience, or vendor supplied information. A graphical modeling environment has 
been developed to establish a system-level inter-relational model. A full lifetime 
operational profile for the system can be specified as a combination of results from 
individual lifing analyses.  

System reliabilities are calculated by modeling the system as an interconnection of 
components and failure modes in series or in parallel. If the failure of one component 
in the assembly would result in the system becoming inoperable, this component is 
modeled in series. If one component can fail, but the system continues to function 
since another component assumes the role of the failed component through 
redundancy, the two components are considered to be operating in parallel [1].   

Assuming the failures in the components are independent, the system reliability 
distribution of M serial components can be calculated based on the probability of 
failure at time t as shown: 

∏
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Where Fs(t) is the cumulative distribution function (CDF) for system reliability 

prediction, and Fi(t) is the CDF of reliability prediction for component i. 
Similarly, the system reliability CDF of M parallel components can be calculated 

from: 
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DURABILITY ANALYSIS ENHANCEMENT MODULES 

 
A software framework for computing component life and reliability with uncertainty 
bounds has been implemented. Two specific failure modes are considered: corrosion 
and thermo-mechanical fatigue. These durability analysis enhancement modules are 
made independent of the FE package employed by utilizing a neutral file format for 
the computed nodal stress / strain and temperature inputs. Results sets are combined 
according to a loading spectrum definition. The output from each of these modules is a 
component-specific reliability curve as a function of time, with uncertainty bounds 
that are derived from the input parameter uncertainties through a Monte Carlo 
simulation.  
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Corrosion Modeling 
 

For structural and drivetrain applications, two possible corrosion forms are 
corrosion fatigue and stress corrosion cracking. Corrosion fatigue describes the 
mechanism where localized corrosion pits form and become local stress risers, leading 
to crack formation under cyclic loading. The second failure mode is stress corrosion 
cracking under high mean stresses in the presence of a corrosive environment [2]. 

The model proposed by Harlow and Wei [3, 4] for corrosion fatigue incorporates 
localized pit growth by electrochemical means. In this model, the pit is assumed to 
grow at constant volumetric rate according to the Faraday and Arrhenius laws. The 
pitting model parameters are generally physics-based rather than empirical, and most 
can be found in the literature or derived. Once a critical pit size has been reached, the 
flaw behaves more like a crack and mechanically driven crack propagation dominates.  

To account for stress corrosion cracking (SCC), two methods for crack rate 
calculation have been investigated and are incorporated into the module. The first 
method, as discussed by Jones and Ricker [5], is based on anodic dissolution of a 
metal utilizing the Faradaic relation. Some of the parameters in this equation are 
identical to those in the Harlow-Wei model. This SCC model is very aggressive and 
can be viewed as an upper limit since it neglects any passivation at the crack/pit 
surface. For SCC, once the stress corrosion cracking stress intensity threshold is 
reached (KISCC), crack growth progresses at a constant rate based on this relationship 
independent of stress until the stress intensity approaches the fracture toughness. 
Below the KISCC threshold, no crack growth due to SCC is assumed to occur. A 
second SCC calculation method has been developed in the power generation industry 
to predict SCC in power turbine blades. This approach, as explained by Rosario et al. 
[6], has been in use for the past few decades and is based on empirically derived 
material constants. This method also assumes that the crack growth rate due to SCC is 
constant above the KISCC threshold. Published data for this approach is based on 
materials commonly used for power turbines. However, the material constants can be 
also derived from test data. 

 

 
 

Figure 2: Example Probabilistic Corrosion Damage Progression Curves 
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Thermo-Mechanical Fatigue Modeling 
 

Thermo-Mechanical Fatigue, or TMF, is caused by cyclic thermal gradients in 
components. Constrained thermal growth that results from these thermal gradients 
leads to material strains. Further, the effects of mechanical property changes as a 
function of temperature and compounding high temperature effects such as creep and 
oxidation makes TMF different from traditional low cycle fatigue (LCF) analyses 
where component temperatures can be assumed to be reasonably uniform and 
constant. In general, TMF can be broken into two categories, based on the 
temperatures experienced by the component: 1) moderately high temperatures, where 
the predominant failure driver is fatigue, and 2) very high temperatures (above roughly 
30% of the melting temperature for example) where creep and oxidation are 
significant.  

A review of thermo-mechanical fatigue literature (for example, see [8]) reveals 
that there are a number of approaches available for analyzing these types of problems. 
For the software development effort described here, fatigue due to a combination of 
applied loads and thermal expansion/gradients is considered to be the primary life 
driver, and very high temperature effects are neglected. The strain life approach [9, 10] 
has been selected for implementation, with a Finite Element model providing the 
nodal stress and temperature inputs. Damage from an applied cyclic loading history is 
then accumulated linearly according to Miner’s Rule. 

