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Abstract: The durability and performance of electrochemical energy converters, such as fuel cells 

and electrolysers, are not only dependent on the properties and the quality of the used materials. 

They strongly depend on the operational conditions. Variations in external parameters, such as flow, 

pressure, temperature and, obviously, load, can lead to significant local changes in current density, 

even local transients. Segmented cell technology was developed with the purpose to gain insight 

into the local operational conditions in electrochemical cells during operation. The operando 

measurement of the local current density and temperature distribution allows effective 

improvement of operation conditions, mitigation of potentially critical events and assessment of the 

performance of new materials. The segmented cell, which can replace a regular bipolar plate in the 

current state of the technology, can be used as a monitoring tool and for targeted developments. 

This article gives an overview of the development and applications of this technology, such as for 

water management or fault recognition. Recent advancements towards locally resolved monitoring 

of humidity and to current distributions in electrolysers are outlined. 
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1. Introduction 

Electrochemical converters are considered to take a key role in humanity’s challenge for the 

following decades—to avert a climate catastrophe. Following the Accord de Paris of 2015, the Special 

Report on Global Warming of 1.5 °C of 2018 formulated even more drastic goals for the reduction of 

carbon dioxide emissions [1]. Hydrogen energy technologies play an important role in a decarbonised 

economy. Hydrogen fuel cells are highly efficient energy converters providing electric energy 

directly [2], and in particular proton exchange membrane fuel cells (PEMFC) have recently attracted 

growing public attention as power sources in cars [3,4]. The reverse technology, electrolysis of water, 

is producing hydrogen. As the electricity market has a growing share of renewables, like wind and 

solar energy, there are more and more fluctuations, and thus an increasing number of hours of cheap 

or even negatively prized electricity. This makes electrolysis in general more and more a competitor 

against cracking of natural gas, when considering the costs only [5–7]. Moreover, electrolysers can 

act as grid stabilising electrical loads, consuming excess electricity peaks, in particular in small scales 

in sub grids [8]. The local aspect of a local hydrogen supply adds another building block to a 

hydrogen economy by locally supplying hydrogen refuelling stations, which are required for 

hydrogen-based electromobility [9,10]. 
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Both fuel cells and electrolysers have undergone significant developments over the last decades 

and, as they are relatively modern compared to combustion engines, their lifetime under realistic 

operational conditions suffers from mechanical, chemical and physical degradation processes [11–

13]. To be able to compete with combustion technologies in cost-driven economies, with their head-

start of many years, modern tools for a thorough understanding and a targeted development are 

required. The advances in numerical modelling have reached such an advanced level that 

development based on predictive simulation appears realistic; however, without experimental 

validation from experimental data, in particular internal, locally resolved operational data, such a 

strategy is futile [14]. Segmented cell technology, which was developed in parallel, provides such an 

experimental fundament, adding commonly used external operational data, such as cell voltage and 

current control, monitoring of temperature, reactant flow and purity, as well as electrochemical 

impedance spectroscopy. 

2. Development of Segmented Cell Technology 

The first concepts in the monitoring of currents generated in a PEM fuel cell with a spatially 

resolved aspect were pursued by the end of the 1980s. An overview of the development timeline is 

given in Table 1. The principle and the need for locally resolved data were demonstrated by Rieke et 

al. in a photolithographically structured array of microelectrodes in a fuel cell with embedded 

counter electrodes [15]. Similarly, in electrolysis, the principle was shown by the means of 

microelectrodes in the electrolysis of potassium ferricyanide [16] and with linear PCB (printed circuit 

board) electrodes in the electrolysis of copper sulphate [17]. The concept of a segmented MEA with 

microelectrodes in the fuel cells was extended by using a PCB current collector and used to evaluate 

the homogeneity of the reactant supply [18]. An overview over other approaches for PEM fuel cells 

was given by Stumper et al.; for example, the use of partially catalyst-covered or partially masked 

MEAs, the manipulation of the MEA and flow-field plate to isolate individual spots from each other, 

and the introduction of an array of graphitic resistor elements with individual sensing wires, utilising 

the voltage drop as signal [19]. This PCB technology was successfully applied without segmentation 

of the MEA, using individual electrical loads for each segment along a single flow channel [20]. The 

utilisation of the Hall effect led to a two-dimensional approach with stack integration capability. One 

directly observable result was the strong dependency of the current homogeneity on an evenly 

distributed clamping pressure of the electrochemical converter [21]. The measurement principle was 

pursued by Reshetenko et al. for systematic studies on a variety of operational parameters [22–24] 

and component properties [25–27]. A setup with individual current collectors, integrated in an 

endplate, was demonstrated by Noponen et al. in a free-breathing PEM fuel cell [28]. The effect of 

water management on the current homogeneity was demonstrated by Büchi et al. with an early setup 

of a semi-segmented endplate for a fuel cell stack with 200 cm2 of active area. It showed that in the 

technical dimensions, severe heterogeneities can already exist at a constant current operation and 

moderately low air stoichiometries or a moderately low air dew point [29]. Variations of the 

segmented endplate were carried out by Yoon et al. with a an array of graphite blocks in a bakelite 

frame [30], by Liu et al. with copper bolts, individually insulated in a copper frame [31,32], and by 

Hwang et al. with an array of Ti-coated stainless-steel segments embedded in a polyoxymethylene 

frame [33]. Both technologies allowed to mill-in flow channels for a directed distribution of reactant 

gases and fluids. Similar setups with segmented endplates were used by Liang et al. for studies on 

reactant starvation [34,35]. In another design with segmented endplates and graphitic current 

collectors for a larger area and with individual electrical loads, electrochemical impedance 

spectroscopy (EIS) was combined with the method to investigate the effect of low humidity in fuel 

cells [36]. The present patented segmented cell technology for fuel cells [37,38] consists of a printed 

circuit board with a segmentation that is carried out in the form of current collectors placed on the 

top of the epoxy glass resin matrix. The measurement is based on the voltage drop along the internal 

resistor shunts connecting the front and backside of the PCB. The wiring is integrated in the PCB 

circuitry, thus minimising the profile of the board. Channels can be milled into the board according 
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to the desired flow-field structure. The low profile allows the integration into single cells and stacks 

[39]. 

