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Summary

1. Species interactions, ranging from antagonisms to mutualisms, form the architecture of bio-

diversity and determine ecosystem functioning. Understanding the rules responsible for who

interacts with whom, as well as the functional consequences of these interspecific interactions,

is central to predict community dynamics and stability.

2. Species traits sensu lato may affect different ecological processes by determining species

interactions through a two-step process. First, ecological and life-history traits govern species

distributions and abundance, and hence determine species co-occurrence and the potential for

species to interact. Secondly, morphological or physiological traits between co-occurring

potential interaction partners should match for the realization of an interaction. Here, we

review recent advances on predicting interactions from species co-occurrence and develop a

probabilistic model for inferring trait matching.

3. The models proposed here integrate both neutral and trait-matching constraints, while using

only information about known interactions, thereby overcoming problems originating from

undersampling of rare interactions (i.e. missing links). They can easily accommodate qualita-

tive or quantitative data and can incorporate trait variation within species, such as values that

vary along developmental stages or environmental gradients.

4. We use three case studies to show that the proposed models can detect strong trait matching

(e.g. predator–prey system), relaxed trait matching (e.g. herbivore–plant system) and barrier

trait matching (e.g. plant–pollinator systems).

5. Only by elucidating which species traits are important in each process (i.e. in determining

interaction establishment and frequency), we can advance in explaining how species interact

and the consequences of these interactions for ecosystem functioning.

Key-words: functional traits, herbivory, interaction networks, mutualisms, parasitism, polli-

nation, predation, trait matching, trophic interactions

Introduction

Species interactions form the architecture of biodiversity

(Bascompte & Jordano 2007). There is growing recognition

that community structure, stability and functioning depend

not only on which species are present in a community, but

also on how they interact (Tylianakis et al. 2008). Com-

plex networks of biotic interactions such as predation, par-

asitism and mutualism provide essential information

related to conservation (Carvalheiro, Barbosa & Memmott

2008; Tylianakis et al. 2010), community stability and

ecosystem functioning (Thompson et al. 2012; Peralta

et al. 2014), and evolutionary processes (Jacquemyn et al.

2011; Fenster et al. 2015). These insights would be not*Correspondence author. E-mail: nacho.bartomeus@gmail.com
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possible from simple species occurrence data or analysis of

pairwise interactions. Despite the growing literature

describing species interaction networks, we still have a

poor understanding of how network structure comes to

exist.

There are few generalizable observations of how species

interactions respond to environmental changes (Tylianakis

et al. 2008). Therefore, understanding what determines

the occurrence of pairwise interactions, and, at a higher

level, the structure of ecological networks, is a key chal-

lenge for ecologists. Overcoming this challenge requires

the identification of the mechanisms responsible for who

interacts with whom. Natural selection promotes adapta-

tions to increase species efficiency (Castellanos, Wilson &

Thomson 2003). Reciprocal trait adaptations between

partners, which have positive demographic consequences,

lead to increased interaction strength among co-evolved

members (Sargent & Ackerly 2008). Hence, there is a

great expectation that incorporating a trait-based

approach can help us explain general mechanisms driving

pairwise interactions. We refer here to traits in a broad

sense, comprising adaptations that define organisms in

terms of their ecological role, how they interact with the

environment and with other species (D�ıaz & Cabido

2001). Most traits studied so far for predicting species

interactions fall into morphological adaptations (e.g. body

size), but physiological (e.g. chemical defences) or beha-

vioural (e.g. diel) adaptations can also drive species inter-

actions. Moreover, traits should be precise and

measurable attributes of the species. Recent studies indeed

suggest that ecological networks of different types (e.g.

from antagonistic to mutualistic) could be described from

the traits of the interacting species (Ekl€of et al. 2013). The

ability of these methods to predict novel interactions fol-

lowing species invasions or following range shifts is, how-

ever, limited.

