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ABSTRACT
Valorization of captured CO2 is an important but challenging topic
since CO2 is a stable and relatively inert compound. Nonetheless,
CO2 valorization technologies should be sought after, because
they can offer an opportunity for the sustainable carbon cycle
towards a circular economy by creating value-added products
and generate revenues from CO2. This paper provides an
overview of state-of-the-art valorization technologies for captured
CO2, including (1) supercritical CO2 as a reactive solvent, (2)
mineralization of CO2 as inorganic carbonates, (3) catalytic
reduction of CO2 into organic fuel for transport, (4) transformation
of CO2 to value-added chemicals, and (5) biological CO2

utilization. The principles and application, in terms of CO2

conversion performance and environmental benefits of each
technology, are reviewed in detail. In addition, the perspectives
and prospects of CO2 valorization technologies as a portfolio
solution are provided to achieve the effective CO2 reduction while
minimizing social and economic costs in the near future.
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1. Introduction

Human activities led to an imbalance in the global carbon cycle since the rate of
CO2 release mainly due to the burning of fossil fuels and cement production,
exceeds that of CO2 uptake and sequestration (Farrelly et al., 2013). In response to
Paris Agreement in 2015, an effective control of CO2 emission is necessary to keep
the global atmospheric CO2 concentration below 550 ppm over the next 100 years
(Fernandez Bertos et al., 2004). The concentration of CO2 in the atmosphere
increases at a rate of 4.2 Gt-C/year (Scholes et al., 2009). However, it has been pre-
dicted that fossil fuels will remain the worldwide-dominant source of energy at
least for the next 20 years (Aresta, 2010b). Several imperative strategies on CO2
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mitigation have been proposed to combat the aforementioned challenges. One of
them is widespread deployment of valorization technologies for captured CO2.
CO2 valorization technologies would offer the potential of reducing annual CO2

emissions by at least 3.7 Gt, which is about 10% of the world’s current annual
emissions (CSLF, 2011; Pan et al., 2015b). Meanwhile, value-added products can
create green jobs and economic benefits and help offset the implementation cost
by substitution of chemicals such as chlorofluorocarbons (Aresta, 2010b).

CO2 molecule is a thermodynamically stable compound. Figure 1 shows the
approximate chemical energy (Gibbs free energy) of C1 species and hydrogen rela-
tive to CO2. The diluted or concentrated CO2 can be directly utilized or converted
into carbon-based materials such as hydrocarbon fuels and chemicals. CO2 conver-
sion can be realized by either reduction reaction (i.e., to a negative-going oxidation
state) (Wang et al., 2014) or mineralization (i.e., to a lower Gibbs free energy)
(Duan et al., 2014) since CO2 has the highest oxidation state (4C) among all car-
bon-bearing compounds. For instance, CO2 mineralization using natural ores and/
or solid wastes (Olivares-Mar�ın and Maroto-Valer, 2012) and biological methods
such as microalgae and enzyme-based processes (Klinthong et al., 2015) are related
to direct CO2 utilization and conversion since the physico-chemical property of
CO2 changes after process. Otherwise, CO2 reductive conversion typically goes
through a catalytic process with typically additional energy input (e.g., renewable
energy source).

CO2 valorization technologies can offer a unique opportunity for sustainable
carbon cycle towards a circular economy. Extensive efforts have been carried out
to enhance the CO2 conversion efficiency and product selectivity under various
novel processes. Figure 2 shows the roadmap of valorization technologies for cap-
tured CO2. CO2 valorization can be achieved by either (i) direct use of

Figure 1. Approximate chemical energy (Gibbs free energy) of C1 species and hydrogen relative to
CO2.
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concentrated CO2 (i.e., Pathway A (use as a reactive solvent) (Huang and Tan,
2014) in Figure 2), or (ii) CO2 conversion into chemicals and/or fuels (i.e., Path-
ways B (mineralization) (Aresta et al., 2014; Chery et al., 2015; Sanna et al., 2014),
C (catalytic reduction), and D (biological fixation) in Figure 2). The goal of CO2

valorization is to use CO2 as a feedstock to produce bio-fuels and/or bio-chemicals
towards a circular economy. Meanwhile, these technologies should be able to
address the issues of water and energy nexus since production of freshwater or
energy requires work-inputs, which would result in additional CO2 emissions.

To facilitate the development of a sustainable carbon cycle, this paper provides
an overview of state-of-the-art CO2 valorization technologies, including (1) use of
supercritical CO2 (sc-CO2) as a reactive solvent, (2) mineralization of CO2 as inor-
ganic carbonates, (3) catalytic reduction of CO2 into organic fuel for transport, (4)
transformation of CO2 to value-added chemicals, and (5) biological CO2 utilization
technology. The advances in each technology and environmental benefits are com-
prehensively reviewed. The perspectives and prospects of each CO2 valorization
technology as a portfolio solution are also provided to achieve effective CO2 reduc-
tion while minimizing social and economic costs.

2. Supercritical CO2 as a reactive solvent

Supercritical CO2, considered as a green solvent system, can be formed when CO2

is held at or above its critical temperature (31.1�C) and critical pressure
(»7.39 MPa). sc-CO2 can be applied in many different fields of interest, for exam-
ples, as a swelling agent (Kegl et al., 2017), working fluid in Rankine cycles (Li
et al., 2016), fracturing fluid (Cui et al., 2016; Middleton et al., 2015), extractant (Li
et al., 2014b; Pan et al., 2012a; Taher et al., 2014), pasteurizing agent of bioactive
compounds in food and medicine (Jermann et al., 2015), homogeneous and

Figure 2. Roadmap of valorization technologies for captured CO2. Aresta; et al., 2014; Chery et al.
2015; Sanna et al., 2014.
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heterogeneous catalysis (Galia and Filardo 2010; Hu et al., 2016; Koeken et al.,
2011), polymer synthesis and modification (Du et al., 2009; Haldorai et al., 2012),
and bio-catalysis (Hobbs and Thomas, 2007). From an engineer’s point of view,
sc-CO2 would be a good solvent for amorphous fluorinated polymers, silicones
and poly(ether-carbonate) copolymers but might be a marginal one for hydroge-
nated polymers (Triolo et al., 2002). From the economic aspect, Rosa and Meireles
(2005) estimated the costs of manufacturing the solvent and compared it with its
corresponding price in the market. In the commercial adoption of supercritical
fluid extraction, the manufacturing costs can be determined by considering (i)
direct costs such as raw materials, operational labor, and utilities, (ii) fixed costs
such as investment, and (iii) operation and maintenance (del Valle, 2015). In this
section, the applications of sc-CO2 in extraction as well as in polymer synthesis
and modification are illustrated and reviewed.

2.1. Extraction of valuable components from microalgae

Extraction using sc-CO2 offers immediate advantages over other extraction techni-
ques using a conventional solvent: (i) the process is flexible with the possibility of
continuous modulation of the solvent power/selectivity of the supercritical fluids,
(ii) it eliminates polluting organic solvents, and (iii) expensive postprocessing of
extracts for solvent elimination is not required (Reverchon and De Marco, 2006).
Nowadays, sc-CO2 extraction of molecules of interest from microalgae biomass is
a subject of great interest documented (Mouahid et al., 2013; Yen et al., 2015b).
Numerous components in microalgae have highly valuable products, such as total
lipid (Li et al., 2014b), long chain fatty acids (e.g., eicosapentaenoic acid and doco-
sahexaenoic acid) (Li et al., 2014b), and pigments (e.g., astaxanthin (Pan et al.,
2012a), lutein (Yen et al., 2011), a-linolenic (Solana et al., 2014), and b-carotene)
(Nobre et al., 2013). The lipid content of microalgae typically ranges from 20% to
50% of its dry weight with a potential up to 80%, which can be utilized for biofuel
application. Similarly, astaxanthin and lutein are typical carotenoid members,
which are widely used as food additives and nutritional supplements (Yen et al.,
2015b). Daily intake of these pigment, is recommended since human body cannot
synthesize them. For instance, lutein is naturally synthesized by plants in the form
of fatty-acid esters with one or two fatty acids bound to two hydroxyl groups. It
was noted that nonpolar sc-CO2 would be suitable for extraction of neutral lipids
such as triglycerides (Jeevan Kumar et al., 2017).

Table 1 presents the different extraction methods for valuable compounds from
microalgae biomass. The extraction efficiency of a supercritical fluid process
depends on intrinsic factors (such as temperature, pressure and duration) and
extrinsic ones (such as sample matrix characteristics and interactions of sc-CO2

with target compounds). The results indicate that the pigment recovery using sc-
CO2 could be over 80% under a specific condition, suggesting that sc-CO2 fluid is
a promising solvent for the separation of pigment in the microalgae. In addition, it
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was observed that using a polar compound like ethanol as a cosolvent could
increase the solubility of carotenoids in sc-CO2. In the case of astaxanthin extrac-
tion from Haematococcus pluvialis, Reyes et al. (2014) found that ethanol content
in sc-CO2 would affect yield, astaxanthin content and antioxidant activity more
than pressure and temperature. The results indicate that the astaxanthin recovery
using sc-CO2 could be over 87% (Wang et al., 2012). However, one limitation is
that sc-CO2 would reduce the extraction efficiency of a polar cosolvent (Pan et al.,
2015c). In addition, sc-CO2 technology for extraction of valuable components
from microalgae biomass still suffers from high equipment cost and operating cost
(Yen et al., 2015b).

2.2. Polymer synthesis and modification

Supercritical fluids such as sc-CO2 can be used in polymer synthesis, modification
and processing. It can change the rheological and thermo-physical properties of a
polymer such as the glass transition and the melting temperature when it is
exposed to sc-CO2. Thus, sc-CO2 was used in numerous applications such as (1)
foaming agents for polymers, (2) formation and encapsulation of particles from
polymer solutions, (3) extraction of low molecular weight molecules from polymer
matrices for purifications, and (4) impregnation of solutes such as drug molecules
into polymers (Kegl et al., 2017; Kiran, 2016).

In traditional solvent systems, the polymerization rates could be limited by the local
increase in viscosity during the reaction, thereby lowering the mass transfer rate of
monomer to reaction site (Galia and Filardo, 2010). Due to low viscosity and high diffu-
sivity of sc-CO2, the polymerization rate could significantly increase up to the value of
monomer conversion. Majority of polymerizations in sc-CO2 are heterogeneous and
involve either precipitation or dispersion since polymers are generally insoluble in sc-
CO2. In addition, as a polymerization medium, sc-CO2 can be easily removed after
polymerization, eliminating the need for an energy-intensive drying process. Therefore,
sc-CO2 is suitably applied for a system that involves heat-sensitive materials such as
enzymes, pharmaceuticals, flavors, and highly reactive monomers.

Recently, it was found that hydrothermal modification treatment assisted by sc-
CO2 over polymers could simultaneously result in a physical modification and a
hydrolysis reaction in polymers (Alc�azar-Alay et al., 2016). Similarly, extrusion
assisted by sc-CO2 can provide rapid mixing and dissolution of CO2 in the poly-
mer melt, thereby resulting in a decrease of the processing temperature to manu-
facture of highly porous material (Chauvet et al., 2017). Furthermore, sc-CO2 can
serve as a swelling agent for polymers to impregnate the carrier with desirable sub-
stances such as bioactive compounds.

2.3. Summary

The sc-CO2 technology has the potential of valorizing CO2 from emission sources,
while improving the efficiency and performance of a process and/or reaction such
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as extractions, separation, and synthesis and modification of materials (e.g., poly-
mers). For the extraction of valuable compounds, sc-CO2 is a promising alternative
to numerous commercial organic solvents due to its higher selectivity, lower
extraction time and more environmentally friendly. At present, however, the sc-
CO2 technology still suffers from high equipment cost and operating cost. The
behaviors of supercritical fluids in a process like extraction also still not clearly
understood because of the complex interaction between affecting factors and fluid
dynamics of supercritical fluids (Wang et al., 2010). The future research should
focus on designing the optimized system for supercritical fluid to facilitate the
deployment of sc-CO2 technology.

3. Mineralization of CO2 as inorganic carbonates

CO2 mineralization can be accomplished via accelerated carbonation. It has been
proven that accelerated carbonation process is thermodynamically practical to
enhance the natural weathering (Herzog, 2002; Lackner et al., 1995). In this pro-
cess, gaseous CO2 can be mineralized as a thermodynamically stable precipitate,
thereby being rarely released after mineralization. CO2 mineralization via acceler-
ated carbonation can be categorized into three main processes: (1) direct carbon-
ation, which is associated with production of green concretes/cements such as
supplementary cementitious materials, (2) indirect carbonation, which is related
with production of high value-added chemicals such as precipitated calcium carbo-
nates, and (3) carbonation curing for concrete block and/or cement mortar to
enhance their strength and durability. In the following section, the principles and
applications of the aforementioned processes are reviewed and discussed.