Table 1. Timeline of the development of segmented cell technology. 

Year Setup 
Measurement 

Principle 

Application 

Aspects 
Electro-Chemistry 

1977 
Platinum 

microelectrodes [16] 
Voltage drop 

Investigation of 

local mass 

transport 

K3(Fe(CN)6) 

1987 

Microelectrodes, 

structured by 

photolithography onto 

membranes [15] 

Individual I–V 

measurement 
 PEMFC 

1992 

Stripe electrodes, 

carried out PCB 

technology [17] 

Individual I–V 

measurement 

Investigation of 

local mass 

transport 

CuSO4 

1998 

Segmented GDL and 

segmented PCB 

current collector [18] 

Individual I–V 

measurement 
 PEMFC 

1998 

MEAs partially 

covered with catalyst 

or partially masked 

[19] 

Individual I–V 

measurement 
 PEMFC 

1998 

Isolated subcells by 

manipulation of flow 

field plates [19] 

Individual I–V 

measurement 
 PEMFC 

1998 

Array of graphite 

elements between 

MEA and current 

collector [19] 

Voltage drop  PEMFC 

2000 
1D-PCB without MEA 

segmentation [20] 

Individual 

electrical loads 
 PEMFC 

2000 

Array of Hall effect 

sensors embedded in 

Titanium flow plate 

[21] 

Hall effect 

Machined flow 

plates, stack 

integration 

PEMFC 

2002 

Gold-plated stainless 

steel, individual 

current collectors in 

endplate [28] 

Voltage drop  PEMFC 

2003 

Hall sensor array on 

copper rods, touching 

graphite blocks in 

bakelite frame [30] 

Hall effect 
Machining of 

channels 
PEMFC 

2004 

Flat PCB with 

segmented contacts, 

internal resistor 

shunts, temperature 

sensors [37,38] 

Voltage drop 

Machining of 

channels, stack 

integration 

PEMFC 

2005 

Semi-segmented 

endplate of sintered 

graphite parts [29] 

Hall effect 
Integration in 

200 cm2 stack 
PEMFC 
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2005 

Copper bolts, 

individually insulated, 

in copper frame, 

segmented MEA [31] 

Voltage drop 
Machining of 

channels 
PEMFC 

2007 

Flat PCB with 

segmented contacts, 

internal resistor 

shunts, temperature 

sensors [39] 

Voltage drop 
Machining of 

channels 
DMFC 

2008 

Ti-coated stainless-

steel blocks, 

embedded in 

polyoxymethane 

frame [33] 

Hall effect 
Machining of 

channels 
PEMFC 

2008 

Graphite blocks in 

polycarbonate frame, 

pre-machined 

channels [36] 

Individual 

electrical loads 

Electrochemical 

impedance 

spectroscopy  

PEMFC 

2014 

1D single channel 

striped cell, PCB with 

attached resistor 

shunts [40] 

Voltage drop  PEMWE 

2017 

Application of 

commercially available 

measurement PCB in 

electrolysis [41] 

Voltage drop  PEMWE 

2019* 

PCB with segmented 

contacts, internal 

resistor shunts [42] 

Voltage drop 
Machining of 

channels 
PEMWE 

2019 
PCB and array of 

humidity sensors [43] 
Voltage drop 

Combination 

with humidity 

distribution 

PEMFC 

2020 

PCB with segmented 

contacts, internal 

resistor shunts 

Voltage drop 
Industry stack 

integration 
AEMWE 

2020 

PCB with internal 

resistor shunts, 

embedded in graphitic 

BPP 

Voltage drop 
Industry stack 

integration 
PEMWE 

2020 

Modular BPP, resistor 

shunt modules, 

embedded in PEEK 

frame 

Voltage drop 
Industry stack, 

upscalability 
AWE 

3. Single Cell Applications for Fuel Cell Development 

Single cells at the laboratory scale is the usual way to investigate individual phenomena, e.g., in 

degradation or in operation conditions, and to study material and design developments. Some of 

these topics are, for obvious reasons, depending on the size of the active areas and thus not directly 

scalable. In such cases, experiments with stack hardware of large areas, but with only one single cell, 

are often a good compromise. The integration of a segmented measurement board will always require 

a design specifically fit for the stack hardware, but usually requires less effort than also tuning the 

sealing of the stack. For other topics, small test cells are more suitable, for example, when providing 
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a new material for a large area cell would require additional effort. A typical laboratory scale single 

cell segmented bipolar plate and the measurement principle are shown in Figure 1.  

3.1. Water Management 

A very straightforward application of a device that visualises the local activity of a fuel cell is to 

monitor local condensation of water [44–48], which can reduce the local activity to merely zero by 

blocking gas supply through the porous media or covering the catalytic sites with liquid and thus 

inhibiting the transport of reactant gases to these sites. As the mechanism is also closely correlated to 

the gas flow channel layout in the fuel cell, the local deactivation can be expected to follow their 

geometry [49]. Moreover, gravitational effects on water management are also accessible by using 

segmented cell technology [50]. In addition to the topology of the flow fields and their orientation, 

principal investigations on the width of the lands between channels were carried out [51], and non-

uniform channel widths were found beneficial [52]. Computational fluid design approaches are used 

to optimise in particular the pressure drop along the flow channel before taking a flow-channel plate 

to the workbench [53]. Finite difference method (FDM) models were used to simulate flow-field 

behaviour on the channel scale, utilising neutron imaging data and locally resolved current densities 

[54]. There are also biomimetic approaches that follow the principles of the fractal distributions 

structures of lungs [55] and leaves [56]. Other groups performed detailed studies on the effect of the 

freezing of product water during a cold start on local performance and the evaluation of current 

density distribution [57–59]. 