Traits are implicated in ecological dynamics at several

concatenated levels of community organization (Fig. 1)

and therefore could influence the occurrence of interac-

tions in multiple ways. Some traits determine species distri-

butions in a multidimensional environmental space and

thus impact co-occurrence in space and time. Since the

occurrence of an interaction requires the presence of the

two species, traits involved in phenological matching or

habitat filtering could constrain interactions. Life-history

traits impact demography, abundance and biomass,

thereby affecting the probability of encounter. Then, pro-

vided they encounter each other in space and time, the

compatibility between traits of the two species (i.e. trait-

matching constraints) will also determine whether or not

they interact. Finally, the intensity and the impact of an

interaction will determine the functioning of the network

and also feed back to determine species abundances and

dynamics. How efficient an interacting species is on a per

capita basis is also likely to be mediated by its behavioural

or physiological traits and how these match with those of

the other species. Of course, these levels interact with each

other through evolutionary processes. Most work to date

has focused on morphological trait matching, and little, if

any, has tackled several of these stages at a time (see the

review in Morales-Castilla et al. 2015). Our first objective

here was to review what we know about each of these pro-

cesses and assess their success and limitations at predicting

interactions. Our second objective was to propose a way

forward to evaluate trait matching in a way that is not

confounded with species co-occurrences, and how this can

be integrated into a larger framework, from species occur-

rences to ecosystem functioning.

Species co-occurrence 
probability

Species interaction 
probability

Network structure

e.g. life-history traits, phenology, 
tolerance to abiotic constraints

e.g. morphological or 
behavioural traits

Species pool

Interaction 
functioning

e.g.  morphological or 
physiological traits

Traits

1. Habitat filtering 

2. Interaction preferences

3. Interaction efficiency

4. Emergent properties

Fig. 1. Species traits may influence the

structure of interaction networks in three

different ways. 1. Trait-based environmen-

tal filtering may determine species abun-

dances in space and time, which will affect

probability of encounter. 2. Given species

co-occurrence, trait matching according to

species interaction preferences will shape

interaction probability. 3. Species traits

might also influence the per capita effi-

ciency and impact of an interaction, and

thereby influence network functioning. In

addition, 4. emergent properties inherent to

the structure of the network will influence

network functioning and feedback on com-

munity dynamics.
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Traits governing species encounters in space
and time

Habitat filtering constrains the pool of co-occurring spe-

cies in a region or microhabitat. Sharing habitat-filtering

traits, like tolerance to drought or thermal preference, may

hence be a prerequisite for two species to interact. Even in

large and diffuse networks such as the global planktonic

interactome, 18% of the variance in community composi-

tion (taxon presence and abundance) can be explained by

environment alone, and these co-occurrences can be used

successfully to predict interactions between taxa (Lima-

Mendez et al. 2015). Microhabitat characteristics can also

influence sessile organisms even within close proximity, as

shown by interactions among mycorrhizas and plants,

where rooting depth could preclude co-occurrence between

shallow rooted plants and fungi restricted to lower soil

horizons. In fact, the concept of ‘habitat associations’ as a

driver of interactions has been pointed to as the sole expla-

nation for these interactions (Zobel & €Opik 2014), suggest-

ing that both partners interact simply because they

respond independently to different environmental factors.

At broader spatial scales, species turnover along ecologi-

cal gradients can also be responsible for a large fraction of

network variation in space (Poisot et al. 2012). Range

overlap determines the location and the total area over

which two species can eventually interact. This can be used

to better understand the consequences of range shifts on

the local food web structure (Albouy et al. 2014). Species

distribution models in combination with ecological and

life-history traits (D’Amen et al. 2015) can be used to pre-

dict co-occurrence and potential interactions in response

to global changes (Albouy et al. 2014; Morales-Castilla

et al. 2015).

Similar to species distribution in space, species encoun-

ter will be determined by the synchrony of their activity

periods at different temporal scales (i.e. daily, seasonal,

interannual). Mismatch of phenology has been widely

called to explain undetected interactions that are not possi-

ble to occur (i.e. forbidden interactions; Olesen et al. 2011;

Encinas-Viso, Revilla & Etienne 2012; Olito & Fox 2015),

that is species present in the same location that do not

interact because they do not overlap in their seasonal

activity periods. Phenological overlap during the season

has therefore been used as a proxy for interaction proba-

bility (Bartomeus et al. 2013). While phenology is usually

studied as the timing when species are active during a sea-

son (e.g. plant flowering period), daily fluctuations of

activity can also be important for defining when interac-

tions among partners can occur. A clear example is the dis-

tinction between crepuscular vs. diurnal species (Herrera

2000), but more subtle fluctuations of activity depending

on daily temperature may be also relevant (Rader et al.