3.1. Feedstock for CO2 mineralization via accelerated carbonation

Natural silicate and/or carbonate ores are suitable feedstock for accelerated carbon-
ation due to their high contents of calcium and/or magnesium oxides, such as
amphibolite/diopside (Erlund et al., 2016), and serpentine (Veetil et al., 2015).
Accelerated carbonation using natural ores could provide high capture capacity
and long storage period for anthropogenic CO2 (Bobicki et al., 2012; Lackner,
2003; Seifritz, 1990). Carbonate minerals are energetically favored to form from
the reaction of CO2 with silicates such as olivine, serpentine and anorthite (Lack-
ner, 2002). It is also known that there is enough natural ores on Earth to sequester
all CO2 emissions from fossil-based sources (Lackner, 2003). However, due to the
need for large-scale mining of the natural ores (Kelly et al., 2011), exploring and
pretreating materials are costly. Therefore, alkaline solid wastes from industries or
coal-fired power plants are getting more attention as an attractive feedstock for
accelerated carbonation since they are relatively inexpensive ores. In the meantime,
an integrated approach to combining CO2 valorization with alkaline waste treat-
ment could be simultaneously achieved (Chiang and Pan, 2017d).
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Table 2 presents the list of alkaline solid wastes as a suitable feedstock for accel-
erated carbonation: three examples are iron and steel slags, air pollution control
residues, and mining/mineral processing wastes. Different elements such as Pb,
Zn, and Cr would be leached out from the solid matrix to the liquid phase (e.g.,
water environment). These alkaline solid wastes, if added into water, would nor-
mally cause solution pH to increase over 10. It is noted that, by introducing flue
gas CO2 as a stabilizing agent, potential environmental impacts of utilizing these
solid wastes, with highly alkaline and heavy metal leaching characteristics, can be
reduced (Chiang and Pan, 2017f).

Figure 3 shows the normalized CaO(MgO)-SiO2(Na2O,K2O)-Al2O3(Fe2O3)
phase diagram of various types of alkaline wastes for CO2 mineralization. They are

Table 2. Suitable alkaline solid wastes as a feedstock for accelerated carbonation.

Categories Types of wastes Leachable elements References

Incineration ash MSWI bottom ash Pb, Sb, Cu, PAHs (Arickx et al., 2010; Cornelis et al.,
2012; Rendek et al., 2006; Yang
et al., 2012)

MSWI fly ash* Pb, Cr, Cu, Cd, Ba, Cl, dioxin
Paper sludge Cr, As, Cu, Mo, Ni, Pb, Se (Sanna et al., 2012)

Pulverized fuel ash Coal fly ash* Se, Sr, Ba, Cl, Zr, Cr, Ni, Zn (Liu et al., 2013; Tamilselvi
Dananjayan et al., 2016)

Coal bottom ash (slag) Mn (Pyo and Kim, 2017)
Oil shale ash S (Uibu et al., 2011; Velts et al.,

2011)
Cement waste Cement kiln dust Pb, SO4

2¡, Cl-, Ba, Mo (Abo-El-Enein et al., 2013; Sanna
et al., 2012)

Cement bypass dust
Construction and

demolition waste
Cement/concrete waste
Blended hydraulic slag

cement
Air pollution control

residue
Cyclone dust* Pb, Zn, Cd, Cr (Cappai et al., 2012; Chiang and

Pan, 2017b)
Cloth-bag dust* Pb, Cr, Cd, Zn, Sr, Cu (El-Naas et al., 2015; Tian and

Jiang, 2012)
Mining and mineral

processing waste
Asbestos tailings Mg, Al (Chiang and Pan, 2017e; Oskierski

et al., 2013)
Copper tailings (copper-

nickel-PEG)
Zn, Cu, Fe, Mn (Chen et al., 2014; Guo et al.,

2013)
Red mud (Bauxite

residue)
Al, Zn, PO4

2¡, S (Molineux et al., 2016)

Iron and steel slag Blast furnace slag Si, Al, Fe, Ti, Mn (Ukwattage et al., 2017)
Basic oxygen furnace slag Cr, V (De Windt et al., 2011)
Electric arc furnace slag Cr, Ba, V, Mo (Mombelli et al., 2016)
Ladle furnace slag Fe, Mn, V, Cr, Baa, Moa (Capobianco et al., 2014;

Ibouraadaten et al., 2015;
Seti�en, et al., 2009)

Paper mill waste Green liquor dreg Mr, Zn, Ni, Ba, Fe (Nurmesniemi et al., 2005; Perez-
Lopez et al., 2010; Perez-Lopez
et al., 2008)

Paper sludge incineration
ash

SO4
2¡, Mo, Ba, Cr, Pb (Jo et al., 2012)

Lime kiln residues
(calcium mud) �

Cr, Mn, Fe (Qin et al., 2015)

�Be usually categorized as a hazardous material.
aEspecially in the case of argon oxygen decarburization slag.
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chemically unstable with high content of active components, e.g., lime (free-CaO),
which can be readily hydrated in the presence of water and react with CO2 to form
carbonates. In general, the Ca- and Mg-bearing compounds mainly contribute to
CO2 fixation capacity, and the Fe2O3 content is related to hardness and grindability
of a material. Basic oxygen furnace slag and electric arc furnace slag are relatively
hard materials due to their high Fe2O3 content, i.e., typically 17¡38% and even up
to 48% (Chiang and Pan, 2017c). On the other hand, if material is used in concrete
and cement, the contents of CaO and SiO2 are primarily related to the hydraulic
and pozzolanic properties, respectively. For instance, ordinary Portland cement
(OPC) is a hydraulic material, while both blast-furnace slag and fly-ash are, respec-
tively, latent-hydraulic and pozzolanic byproducts (Gruyaert et al., 2013). Con-
versely, according to the findings reported by Muhmood et al. (2009), electric arc
furnace slag is neither hydraulic nor pozzolanic because of its lack of tri-calcium
silicates and amorphous SiO2 content.

3.2. Direct carbonation with production of green construction materials

CO2 mineralization via accelerated carbonation involves fixing gaseous CO2 into
thermodynamically stable carbonates. The carbonate products can be utilized as a
supplementary cementitious material (SCM) in concrete and/or cement mortar,

Figure 3. Normalized CaO(MgO)-SiO2(Na2O,K2O)-Al2O3(Fe2O3) phase diagram of various types of
alkaline waste. FA (fly ash); CKD (cement kiln dust); OPC (ordinary Portland cement); MSWI-FA
(municipal solid waste incinerator fly ash); MSWI-BA (municipal solid waste incinerator bottom ash);
CFB-FA (circulate fluidized boiler bed fly ash); BFS (blast furnace slag); BOFS (basic oxygen furnace
slag); LFS (ladle furnace slag); EAFOS (electric arc furnace oxidizing slag); EAFRS (electric arc furnace
reducing slag); PS (phosphorus slag).
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which is a sustainable practice to make the cement industry more environmentally
friendly. Thus, this approach can keep globally available alkaline solid wastes out
of landfills. Coincidently to the amount of CO2 emission and alkaline solid waste
production at a single plant, a direct CO2 mitigation potential of roughly 2% could
be achieved if all the solid wastes are on-site utilized to capture the CO2 emission
(Tamilselvi Dananjayan et al., 2016).

3.2.1. Principles and Applications (Process Design)
CO2 can react with divalent metal oxides, such as CaO, MgO, and FeO, to form the
corresponding carbonate, as shown in Eq. (1):

MO.s/ C CO2 .g/ !MCO3 sð ÞC heat (1)

Accelerated carbonation is an exothermic reaction, where the amount of heat
release depends on the reactive metal (M) and on the material containing this
metal oxide (MO). In the case of alkaline solid wastes, residues with a native pH
value of greater than 10 typically contain portlandite (Ca(OH)2), which controls
the solubility of calcium ions and the pH of solution (Olajire, 2013). Portlandite
can be carbonated with CO2 via Eq. (2):

Ca OHð Þ2 .s/ C CO2 .g/ !CaCO3 sð ÞC H2O.l/ (2)

Another group of Ca-bearing components that is often present in solid wastes
are calcium-silicate-hydrate (C-S-H) phases, such as CaSiO3 and Ca2SiO4 (Pan
et al., 2012b; Pan et al., 2015a). The carbonation of C-S-H phases can be described
as Eq. (3):

CaO ¢n SiO2 ¢mH2O.s/ C CO2 .g/ !CaCO3 sð ÞC n SiO2 .s/ CmH2O.l/ (3)

The theoretical CO2 fixation capacity (ThCO2, %) of alkaline solid wastes can be
estimated based on the chemical compositions of the wastes using the famous
Steinour formula (Steinour, 1959). It is assumed that the components of CaO,
MgO, NaO, and K2O would contribute to the carbonation reaction with CO2. The
compositions of each component are applied in terms of a weight percent (%).

ThCO2 %ð Þ D 0:785 CaO¡ 0:7SO3 ¡ 0:56CaCO3ð Þ
C 1:091 MgO C 2:09 Na2O C 0:93 K2O (4)

Extensive studies have been performed to evaluate the CO2 fixation capacity of
direct carbonation for solid wastes, such as steel slag (Pan et al., 2013b; Santos
et al., 2013), fly ash (Tamilselvi Dananjayan et al., 2016), and cement waste (Lee
et al., 2016). A challenge in determining the amount of carbonation product exists
since the evaluation criteria of carbonate products by conventional
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thermogravimetric (TG) analysis are quite different among the literature, as well as
the various ways to interpret the TG curve. To accurately quantify the CaCO3 con-
tent in solid wastes, Pan et al. (2016d) proposed an integrated thermal analysis by
combining the TG analysis results with derivative thermogravimetric, differential
thermal analysis, and differential scanning calorimetry.

Figure 4 shows a fishbone diagram of influencing factors for accelerated car-
bonation using alkaline wastes. To achieve a successful accelerated carbonation,
there are five key components which should be critically considered in a large-
scale deployment: (1) process designs, (2) operating factors, (3) model develop-
ment, (4) system optimization, and (5) technology demonstration. For instance,
to improve the mass transfer between gas, liquid and solid phases (related to
the mixing in operating factors), Pan et al. (2014, 2013a) utilized a rotating
packed bed reactor for accelerated carbonation, known as high-gravity carbon-
ation (HiGCarb). In the HiGCarb process, the slurry containing alkaline solid
waste and wastewater is fed into the reactor and extracted outward which was
motivated by centrifugation. In the meantime, the flue gas enters the reactor
from the counter-current direction and moves inward by pressure gradient. A
high micro-mixing efficiency between the slurry and gas phases can be
obtained, thereby enhancing the CO2 mass transfer, improving the carbonation
conversion and reducing the reaction time (Pan et al., 2015e). Using the pro-
cess, the 93% carbonation conversion of steel slag could be attained (Chang
et al., 2012a). For comparison, typical carbonation conversions of 40¡75% are
achieved in the slurry (Chang et al., 2012b) and autoclave (Chang et al., 2011)
reactors. Recently, on-site HiGCarb demonstrations have been carried out at a
steelmaking (Pan et al., 2015d) and a petrochemical (Pan et al., 2016b) industry.
The results indicated that, in the case of the steel industry, the energy consump-
tion of the HiGCarb process with a CO2 removal efficiency of 90% was esti-
mated to be 267 § 58 kWh t-CO2

–1 (Pan et al., 2015d).

Figure 4. Fishbone of possible influencing factors for accelerated carbonation using alkaline
wastes.
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3.2.2. Product utilization as SCMs in construction engineering
A concrete block comprises of water, cement, coarse and fine aggregates, chemical
admixture, and SCM. Studies have been carried out to evaluate the utilization per-
formance of carbonated solid wastes as SCMs in blended cement (Pan et al.,
2015d) and a fine aggregate in concrete (Monkman et al., 2009). Normally, the use
of SCMs in blended cement may reduce the early-age strength and increase the
later-age strength of the concrete, as compared with the use of pure OPC (Caldar-
one et al., 2005). However, a carbonation product such as CaCO3 is superior to the
original CaO or Ca(OH)2 in alkaline solid wastes, in terms of physical properties.
Since the CaCO3 is a highly elasticity-resistant material, it can improve early
strength of cement mortar. CaCO3 also could create vacuum within the cement
matrix; therefore, liquid cannot easily intrude into the structure to induce corro-
sion or damage (Chi et al., 2002). Aside from the physical enhancement, the
CaCO3 product may induce the chemical enhancement effect which might be
attributed to the hydration of C3A phase to form stable calcium carboaluminate
(C3A¢CaCO3¢11H), as shown in Eq. (5). This reaction could develop a higher
mechanical strength in the early stage (Hawkins et al., 2003). In the meantime, the
formed by-product (C3A¢0.5CaCO3¢0.5Ca(OH)2¢11.5H) is relatively unstable and
will be continuously converted to calcium carboaluminate after 1 day, as described
in Eq. (6).

2 C3A C 1:5 CaCO3 C 0:5 Ca OHð Þ2 C 22:5 H!C3A ¢CaCO3 ¢11H
C C3A ¢0:5CaCO3 ¢0:5Ca OHð Þ2 ¢11:5H (5)

2 C3A ¢0:5CaCO3 ¢0:5Ca OHð Þ2 ¢11:5H!C3A ¢CaCO3 ¢11H C C3AH6 (6)

Several studies indicate that the use of carbonated solid wastes as SCMs is bene-
ficial to the strength development of blended cement, especially the early-age
strength for a 20¡30% increase (Pan et al., 2015d, 2015).