In Figure 2, a series of false colour plots representing the monitored local current density is 

displayed. Each measurement signal corresponds to one segment (compare Figure 1) of the 

measurement board, and as such of the fuel cell area (23-channel serpentine flow field with a total 

area of 140 cm2). The data are interpolated between the segments, resulting in intuitively 

comprehensible landscape style graphs. This experiment, ran at 88 °C with an overall current density 

of 0.45 A/cm2, showed the evolution of the local current densities during operation under high 

humidity—as it is generally beneficial for the ionic conductivity of fuel cell membranes—and the 

upcoming local deactivation. 

 

Figure 1. Laboratory-scale segmented board (25 cm2) for operando measurement of locally resolvent 

current density in fuel cells. The machined gas flow channel is visible (top image). The measurement 

principle is depicted in the lower panel: The voltage drop along the calibrated low-ohmic resistors 

along the current direction is monitored. The design allows milling in any desired flow-field structure. 

Lower panel reproduced from R. Lin et al., Investigation of Locally Resolved Current Density 

Distribution of Segmented PEM Fuel Cells to Detect Malfunctions, ECS Trans., 26 (1), 229-236 (2010), 

published 05.12.2010. © The Electrochemical Society. Reproduced by permission of IOP publishing. 

All rights reserved.  
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Figure 2. Series of current density mappings in a PEM fuel cell showing the local deactivation due to 

condensation of liquid water. (MEA: CCM by IonPower, 0.6 mgPt/cm2, GDL: SGL Sigracet 25BC, 88 

°C, 1.5 bar, 100% rH, stoichiometry: H2: 1.5, air 2.0, constant voltage 680 mV). 

The first glance shows that the overall current density is not homogeneously distributed over 

the cell. The gas inlet region (in columns G, H and I) exhibits a higher current density than the other 

regions—there is a continuous gradient towards the outlet region opposite of the inlet. This can be 

easily explained with the gradually reduced concentration along the flow channels, as reactants are 

consumed by the fuel cell. Beginning at the time stamp of + 25 s, however, a valley in the current 

density landscape appears in column F and then expands to the region F-G/2-6, after the first turn of 

the air flow. The condensation of water in this region is a result of the already present water in the 

pre-humidified inlet gas and the occurrence of product water out of the fuel cell reaction. In this 

region, the added water concentration in the gas phase reaches the condensation limit and deactivates 

the electrodes by flooding the porous layers, leading to air starvation. It is noted that the other regions 

are still active, and the load is lightly shifted towards the outlet region. Naturally, the partial 

deactivation of a fuel cell is undesirable, and by recognising the pattern of the evolving deactivation, 

as of the state of the third image of the series, a counter measure like purging the fuel cell with dry 

gases allows operating at a generally enhanced humidification without risking constant local 

deactivation and the resulting degradation problems. The use of operando monitoring of the locally 

resolved current densities enables the user to adapt an operation strategy in order to mitigate such 

undesired effects. 

A more obvious phenomenon, observable without the use of a segmented measurement board, 

occurred during operation of a fuel cell with low humidification of the cathode gas and full 

humidification to oversaturation of the anode gases. These specific experiments focussed on the study 

of the special conditions of asymmetrical humidity, which leads to extreme behaviour. The impact of 

a high anode relative humidity (rH) to compensate for a dry cathode is studied. Under these 

conditions, the fuel cell performance started to oscillate, with the amplitude depending on the ratio 

of the asymmetric humidification and on the gas flow configuration (“co-flow” or “counter-flow”) 

[60]. In the very drastic example shown in Figure 3, the overall current density oscillates between 0.6 

A/cm2 and below 0.1 A/cm2 (cell voltage: 500 mV, H2: 180 mL/min, rH 152%, air: 560 mL/min, rH 0%, 

p: 1.5 bar, co-flow configuration). The mechanisms underlying this phenomenon were interpreted 

using a laboratory-scale segmented measurement board. 
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Figure 3. Oscillating behaviour of a fuel cell under dry cathode operation. Reproduced from D. G. 

Sanchez et al., ECS Trans., 35 (32), 41-54 (2011), published 11.10.2011. [60] © The Electrochemical 

Society. Reproduced by permission of IOP publishing. All rights reserved. 

The fuel cell deactivates regionally during the oscillations, and the difference between the higher 

oscillation amplitudes in co-flow configuration and the lower amplitudes in counter-flow 

configuration go together with a difference in direction of deactivation/reactivation. In Figure 4, the 

current density patterns during the transients are shown for both configurations. As shown in the 

upper panel A (co-flow), the fuel cell deactivates to almost overall zero current density (image A3), 

starting from the inlet (as indicated in image A1). The following incline (images A3–A5) is also 

following this direction. The transients are driven by the flow direction. In the counter-flow 

configuration (lower panel B, flow directions indicated in image B1) the decline follows the direction 

of the cathode gas inlet (images B1–B3) and the incline follows the anode gas inlet direction (images 

B3–B5). The activation is governed by the humidified anode side air flow, while the deactivation is 

governed by the hydrogen flow on the cathode. The locally resolved dynamics of the fuel cell activity 

could show that the high anode rH is able to punctually reactivate dry, deactivated areas. 

Accompanying electrochemical impedance measurements (EIS) indicated a fluctuation in the ionic 

resistance of the fuel cell, so the phenomenon is interpreted as oscillation in the humidification of the 

membrane and the corresponding conductivity [60]. The dynamics of the process were studied with 

numerical methods in a separate work [46]. 