2013). In addition, some species may interact only with

partners in a given life-history stage, for example some

ectomycorrhizal fungi may require host trees to be at least

several years old and do not interact with seedlings. This

highlights the importance and complexity of the temporal

constraints on co-occurrence.

Given that species co-occur in space and time, their

abundance also determines the frequency at which they

will interact (Canard et al. 2014). Abundant species are

simply more likely to encounter each other than rare ones.

This mechanism has been called neutral because it does

not rely on any niche differentiation. Thus, models that

use species abundances to predict encounter probabilities

have found that abundance alone can explain considerable

variance in key aspects of network structure (V�azquez

et al. 2007; Krishna et al. 2008; Olito & Fox 2015). Abun-

dance is determined primarily by life-history traits (e.g.

fecundity, longevity, mortality). For plant communities,

there is some consensus over which traits relate to abun-

dance or dominance in the community, such as maximal

height and position along the slow–fast continuum (e.g.

leaf economic spectrum; Wright et al. 2004). Therefore,

trait distributions over environmental gradients have been

used to predict plant abundance and community structure

(Shipley, Vile & Garnier 2006; Laughlin et al. 2012). Simi-

larly, it is possible to relate life-history traits to animal

abundances. For instance, species with fast life cycles (usu-

ally small, with high reproduction rates and short longev-

ity) tend to be more abundant than large species with slow

life histories (White et al. 2007), and large species can

decline more rapidly following habitat change (Larsen,

Williams & Kremen 2005). As a result, abundance can be

largely related to body size and position in the interaction

network (Woodward et al. 2005). Overall, the relationships

between traits, abundance and probability of encounter

define the neutral expectations for interacting. This rela-

tionship is complex, for example because the encounter

probability changes both as function of species traits (e.g.

landscape use) and as a function of abundance (e.g.

through density-dependent foraging).

Trait matching

Trait matching between interacting partners has been iden-

tified for a variety of organisms. Plant corolla length and

pollinator proboscis length is a classic example (Kritsky

1991). However, most pollinators are quite generalists, and

while species may have specialized morphology, it does not

prevent them from utilizing a diversity of resources (Waser

et al. 1996). Bird beak size and fruit size has also been

shown to be tightly related to dispersal success (Galetti

et al. 2013). In fishes, predator mouth gap and prey size

are also strong determinants of predatory interactions

(Cunha & Planas 1999). More complex relationships have

been found for plants too, with the role of specific leaf

area in plant–plant interactions changing from facilitation

to competition, depending on resource availability (Gross

et al. 2009). Trait-matching constraints have been

described for most interacting species, ranging from

© 2016 The Authors. Functional Ecology © 2016 British Ecological Society, Functional Ecology
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arbuscular mycorrhizas and plants (Chagnon et al. 2013)

to plants and herbivores (Deraison et al. 2015).

Trait matching between individuals operates in addition

to neutral processes to impact pairwise interactions.

Despite advances in these respective fields (e.g. null model

analysis: V�azquez, Chacoff & Cagnolo 2009; trait matching

analysis: Dehling et al. 2014; Spitz, Ridoux & Brind’A-

mour 2014; Crea, Ali & Rader 2016), we still lack a com-

mon analytical framework with which to evaluate the

contribution of species traits to pairwise interactions, and

at the higher level to the structure of interaction networks.

Even though neutral and trait-based null models can

predict the general structure of interaction networks, such

models often are poor at predicting the occurrence and

intensity of individual interactions (V�azquez, Chacoff &

Cagnolo 2009; Olito & Fox 2015). Such models are useful

because they free us from species identities and allow us to

detect generalities, but there is no guaranty that synthetic

network properties do not arise from the wrong reason.