3.2.3. Assessment of environmental and economic benefits
In terms of environmental impacts and benefits, the amount of heavy metals
leached from alkaline solid wastes and the metrics of leaching of heavy metals
from alkaline solid wastes are of great interest. Extensive studies have been carried
out to evaluate the effect of accelerated carbonation, alkalinity (or pH) and mineral
structure on the metal leaching behavior of wastes (Baciocchi et al., 2011; Salman
et al., 2014; van Zomeren et al., 2011). Calcium-baring components in alkaline
solid wastes are alkalinity contributors, thereby resulting in a high pH (>10). After
carbonation with CO2 gas, transformation of reactive CaO into calcium carbonate
precipitates may decrease the pH of the solution to 6–9. In parallel with the
decrease of pH, the leaching of heavy metals from wastes, such as Cu, Zn, Cr, Cd,
V, Pb, Ba, and Sr, can be significantly restricted due to the formation of insoluble
carbonates on the particle surface (Baciocchi et al., 2011; El-Naas et al., 2015).
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Furthermore, oxidant states of heavy metals in solid wastes would lead to different
leaching behaviours (Baciocchi et al., 2010).

The use of carbonated solid wastes as SCMs in blended cement mortar or con-
crete block can attain huge environmental and economic benefits (Pan et al.,
2016c). It is noted that cement production is energy and material intensive: (1) it
accounts for 4–5% annual global CO2 emission (Gibbs et al., 2001), and (2) 1.5–
1.7 tons of natural resources including 0.11–0.13 tons of coal are consumed per
ton of cement clinker production (Kumar et al., 2006). Consequently, even with a
10% substitution ratio of carbonated product in cement mortar, a great amount of
indirect environmental benefits can be revealed (Pan et al., 2016a). However, accel-
erated carbonation involves several energy-intensive processes, such as feedstock
grinding, heating, pumps and pressurization. Energy consumption is responsible
for the increase in additional CO2 emission from processes, which might easily off-
set the credits from CO2 fixation. Therefore, the environmental impact for differ-
ent carbonation processes should be critically quantified via a life-cycle assessment
(Xiao et al., 2014).

3.3. Indirect carbonation with production of high value-added chemicals

Indirect carbonation involves a few steps to proceed the carbonation process.
It can be accomplished through a few different processes, such as indirect
multistage gas–solid carbonation (Jo et al., 2014), pH swing method (Azdar-
pour et al., 2015), and ammonia extraction and caustic extraction (Mattila
et al., 2012). Among these methods, the two-step pH swing process using
regenerative ammonium salt and multi-stages indirect carbonation are consid-
ered as the most promising technologies to utilize industrial solid wastes
under a mild condition. The followings briefly illustrate the principles and
application of indirect carbonation as well as the product utilization as high
value-added products.

3.3.1. Principles and applications (Process Design)
In the indirect carbonation, the extraction of calcium and/or magnesium ions
from solid wastes is performed and followed by liquid and solid separation.
CO2 then dissolves into the liquid phase and precipitation of solid carbonates
takes place in a separated step or different reactors. Several studies were car-
ried out to evaluate the performance of indirect carbonation using different
solid wastes such as steel slag (Mattila et al., 2012; Teir, 2008) and pulverized
fuel ash (Velts et al., 2011). For the extraction step, a variety of solvents have
been used: (1) acidic solvents such as acetic (Eloneva et al., 2010; Eloneva
et al., 2008) and hydrochloric acid (Erlund et al., 2016), and (2) base or salt
based solvents such as NaOH (Eloneva et al., 2008), ammonium chloride (Elo-
neva et al., 2011), ammonium bisulphate (Erlund et al., 2016), and aqueous
ammonia (Hosseini et al., 2017). In the case of NH4OH, the overall
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carbonation reactions of leachate can be described as Eq. (7):

2 NH4OH C Ca;Mgð ÞCl2 C CO2 ! Ca;Mgð ÞCO3 C 2 NH4Cl C H2O (7)

Regardless of their solution concentrations, the extraction efficiency of calcium
ions using base or salt solvents follows the below sequence (Eq. (8)) (Jo et al., 2014):

NH4ð Þ2SO4 < NH4Cl < CH3COONH4 < NH4NO3 (8)

In the case of using 1.4 M ammonium bisulphate as the extractant, approxi-
mately 75¡80% of magnesium content in serpentine can be extracted with the
fraction 63–125 mm (Erlund et al., 2016). As the extraction proceeds, the deposi-
tion of an inert layer such as SiO2 formed on the reactive surface, thereby prevent-
ing further dissolution of metal ions out from particles (Park and Fan, 2004).

3.3.2. Utilization of carbonate product as high value-added chemicals
Multi-stage indirect carbonation is an appropriate route for the production of high
value-added chemicals, such as precipitated calcium carbonate and precipitated sil-
ica (Sanna et al., 2014). Compared to direct carbonation, the extraction of the
metal ions in a separated step allows a better control in the morphology and parti-
cle size of products during the precipitation step. In indirect carbonation, a precip-
itated calcium carbonate with the purity of >99% can be attained, which is further
proceeded to higher value added industrial materials including filters and coating
pigments (Azdarpour et al., 2015, P�erez-Moreno et al., 2015; Said et al., 2013). The
global demand for calcium carbonate is projected to reach 98.7 Mt on by 2020,
driven by robust demands from paper and plastic end-user sectors (GIA, 2015).

3.3.3. Assessment of environmental and economic benefits
The dissolution of calcium silicate minerals (e.g., C2S) during carbonation may
break down the mineral structure (van Zomeren et al., 2011), as shown in Eq. (9).
This would potentially release chloride and fluoride ions, as well as heavy metals
such as V and Cr into liquid.

CaOð Þ2 ¢SiO2 .s/ C m H2O.l/ !CaO ¢SiO2 ¢H2Om¡ 1 .s/C Ca OHð Þ2 .l/ (9)

On the other hand, although the overall energy consumption of indirect carbon-
ation is less than that of direct carbonation, the need of an energy-intensive process
for regeneration of extractant might be a limiting factor from a full-scale application.
The manufacturing of chemicals (such as solvents and extractants) for an extraction
step would generate additional CO2 emission. Therefore, a recovery process used
chemicals with low energy consumption should be developed and implemented for
indirect carbonation (Azdarpour et al., 2014; Xiao et al., 2014). According to the
findings by Kodama et al. (2008), the energy consumption of the indirect
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carbonation using NH4Cl as the leaching agent was estimated as 300 kWh/ton-CO2.
From another report by Hosseini et al. (2016), in the case of indirect carbonation for
coal fly ash using NH4Cl, the costs of CO2 capture ranged from 135 to 1091 USD
per tonne of CO2, corresponding to 61¡333 USD per tonne of carbonate produced.

3.4. Carbonation curing for concrete block and cement mortar

Carbonation curing for concrete block and cementmortar can provide another alterna-
tive for CO2 mineralization and valorization. Instead of using CO2 in direct/indirect
carbonation of alkaline solid wastes for the production of SCMs in cement preparation,
CO2 can be used in sequential curing processes, known as carbonation curing.

3.4.1. Principles and mechanisms
Carbonation curing of cementitious materials may improve their mechanical prop-
erties and durability. Normally, carbonation curing is being carried out by high-
purity CO2 gas (»99%) into a sealed chamber for curing concrete block or blended
cement. This early-age carbonation in curing is the reaction between calcium sili-
cates (or early hydration products) and CO2 to produce a hybrid binder structure
of calcium-silicate-hydrate (C-S-H, such as CaO¢2SiO2¢3H2O) matrix and CaCO3

(El-Hassan and Shao, 2015), as described in Eq. (10).

2 .2CaO ¢SiO2.s// C CO2 .g/ C 3 H2O.l/ ! 3 CaO ¢2SiO2 ¢3H2O.s/ C CaCO3 .s/

(10)

To achieve a rapid carbonation rate, the relative humidity for carbonation cur-
ing should be maintained at 50–70% (Ashraf, 2016). For carbonation curing of
OPC-based systems, rapid strength gains of the cementitious matrix, especially the
early strength, could be observed since the presence of CO2 accelerates the hydra-
tion of calcium silicates (Ashraf, 2016). During the carbonation process, the
micron-sized CaCO3 product is formed gradually in the C-S-H matrix, thereby
building up a denser and more compacted structure (Mahoutian et al., 2014). This
would be beneficial to the strength development of blended cement.

3.4.2. Carbonation curing models
Numerous models have been developed and validated to elucidate the behavior
and mechanism of carbonation curing for concrete and/or cement-based materials.
The most widely popular model to predict carbonation depth (Xc) in cement-based
materials is shown in Eq. (11), based on Fick’s first law (Housta and Wittmannb,
2002):

Xc tð ÞD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
D£Cc

Cr

r
£ ffiffi

t
p

(11)

where D is the effective diffusivity of CO2; Cc is the CO2 concentration in the cur-
ing atmosphere; Cr is the concentration of reactive compounds in materials; and
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t is the carbonation exposure duration. Assuming the diffusion rate of CO2 is con-
stant, Eq. (11) can be simplified to Eq. (12):

Xc tð ÞD A£ ffiffi
t

p
(12)

where A is an empirical constant. In reality, however, after a certain period of cur-
ing, carbonation depth does not reach a precise value as defined by a single number
in Eq. (12) (Housta and Wittmannb, 2002). Moreover, the real CO2 diffusivity
should depend on multiple factors such as porosity of materials, relative humidity,
CO2 pressure and concentration (Ashraf, 2016), which is practically not a constant.

The carbonation resistance of concrete can be estimated by the Fib model
(Eq. 13) (fib, 2006), in which the stochastic nature of concrete is induced during
the curing with the experimental data.

Xc tð ÞD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 £ Ke £ Kc £ Kt £ R¡ 1

ACC;oC et
� �

£Cs

r
£W tð Þ £ ffiffi

t
p

(13)

where Ke is the environmental function considering the effect of humidity on CO2

diffusivity; Kc is the execution transfer parameter considering the influence of cur-
ing on carbonation resistance; RACC,o

¡1 [(mm2/year)/(kg/m3)] is the inverse effec-
tive carbonation resistance of material at a certain time; kt is the regression
parameter considering the effect of the test method on accelerated carbonation;
and et [(mm2/year)/(kg/m3)] is the error term considering inaccuracy due to car-
bonation methods.

3.4.3. Performance evaluation
Several studies have been performed to assess the effect of carbonation curing pro-
cess on the properties of concrete (Ashraf, 2016), masonry (El-Hassan and Shao,
2015) and blended cement (Mo et al., 2015). The blended cement after carbonation
curing exhibited higher strength and eligible soundness (Wu et al., 2009). In the
course of carbonation curing, early hydration products can be converted to a crys-
talline microstructure, and subsequent hydration transformed amorphous carbo-
nates into crystalline calcite (El-Hassan and Shao, 2015). Particularly, carbonation
curing using highly pressurized CO2 could result in faster strength development
because of rapid penetration of CO2 and carbonation of blended cement (Mo
et al., 2015). Bukowski and Berger (1979) found that a compressive strength of
50 MPa for the nonhydraulic g-C2S compact could be obtained after carbonation
curing at 1 MPa for 15 min. Furthermore, in the case of OPC-based systems, car-
bonation reaction reduces the alkalinity of concrete, and hence makes the rein-
forcement susceptible to corrosion (Ashraf, 2016).

3.5. Summary

Alkaline wastes can be used to mineralize great amount of CO2 via accelerated car-
bonation, while manufacturing green materials and/or high value-added products
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such as glass ceramics and precipitate calcium carbonate. Both the environmental
and economic benefits can be realized, especially if the wastes are generated nearby
the source of CO2. To achieve a cost-effective manner, appropriate carbonation
efficiency (e.g., a carbonation conversion>85%) should be designated. In addition,
mineralization of CO2 using alkaline solid wastes could be linked to utilize waste-
water for large-scale application. At present, significant technological break-
throughs in reactor design, waste-to-resource supply chain, and system
optimization should be needed before deployment can be considered.

4. Catalytic reduction of CO2 to organic fuel for transport

Converting CO2 into organic transport fuels is an important CO2 valorization
option since the transport sector is a large contributor to GHG emissions. How-
ever, reducing CO2 requires high energy substances or electro-reductive processes
due to the chemically inert property of CO2. In fact, the amount of energy required
for reforming CO2 into organic fuels may exceed the amount of energy that can be
recovered (Schakel et al., 2016). Therefore, it only can become a viable option at
the place where excess energy (e.g., intermittent renewable energy) is available. In
this section, the concept of sustainable organic fuel for transport (SOFT) is first
illustrated and then reviewed with the details of state-of-the-art technology
information.

4.1. The concept of SOFT

Since hydrocarbon fuels are used for the majority of transportation as energy sour-
ces, a concept of SOFT was developed to provide compatible affordable mobility
using carbon-neutral liquid fuels. Figure 5 shows the concept of sustainable
organic fuel for transport (SOFT) incorporated with renewable energy storage and
CO2 capture and valorization. This concept retains the use of low-cost internal
combustion engines and liquid fuel systems (Pearson et al., 2012). Using heat, elec-
tricity and light from renewable energy, CO2 and H2O can be converted to various
hydrocarbon fuels in a nonbiological (chemically catalytic) process. SOFT can be
produced by the following three steps: (1) CO2 capture from ether flue gas or
ambient air, (2) storage of the renewable energy as chemical energy by dissociation
of CO2 and/or H2O, and (3) synthesis of fuels using the dissociation products
(Graves et al., 2011). In other words, three key components are required for pro-
ducing SOFT: (1) H2 source, (2) CO2 source, and (3) catalysts.