 

Figure 4. Evolution of current density during the transient from the high to the low current state 

(compare Figure 3) in the co-flow (panel A) and counter-flow (panel B) configuration. The regional 

deactivation of the oscillating fuel cell is revealed by the locally resolved current density. 
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This phenomenon emphasizes the need to understand and control the water management of a 

fuel cell for a well-performing and stable operation. Although other methods for the investigation of 

water management in fuel cells are employed and provide complementary information [44–46,48–

50,60], operando measurement with the segmented cell technology provide a relatively quick 

operando access to several aspects of this topic. 

3.2. Material Development 

The very direct access to water management phenomena also makes segmented cell technology 

a valuable tool for addressing material development topics by assessing and monitoring fuel cell local 

performance behaviour at various operating conditions. The gas diffusion layer (GDL), which is the 

binding piece between the catalyst layer and the bipolar plate, is crucial to maintain proper water 

management of the cell. While it is electrically connecting these two components and levelling out 

some distance variations, it also has the role of both transporting gases to the electrodes—which is 

best done when completely dry. Moreover, the GDL is also responsible for transporting excess water 

away from the electrodes to the flow channels of the bipolar plate. These opposite properties are 

typically unified in a hydrophobically treated carbon felt or carbon paper backing and the attached 

microporous layer (MPL), typically composed of a mixture of carbon and polytetrafluoroethylene 

(PTFE) powder. The combination creates a system with a pore size step towards the electrode and is 

usually adjusted by the hydrophobicity agent (PTFE) to a relatively high degree of hydrophobicity. 

This system can expel condensed water droplets with the force of the capillary pressure and its poor 

wettability towards the bipolar/end plate and the attached flow channels, where the water is 

eventually carried out of the fuel cell [61]. 

The behaviour of the GDL when under high gas humidification, which is generally beneficial 

for the membrane conductivity, and under high load, where the water production rate is also high, 

can limit the performance of the fuel cell, when the water transport capabilities are at the limit. As 

one of the most interesting applications of the low temperature PEM fuel cell is the fuel cell powered  

electrical vehicle, the typical load would not be constant, and the GDL has to be quite flexible in terms 

of handling the different gas flows, water content and heat levels. The GDL has become a focus of 

modifications of various of its properties [62,63], such as porosity and pore size [64], thickness, 

microstructures, electrical and thermal conductivity [65], and—obviously—the hydrophobicity 

[66,67]. In an approach to modify GDLs towards an inhomogeneous hydrophobicity and altered local 

responses of the fuel cell, laser treatment in the form of lines of 3 mm spacing was applied [68]. Similar 

approaches have been made with laser perforation [69,70] and ion beam modification [71]. The 

common idea is to create confined regions of reduced hydrophobicity that attract water, create 

preferred pathways and enhance the removal of water across the cell area. It was observed that the 

individual combination of electrodes and GDL plays an important role, and that some material 

combinations, while positively affected by the treatment, did not respond in any way regarding the 

output performance; other combinations responded with an increase in power density up to 20% at 

high loads. 

In Figure 5, the current density patterns of a laboratory-scale fuel cell of 25 cm2 (overall current 

density 1.6 A/cm2, humidification: 50%rH, co-flow configuration) are displayed. The left pattern 

shows the current density distribution using pristine GDLs, and the right pattern using a laser-

modified GDL on the cathode side. Even though the power is not affected by the laser patterning, the 

current density distribution is more uniform. The extreme values of current density are different by 

a factor of about 1.5 with patterning, compared to about 2 without [68]. 
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Figure 5. Current density distributions at an average of 1.6 A/cm2 within a lab single cell, as recorded 

with segmented cell technology: The distribution with a laser-patterned GDL is more homogeneous 

(right) than without (left) (JM MEA02476, SGL Carbon 24BC, 80 °C, 50% rH, 1.5 bar, stoichiometry H2: 

1.5, air: 2, single serpentine flow field, co-flow configuration, gas inlet at upper right corner G1). 

The data for a set of experiments with two humidity settings (50% rH, 90% rH) and three 

operating points each (0.4 A/cm2, 1.0 A/cm2, and 1.6 A/cm2) were statistically analysed and are 

summarised in Figure 6 in the form of box–whisker plots for the distribution of the local current 

density values. The box plots represent the inner 50% of the measured values and the whiskers each 

represent the upper or lower 25% of the values. The data show that for any of the settings the 

patterning of the GDL leads to a more confined data range with less extremes in both the 100% data 

range and the 50% percentiles. At a high humidification and high load, again, the difference effect is 

smaller, indicating that the system is coming close to a limit. A more uniform distribution helps to 

avoid local hot spots, and thus directly adds to enhancing the long-term durability of fuel cells. 

 

Figure 6. The box–whisker plots of the locally resolved current densities shows that the laser 

patterning of the GDL leads to more homogeneous cell activity in a wide range of conditions. Both 

the 50% and the 100% percentiles in the plots are more narrow (for the experimental conditions, see 

Figure 5). 

Another application in material development is in the investigation of the homogeneity of a 

material itself. The segmented cell technology was used to characterise ultra-low loaded electrodes 

prepared by electrospraying [72], where a jet of catalyst dispersion is sprayed onto a membrane 

substrate under the influence of an electric field, leading to a dendritic structure of high porosity, and 

thus an enhanced permeability and increased electrochemically active surface [73]. 
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3.3. Defects and Degradation 

A third, wide topic of applications for segmented cells is in the monitoring of degradation of 

fuel cells [48,74]. As the design of fuel cell stacks with directed supply of reactant gases by flow 

channels leads to intrinsically non-uniform properties—there are clear differences in reactant 

concentration and humidity between gas inlet and outlet regions—it is obvious that several 

degradation mechanisms are also not to be expected as uniformly distributed over the entire cell area. 