Another major problem that may preclude disentangling

trait-based processes is that traits could influence interac-

tions directly via trait matching, or indirectly via environ-

mental matching. Hence, even if the variance between

neutral and trait-matching components is successfully par-

titioned, this would ignore the fact that some of the ‘neu-

tral’ variance was generated by species traits via their

effect on distribution and abundance (as we outlined in the

previous section). Thus, the influence of abundance vs.

traits can be seen as a path diagram where traits directly

affect interactions and also affect abundances, which affect

interactions (Fig. 1). We propose a framework that aims

to integrate, rather than separate both processes.

A significant challenge before such an analysis can be

achieved is to access completely sampled networks with

which to validate models. Empirical network data, how-

ever, have inherent uncertainties associated with the way

in which they are sampled. Specifically, sampling complete-

ness is rarely achieved when collecting interaction net-

works (Chacoff et al. 2012; Bartomeus 2013), and hence,

some unobserved interactions may indeed occur (i.e. false

absence of interactions). This would be less of a problem if

the proportion of interactions that are sampled were con-

stant, but this sampling efficiency can vary with local envi-

ronmental conditions (Lalibert�e & Tylianakis 2010),

species abundance and frequency, and of course, sampling

effort. Thus, to truly understand the importance of trait

matching for determining species interactions, the absence

of an interaction in an empirical data set cannot be used

to infer true absence of that interaction in nature. The nat-

ure of the data therefore impedes the direct evaluation of

probabilistic models (e.g. Rohr et al. 2010; Crea, Ali &

Rader 2016) and requires methods to estimate absences

(Bartomeus 2013) or the development of model-fitting pro-

cedures based on observed interactions only.

Another challenge is that null models based on a priori

rules for interactions have to be constructed using assump-

tions of which traits are critical for interaction establish-

ment. Constructing and interpreting biologically

meaningful null models that can isolate the targeted pro-

cess to be studied is not an easy task (V�azquez & Aizen

2003). As an alternative, recent attempts to understand

trait matching by statistically modelling empirical data are

promising (e.g. models incorporating imperfect detectabil-

ity: Bartomeus 2013; fourth corner analysis: Dehling et al.

2014; linear models: Gonz�alez-Castro et al. 2015; Dirich-

let-multinomial regression: Crea, Ali & Rader 2016), but

such models are still unable to integrate the relative contri-

bution of neutral vs. trait-based process.

A final caveat is that most models are constrained to use

mean trait values at the species level, neglecting variability

among individuals of the same species. However,

intraspecific trait variation, which can result from life-his-

tory stage, sexual dimorphism, or stochastic, environmen-

tal, genetic or epigenetic forces (Bolnick et al. 2011), has

been shown to affect specific interactions such as competi-

tion, as well as overall ecological dynamics (Gonz�alez-

Su�arez & Revilla 2013).

A probabilistic method for evaluating trait
matching

To overcome the limitations pointed out above, we model

the probability of interaction among pairs of individuals

given their traits, based on a framework developed by

Gravel and colleagues (Gravel et al. 2013). The method

also has the advantage to build directly on the established

theory of ecological network structure (Williams & Marti-

nez 2000; Ekl€of et al. 2013), by contrast with the above-

listed methods that are essentially phenomenological. We

propose a method to evaluate trait-matching relationships

while taking into account the abundance of the interacting

partners. The fitting procedure uses information about

observed interactions only, thereby overcoming problems

caused by undersampling of rare interactions leading to

false absences of interactions. The approach implies that

sampling effort is enough to adequately describe most true

interactions in trait-space and no false positives are

recorded (i.e. recording interactions as true when they do

not occur). A previous sensitivity analysis, however,

revealed it to be robust to sampling effort (Gravel et al.

2013). The parameters are estimated by maximum likeli-

hood, and the fitted model can be used to predict unob-

served interactions based on species traits and abundances.

Several models, corresponding to different hypotheses, can

fit directly to raw data and accommodate complex trait-

matching response functions to either qualitative or quan-

titative interaction data. Finally, they can incorporate

intraspecific trait variation, avoiding the loss of realism in

species with trait values that vary along developmental

stages or environmental gradients. In that way, we provide

a common toolbox to understand trait-matching rules

across a variety of interaction types.