Integration of electrochemical water-splitting (Eq. (14)) with renewable energy
can serve to lower GHG emissions, while buffering the intermittency and fluctua-
tions of renewable energy (Cho and Hoffmann, 2017; Olah et al., 2009). Theoreti-
cally, the power consumption of water electrolysis is 39.4 kWh per kg of hydrogen
produced (Simbeck and Chang, 2002). In practice, considering the power needed
for a complete electrolysis, the conversion efficiency of water to hydrogen is in a
range between 73% and 85% depending on systems (IEA, 2004; Ivy, 2004). In other
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words, about 45¡55 kWh of electricity is needed to produce 1 kg of hydrogen.

H2O.l/�!e¡ H2.g/C 16 2O2.g/; DH298 KD 68:3kJ6 mol (14)

CO2 is considered a nontoxic and abundant C1 feedstock. Numerous fuels and
chemicals can be produced in a way of chemically catalytic recycling of CO2. On
the other hand, the use of hydrogen from renewable energy to convert CO2 to
organic fuels for transport has been considered as a new way to store excess renew-
able electricity (Centi et al., 2013). Extensive studies have been conducted to evalu-
ate the engineering performance of recycling CO2 into sustainable hydrocarbon
fuels using renewables (Graves, 2010). Under this framework, a great deal of envi-
ronmental benefits could be expected. According to the life cycle analysis, use of
SOFT such as methanol and dimethyl ether (DME) could reduce GHG emissions
by 82¡86%, minimize other criteria pollutants (e.g., SOx and NOx), and reduce
fossil fuel depletion by 82¡91% (Matzen and Demirel, 2016).

4.2. CO2 Catalytic reduction to organic fuels: Process chemistry

Catalytic reduction of CO2 to different organic fuels for transport is a remarkable
approach towards a sustainable carbon neutral society. The commonly used cata-
lytic methods for fuel synthesis from CO2 include (1) CO2 methanation, (2) dry
reform of methane to syngas, (3) CO2 hydrogenation to produce methanol, and
(4) CO2 hydrogenation to DME.

4.2.1. CO2 Methanation to meth
Methane, the main constituent of natural gas, has become an attractive fuel due to
its relatively abundant amount on Earth. CO2 can be hydrogenated to methane via

Figure 5. Concept of sustainable organic fuel for transport (SOFT) incorporated with renewable
energy storage and CO2 capture and valorization.
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a catalytic reaction as shown in Eq. (15), also known as Sabatier reaction.

CO2 .g/C 4 H2 .g/ !CH4.g/C 2 H2O.g/; DH298 K D ¡ 165 kJ6 mol (15)

The Sabatier reaction is accompanied by a side reaction, so-called the reverse
water-gas-shift reaction as shown in Eq. (16). Since this side reaction will reduce
the yield of methane, a proper process control charged be developed to avoid it.

CO2 .g/ C H2 .g/ !CO.g/ C H2O.g/; DH298 K

D 41:2 kJ6 mol; DG298 KD 28:6 kJ6 mol (16)

The commonly used catalysts for methanation process are based on Group VIII
metals, such as Ni and Ru, and supported on various porous materials (Nizio et al.,
2016). The catalytic activity of transitional metals in CO2 methanation is in the fol-
lowing order (Duyar et al., 2016):

Ru » Rh > Ni > Pd > Co > Pt at 320oCð Þ (17)

For CO2 methanation, if three components (i.e., Ni, La2O3, and Ru) are com-
bined at a proper ratio, the prominent synergy that is far from the sum of the activ-
ity of each catalyst can be obtained (Inui and Takeguchi, 1991). A significant CO2

conversion was also observed when the reaction temperature was set above 180�C
(Mihet and Lazar, 2016). Although Ni-based catalysts are commonly used for CO2

methanation, they will be oxidized and deactivated by flue gas containing signifi-
cant amounts of air. Therefore, Ru remains the favorite catalyst due to its low price
and excellent performance even at low temperature.

Recently, Duyar et al. (2016) developed a process to simultaneously capture and
convert CO2 as an endothermic CO2 desorption step of a traditional adsorbent is
coupled with the exothermic hydrogenation of CO2 over a catalyst occurs to pro-
duce methane. This process proceeds in a single reactor operating at 320�C and of
an ambient pressure to capture CO2 from flue gas and then produce methane
upon exposure to renewable hydrogen. A dual function catalyst containing Rh and
dispersed CaO (>1% Rh 10% CaO/g-Al2O3) was developed to convert CO2 to
methane.

4.2.2. Dry reform of methane to syngas
Syngas is a gas mixture consisting primarily of CO and H2, with a small amount of
CO2. It can be produced from methane via a variety of reforming techniques, such
as steam reforming (Esteban-D�ıez et al., 2016; Koo et al., 2016), dry reforming
(Ahmed et al., 2017; Pakhare and Spivey, 2014), partial oxidation (Duan et al.,
2017), autothermal reforming (Mota et al., 2016), and chemical looping reforming
(Huang et al., 2016; Neal et al., 2015). Partial oxidation reaction is applied at a tem-
perature lower than 600�C (Lau et al., 2011), while dry and/or steam reforming
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reactions are more commonly adapted at a temperature higher than 600�C (Yang
et al., 2014). In industrial practices, these three methane reforming processes are
operated simultaneously in a single reactor, named the tri-reforming system.

The syngas can be used in chemical energy transmission, upgraded to higher
alcohols through fermentation, or utilized in the Fischer-Tropsch synthesis to pro-
duce a wide range of chemicals such as higher alkanes and oxygenates. Steam
reforming of methane is a commercial method of producing syngas (or hydrogen).
As shown in Eq. (18), steam reacts with CH4 to produce syngas at high tempera-
tures of 700¡1100�C and in the presence of a metal-based catalyst such as Ni.

H2O.g/ C CH4 .g/ !CO.g/ C 3 H2.g/; DH298 KD 206 kJ6 mol (18)

Due to climate change, water resource is sometimes limited in some regions to
be used for producing syngas via the steam reforming reaction. Under this circum-
stance, dry reforming of methane to syngas using CO2 can be deployed; (Eq. (19)).
Conversion of these two compounds to higher value fuels or chemicals might be
profitable. This highly endothermic reaction requires operating temperatures of
800¡1000�C to minimize the thermodynamic driving force for carbon deposition
(Pakhare and Spivey, 2014). Compared to steam (H2O) reforming of CH4 (Eq. 18),
the CO2-based reforming process produces syngas with lower H2/CO ratios.

CO2 .g/ C CH4 .g/ ! 2CO.g/ C 2 H2.g/; DH298 K

D 247:3 kJ6 mol; DGo D 61770¡ 67:32T (19)

The most widely used catalysts for the CH4 dry reforming process are Ni-based;
however, they typically undergo sever deactivation due to carbon deposition (Pak-
hare and Spivey, 2014). Thus, researches should focus on a thermally stable catalyst
that can resist the deactivation caused by carbon deposition and sintering. The
resistance of catalyst to deactivation can be promoted by choosing an appropriate
basic support and a promoter as well as by using noble metals with high activity
and of great carbon deposition resistance. Recently, noble metals have been studied
to be incorporated with the Ni catalyst. In general, the activities of noble metals
supported catalysts in the CH4 dry reforming are in the following order (Jones
et al., 2008; Rezaei et al., 2006).

Ru » Rh > Ir > Pt » Pd (20)

The activity of a catalyst depends on the type of the metal and support, the
interaction between the metal and support, particle size of the metals, and surface
area of the support. For instance, the support with Lewis basic sites, such as Al2O3,
MgO, and CaO, can promote the ability of deactivation resistance while enhancing
the adsorption capacity of CO2 (Ma et al., 2009). For all the catalysts, the CO2
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conversion is generally higher than the CH4 conversion due to the reverse water-
gas-shift reaction.

4.2.3. CO2 hydrogenation to methanol
Catalytic reduction of CO2 to methanol (CH3OH) generally starts from hydro-
genation using a suitable catalyst at a temperature of 413 K and a pressure of
1 MPa (Ma et al., 2009), as shown in Eq. (21). This reaction is an exothermal reac-
tion. Therefore, a decrease in temperature or an increase in reaction pressure
should be favored for the reaction from a thermodynamic point of view (the Le
Chatelier’s principle). Considering the reaction kinetics, the reaction temperature
should be maintained of 513 K to facilitate CO2 activation and the subsequent
methanol formation (Ma et al., 2009).

CO2 .g/ C 3 H2 .g/ !CH3OH.g/ C H2O.g/; DH298 K

D ¡ 49:5 kJ6 mol; DG298 KD 3:3 kJ6 mol (21)

Along the way, several side reactions including the reverse water-gas-shift reac-
tion (Eq. (18)) and secondary reaction (Eq. (23)) occur, producing CO as an inter-
mediate precursor:

CH3OH.g/!CO.g/C 2 H2.g/; DH298 KD 90:6 kJ6 mol; DG298 KD 25:3 kJ6 mol

(23)

The reverse water-gas-shift reaction consumes extra H2 and results in a reduc-
tion of CH3OH production and an increase of water production, which is detri-
mental to the active sites of catalysts (Alaba et al., 2017). On the other hand, at a
low pressure, at a high temperature at and a H2/CO2 ratio greater than 3 (Szailer
et al., 2007), CO2 reforming occurs with supported noble metal catalysts such as
Rh, Ru, Ir, Pd, and Pt via Eq. (24). The chemisorption of CO2 on supported noble
catalysts (such as Rh, Ru, and Pd) in hydrogenation can initiate the formation of
metal hydride complexes on the surface of the catalysts (Olah and Moln�ar, 2003).

CO2 .g/C 4 H2 .g/
$CH4.g/ C 4 H2O.g/; DH298 KD ¡ 113 kJ6 mol (24)

Therefore, it is challenging to rationally design a stable catalyst with a high
CH3OH selectivity to circumvent the formation of undesired by-products. The
CO2 conversion and CH3OH selectivity could be determined by thermodynamic
equilibrium efficiencies, particularly to the formulation of a catalyst. Aside from
being used as a transport fuel, CH3OH is a common feedstock and/or a building
block in chemical processes to produce versatile important chemicals such as
chloromethane, acetic acid, methyl tert-butyl ether, alkyl halides, formaldehyde,
and dimethyl carbonates (DMC). In addition, methanol can be used to produce
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(1) higher hydrocarbons through a methanol-to-gasoline route, and (2) unsatu-
rated hydrocarbons through methanol-to-olefins or methanol-to-propene routes
(Aresta et al., 2016).

4.2.4. CO2 hydrogenation to DME
DME can be synthesized mainly in ways in two approaches. One is a two-step
method, i.e., methanol synthesis on metallic sites followed by dehydration on solid
acid catalysts. In the presence of a solid acid catalyst, methanol formed as Eq. (21)
could be dehydrated to form DME as Eq. (25). Solid acid catalysts, which can
dehydrate methanol to DME, include g-Al2O3, silica-alumina and different types
of zeolites (e.g., HZSM-5) (Marcos et al., 2016), as well as pillared clays (PILC)
(�Sliwa et al., 2014). In addition, both Al- and Nb-based catalysts have exhibited
high catalytic activity and selectivity because they have strong Lewis and Brønsted
acid sites (da Silva et al., 2016). Nb¡O bonds are mainly associated to Brønsted
acid sites during catalytic reaction.

2 CH3OH.g/
$CH3OCH3.g/ C H2O.g/; DH298 K

D 24:0 kJ6 mol; DG298 KD ¡ 12:1 kJ6 mol (25)

The other way to synthesize DME is a single-step method or direct CO2 hydro-
genation, (Eq. (26)). This reaction comprises a bi-functional catalyst constituted
by metallic acid sites.

2 CO2.g/C 6 H2.g/
$CH3OCH3.g/C 3 H2O.g/; DH298 KD ¡ 122:2 kJ6 mol (26)

Similarly, as shown in Eq. (27), DME can be formed via one-step synthesis from
syngas or bio-syngas (Haro et al., 2013). The efficiency of syngas conversion to
methanol (Eq. (21)) or DME (Eq. (25)) strongly depends on the ratio H2/CO pres-
ent in the syngas. Syngas with a H2/CO ratio close to one is suitable for direct syn-
thesis of DME (Schakel et al., 2016).

2 CO.g/C 4 H2.g/
$CH3OCH3.g/ C H2O.g/ (27)

The feasibility of the single-step synthesis from a mixture of CO2 and H2 can
ensure a lower thermodynamic limitation in respect of the conventional two-step
approach. From a thermodynamic point of view, low temperatures or high pres-
sures should be favored for the synthesis of DME via the direct CO2 hydrogenation
reaction. From a kinetic point of view, however, only increasing reaction tempera-
ture above 240�C could facilitate the CO2 activation rate (Bonura et al., 2016). In
direct synthesis of DME, a wide range of feed gas compositions and operating con-
ditions can be used (Erdener et al., 2011). Regarding the catalysts, the direct cata-
lytic hydrogenation of CO2 into DME is typically performed in the presence of
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physical/mechanical mixtures of a Cu-based methanol synthesis catalyst and a
solid acid catalyst (Bonura et al., 2016).