The poisoning of the catalysts—the irreversible deactivation of catalytic sites, e.g., with sulfuric 

compounds—is naturally related to the flow of contaminated gases. The local differences in humidity 

in a fuel cell, which are also a consequence of the general design principle, can lead to local differences 

of two other degradation mechanisms, the agglomeration of catalyst material [75] and the 

decomposition of the ionomer [12] and hydrophobicity agent [47,48]. The agglomeration of platinum 

is taking place via dissolution and redeposition at other particles and is thus enhanced by an 

overabundance of water, which increases the mobility of the Pt ions. This growth of particles at the 

expense of other particles reduces—as the surface to volume ratio decreases—the overall available 

catalytically active surface, and the performance of the fuel cell deteriorates [75]. The decomposition 

of the ionomer material is due to the radical attack of intermediate products of the fuel cell reaction 

on the fluorohydrocarbon backbone of the ionomer. The mechanism leads to the loss of the 

sulphonated functional groups and thus the decrease in ionic conductivity. Ionomer membranes can 

also be considerably thinned out [76] and form weak structural spots that are more easily prone to 

mechanical failure. It is generally suppressed at high humidity. Under high humidity conditions, the 

same mechanism can also lead to decomposition of the hydrophobic agent in gas diffusion media, 

even the more distant layer, the GDL backing [48]. A requirement is the transport of the intermediate 

radicals to the GDL, which is enhanced by the presence of water. Of course, every mechanism leading 

to local hot spots will drive local degradation. 

Detailed studies allow for the separation between the catalyst layer or gas diffusion layer and 

between reversible and irreversible degradation phenomena [77–79]. As a rule of thumb, several 

issues are reversible after a shutdown–restart event, or after a period of dynamic operation. High 

levels of irreversible degradation, as shown in Figure 7, are very likely not homogeneously 

distributed [80,81]. The irreversible parts of degradation rates after ~500 h of dynamic operation 

(coloured dots, low degradation rate) and of constant operation (grey dots, high degradation rate) 

are depicted, and corresponding current density patterns before (BoT) and at the end (EoT) of the 500 

h are correlated at the example of a 0.1 A/cm2 constant load test (upper pair of current density 

distribution images) and a dynamic operation test (lower pair). Both EoT patterns show a reduced 

homogeneity of their current density. A distinct difference is still visible: After dynamic operation 

the slope of the gradient along the fuel cell area from maximum to minimum activity is quite flat, 

only coarsely one third of the area is significantly lower in activity, and the minimum activity, in the 

corners, is about 50% of the maximum activity. The EoT pattern after constant operation at 0.1 A/cm2, 

in contrast, has a very sharp gradient, cutting of almost 50% of the cell area, where the activity is 

dramatically reduced. During load cycling, local degradation conditions, which show up 

periodically, can be continuously recovered, while under long periods of constant operation the same 

local/regional degradation are impregnated into the fuel cell. 
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Figure 7. Irreversible degradation of a fuel cell after ~500 h tests at different operational conditions 

(cycling or constant load) and correlating current density patterns recorded at BoT and EoT (upper: 

constant 0.1 A/cm2; lower: high potential cycling). Reproduced from P. Gazdzicki et al., ECS Trans., 

92 (8), 261-276 (2019), published 03.07.2019. [80] © The Electrochemical Society. Reproduced by 

permission of IOP publishing. All rights reserved. 

A very special case of a local degradation leading to hydrogen crossover is the pinhole or crack 

in the membrane, which can be due to a mechanical impact on the membrane or the membrane 

thinning mechanism described before or by a carbon fibre from the GDL penetrating the membrane. 

A pinhole is a very local defect in the structure of the membrane, where hydrogen can cross over 

from the anode to the cathode, and oxygen vice versa. This leads to the direct reaction of the two 

reactants under heat generation at the catalytic sites, parallel to the electrochemical reaction. Ex situ, 

the heat dissipation due to the pin-hole formation can be easily observed by an IR camera [82]. The 

effect of mixed potentials, however, can by monitored in situ by a segmented cell [20,83]. The 

resulting mixed potential are underlying the different reaction rates, and the diffusion rates of the 

more mobile hydrogen are significantly higher, and as a result, the reaction is inversed at the site of 

the pinhole. The local current density that is recorded by a segmented measurement board is negative 

at this position. Figure 8 shows the current density mapping of a fuel cell with a leakage at an overall 

current density of 100 mA·cm−2. The deviating coloured spot, indicating the inverse current density, 

clearly marks the presence and the location. 
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Figure 8. The effect of leakage in a fuel cell, a locally inverted current density, is directly visible in the 

false colour plot, monitored with segmented cell technology. Reproduced from R. Lin et al., J. 

Electrochem. Soc., 158 (1), B11 (2011), published 09.11.2010. [83] © The Electrochemical Society. 

Reproduced by permission of IOP publishing. All rights reserved. 

For obvious reasons, the additional local heat production can further deteriorate the membrane 

structure an eventually lead to a severe failure or even a catastrophic uncontrolled reaction. Operando 

monitoring of the fuel cell performance can help to detect such harmful events, even if extremely 

rare, and enhance the safety. Moreover, a segmented cell can be used not only to detect critical failures 

as pinholes, but also to investigate local hydrogen crossover through the membrane in general [83,84]. 