We are interested in evaluating from empirical data a

function describing the probability of an interaction

© 2016 The Authors. Functional Ecology © 2016 British Ecological Society, Functional Ecology
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between species i and j based on their respective sets of

traits Ti and Tj. Building upon the model developed by

Gravel et al. (2013), we aim to evaluate the parameters of

a model that will relate the probability with which an

interaction occurs to the set of traits of the two species:

PðLij ¼ 1jTi;TjÞ eqn 1

which reads as the probability of observing an interaction L

between species i and j given the traits Ti and Tj. The func-

tion describing this probability could take any form. For the

sake of the example here, we will consider a Gaussian

shaped function (i.e. a function that assumes an unimodal

relationship between Ti and Tj) to represent the trait-match-

ing interaction (also termed interaction niche; Williams,

Anandanadesan & Purves 2010; see below). Other functions,

such as a high-order polynomial or even regression trees,

could be considered as well. The Gaussian function is, how-

ever, convenient because it is easy to integrate and further it

matches the niche model of network structure (Williams,

Anandanadesan & Purves 2010; Ekl€of et al. 2013).

Equation 1 could be fitted directly to empirical data by

maximum likelihood. To do so, the required data should

contain information on the presence and absence of interac-

tions (e.g. Rohr et al. 2010). The problem we are facing,

however, is that records of the true absence of interactions

are often not available in most data sets of ecological inter-

actions, and when available, there might be considerable

uncertainty in these absences (i.e. false negatives due to

insufficient sampling). We therefore derive a likelihood

function using Bayes theorem to fit eqn 1 indirectly, using

only information about the observed interactions. Parame-

ters are still evaluated by maximum likelihood (using simu-

lated annealing, as described in the Supplementary

Information), but one could eventually develop the method

further to compute the posterior distribution of parameters.

The data contain information about the traits of species

i and of species j only for observed interactions, Lij = 1.

We consequently revise the problem and model the proba-

bility of observing trait Ti, knowing the trait Tj and the

occurrence of the interaction Lij:

PðTijLij ¼ 1;TjÞ eqn 2

which could be interpreted as the probability that we pick

trait Ti from the trait distribution we model, given we

know there is an interaction between species i and j and

the trait Tj. This equation provides the likelihood for any

observation of an interaction based on the traits of the

two species. We now use Bayes’ theorem, p(A|B)p(B) = p

(B|A)p(A), to decompose eqn 2, yielding the following dis-

tribution of the trait of one species, given the trait of the

second species and the observation of the interaction:

PðTijLij ¼ 1;TjÞ ¼ PðLij ¼ 1jTi;TjÞPðTiÞ
PðLij ¼ 1jTjÞ eqn 3

The first term from the numerator is the trait-matching

model, described in eqn 1. It is the model for which we

aim to evaluate parameters. P(Ti) is the probability density

function for the trait Ti. It corresponds to the probability

of observing this trait in the regional pool. It could be

weighted by abundance because the most abundant species

are more likely to be sampled. The denominator is the

marginal distribution of the trait-matching function, com-

puted as the integral of the numerator over the whole dis-

tribution of the trait Ti:

PðLij ¼ 1jTjÞ ¼
Z 1

�1
PðLij ¼ 1jTi;TjÞ � PðTiÞdTi eqn 4

As a side product, the denominator informs us of the

generality of the species j. This integral might be tricky to

compute analytically, depending on the form of eqn 1 and

the distribution of trait Ti, but most software offer easy

ways to compute it numerically.

The model given at eqn 3 should not be confounded

with the more traditional use of the Bayes theorem in

statistics. The resulting distribution describes the probabil-

ity of observing an interaction given a trait, while in statis-

tics, the distribution describes the probability of observing

a set of parameters given the data. Here, the parameters

are estimated by simulated annealing and there is only a

single set of parameters yielding the maximum likelihood.

True confidence intervals for parameter estimates are hard

to evaluate for nonlinear models with complex likelihood

surfaces, but could nonetheless be evaluated numerically.