4.3. Catalyst performance and design criteria

Table 3 presents the important factors determining the residence time of reactants
in the reactor and consequent catalytic activity. Reaction temperature and pressure
have a significant influence on reactions in gas phase. The effect of temperature
and pressure on CO2 conversion and CH3OH selectivity has been evaluated (Gaik-
wad et al., 2016). In addition, gas hourly space velocity (GHSV) plays an important
role in the catalytic reduction of CO2. It is reported that a low GHSV requires lon-
ger time between catalyst surface and reacting gas. Regarding the formula and
preparation of catalyst, the interaction between the metal and support plays an
important role in the catalyst performance. On the other hand, the uses of pro-
moters can enhance the structure and electronic properties of the catalysts, thereby
improving CO2 conversion and product selectivity.

Table 4 presents the performance of CO2 catalytic reactions and their product
formation over different types of catalysts. To convert CO2 into organic fuels
through a catalytic reaction, transitional metals have been utilized as catalysts on
metal oxide supports (e.g., Al2O3). The CO2 molecule exhibits a wide range of
coordination and reaction modes in its homo- and polynuclear metal hydride
complexes (Ravanchi and Sahebdelfar, 2003). For example, Ni-based catalysts are
widely applied for CO2 methanation due to their good compromise between high
activity and low cost (Duan et al., 2011). Ni-based catalysts are not easily poisoned
by CO either, compared to the expensive Pt-based catalyst. For CO2 methanation,
both Ru and Rh also can be used as a catalyst with sufficient activity (Duyar et al.,
2016). Furthermore, dual function materials containing a CO2 adsorbent and a
methanation catalyst could be effective in adsorbing and converting CO2 in the
flue gas.

Table 3. Important factors determining residence time of reactants in reactor and consequent
catalytic activity.

Category Factors Effects

Operation H2/CO2 ratio Related to CO2 conversion, and product selectivity. This ratio
should be maintained at 3 (Bansode and Urakawa, 2014).

Pressure Related to concentration of reactants, and collision speed of
particles.

Temperature Related to product selectivity, and collision speed of
particles

GHSV Related to residence time of the reactants in reactor.
Catalyst Metal Affect the activity of catalyst to CO2 conversion.

Support Affect the active site dispersion, and stability.
Promoter Affect the dispersion of metal oxide catalysts. Common

promoters include Cr2O3, ZrO2, Al2O3, CaO, K2O, CeO2,
and Ga2O3.
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In CO2 hydrogenation, the most prominent metals are Zn, Cu, Co, Ni, Rh, Pt,
and Pd due to their relatively high hydrogenation activity. The aforementioned
metals also can be rationally incorporated into different modifiers (promotors)
such as Al, Zr, Ti, Si, Ga, Cr, B, V, and Ce oxides (Marcos et al., 2016). For exam-
ple, in the case of the conventional catalyst (Cu/ZnO/Al2O3), metallic copper is the
active catalyst and ZnO is used to increase the Cu dispersion on the support. Gao
et al. (2009b) found that CuO and CuC species played an essential role in the syn-
thesis of methanol. However, the Cu-based catalysts usually cause undesired CO
formation via the reverse water-gas-shift reaction (Kunkes et al., 2015).

In the case of methanol dehydration to DME, solid acid catalysts should be
introduced. Cu-, Al-, and Nb-based catalysts exhibited high selectivity to DME
because they provide strong Lewis and Brønsted acid sites. Usually, these catalysts
are incorporated with other metallic elements. Marcos et al. (2016) observed in
their study that the CuCe/PILC catalyst exhibited the highest intensity of Lewis
band, in comparison to the other catalysts such as Cu/PILC and CuNb/PILC. On
the other hand, CO2 hydrogenation is initiated by the CO2 activation to form inter-
mediates on basic sites (i.e., HCOOH�) that are subsequently hydrogenated on the
metallic sites producing methanol (Ren et al., 2015). As a result, balancing the
number of metallic, basic and acid sites on catalysts is imperative to DME produc-
tion. Furthermore, as the temperature increases, the DME selectivity deceases
while the methane selectivity increases (Marcos et al., 2016).

The economic feasibility of methanol production from CO2 depends on (1) the
price of H2 and CO2, (2) the quality of H2 and CO2 (a purity of 99% will be desir-
able), (3) the price of the catalyst, and (4) the plant investment and the operation
and maintenance. In CO2 catalytic hydrogenation, a highly stable and active cata-
lyst should be developed to enhance CO2 conversion efficiency for economical pro-
duction. In addition to the types of catalyst materials, the synthesis method, reactor
design and an economically viable renewable energy source are all important fac-
tors (Alaba et al., 2017). Similarly, in photocatalytic systems, metal-organic com-
plex materials and semiconducting such as TiO2 and CdS are commonly
employed. Despite their potential environmental benefits, a long-lasting challenge
in the photocatalytic reactions is low efficiency of CO2 reduction caused by (1) fast
electron-hole (e–-hC) recombination rates, (2) low CO2 affinity of the photocata-
lyst, and (3) complicated backward reactions (Wang et al., 2014). On the other
hand, in an electrocatalytic system, Cu, Ag and Sn are often applied as a catalyst to
convert CO2 into various hydrocarbon products. However, they typically suffer
from low electrochemical performance in terms of activity and selectivity (Wu and
Zhou, 2016).

4.4. Summary

CO2 valorization can be integrated with a renewable energy storage system to pro-
duce organic transport fuels such as methane, syngas, methanol, and dimethyl
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ether. To move forward successful commercialization, both a high-quality H2

source and a cost-effective catalyst are the essential components. In fact, H2 can be
generated via electrolysis of water, served as a storage media of intermittent renew-
able energy. After that, CO2 molecules can combine with H2 (or proton) on cata-
lyst sites to form various transport fuels and chemicals. It is noted that reaction
temperature and pressure play a significant role on CO2 catalytic reactions. The
future research should focus on developing a thermally stable catalyst with great
resistance and activity to intensify CO2 conversion for economical production. For
instance, the development of dual function materials for simultaneously adsorbing
and converting CO2 in the flue gas could be beneficial.

5. Transformation of CO2 to value-added chemicals

To date, the vast majority of carbon resources still are on fossil-based type such as
crude oil, natural gas and coal (Liu et al., 2015). For sustainability, we need to
reduce our rely on the fossil-based carbon resources. In addition to biomass, CO2

offers a great possibility to create a sustainable “carbon economy system.”
Although more than 20 catalytic processes for CO2 reductive conversion have
been developed over the past two decades, industrially viable processes still are
scarce. In fact, only the reaction of CO2 with highly reactive (energy-rich) sub-
strates such as epoxides and aziridines can be economically feasible. The carbon-
neutral products from these affordable processes include polycarbonates, polycar-
bamates, cyclic carbonates (such as dimethyl carbonates) and carbamates. In this
section, we review the advances on green synthetic processes using CO2 as a build-
ing block for the production of different organic chemicals, especially urea, carba-
mates, dimethyl carbonates, and formaldehyde.

5.1. Building block for organic intermediates

Valorization of CO2 for the synthesis of organic chemicals has been extensively
explored (Altenbuchner et al., 2014). Numerous chemicals such as methane, etha-
nol and polymers can be produced from CO2 reduction reaction using catalyst
(Chiang and Pan, 2017f). As shown in Figure 6, CO2 is an abundant C1 building
block which can be incorporated to synthesize carbonyl, carboxylic acid, carbonate
and carbamate functional groups. The same concept for SOFT synthesis is also
applied that a decrease in the CO2 emission can be achieved only by using hydro-
gen from nonfossil resources, such as electrolysis of water via renewable energy
(e.g., solar and wind).

According to the oxidation state of carbon atom, the CO2 conversions can be
classified into two main categories:
(1) CO2-modified type reaction: the oxidation state of carbon remains the same

(i.e., C4) before and after the reaction. This reaction which is typically car-
boxylation does not require substantial amount of external energy (Alper
and Yuksel Orhan, 2016). The products of this reaction include ureas
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(RRNCONRR), isocyanates (RNCO), carboxylates and lactones (RCOOR),
carbamates (R1R2NCOOR3), and carbonates (ROC(O)OR).

(2) CO2-reduction: the oxidation state of carbon is reduced to a lower level (e.g.,
fromC3 to –4) after the reaction. This reaction requires a significant amount
of external energy. Thus, the products of this reaction include formaldehyde
(H2CO), oxylates [(C(O)O)2

2¡], formates (HCOO¡), carbon monoxide
(CO), methanol (CH3OH), methane (CH4), etc.

Table 5 presents the major high value-added chemicals that can be produced
from CO2 catalytic reactions, in terms of market potentials, amount of CO2 use
for production, and market price. Although the annual demand of urea is quite
huge, the urea market is almost saturated. A great deal of energy is required to
produce urea, i.e., about 22.2 GJ per ton urea produced (Baboo, 2015). This
means a large amount of CO2 emissions can be resulted in accordingly. There-
fore, a cleaner production process should be developed for urea synthesis. Other
organic chemicals also can be synthesized with CO2. For instance, the incorpo-
ration of CO2 into polymers is promising since annual production of polymers
exceeds 200 million tons worldwide (Leitner and G€urtler, 2010). CO2 can also
react with alcohols under a base-catalyst condition directly to produce cyclic
carbonates, such as DMC.

5.2. Synthesis of urea from ammonia and CO2

Urea ((H2N)2CO), known as carbamide, plays an important role in biological processes.
It preserves the stability of protein under an extreme physical condition. A human body
produces 20¡30 g of urea per day (Meessen, 2005). A huge amount of urea has been

Figure 6. Plentifully potential uses of CO2 as chemicals through various conversion technologies.
Adapted from Chiang and Pan (2017f) with kind permission from Springer ScienceCBusiness
Media.
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synthesized and applied in a wide variety of fields, such as pharmaceuticals, petrochem-
icals, and agrochemicals. Currently, more than 90% of worldwide production of urea is
used as a nitrogen-release fertilizer.

After development of the ammonia (NH3) synthesis via the Haber-Bosch
method, technologies to produce urea from NH3 and CO2 have advanced rapidly.
Since 2001, urea is produced on an industrial scale exclusively based on this
method (Meessen, 2005). It consists of two sequential equilibrium reactions at ele-
vated temperatures and pressures, so-called the Basaroff reaction, as shown in
Eqs. (28) and (29). The first reaction is fast and exothermic (Eq. 28), where CO2

and liquid NH3 are converted to ammonium carbamate (NH2COONH4). The sec-
ond step, which is slow and endothermic, is related to dehydration of ammonium
carbamate to produce urea and water at high temperatures and pressures. Since
the urea conversion step is a reversible reaction, a variety of dehydrating agents
should be applied as a condensating reagent to prevent the reverse reaction from
occurring.

Carbamate formation : CO2C 2 NH3
$NH2COONH4;DH298 KD ¡ 117 kJ 6 mol (28)

Urea conversion : NH2COONH4
$NH2CONH2C H2O;DH298 KD 15:5 kJ 6 mol (29)

In fact, urea can be produced at a mild temperature and pressure; the conver-
sion efficiency is low though (Quaranta and Aresta, 2010). The CO2 conversion
efficiency, usually ranged between 50% and 80%, increases as temperature and
NH3/CO2 ratio increase, as well as decreases with increasing H2O/CO2 ratio (Max-
well, 2004). According to the Le Chatelier’s principle, a typical compromise condi-
tions are at a high temperature around 463 K for the first step, and under high
pressure of 14.0¡17.5 MPa for the second step. However, there are still several
side reactions which may result in decomposition of urea, e.g. (1) hydrolysis of
urea, (2) formation of biuret (NH2CONHCONH2) from urea, and (3) formation
of isocyanic acid (HNCO) from urea. From an economic point of view, different
modifications on the urea synthesis technologies have been proposed to maximize
the product yield and energy efficiency. Theoretically, controlling the amount of
CO2, H2, and N2 in the system would demonstrate an effective mass production of
urea (Eq. (30)) (Yahya et al., 2017b):

CO2C 3 H2C N2!NH2CONH2 C H2O (30)

Recently, a nanowires-based hybrid nanocatalyst system with a concept of mag-
netic induction has been proposed and developed at ambient reaction conditions
(Yahya et al., 2017b). Yahya et al. (2017a) suggest that the yield enhancement
might be attributed to the increases in the singlet to triplet conversion. In their
study, a-Fe2O3 was used as a nanocatalyst to achieve the highest urea yield of
»11,240 ppm at oscillating magnetic field frequency of 0.5 GHz (Yahya et al.,
2017a).
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5.3. Synthesis of carbamates from amine and alcohol

Carbamates (RNH¡COOR) are being used for production of pesticides, ger-
micides, pharmaceuticals, and other organic chemicals. Important carbamate
compounds include aromatic carbamates such as methyl N-phenyl carbamate
(MPC), as well as alkyl carbamates such as methyl carbamate (MC), ethyl car-
bamate (EC), and butyl carbamate (BC). From the green chemistry point of
view, CO2 can be used to generate the carbamates from amines and alcohols,
which is considered as an environmentally benign route. At an ambient tem-
perature and pressure, CO2 can easily combine with amines to form the corre-
sponding carbamic acids. If alcohols are used as the alkyl source, however, the
subsequent dehydrative condensation to carbamates proceeds slowly (Ion
et al., 2008). Thus, an excess amount of a dehydrant is often used to overcome
the equilibrium limitation.