4. Locally Resolved Current Density in Fuel Cell Stacks 

Continuous monitoring is the general task for a segmented cell in applications outside the 

laboratory. Nonetheless, the technology is not limited to monitoring purposes of single cells. As fuel 

cell stacks are more than the sum of a large number of single cells, even if the cell area and shape are 

identical, for end positions that have a different thermal ambience, coupling effects between the 

individual cells can induce additional gradients along the stack, and material inhomogeneity can 

have an impact on the reactant distribution between the individual cells. The observation that there 

are not only gradients within the plane of each cell, but also along the repeating units in the stack, 

indicates that for a fundamental understanding of fuel cell stacks, the application of the segmented 

cell technology has to be in several cell positions inside a stack. The technical challenges are the 

aforementioned sealing, the spatial requirements for each measurement board in the more confined 

space of the stack and, of course, the almost linearly rising effort in data acquisition, handling and 

evaluation. The advantageous use of this monitoring technology for cathodic fault monitoring was 

demonstrated in a stationary fuel cell stack of ten cells, equipped with three segmented cells, which 

were placed at both ends and in the centre of the stack, as indicated in Figure 9. The stack was 

accompanied by an electrochemical impedance spectroscopy (EIS) setup, with the purpose to 

correlate the findings from both techniques [85]. While EIS data are typically strongly depending on 

the underlying model used for interpretation and thus not always clearly readable, the correlation 

supports the interpretation of both methods. An image of this 480 W stack with an active area of 96 

cm2 is given in Figure 9. The three cells do obviously not show the same or even similar current 

density patterns at the applied critical operation condition (0.5 A/cm2, 1.5 bar, λ: 1.5, 30% rH, λair: 

1.5, 100% rH). The reduced air stoichiometry in the experiment results in clearly visible starvation 

phenomena in particular the cells with a high index, close to the air inlet. The highest gradient in 

current density distribution is observed in cell #10, where the current density drops from ~550 
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mA/cm2 (red) at the air inlet to ~350 mA/cm2 at the air outlet (purple) due to depletion of oxygen 

along the flow field. 

 

Figure 9. Stationary fuel cell stack (ten cells) with three integrated measurement boards for locally 

resolved current density measurements at the ends and in the centre. The highest difference between 

350 mA/cm2 (purple) and 550 mA/cm2 (red) is observed in cell #10, while the other observed parts of 

the stack are more homogeneous. 

The locally reduced activity in parts of the stack under this air starvation conditions could be 

observed with the segmented cell technology, where simultaneous electrochemical impedance 

measurements (EIS) showed an increased diffusion resistance [80]. Other parameters investigated by 

the combination of the two methods are the impact of the electric load level and of the humidification 

level. It could be shown that both methods combined improved the identification and isolation of the 

occurring cathodic faults, such as cathode flooding, air starvation and cell dry out. 

5. Locally Resolved Humidity Measurement 

Beside the current density, another very interesting property to be understood on a local basis 

is the humidity in fuel cells [48]. As discussed earlier, humidity plays a major role in the overall 

performance with strong variance at the local scale. An array of capacitor-based humidity sensors 

was integrated and combined with a segmented cell for current density measurements into a 

laboratory-scale single cell of 74.4 cm2. An oblong rectangular shape with a parallelized flow field 

leads to long individual channels. The intention was first to test to validate the experimental setup; 

therefore, a design was chosen to force long pathways, where gradients may be better resolved than 

with typical shapes. Thus, this specific design, which is described in detail separately [43], was made 

for the targeted investigation of the humidity-related effects in fuel cells, instead of the goal of a good 

performance. It was operated in a test bench, at 80 °C, and with varying humidification of the feed 

gases. As an example, for the correlation of the monitored local properties, Figure 10 shows the local 

current density (A), local humidity (B) and local temperature (C) in the cell at an overall 

humidification level of 0% at the inlet. The gas flow direction is depicted in panel D. The obvious 

correlation of the local profiles between these three properties shows the validity of the sensor signals 

and their local resolution. The locally lower temperature in the regions D–F was introduced by 

heterogeneous external heating of the test cell in order to enhance the effects to the changed local RH. 

This leads to the internal local temperature drop. The humidity mapping shows that the humidity, 

which is generated as product water of the fuel cell reaction, is sticking to the “cold spot” areas in the 

D/E vertical line. 
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Figure 10. Locally resolved current density (A), humidity (B) and temperature (C), recorded 

simultaneously in a laboratory single fuel cell: Inhomogeneity of the external heating leads to an 

internal local temperature drop and resulting local performance deficits and humidity accumulation. 

Panel (D) describes the direction of the reactant flow in this setup. 

The correlation of the local mappings is obviously given. Note that the signals are not totally 

congruent because the humidity sensors are placed in a separate board with a total distance to the 

flow field of 8.5 mm. For a technical application, a further miniaturization would be required. The 

main application of this test cell is in the development and validation of numerical models for fuel 

cells. 

6. Application of Cell Segmentation beyond Fuel Cells 

6.1. Electrolysis in Laboratory Cells 

The applicability of segmented cell technology has been also demonstrated for water 

electrolysis, which is the electrochemical converter complementary to the fuel cells. The principle of 

the measurement technology in electrolysis is the same as in fuel cells, however various challenges 

need to be considered: 

 High current densities. The measurement devices have to be able to endure this load and shunt 

resistors adapted to the higher currents. 

 High water and gas pressure. The gaskets have to maintain tightness also with the measurement 

board. 

 Cell voltages above 2.0 V. The electrochemical stress to the materials of the measurement board 

is very pronounced. 

 Corrosive environment. Depending on electrolyser technology, namely alkaline or acidic, the 

segmented cell is in contact with water with a high or low pH, respectively, with high 

concentrations of dissolved O2 and H2. 