The eqn 3 could also be implemented in a Bayesian fitting

procedure to obtain a posterior distribution of parameters

for eqn 1 (eqn 3 being the likelihood of the Bayes theo-

rem), but this would be out of the scope of the current

study.

The model could be simplified to account only for the

effect of abundance (trait distributions) to reveal the

importance of the trait-matching constraint. A neutral

model in this framework is found when an interaction is

equally probable, irrespective of the traits of the two spe-

cies involved in the interaction (i.e. eqn 1 is set as a con-

stant). Alternatively, one could want to compare to the

situation where interactions are purely determined by trait-

matching constraints. In this situation, we consider the dis-

tribution of the trait P(Ti) uniform within the range of the

observed traits. The eqn 3 remains the same for all three

models and could be used to compute the likelihood for

each of them. Equations for the pure neutral and trait-

matching models, and a multitrait expansion, as well as all

of the R code necessary to perform this analysis are pro-

vided in the supplementary material (see Appendix S1 in

Supporting Information) and as an R package found at

https://github.com/ibartomeus/trait_match.

We re-analysed three data sets on different systems rang-

ing from antagonistic to mutualistic interactions to illus-

trate the overall principle of the method. First, we use data

from Barnes et al. (2008) on the diet of marine fish species.

The traits are the individual (log transformed) body size of

the predator fish species (Mpred) and the individual body

size of preys P(Mprey). We know that larger fish typically

feed on smaller ones because they must catch and handle

© 2016 The Authors. Functional Ecology © 2016 British Ecological Society, Functional Ecology
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the prey with their mouth. The frequency distribution of

prey size will indeed influence the distribution of the body

mass in the diet of the predator. A predator will tend to

feed most often on the most abundant preys, which is a

neutral component to the interaction probability. The

predator does not select from that distribution randomly,

however, but rather it targets only a specific range (given

by eqn 1; the niche component). Both the available prey

size distribution, P(Mprey), and the resulting prey size dis-

tribution, P(Mprey|L, Mpred), are illustrated in Fig. 2b for a

given predator species. The resulting prey distribution has

to be somewhere between the regional prey distribution

and its preferred prey size. The model therefore integrates

both neutral and trait-matching constraints.

We consider the following Gaussian function to repre-

sent the probability of an interaction given the size of the

predator and the prey:

PðLij ¼ 1jMpred;MpreyÞ
¼ exp

�ða0 þ a1 �Mpred �MpreyÞ2
2ðb0 þ b1 �MpredÞ2

eqn 5

where a0, a1, b0 and b1 are fitted parameters describing the

linear relationship between the predator size, its optimum

(a0 + a1 Mpred) and the range (b0 + b1 Mpred) of its prefer-

ence function. This formulation considers there is an opti-

mal prey size for the predator, and the probability an

interaction occurs reduces with any deviation from it (Wil-

liams, Anandanadesan & Purves 2010). The optimum also

increases linearly with predator size. The same reasoning

could also be applied to mutualistic interactions, consider-

ing there is an optimal corolla length for a pollinator of a

given tongue length. One tricky issue might be to gather

information about the prey trait distribution. The distribu-

tion of prey traits might be influenced by the interactions

if there is a feedback of predators on prey abundance, and

in the best situation, we need to tease that effect apart.

Here, we assume that the distribution of the data provides

an adequate representation of the distribution of potential

prey sizes because of the large number of observed interac-

tions (>33 000) and their diversity. We thus consider a

normal distribution of (log) prey size and computed the

average and the standard deviation.

The predator–prey example provides a case where trait

matching is a strong driver of interactions because of a

strong predator–prey body size relationship (likeli-

hood = �21223). The parameters of the fitted model can

subsequently be used for predicting interactions among

species that co-occur, but have not been observed to inter-

act (e.g. due to incomplete sampling) or more interestingly,

for species that currently do not co-occur but may do so in

the future, for example as a consequence of range shifts

under climate change (Albouy et al. 2014) or species inva-

sions.