Few studies were reported on direct synthesis of carbamates from CO2,
amines and alcohols. As shown in Eq. (31), it is an attractive process for the
synthesis of carbamates since it is a phosgene- and halogen-free process. The
reaction still typically suffers from both thermodynamic and kinetic limita-
tions. As a result, a suitable catalyst should be used to overcome the kinetic
impediments. In particular, the catalyst should be designed with a water-toler-
ance to avoid deactivation by cogenerated H2O since water is formed as the
only reaction byproduct.

CO2 C RNH2 amineð Þ C R’OH alcoholð Þ!RNHCOOR 0 C H2O (31)

For instance, the MPC can be synthesized from aniline, CO2 and methanol via
Eq. (32). A variety of solid catalysts, such as Cu-Fe/ZrO2-SiO2 (An et al., 2014), Zn
(OAc)2 (Li et al., 2014a) and Pb-related components (Gao et al., 2009a), have been
developed and applied for MPC synthesis from CO2.

(32)

On the other hand, the alkyl carbamates (e.g., MC, EC, and BC) are a class of
important intermediates, which are widely used as an alternative carbonyl source
in many carbonylation reactions (Li et al., 2011). Carbamate groups can be incor-
porated in numerous methods to synthesize carbamate esters (Quaranta and Are-
sta, 2010); this include the transfer of carbamate group to (1) alcohols, (2) alkyl
halides, (3) acylating agents, (4) epoxides, (5) C─C double bonds, and (6) C─C tri-
ple bonds. Syntheses of N-alkyl carbamates from amines, CO2, and alcohols (or
alkyl halides) have been extensively studied. Recently, Li et al. (2011) developed a
direct catalytic synthesis for MC, EC, and BC from NH3, CO2, and alcohols with
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V2O5 as a catalyst without dehydrant, as described in Eq. (33).

NH3 C CO2C ROH!NH2COOR C H2O;R D ¡CH3; ¡C2H5; n¡C4H9 (33)

Table 6 presents the performance of the catalytic CO2 reactions for synthesis of
carbamates such as MPC. For the carbamate synthesis, the reaction rate should
increase as the acidity of the alcohol decreases. Gao et al. (2009a) found that the
lead compounds such as PbO, PbCO3, and 2 PbCO3∙Pb(OH)2 exhibited the excel-
lent catalytic activity for the synthesis of MPC through the reaction of DMC and
N,N0-diphenyl urea under pressure. In addition, V2O5 catalysts exhibited good cat-
alytic activity for the production of alkyl carbamates using NH3, CO2, and alcohols
(Li et al., 2011). The selectivity of MC, EC, and BC under the pressure of 5 MPa at
473 K was 98%, 99%, and 99%, respectively. Furthermore, the use of a dehydrating
agent such as tetrabutylammonium bromide (TBAB) can be effectively to promote
the yield of carbamates, especially when sterically hindered amines are used as a
starting compounds (Ion et al., 2008).

5.4. Synthesis of DMC from methanol

A number of organic carbonates, such as ethylene carbonates, polycarbonates, and
DMC can be used as a carbonylation reagent for several organic transformations.
DMC is a carbonyl ester with the formula (CH3O)2CO, which is a nontoxic, non-
corrosive and environmentally-friendly organic carbonate. In a variety of chemical
industries, it is used as a solvent (Litaiem and Dhahbi, 2012), an additive in gaso-
line and diesel (Rajesh Kumar and Saravanan, 2016), and an electrolyte in lithium
batteries (Berhaut et al., 2015; Gao et al., 2015a). DMC has a low dielectric constant
(e D 3.12), a weak viscosity, and a high biodegradability, and is often used as a sol-
vent in many applications. Moreover, it can be used as a building block for various
organic chemicals such as polycarbonates (Anthofer et al., 2014).

Several reaction routes are available for DMC production; they include (1) direct
synthesis from CO2 and methanol, (2) urea methanolysis, (3) transesterification of
EC with methanol, (4) oxidative carbonylation of methanol, and (5) methanolysis
of phosgene. The first method is the most attractive one because inexpensive raw
materials are used and corrosive reagents such as phosgene and dimethyl sulphate
are not used (Saada et al., 2015), as shown in Eq. (34). However, activation of stable
CO2 and thermodynamic limitations are major obstacles to direct synthesis of
DMC (Kumar et al., 2017). Therefore, the direct synthesis of DMC from CO2 and
methanol is normally performed at a high pressure in an autoclave reactor. Aside
from the CO2 conversion, several side reactions occur with the direct DMC synthe-
sis, and water is formed as a by-product which will eventually deactivate the cata-
lyst. As a results, both the methanol conversion and DMC yield are still too low to
be incorporated in an industrial scale synthesis. To overcome the aforementioned
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hurdle, novel catalysts with high a catalytic performance are required.

CH3Oð Þ2CO (34)

Various metal oxide catalysts, such as CeO2, ZrO2, V2O5, TiO2, and SnO2, have
been developed and evaluated for their efficiency and effectiveness in the DMC
synthesis. Different support materials, such as silica, molecular sieve, graphene
oxide, activated carbon and multi-walled carbon nanotubes, can be used to
increase the stability of the catalyst and the dispersion of the active components.
Table 7 summarizes the performance of direct DMC synthesis methods using dif-
ferent catalysts. The methanol conversion and DMC yield are strongly affected by
the reaction temperature and pressure, although high pressures are not always nec-
essary for an effective synthesis of DMC. For DMC synthesis, the catalytic activity
on both basic and acidic sites is required (Kumar et al., 2017). In other words,
mixed oxides catalysts would exhibit higher chemical stability and greater basic-
acidic sites, as compared to single metal oxide.

Saada et al. (2015) developed a novel Ce–Zr oxide/graphene nanocomposite as a
heterogeneous catalyst for the synthesis of DMC. The maximum methanol conver-
sion and DMC yield at 27.5 MPa and 383 K were found to be 58% and 33%,
respectively. The reaction pressure of 27.5 MPa was related with the supercritical
state of CO2. With the Zr and/or Ce catalysts, even though the DMC selectivity

Table 7. Performance of heterogeneous catalyst for direct synthesis of DMC.

Catalysta Supporta
Press
(MPa)

Temp
(K)

Time
(hr)

Conversion
(%)

DMC yield
(%)

DMC select.
(%) Reference

Mo/Cu-Fe Silica 0.6 393 — MeOH: 7.0 6.1% 87.7 (Zhou et al., 2013)
Rh Silica 0.1 393 0.67 MeOH: »38 — »46 (Almusaiteer,

2009)
Rh ZSM-5 0.1 393 0.67 MeOH: »44 — »64 (Almusaiteer,

2009)
Rh-K Al2O3 0.1 353 0.67 MeOH: »15 — »15 (Almusaiteer,

2009)
Rh-Ce Al2O3 0.1 353 0.67 MeOH: »38 — »1 (Almusaiteer,

2009)
Cu-Ni Graphite 1.2 378 — MeOH: 10.1 9.0% 88 (Bian et al., 2009)
CeO2 (2-CP) 3 343 2.5 MeOH: 12.4 — 96.3 (Stoian et al.,

2017)
CeO2 (2-CP) 3 393 2.5 MeOH: 92.0 — >99 (Stoian et al.,

2017)
CeO2-CaO — 15 393 24 CO2: 2.33 2.961 mmol — (Kumar et al.,

2017)
Cs-DTP HMS (IL) 15 323 5 MeOH: 11.9 — 25.8 (Kabra et al., 2016)
CHT HMS (IL) 15 323 5 MeOH: 9.2 — 82.0 (Kabra et al., 2016)
Ce-Zr

oxide
Graphene 27.5 383 16 MeOH: 58.0 33.0% — (Saada et al.,

2015)

a2-CP: 2-cyanopyridine as dehydrating agent; HMS: hexagonal mesoporous silica; CHT: calcined hydrotalcite; IL: ionic
liquid as promoter.
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could be high (almost 90% in some cases), the methanol conversion was still lim-
ited by the reaction equilibrium (Stoian et al., 2017). To carry an effectively promo-
tion on the DMC selectivity even at a low reaction pressure, incorporation of a
dehydrating agent such as 2-cyanopyridine (2-CP) was required.

5.5. Conversion of CO2 to other organic chemicals

Great progress has been made on catalytic reduction of CO2 to produce other
kinds of value-added chemicals via the construction of C¡C, C¡H, C¡O, and
C¡N bonds; for example, aromatic aldehydes, organic carbonates, N-containing
compounds, and carboxylic acid and their derivatives (Yang et al., 2016). CO2 can
be used as a carbonyl or carboxyl reagent for the synthesis of aromatic aldehydes
and carboxylic acids through the construction of C¡C bond. Carboxylation mak-
ing a C¡H bond with CO2 also is an important route for synthesis of carboxylic
acids and their derivatives at an ambient temperature and pressure. C¡O forma-
tion reactions, in which CO2 is used as a C1-building block, include (1) cycloaddi-
tion of CO2 with epoxides, (2) carboxylative cyclization of propargyl alcohols with
CO2, and (3) carboxylative cyclization of propargyl alcohols with CO2 to
a¡alkylidene cyclic carbonates. For synthesis of N-containing chemicals, the
C¡N bond can be constructed via (1) reactions of CO2 with various amines, and
(2) N-formylation reaction of amines using CO2 in the presence of hydrogen
source, which is a cleaner production of formamides. Furthermore, CO2 also can
be used for different purposes; for instance, methylation of aromatic C–H bonds
using CO2 and H2 with the assistance of a ruthenium triphos catalyst (Li et al.,
2014c).

Formaldehyde (HCHO), known as methanal, is an important basic chemical
used for manufacturing polymers, as well as synthesis components for complex
molecules. It is usually used as an aqueous solution of 37% (w/w), also known as
formalin. At present, more than 30 Mt of formaldehyde, in the form of formalin, is
annually produced worldwide via methanol oxidation (TECI, 2013). Direct synthe-
sis through hydrogenation of CO2 to produce formaldehyde is an attractive option
since CO2 is used as a C1 feedstock (B€ohme, 2016), although it is still at a concep-
tual stage. The catalytic reduction of CO2 to formaldehyde is rarely reported.
Nonetheless, several studies have applied a density functional theory for simulating
the reaction mechanisms of the reduction of CO2 to formaldehyde via catalyst,
such as Ru/Fe/Os complexes (Dong et al., 2016). In practice, Mets€anen and Oes-
treich (2015) developed the tethered Ru¡S complexes for chemoselective hydrosi-
lylation of CO2 to formaldehyde, where the revealed selectivity of formaldehyde
was up to »18%. In addition, Bontemps et al. (2014) developed a polyhydride
ruthenium complex, i.e., RuH2(H2)2(PCy3)2, to catalyze the reduction of CO2. The
maximum selectivity of formaldehyde under an atmospheric pressure was approxi-
mately 22% (Bontemps et al., 2014).
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5.6. Summary

CO2 can be valorized as a building block for the production of numerous organic
chemicals, such as urea, carbamates, dimethyl carbonates and formaldehyde, via
the construction of C¡C, C¡H, C¡O, and C¡N bonds. The incorporation of
CO2 into polymers is also a promising way to valorize CO2. Great progress on cata-
lytic reduction of CO2 to produce aromatic aldehydes, organic carbonates, N-con-
taining compounds, and carboxylic acid and their derivatives has been observed.
To establish a sustainable carbon economy system, the future research should
focus on designing the optimized process with novel catalysts to facilitate the com-
mercialization of CO2 transformation to value-added chemicals.

6. Biological CO2 utilization technology

Biological CO2 fixation involves the utilization of biological media, such as photo-
synthetic autotrophic organisms and plants, for CO2 sequestration via photosyn-
thesis process. The photosynthesis reaction can be described as Eq. (35) (Zhao and
Su, 2014). For instance, the glucose (C6H12O6) and O2 can be formed from water
and CO2 in the presence of light (n D 6), where inorganic carbon is converted to
organic carbon. Approximately 1.8 kg of CO2 can be fixed through photosynthesis
to produce 1 kg biomass of microalgae (De Bhowmick et al., 2014).

nH2O C nCO2C Photons lightð Þ! ½CH2O�nC nO2 (35)

To enhance the CO2 fixation by biomass, biological CO2 utilization technologies
are developed; aquatic or terrestrial biomass is grown on flue gas CO2 under non-
natural photosynthetic conditions. For instance, direct use of CO2 in flue gas by
microalgae has recently been of great interest since they not only consume CO2

but also can be converted to biofuels or biochemicals. According to a life-cycle
assessment (Adom et al., 2014), these bioproducts can reduce GHG emissions by
39¡86%, compared to their fossil counterparts. Apart from its environmental ben-
efits such as the carbon neutral property, the production of bio-chemicals by biore-
fineries using CO2 (or biomass) is one of the imperative components towards a
green economy for green growth society. It was estimated that biotechnologies
could contribute to 2.7% of GDP in 2030 within the OECD region, where the larg-
est economic contributions are made in industry and primary production (OECD,
2009). In the following section, the principles and applications of the microalgae
technology for CO2 valorization are discussed.