Few attempts have been made to employ locally resolved measurements of the current density 

in electrolysers. A one-dimensional stripe cell for PEM electrolysis was demonstrated by Dedigama 

et al., showing that within one flow channel, the local current density can increase along the channel 

at high loads. The reason was found in the flow dynamics of gas bubbles rising in liquid, where the 

transition from small discrete bubble to slug flow facilitates the removal of smaller bubbles attached 

to the electrode [40]. Another approach in PEM water electrolysis has been made with a device by 

S++ Simulation Services, who commercialises the segmented cell technology under license by the 
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German Aerospace Centre (DLR). The influence of clamping pressure on the homogeneity of the 

current distribution was investigated [41]. The applications of segmented cell technology in 

laboratory-scale cells are manifold. In addition to the direct visualisation of inhomogeneous clamping 

pressure, the evaluation of performance mechanisms is possible with deep insight. As in fuel cells, 

the segmented cell can be used to study the phenomenon of water starvation in a PEM electrolyser. 

Water starvation is a condition that rarely occurs in commercial electrolysers due to pump failure. 

The main reason of failure in PEM electrolysis is water contamination [86]. However, the experiment 

can be used to simulate a condition where there are different water supply rates over the area of the 

MEA due to high gas production. This is a situation that could be critical in particular for very large 

area stacks like those used in Hydrogenics [87] or Siemens [88] electrolysers. In this case, the 

produced gas could limit the water supply over the MEA uniformly because of mass transport 

limitations at high current densities, inadequate flow fields or a small pore size of the GDL. 

In order to simulate the situation in which water supply is limited over the cell area, the electrical 

pump was shut off while the load was still applied. Constant current densities of 0.8 A/cm2 (Figure 

11, red curve and frames) and of 2.0 A/cm2 (yellow curve and frames) were applied to a 25 cm2 

laboratory test cell, and the water supply was interrupted. The voltage was followed parallel to the 

locally resolved current density. In normal operation, the current distribution was quite 

homogeneous at both current levels (Images 1a and 1b of Figure 11) While the cell voltage showed a 

mere increase in the beginning of the starvation after ~5 min or 15 min, respectively, the operando 

recording of the locally resolved current densities reveals the pending malfunction (Image 2a and 2b) 

and the following sharp voltage rise at a very early stage (3a and 3b). The patterns with sharp 

gradients of current density (corresponding colour scales in the insert below) allow the recognition 

of the starvation at a point where counter measures or a controlled shutdown may be employed. 

High gradients of the current density arise, e.g., due to accumulation of large amounts of gas. The 

entire set of experiments with the laboratory cell and the variety of applications is described 

elsewhere [42]. 

 

Figure 11. Voltage curves with total currents of 0.8 A/cm2 (a, yellow curves) and 2.0 A/cm2 (b, red 

curves) and the corresponding current density distributions, as measured in a laboratory electrolyser 
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single cell with a segmented cell at characteristic times (a–c) during artificial water starvation: The 

voltage rise is accompanied by inhomogeneous current distributions. (cell size: 25 cm2, 80 °C, 1 bar). 

6.2. Electrolysis in Industrial Systems 

The developments in segmented cell technology have gone beyond laboratory test cells. For a 

real monitoring application, which is required to prevent or to predict possible faults, the locally 

resolved measurement of current densities has to be established in industrial electrolysers. This 

involves usually large active cell areas and other technical restraints, such as the positions of 

clamping bolts, while additional space requirements of a measurement board due to circuitry and 

cabling have to fit into the system. Water electrolysis is currently used for hydrogen generation in 

industrial niche applications but is undergoing a development to meet the requirements of a 

technology for sector coupling in an integrated energy system dominated by renewable energies [8]. 

With the new requirements and the surge of new developments in materials, components and 

designs, reliable and quantitative accelerated stress tests are very important [89]. The monitoring of 

locally resolved operational data from the interior of the electrolysers is particular important to 

validate new designs and components and to understand the acceleration of different ageing 

mechanisms. 

A PEM water electrolyser short stack (IRD Fuel Cells AS/GreenHydrogen.dk ApS) was used as 

industrial specimen for the design and integration of a current density distribution board (see Figure 

12). The device was adapted to the internal water distribution structure, which has been described 

and numerically evaluated by Olesen et al [90]. It is embedded into a modified graphite-composite 

bipolar plate and replaces a regular bipolar plate in this setup. 

 

Figure 12. Segmented BPP for local current density measurements, integrated in PEM water 

electrolysis stack hardware. 

The proof of functionality was carried out under water starvation conditions similar to the 

experiments in the laboratory test cells described above. The segmented bipolar plate in the presented 

experiment was placed between cell #1 and #2 in a 3-cell stack. The stack was operated with regular 

water supply before the start-up procedure. Subsequently, the water pump was shut off, generating 

some very sharp local activity gradients in the stack. Figure 13 shows a series of current density 

distribution mappings at the selected characteristic points in time. The shape of the images coarsely 

resembles the circular shape of the active area. While in the first image (5 s) the stack is completely 

inactive before the start-up procedure, during the following minute, up to image #4, the overall and 

local currents rise as the stack takes up operation. Merely 10 s later (t = 72 s an t = 77 s), already the 
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growth of a hot spot in the centre of the lower half of the electrolyser is observable. The water is 

starting to run short in the other regions of the stack area. At 87 s, the current density pattern 

drastically shows that the upper part of the stack has turned inactive and the entire current is forced 

into the highlighted region in the lower centre, which was already established before. The last image 

shows the situation after 117 s, recorded already during the safety shutdown, where the hot spot is 

significantly confined. 

 

Figure 13. Series of current density mappings in a PEM water electrolyser during water starvation 

that occurred briefly after start-up: The resulting hot spots in the lower areas are immediately 

indicating faulty operation (45 °C, 2 bar). 

The displayed scenario of water blockage could—similar to the laboratory cell experiment 

described in Figure 11—not easily be recognised by the voltage rise only, which varies by 20 mV in 

total in the scenario in Figure 13, until the concentration of the entire current on one hot spot was 

already established. At this late stage, the electrochemical components have already been suffering a 

local overload and, as the result, a local overheating—a typical mechanism for accelerated aging [91]. 