Two key effects in TMF that are handled in this software implementation include 
the temperature dependence of material properties, and the phase between mechanical 
loads and component temperatures. When isothermal test data is used, there are 
several choices of temperatures to choose for material properties over the course of a 
thermal stress cycle. One approach is to simply use material properties at either the 
maximum or mean cycle temperature. A method for determining whether the mean or 
maximum is more appropriate is described by Kang et al. [11], and Nagode and Hack 
[12]. An alternative method to handle this problem of temperature choice is through 
the computation of a Spanning Factor that allows the life to be estimated by 
combining Nf at the temperature extremes of the cycle [13]. The loading phase refers 
to the relationship between mechanical loading and thermal loading. For in-phase 
loading, the maximum temperature occurs at the same time as the maximum stress or 
strain. In the software implementation, fatigue properties obtained from fully in-phase 
and fully out-of-phase tests are accepted as inputs, and estimated properties are 
obtained by interpolating to the phase relation that is present in the loading data. 

 
Probabilistic Analysis using Inner-Outer Loop Approach 
 

The probabilistic nature of component dimensions, assembly conditions, material 
properties and loading conditions involved in lifing analysis is an important fact of life 
that influences structural safety. Durability and reliability analyses lead to safety 
measures that a design engineer has to take into account due to the uncertainties in 
model parameters, data variation, environmental factors, etc. Each of the model input 
parameters are allowed to vary within this software framework. The material 
properties as well as the load profile inputs for corrosion and TMF modules can be 
selectively considered probabilistic.  
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Figure 3: Overview of Inner-Outer Loop Procedure to Estimate Prediction Uncertainty 
 
The uncertainty on the life prediction is determined through an inner-outer loop 

Monte Carlo approach (see additional discussion in [14]). To illustrate, a specific 
material property variation could be described with a Weibull distribution, with shape 
parameter α, scale parameter β, and offset γ. This inherent variability represents the 
inner loop. The Monte Carlo simulation in the inner loop will determine the 
probability of failure or reliability as a function of time for a specific set of model 
inputs, but it does not provide a confidence interval on that risk assessment. If 
variables α, β, and γ that describe a given input parameter are allowed to vary (for 
example, due to manufacturing or assembly variability across different batches of 
components), the uncertainty in the predicted probability of failure or reliability curve 
can be characterized. The variables that describe an input parameter may take on 
random values each with individual probability distributions. For example, parameter 
α may be described by a normal distribution with mean μ1 and standard deviation σ1. 
Likewise, β and γ may be represented by μ2 and σ2, and μ3 and σ3 respectively. These 
“hyper-parameters” (μ1, σ1), (μ2, σ2), and (μ3, σ3) that express the “hyper-
distributions” are varied in an outer loop Monte Carlo simulation to establish the 
confidence bounds. The simulation approach consisting of two Monte Carlo 
Simulation loops is shown in Figure 3.  

 
 
MODEL PARAMETER UPDATING  

 
The model input parameters and their hyper-distributions that are initially based on 

a-priori experience or expert knowledge can be updated by applying Bayesian analysis 
to obtain a posterior distribution when evidence (inspection data, observations, or real 
time sensor data) becomes available. This evidence might be in the form of statistical 
samples of field failure incidence rates, or damage level inspection reports. The 
Bayesian updating addresses model parameter uncertainty when the model physics are 
assumed to be known and fixed. This type of Bayesian approach combines 
information contained in the observed data in the form of a likelihood function with 
the prior prediction from a model.  
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Figure 4: Bayesian Updating Interface 
 

Based on Bayes’ theorem, the data D influences the posterior probability 
distribution through the likelihood function p(D | θ), where θ represents the set of 
model input parameters. The updated probability distribution pD(θ) = p(θ | D,M) is 
obtained according to: 

 
pD(θ) = C * p(D | θ,M) * p0(θ | M)    (3) 

 
Where, p0(θ | M) is the a-priori probability distribution, and C = 1 / p(D | M) is a 

normalizing constant. M signifies that the probability distribution was derived from a 
model prediction. The input parameters are treated as random variables, providing a 
feedback mechanism to update the original assumed values of the parameters. A 
Markov Chain Monte Carlo Simulation (MCMCS) is used for systematically 
extracting samples from a probability distribution during the updating process [15]. 

The benefit of performing this parameter updating step for a fielded component is 
realized when a new untested design requires similar input parameters to determine its 
life expectancy. Uncertainty can be reduced for parameters that are difficult to 
ascertain, leading to more accurate and realistic life predictions.   

 
 
CONCLUSIONS 

 
A set of software tools for estimating system durability at the design stage has 

been developed, along with an approach for incorporating field observations to 
improve the prediction. Software modules have been created to perform life 
predictions based on corrosion and thermo-mechanical fatigue induced failures. The 
corrosion module considers corrosion pitting/fatigue and stress corrosion cracking. 
The thermo-mechanical fatigue module includes the strain life approach with 
temperature compensated material properties, and is applicable for temperatures where 
creep and oxidation are minimal. The flexible architecture allows other failure mode-
specific lifing modules to be integrated if needed. Component and failure mode 
specific reliability data is aggregated at the system level to provide an overall 
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reliability estimate and identify the life-limiting components using reliability concepts. 
A model builder application has been designed to provide a means for creating system 
relational models. Interfaces are provided for updating model input parameters based 
on field observations or test data using Bayesian updating techniques. The initial target 
application for this software package is in the design of Army ground vehicle 
subsystems.  
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