6.1. Marine biomass options

Marine biomass such as phytoplankton can sequester a large quantity of atmo-
spheric CO2 (Jones and Otaegui, 1997). Whether they die or are consumed by a
higher hierarchy in the food chain, the carbon element remains ultimately
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descends into the deep ocean (Farrelly et al., 2013). The biological sequestration of
CO2 by photosynthetic organisms in the upper ocean is only limited by the avail-
ability of nutrients in water. As a result, a concept called ocean nourishment was
proposed, in which the necessary nutrients are provided to enhance the production
of phytoplankton in the ocean (Shoji and Jones, 2001). On the other hand, how-
ever, this might change plankton structures which could pose long-term impacts
on the ocean eco-system. At the same time, large quantities of produced organic
mass sinking to the bottom of the ocean could trigger the production of methane.
Thus, this would diminish the beneficial effect of carbon fixation (Stewart and Hes-
sami, 2005).

Microalgae are ubiquitous and important microscopic organisms in the marine
ecosystem as they transform a large quantity of inorganic compounds into bio-
mass. Microalgae are fast-growing organisms and are driven by the same photo-
synthetic process adopted by higher plants. Since they are rich in protein and
organic compounds, they were recognized as a third-generation source of biofuels.
They can be converted to biofuel using a variety of methods such as transesterifica-
tion (as liquid fuel), esterification (as liquid fuel), fermentation (as gaseous fuel)
and anaerobic digestion (as gaseous fuel) (Razzak et al., 2013). Microalgae com-
prise bacteria and cyanobacteria, diatoms (e.g., Chromalveolata), protists (e.g.,
Chromista), and unicellular plants (e.g., Chlorophyta) (Klinthong et al., 2015).

The energy yield potential of the biomass is a function of productivity, domi-
nant algal species, chemical composition, and harvestability (Mehrabadi et al.,
2016). Typically, the lipid content of microalgae per dry-weight is higher compared
to those of other plants (Trivedi et al., 2015). However, the product yields (produc-
tivity) of microalgae have a few thermodynamic and stoichiometric constraints; the
maximum theoretical energy conversion of the full sunlight spectrum into organic
matters is roughly 10% (Trivedi et al., 2015). Despite the constraints, microalgae
are superior in terms of biomass yield (i.e., 50–70 Mt ha–1 yr–1 in open ponds and
150 Mt ha–1 yr–1 in photobioreactors), as compared with terrestrial energy crops
(i.e., »3 Mt ha–1 yr–1 for soybeans, »9 Mt ha–1 yr–1 for corn, and »13 Mt ha–1 yr–
1 for switch grass) (Adesanya et al., 2014). Like plants and crops, microalgae
require the similar basic elements such as light (radiation), CO2, water and inor-
ganic nutrients (e.g., N). Therefore, environmental factors such as light intensity,
pCO2, pO2, pH, and temperature play an important role in microalgae growth and
productivity.

6.2. Microalgae technology

Microalgae are photosynthetic microorganism and typically grow suspended in
water. They can convert CO2 into carbon-rich lipids via only one or two steps. In
addition, microalgae are genetically amenable to exploitation for both biomass pro-
duction and carbon sequestration (Mitra and Melis, 2008). Therefore, microalgae
technologies are considered as a promising solution for CO2 fixation while
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generating value-added product (Harun et al., 2010); for example, (1) bioenergy:
hydrogen, diesel, ethanol and biogas; (2) food supplements: carbohydrates, protein,
oils and fats; and (3) bio-chemicals: colorants/pigments, perfumes, and vitamins.
The final biofuels can be fed into diesel and/or combined heat and power engines.
In this case, actual energy conversion efficiency can be calculated in terms of heat
and electricity (Ventura et al., 2013). Aside from that, microalgae can be used as
an in situ embedded environmental monitors. Since they are quite sensitive to a
change in their chemical environment, they can easily sense one and initiate an
adaptation of their chemical composition (Ogburn and Vogt, 2017). In general,
they exhibit several advantages over terrestrial plants; for example (1) efficient
photosynthesis using CO2 as their main building blocks, (2) fast growth rate, (3)
wide tolerance to extreme environments, and (4) potential of growing in intensive
cultures.

6.2.1. Direct use of flue gas for microalgae
Microalgae cultivation is one of the technological hurdles since it accounts for one
third of the total cost involved in the algal-biofuel production process (Kumar et al.,
2015). Direct use of flue gas can reduce the cost of pretreatment. Microalgae also
may be grown on flue gases emitted from industries such as iron/steel, paper pulp-
ing, and petrochemical industries. Depending on the types of fuels and processes
involved, flue gases may contain varying levels of N2, O2, CO2, CO, NOx, SOx, H2O,
and dust. The presence of SOx in feed gas greatly inhibits the growth of microalgae
(Yen et al., 2015a). Numerous microalgal strains stop growing at only 50 ppm of
SO2 (Yanagi et al., 1995). For NOx in flue gas (the major constituent of which is
nitric oxide), it can be effectively used as nutrients for microalgae (Farrelly et al.,
2013). The typical C:N ratio in the algal cells ranges from 6 to 8 (Kumar et al., 2014).
If wastewater is used for cultivation, the C:N ratio of wastewater is generally about 3.
Therefore, limitation on carbon source supply would be one of the main constrains
to algal production using wastewater (Mehrabadi et al., 2017). In this case, addi-
tional CO2 delivery is imperative for maintaining a sufficient carbon source.

CO2 delivery as well as control of the pH in culture media are important task
forces. Several factors, such as type of mixing and sparger, liquid velocity, and con-
tact time, would affect the mass transfer between gas and liquid phases. An ele-
vated concentration of CO2 in the gas stream typically increases biomass
productivity, while biomass productivity reduces at a high CO2 level (e.g., above
20% for a range of microalgae strains (Chiu et al., 2009)). In high-rate ponds, a
supply of concentrated CO2 (at least 5%) is sufficient to sustain algal growth (Putt
et al., 2011). The rate of CO2 dissolution into solution media increases with an
increase in the pH of the solution. However, it should be noted that an excess of
both pH and dissolved CO2 in an open pond would significantly reduce biomass
concentration and productivity, especially in the summer time (Jimenez, 2003).
Since the absorbed CO2 in an open pond tends to be desorbed to the atmosphere,
the pond must be operated at a higher pH and lower alkalinity. For the actively
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growing algal cells, the optimal pH to provide sufficient CO2 mass transfer rate
ranges between 7 and 8, where bicarbonate is the dominant alkalinity species in
the solution (de Godos et al., 2014; Gonzalez-Lopez et al., 2012). The presence of
SOx and NOx in flue gas also would affect the pH of the media, thereby influencing
the CO2 delivery and biomass productivity.

6.2.2. Open pond systems for cultivation
For large-scale microalgae cultivation, open pond systems have been extensively
used due to their simple construction and easy operation. They can offer a greater
CO2 fixation capacity due to their greater culture volume per unit land area (100–
300 L m–2), as compared to tubular reactors (8–40 L m–2 for 1–5 cm tubes) (Weiss-
man et al., 1988). Four types of open ponds are commonly used: (1) big shallow
ponds, (2) tanks, (3) circular ponds, and (4) raceway ponds. Among them, micro-
algae cultivation in a raceway pond is the most promising technology, especially in
a large scale (Kumar et al., 2015).

For algal growth, light is an important limiting factor. The CO2 fixation rate by
microalgae is related to light utilization efficiency and to cell density (Chiu et al.,
2008). Typically, a maximum algal growth rate could be obtained at the light satu-
ration point. Beyond this point, algal growth would be inhibited, which is called
photo inhibition. The depth of an open pond should be designed based on the irra-
diance spectra which are determined by measuring the irradiance attenuation coef-
ficient as a function of wavelength for each strain (Murphy et al., 2015). Although
the shallow configuration of a raceway pond can effectively prevent light limitation
inside the culture, a large land footprint, when it is scaled up might limit its wide-
spread application.

In addition, controlling temperature fluctuation in an open raceway pond is
important but challenging work since temperature regulates cellular, morphologi-
cal and physiological responses of microalgae (Zeng et al., 2011). Temperatures
also are related to the rate of water loss through evaporation during cultivation of
microalgae. The productivity of microalgae increases with the increase of pond
temperature up to an optimum level. Too much increase in the temperature above
the optimism would increase algal-respiration and photo-respiration, eventually
reducing overall productivity. The optimal temperature for growth of mesophilic
microalgae with a high CO2 tolerance is typically in a range of 286–318 K (Farrelly
et al., 2013). For most of the green algae species as well as a few brown, red, blue-
green algae species, the optimal temperature ranges for growth are 293–303 K at a
light irradiance of 33–400 mmol m–2 s–1 (Singh and Singh, 2015). Other studies
suggest that the optimal growth temperatures of microalgae are 298–308 K, with
the maximum cell density obtained at around 303 K (Kumar et al., 2010). On the
other hand, the optimal CO2 concentration for most microalgal species should
range between 0.038% and 10% (Zhao and Su, 2014).

Determination of an appropriate open pond system for cultivation relies on land
availability, the types of microalgae species, local climatic conditions, and costs of
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feedstock and materials such as water (Borowitzka, 1999). Currently, Most micro-
algal ponds are not economically viable, especially on a large scale due to the fol-
lowing limitations to the system: (1) expensive installation cost, (2) requirement of
a large surface area and a land footprint, (3) high water demand, and (4) require-
ment for a highly trained end-user (CORDIS, 2013). For a raceway pond, typical
process hurdles incurring high harvesting costs are (1) poor mass transfer between
gas and liquid phases, (2) high risk of culture contamination, (3) low final biomass
concentrations, and (4) lack of temperature control (Posten, 2009). In addition, it
is challenging to keep cultures axenic in a raceway pond compared to using photo-
bioreactor (PBRs). Regarding the environmental and ecological impacts, the algal
production unit may have potential leaks of effluent, thereby causing eutrophica-
tion of surrounding waters (Farrelly et al., 2013).

6.2.3. Performance evaluation and key operating factors
For most algae in open pond systems, there are both external and internal factors
significantly affecting algal growth, biomass accumulation and production. These
factors can be categorized into four types: (1) environmental parameters such as
location of a cultivation system, rainfall, and solar radiation, (2) engineering
parameters such as pond depth, CO2 delivery system, power consumption, and
composition of feed flue gas, (3) hydrodynamic parameters such as methods of
mixing, interphase mass transfer and turbulent flow, and (4) parameters affectively
growth algal such as light availability (light/dark cycles), pH, O2 accumulation,
salinity, and algal predators. Table 8 presents the biomass performance of microal-
gae-based CO2 fixation and valorization. The ability of microalgae to convert CO2

to biomass varies by species and culture conditions. In general, the major limiting
factors for micro-algal growth of microalgae are light availability and interphase
mass transfer (Gao et al., 2015b). Therefore, for the design and operation of PBRs,
the most challenging factors are efficient mixing, efficient CO2 delivery, and avoid-
ance of the O2 accumulation (Weissman et al., 1988). Another key design factor
for PBRs with mixing-induced light/dark cycles is the incorporation of a mecha-
nism to periodically transport cells between light and dark regions of the reactor
(Gao et al., 2015b).

Vertical mixing is considered as the most significant factor affecting the perfor-
mance and operating costs of raceway pond. In a PBR system, the mixing process
usually accounts for »69% of total utility costs (Hreiz et al., 2014). Sufficient mix-
ing supplied for a PBR can ensure (1) periodic exposure of cells to sunlight for
achieving better light utilization efficiency, (2) keeping cells in suspension, (3)
availability of the nutrient to algal cells, and (4) better gaseous mass transfer for
CO2 dissolution and dissolved O2 removal (Chiaramonti et al., 2013; Kumar et al.,
2015; Prussi et al., 2014). The commonly used methods of supplying mixing for a
PBR are pumping, mechanical stirring and gas injection (Kumar et al., 2010).
According to the environmental conditions (e.g., night/day period, seasonal
change), the mixing intensity should be adjusted.
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Beside the mixing, controlling O2 concentration, pH and conductivity of the
culture is important to obtain a high biomass concentration and productivity
(Jimenez, 2003). Oxygen is a by-product generated from the algal photosynthesis,
i.e., approximately 1.9 kg of O2 is generated per kg of the algal biomass synthesis
(Kumar et al., 2014). An excess of dissolved O2 of in a PBR during algal cultivation
would severely damages the algal cells by photooxidation and photoinhibition due
to respiration, thereby leading to a reduction in biomass productivity. It was noted
that an increase in dissolved O2 concentration greater than 25 mg L–1 would have
a negative impact on the microalgae productivity (Jimenez, 2003). Therefore, rapid
removal of accumulated O2 concentration from the system is much critical than
CO2 supply. It is noted that the maximum dissolved O2 concentration for a 100-
m2 surface and a 20-cm depth pond should be 14.5¡19.0 mg L–1 at a mixing veloc-
ity of 3.7¡30.0 cm s–1 (Weissman et al., 1988).