Next, we use the same models on experimental data on

the relationship between grasshopper incisive strength and

leaf dry matter content (Deraison et al. 2015). In this case,

both traits are species averages. We first find weak trait

matching for binary data (who eats whom at the species

level; likelihood = �213; Fig. 3a). However, weighting the

interactions by consumption frequency removes bias in

parameter estimates and the fit of the model is consider-

ably improved (likelihood = �5383). We thus find that

strong-mandibled grasshoppers prefer plants with higher

content of dry matter, as reported in the original paper

(Fig. 3b).

The model could also be evaluated using traits measured

at the individual level. In the last example, we related polli-

nator tongue length with plant nectar holder depth in visi-

tation networks from Bartomeus, Vil�a & Santamar�ıa

(2008). Individual pollinator tongue length was inferred

using the allometric relationship with body intertegular

span within each bee family (Cariveau et al. 2016), while

Fig. 2. Illustration of the quantitative framework to evaluate a trait-matching probabilistic function. (a) Conceptual representation of a

trait-matching constraint. Interactions (in black) are feasible only when both species have traits that are compatible. However, we often

do not have reliable information on the species that are present, but are not observed to interact (white dots). Dotted lines indicate the

trait ranges of compatibility between the species (b) Representation of the density function for available body size in the (Barnes et al.

2008) data set (white bars), the trait-matching function (black line) and the observed distribution of prey size for the predator Notothe-

niops larseni (black bars). (c) Representation of the observed interactions (black dots) and the prediction for the maximum-likelihood esti-

mate of the trait-matching function (from low probability in red to high probability in white).
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species average flower size was considered for plants. Indi-

vidual trait data for pollinators allow capture of the

interindividual differences when evaluating parameters of

trait-matching functions. In addition, this model uses inde-

pendent information to describe the trait abundance distri-

bution of plant species. In the past examples, abundance

was inferred from the network of interactions, but in this

case, independent transect measures of per cent plant cover

in the site are available (Bartomeus, Vil�a & Santamar�ıa

2008). We find that the model can be interpreted as a trait-

barrier, where small-tongued individuals cannot access

deep flowers, but long-tongued species can access both

deep and shallow flowers (likelihood = �705; Fig. 4).

However, under such weak constraints (most pollinators

can access most plants), abundance is the main determi-

nant of interaction probability. For comparison, using pol-

linator species trait averages instead of individual values

produce a similar model, but with a worst likelihood

(�726), indicating that there is a gain from using detailed

data when available.

Discussion and conclusions

Quantifying the trait-matching relationships across species

may help us to understand how networks are structured.

For example, the nested structure of plant–pollinator net-

works may be driven from species abundance (V�azquez,

Chacoff & Cagnolo 2009) or from barriers to certain inter-

actions (Stang, Klinkhamer & van der Meijden 2006). In

contrast, the strong trait matching observed in plant–her-
bivore interactions (e.g. plant defences limiting herbivory

for all but a few tolerant species) can produce more modu-

lar networks where interactions depart more from the null

expectation based solely on abundance (Th�ebault & Fon-

taine 2010). Even within plant–pollinator interactions,

bird–plant networks are more specialized than insect–plant
networks, which is also reflected in their degree of trait

matching (Maglianesi, B€ohning-Gaese & Schleuning 2015).

Our framework is, however, limited to pairwise interac-

tions, and future work will have to investigate how the dis-

tribution of traits in a community constrains the emergent

network properties. Moreover, trait-matching constraints

describe potential interactions, but may not always reflect

realized interactions (Poisot, Stouffer & Gravel 2015). The

future development of a Bayesian approach to evaluate the

distribution of parameters will help quantifying the uncer-

tainty of predicted interactions.

Parameterized trait-matching functions not only provide

a better understanding of the drivers of interactions, but

they also allow prediction of novel interactions following

deliberate introductions (e.g. of crop species or biological

control agents) or unintentional invasions and range shifts

(Morales-Castilla et al. 2015). Proxies of trait similarity,

such as phylogenetic distance, have already been

successfully used to predict interactions of exotic species

(Pearse & Altermatt 2013), and adding traits has the

Fig. 3. Representation of the fitted interaction probability for grasshopper and plant interactions unweighted (a) and weighted (b) by fre-

quency of interaction (from low probability in red to high probability in white). The probability of interaction between a grasshopper and

a plant follows a positive relationship between incisive strength and plant leaf dry matter content. Note that the overlapping data in b

have been jittered to appreciate the different frequencies of particular interactions. The likelihood for (a) is similar to the neutral model,

while much better in (b), indicating that the frequency of interactions must be taken into account to better reveal the trait-matching

constraint.