The current density pattern is homogeneous during the start-up phase until 20 s. The regionally lower 

signals, e.g., close to the right edge of the displayed images, cannot be clearly attributed to either the 

intrinsic properties of the stack or to the influence of the experimental setup. After a period of steady 

operation, the pattern changes, beginning with the image at 72 s, and a hot spot evolves. In the later 

images, the hot spot (red) in the centre region and below is completely evolved (87 s) and about to 

vanish later, as the system switched into a safety shutdown (117 s), while the upper region is inactive 

(purple). The gradients between active and inactive cell regions are very sharp, and the false colour 

plot shows the interpolated data between the red (highly active) and purple (inactive) forms of the 

full colour range. The sharpness of this gradient clearly demonstrates the capability of the 

measurement technology to resolve the current density locally. Merely no signal cross talk is visible 

between the directly neighbouring segments in the centre of the pattern (e.g., 87 s), as almost the full 

displayed data range is covered from one to the next step, the segment borders being indicated by 

the grid. 

For the use in an industrial anion exchange membrane (AEM) electrolyser (Enapter S.r.l.), a 

comparably novel technology [92], a similar segmented board was designed and constructed, see 

Figure 14. With its different chemical environment of a mild alkaline electrolyte, in contrast to the 

pure water in the PEM technology, it requires some material adaptation to the measurement board. 

The utilisation of this device is mainly in the targeted development of the industrial AEM electrolysis 

technology. 
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Figure 14. Segmented BPP for local current density measurement, integrated in industry AEM water 

electrolysis hardware. 

While PEM and AEM electrolysis are emerging, classic alkaline electrolysis is still the dominant 

technology in the market. The approach to locally resolved measurement of current density 

measurements in heavy alkaline electrolysis had to go along with a general redesign of the segmented 

cell concept. The chemical ambience—20% KOH lye with a pH of 14—requires measures to avoid 

any possible contact between the circuitry and lye. In particular, any copper components quickly 

corrode when exposed to KOH lye. In addition, the typical alkaline electrolyser cell diameter is often 

more than 1 m in diameter, which makes the design of a single printed circuit board extremely 

challenging. 

A novel concept with individual measurement modules was developed within the frame of the 

European project INSIDE. The modules are embedded in chemically stable polymer frame of 

polyether ether ketone (PEEK) and connected by very simple printed circuitry. This circuitry, 

manufactured in conventional PCB technology, is covered with a large nickel plate, and each module 

is individually sealed. The side opposite to the circuitry is carried out in plain nickel segments, as 

visible in Figure 15. The polymer frame is acting as the passive regions of a bipolar plate and is 

touching the regular gaskets between individual electrolyser cells. With this design, the interior of 

the connected electrolyser cell is in contact with the polymer frame and the plain nickel areas only, 

and the interior measurement modules of the segmented bipolar cell are protected against the KOH 

lye. 
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Figure 15. Segmented bipolar plate prototype for application in alkaline electrolysis of water, based 

on the scalable modular design concept (diameter: 620 m). 

The novel modular design principle of the large area segmented cell for alkaline electrolysers 

received a special recognition in the f-cell awards 2018 [93] It allows an easy upscaling by simply 

adapting the polymer frame and the simple connection circuitry to the electrolyser geometry. The 

measurement modules then are embedded into the frame and bonded to the circuitry. The use of 

identical measurement modules, which could be produced in large numbers, can eventually lead to 

a beneficial scale effect for production costs. Both large numbers of segments and variable sizes of 

segments can be equipped with mass produced modules. Large electrolyser areas are accessible, and 

the modular design principle has its potential for use in other electrolyser technologies as well. 

7. Conclusions 

An overview was given of the developments that were made in locally resolved operando 

measurements of electrochemical converters—PEM fuel cells, PEM/AEM water and alkaline 

electrolysers. Since the first steps of a laboratory setup with bulky endplates in single cells, the 

patented concept of shunt resistors in segmented bipolar plates has evolved to a functional and 

widely applicable tool. 

Applications of this development cover the evaluation of design concepts and of material 

development. Degradation can be investigated also on a local level, and better mitigation strategies 

can be developed. It could be shown that a poor control of the humidity level in a PEM fuel cell 

operation can lead to localised deactivation of the cell, even oscillating local deactivation, and an 

instable water supply to a PEM electrolyser similarly leads to an inhomogeneous current density 

distribution—accelerating local degradation and thus reducing the lifetime of the entire component. 

Accordingly, the positive effect of targeted modification of a fuel cell GDL on the homogeneity of the 

current density is demonstrated. Other applications for a more resourceful operation lie in the 

operando monitoring. Real time data of intuitively comprehensible patterns, many of which are 

characteristic for specific conditions, can be obtained from running systems. The localised nature of 

the degradation phenomena of the fuel cells is made visible, as well as the very local defects. 

The most recent developments are simultaneous operando monitoring of current densities at 

several positions in a fuel cell stack, the transfer of the segmented cell technology to industrial 

PEMWE, AEMWE and AWE electrolysis, as well as the development of a PEMFC setup for parallel 

operando monitoring of local current density, humidity and temperature. Electrochemical impedance 

(EIS) data were correlated with localised and time-resolved data in a fuel cell stack, for both current 

density and temperature, and the gap between experimenting with and simulation of fuel cells´ 

operation could be bridged on an unprecedented local scale. The extended variety of applications 

demonstrates further potential application. 

8. Patents 

The technology described is patented under patents DE10316117 B3 (2004) and EP1618395 A1, 

(2006) [37, 38]. It is used under license by other companies. 
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