6.3. Concomitant wastewater bioremediation and CO2 biofixation

Biological treatment process is considered as an efficient approach to simultaneous
treatment of wastewater and CO2 emission since it does not require large energy
input and is easy to operate (Passos et al., 2015). Domestic wastewater contains
sufficient amounts of carbon, nitrogen, phosphorus and other minerals, which
could cause eutrophication and other environmental issues. However, these ele-
ments and nutrients can be used as a cheap substrate for the microalgae cultivation
in domestic wastewater treatment (Wang and Lan, 2011). Therefore, domestic
wastewater treatment based on microalgae raceway ponds has been studied for
many decades as a cost-effective alternative to conventional activated sludge sys-
tems. Beside domestic wastewater, different types of wastewater such as swine
wastewater (Chiu et al., 2015), piggery wastewater (Kuo et al., 2015), and aquacul-
tural wastewater (Kuo et al., 2016) can also be used for microalgae cultivation.

For microalgae cultivation, a large volume of water and trace nutrients such as
nitrogen, phosphorous and other elements are required. According to Yang et al.
(2011) approximately 3.73 tons of freshwater (without water reuse), 0.33 kg of
nitrogen, and 0.71 kg of phosphorus are required to produce 1 kg of biodiesel using
the microalgae technology. In addition, using wastewater or seawater as a culture
medium could decrease »90% water requirement and eliminate the need of all the
nutrients except phosphate (Yang et al., 2011). For this integrated system, two
mechanisms are mainly involved in removal of pollutants from wastewater: (1)
direct and/or indirect transformation of pollutants by microalgae via nutrient
assimilation and precipitation, and (2) enhanced biodegradation of pollutants
using O2 generated through microalgae photosynthesis. In other words, an “algae–
bacteria” symbiosis can take place in a single system. In this case, no additional
aeration process, unlike conventional activated sludge reactors, is needed (Passos
et al., 2015). Typically, mechanical aeration is the most energy-intensive process in
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an activated sludge system, ranging from 60% to 80% of the total energy consump-
tion (Chachuat et al., 2005).

Microalgae can assimilate inorganic chemicals and nutrients in wastewater for
growth, thereby reducing nitrogen, phosphorus, heavy metals and other inorganic
pollutants in wastewater. Microalgae could bioremediate ammonium, nitrate,
phosphate and chemical oxygen demand efficiently from wastewater by 70–98%
(Nayak et al., 2016), depending on wastewater composition and weather condi-
tions (Passos et al., 2015). It also was observed that the antibiotics in wastewater
can be removed by microalgae, e.g., tilmicosin removal efficiency of 99.8% by Chlo-
rella PY-ZU1 (Cheng et al., 2017).

6.4. Integration with anaerobic digestion for hydrocarbon production

Microalgae were considered a promising feedstock for production of biochemicals
because of their high photosynthetic yields, year-round production and ability to
grow under different environments such as marine, fresh and wastewaters (Alc�an-
tara et al., 2013; Mata et al., 2010). However, the high costs of CO2 supply and cul-
tivation as well as process hurdles such as axenic microalgae and the uncertain
nature of downstream processing have limited its industrial application (Chi et al.,
2011; Rawat et al., 2013; Williams and Laurens, 2010). If algae-to-fuel technology
is to be successful, biofuels should be produced simultaneously with value-added
coproducts (Trivedi et al., 2015). On the other hand, a platform technology inte-
grating microalgae growth with anaerobic digestion (AD) was proposed to
improve the economic and energy balance of the overall system (Alc�antara et al.,
2013). Using residual algal biomass as a substrate, the AD process can produce
methane. Moreover, the microalgae-based AD could offer a great potential of
recovering essential nutrients, such as N and P, which can offset a significant frac-
tion of the process operating costs (Sialve et al., 2009).

Biogas produced by an AD process consists mainly of CH4 (55¡75%) and CO2

(25¡45%) (Meier et al., 2017). CH4 is the main constituent of natural gas. Com-
pressed natural gas (CNG) was recognized as an alternative to conventional trans-
port fuels such as gasoline and diesel. Due to the high octane number of CNG (i.e.,
>110), the compression ratio of engines can increase, thereby resulting in a high
thermal efficiency (Yang et al., 2014). Conversion of biogas from an AD process
into bio-CNG requires gas purification, known as biogas upgrading, using (1) pres-
surized water scrubbing, (2) pressure swing adsorption, (3) temperature swing
adsorption, (4) amine absorption, (5) membrane, (6) cryogenic method, (7) geno-
sorb, and (8) biofiltration. The purified biogas should contain more than 97% CH4

and less than 2% O2 (Yang et al., 2014). As the aforementioned CO2 catalytic
reduction to organic fuels in Section 4.3, CO2 can be hydrogenated to CH4 via cata-
lytic Sabatier reaction. Therefore, the AD process can be integrated into a CO2 val-
orization process, e.g., hydrocarbon production. According to Rawat et al. (2013),
approximately 50% of the initial carbon in microalgal biomass could be hydrolysed
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and converted to biogas (i.e., 14% as C-CO2 and 35% as C-CH4) regardless of the
cultivation mode.

6.5. Summary

Flue gas CO2 can be valorized to grow aquatic and/or terrestrial biomass under
nonnatural photosynthetic conditions, as biological CO2 utilization technologies.
For instance, microalgae technology can convert CO2 into carbon-rich lipids via
only one or two steps, which can subsequently generate high value-added products
such as energy, food supplements and bio-chemicals. In addition, wastewater can
be introduced in biological CO2 utilizations so the process can be considered as a
less energy-intensive biological treatment. On the other hand, microalgae growth
could be integrated with anaerobic digestion to improve the economic and energy
balance of the overall system. In fact, using residual algal biomass as a substrate,
the anaerobic digestion process can produce methane and offer a great potential of
recovering essential nutrients (e.g., N and P), which can offset a significant fraction
of operating costs.

7. Perspectives and prospects

CO2 valorization technologies offer a unique opportunity for sustainable carbon
cycle as they utilize the CO2 emissions to create value-added products for further
use. At present, it may not have a huge impact on the overall CO2 emission mitiga-
tion since the market for the CO2 valorization is still small. In fact, rather than the
amount of CO2 used, the most important consideration in CO2 valorization is the
transition towards a circular economy system. The economics of the CO2 valoriza-
tion approach rely on the quality of CO2 stream and the relevant capture/valoriza-
tion technologies involved. It was estimated that the CO2 price in 2050 would be
in the range of 100–400 USD per ton CO2 (Hoel et al., 2009). This could provide
the great possibility to create a sustainable carbon economy system. On the other
hand, the carbon economy system can be achieved by the development and
deployment of an innovative technology for cleaner production, thereby leading to
a reduction in the use of materials and energy.

However, the widespread development and deployment of CO2 valorization
demonstration have not been achieved due to several major hurdles such as (1)
high capital investment, (2) uncertainties in policies, regulations and technical per-
formance, (3) public acceptance, and (4) concerns about human health and safety
and environmental risks. From the technological point of view, none of the CO2

capture/valorization technologies alone can provide a short- to medium-term solu-
tion to reduce CO2 emissions at a level necessary to stabilize current concentra-
tions. In other words, a portfolio solution must be identified to achieve the most
effective CO2 reduction while minimizing social and economic costs. Here we pro-
pose three priority research directions for CO2 valorization: (1) development of
innovative catalysts for simultaneous CO2 capture and utilization, (2) integrated
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CO2 valorization with alkaline waste stabilization and product utilization, and (3)
biological carbon mitigation and utilization. The improvement in process control
and heat integration for CO2 valorization technologies also should be considered
to maximize the overall energy efficiency.

7.1. Innovative catalysts for CO2 valorization and biochemical production

Valorization of CO2 into alternative transport fuels such as methanol and DME is
an important CO2 valorization option. Beside the organic transport fuels, bio-
chemicals such as urea, formaldehyde, (poly-)carbonates and (poly-)carbamates
can be produced via CO2 catalytic reactions. From the catalyst point of view, Ni-
based catalysts are commonly used for CO2 catalytic reactions because they are rel-
atively cheaper and would not be easily poisoned by CO, compared to the Pt-based
catalyst. However, for CO2 catalytic reactions, both temperature and pressure
exhibit a significant influence on reactions in gas phase. In the future research, a
novel catalyst with thermal stability, great resistance and high activity should be
developed to intensify CO2 conversion for economical production. For instance,
dual function materials containing a CO2 adsorbent and a methanation catalyst
could be effective in adsorbing and converting CO2 in the flue gas to synthetic
methane gas. It involves material types of a catalyst, synthesis method, reactor
design, and an economically viable renewable energy source.

7.2. Integrated CO2 valorization with alkaline waste stabilization and product
utilization

An alkaline waste treatment integrated with CO2 valorization is an attractive
approach to direct and indirect reduction of CO2 emissions from industrial or
power plants (Chiang and Pan, 2017a). An accelerated carbonation process not
only fixes CO2 from exhaust gas streams as stable carbonate precipitates but also
stabilizes alkaline wastes such as wastewater and solid wastes. Moreover, the poten-
tial environmental impacts caused by untreated wastes, such as highly alkaline
property and heavy metal leaching, can be eliminated. In addition, the carbonated
products can be utilized as high value-added materials in various fields such as
construction engineering. In the future research, a novel approach for achieving
high CO2 fixation and low energy consumption for CO2 mineralization by carbon-
ation of alkaline solid wastes should be important. For instance, mass transfer
among gas, liquid and solid phases should be properly intensified with a small land
footprint (i.e., an achievable plant size). Meanwhile, reaction heat could be
obtained directly from the exhaust gas streams or heat-regenerating systems. In
practice, the temperature of flue gas (usually above the dew point) is high enough
for carbonation. Heat recovery can not only improve carbonation performance but
also reduce energy loss. On the other hand, as supplementary cementitious materi-
als in blended cement, the cement chemistry and enhancement mechanism of uti-
lizing the carbonated products should be systematically elucidated.
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7.3. Biological carbon mitigation and utilization

Biological CO2 mitigation and utilization can offer a great potential in the amelio-
ration of climate change. Using fast-growing biomass such as microalgae, it not
only reduces CO2 accumulations in the atmosphere but also assimilates CO2 for
producing energy products and chemicals such as pigments. These high value-
added products can provide an opportunity to cover the costs of algal production.
For a successful microalgae technology to obtain a high amount of biomass, careful
control of pH, CO2, and O2 concentration of the culture is critical. Meanwhile,
wastewater can be simultaneously treated using this system. Therefore, the biologi-
cal CO2 conversion process presents a sustainable option of CO2 capture, wastewa-
ter treatment, and biochemical production, which would be feasible from an
economic standpoint and acceptable from an energy perspective. In the future
research, although PBR can be effective in growing microalgae, it needs to keep
cultures axenic and minimize loss of CO2 at a large scale. On the other hand, a
more efficient harvesting method should be developed to promote the economics
of the microalgae technology. For example, integration of an energy-efficient water
treatment process for the culture solution with existing open ponds is an alterna-
tive. The provision of sufficient CO2 and removal of excess O2, (in)organic acid,
and salinity from the culture should be simultaneously achieved.

7.4. Improvement in process control and integration

One of the most urgent research needs for development and deployment of CO2

valorization technologies is related to the improvement in process control and
integration. For the industrial and power plants (even for the wastewater treatment
plant), appropriate and effective process controls could greatly contribute to reduc-
tion of GHG emissions. It suggests that the model predictive control, one of the
advanced techniques for process control, is a powerful approach for evaluating the
behavior of representative complex dynamical variables by a mathematical model
(mostly a linear empirical model). Model predictive control is a feedback control
strategy that predicts the future responses of the system of interest over a finite
horizon using a model. Thus, it exhibits the ability of anticipated future events and
takes control actions accordingly, ensuring economic and robust operation of CO2

valorization systems.
On the other hands, process integration is defined as a holistic approach for design-

ing the optimized process, which exploits the interactions between different unit pro-
cesses to effectively utilize energy and resources, thereby minimizing operating costs.
For CO2 valorization technologies, development of viable heat integration methods is
an imperative task to improve the overall energy efficiency and emission profile of an
emission source. Pinch analysis should be applied for designing the system tominimize
energy consumption and to maximize heat recovery. This work should be systemati-
cally considered with heating and cooling systems as well as conventional air pollution
control equipment, such as selective catalytic reduction (for nitrogen oxides),
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electrostatics precipitator (for particulate matters), and flue gas desulfurization (for sul-
fur oxides). For instance, the heat from exothermic reactions (such as carbonation)
should be reused for other unit processes, e.g., material drying, process heating, and
conversion of CO2 directly to methane (synthetic natural gas). A comprehensive per-
formance evaluation also should be carried out to balance the 3E (engineering, eco-
nomic, and environmental) performance for a variety of valorization technologies.
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