Fig. 4. Representation of the fitted interaction probability plant

and pollinators weighted by the frequency of interactions (from

low probability in red to high probability in white). Only a few

interactions among small-tongue-sized bees and long corolla depth

flowers are realized (red area), while the rest of interactions are

explained mainly by abundance.
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potential to enhance this approach. Species losses and

gains following local and global changes are threatening

most ecosystems, and it is simply impossible to measure all

potential interactions in the field. Tools are consequently

required to assess how the interaction network will rewire.

We know that exotic species invading a community get

easily integrated into the recipient network of interactions

(Albrecht et al. 2014) and that after species turnover in a

community, the remaining species reshuffle their interac-

tions to adjust to the new composition (Kaiser-Bunbury

et al. 2010). Our predictive ability in these situations is,

however, still limited.

Careful selection of the right set of traits to run the

analysis is, however, a critical step. We have seen that

traits constraining interactions could potentially comprise

all morphological and physiological species characteristics,

and hence, are quite specific for each interaction type. A

good a priori knowledge on the biology of the species and

type of interaction involved is needed to select the right

trait combinations. For example, we also explored

whether body size drives host–parasite relationships using

the Tylianakis, Tscharntke & Lewis (2007) data set, but

in this case, all models performed poorly because the lar-

gest parasitoid is smaller than the smallest host, which

allows all types of body size combinations. Alternatively,

spurious trait matches could be found when some traits

are correlated. For instance, traits such as body size cor-

relate allometrically with several other morphological

traits (Woodward et al. 2005) and might therefore provide

a wrong causal explanation of the interactions. One

strong limitation for some interactions, such as fungi and

plants, is that the traits governing interactions remain

somewhat unclear (Tedersoo et al. 2008; Mart�ınez-Garc�ıa

et al. 2015). The challenge for the future will be to deter-

mine and quantify the actual traits governing these inter-

actions, including their variability among individuals or

genets.

Another challenge outlined in Fig. 1 and still unresolved

is inferring functioning from a network of interactions

(Duffy et al. 2009; Thompson et al. 2012). Species interac-

tions are driving several ecosystem processes and functions

(e.g. animal pollination, fruit dispersion) as well as energy

fluxes (e.g. predation, parasitism). Inferring the function

from traits, however, requires incorporating the interaction

efficiency (the per capita strength of a single interaction

link; V�azquez et al. 2015), which in turn may be also trait-

or abundance-mediated, and can depend on the extent of

matching (e.g. pollinators with short tongues may be able

to visit, but inefficiently pollinate long flower corollas), or

on morphological, physiological or behavioural traits (e.g.

large pollinators deposit more pollen; Hoehn et al. 2008;

Fig. 1). Empirical evidence measuring interaction efficiency

is still scarce.

In conclusion, different traits can inform us about how

species form networks of interactions. For some interac-

tion types, like mycorrhizal fungal interactions, traits

affecting co-occurrence can be the most relevant for under-

standing the occurrence of interactions. Conversely, for

other interaction types, like those between predators and

prey, morphological and physiological traits may be the

main determinants of who interacts with whom. Under-

standing which mechanisms are driving pairwise interac-

tions is a key to predict how communities will respond to

global change. Interactions regulated by co-occurrence will

be more likely to be affected by climate change (e.g. chang-

ing phenologies and distributions), while changes in domi-

nance following disturbance may redistribute the

interactions in neutral-driven networks. Non-random spe-

cies extinctions are also expected to affect more drastically

interactions regulated by strong trait matching (Larsen,

Williams & Kremen 2005). There are still too many

unknowns to draw general conclusions about how commu-

nities are structured by traits and what implications this

has for ecosystem functioning, but we are now armed with

appropriate analytical tools to move beyond the mere

description of interactions and run predictive analysis of

network assembly and dynamics.
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