
www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue III, November 2012 (ISSN: 2278-7720)

P a g e | 6

Advantages and Limitations of Different SDLC Models
Radhika D Amlani

Research Scholar
Saurashtra University,

Rajkot (Gujarat)

Abstract

Software engineering is the area which is constantly growing.

It is very interesting subject to learn as all the software

development industry based on this specified area. Now a

days, there are lots of software development life cycle models

available. According to the requirements, software industry

people are using it as per their requirements.

As there are lots of SDLC models, they are used according to

their requirements. So, it is needed to know the requirements

in which the SDLC models is used.

This paper is about the pros and cons of some models. So,

user can take the advantage of this paper to find the model

best suitable for their need.

Keywords

SDLC Phase, Advantages of the SDLC models, Limitations of

the SDLC models, Pros and cons of different SDLC models.

INTRODUCTION

Software Development Life Cycle

Software Development Life Cycle Model is used as a process

of creating and altering current existing system. SDLC used in

information system, systems engineering, and software

engineering. SDLC can be thought of as a concept that used

by many software development methodologies, which are

currently available in market or software industry. SDLC

provide a framework to create, plan and control any

information system to be developed.

There are so many SDLC based, software engineering models

available in market now-a-days. Depending upon the

suitability, the software engineering model can be used to put

forward any software project. Each of the methodologies or

models has different level of risk and benefits to cope with the

project requirements, budget and estimated completion

timeline. There are models which are suitable for large

project, where some focus on lightweight process that allow

rapid changes throughout whole software development life

cycle.

The pros and cons of the different SDLC models are given

below.

Pros and Cons of SDLC Model

Advantages of Waterfall Model:

1) Require business needs and requirements in beginning.

As the analysis team determines the business needs and

requirements first, this process facilitates to better cope

with the organizations need.

2) This process defines definite starting and ending points

of a project.

3) Early detection of errors

As all the stages are clearly defined so, this process

ensures early detection of errors and misunderstanding

in its each stage.

4) Require Documentation

Requirement specification document serve as the

guideline for the development and testing phase.

5) In future, for code revision and future project

enhancement these documents are useful in this process.

6) Since the following phases are dependent on previous

phase, this approach ensures project deadline control.

7) Each phase is discrete and team members involved in a

stage ensures the perfection of the stage before

delivering to next stage. Waterfall process ensures

greater project output.

8) This approach can be very efficient when team members

are dispersed in different locations.

9) The amount of resources required to implement

waterfall model is lower than other methods.

Limitations of Waterfall Model:

1) The greater disadvantage of this approach is that there is

no way to go back. Once a stage is complete means it is

locked.

2) Sometimes it’s really tough to estimate time required for

different phases and incorrect assumption can fail the

project to meet its deadline.

3) Waterfall model does not allow changes as per client’s

requirement, so it is less flexible.

4) If changes are to be made in waterfall process, the

project has to be started all over again. This can be

expensive for some organization.

5) Increase software development time and expense since

client keep adding requirement on the list.

6) Team members of rest of the phase sits idle except the

team member who are under the current working phase.

Advantages of Spiral Model:

1. Spiral life cycle model is one of the most flexible

SDLC models. Development phases can be

determined by the project manager, according to the

complexity of the project.

2. Project monitoring is very easy and effective as it is

done in each phase of each iteration. This

monitoring is done by experts or by concerned

people. This makes the model more transparent.

3. Risk management is key feature of this model,

which makes it more attractive compared to other

models.

4. If changes are introduced at later stage in life cycle,

coping with these changes isn’t a very big problem

for the project manager.

5. It is suitable for high risk projects, where business

needs may be unstable.

6. A highly customized product can be developed

using this model.

7. Since the prototype building is done in small

fragments or bits, cost estimation becomes easy and

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue III, November 2012 (ISSN: 2278-7720)

P a g e | 7

the customer can gain control on administration of

the new system.

8. As the model continues towards final phase, the

customer's expertise on new system grows, enabling

smooth development of the product meeting client's

needs.

Limitations of the Spiral Model:

1. Cost involved in this model is usually very high.

2. It is a complicated approach especially for the

project with a clear SRS (System Requirement

Specification).

3. Rules and protocols should be followed properly to

effectively implement this model. Through-out the

project life cycle development, it is very hard to

follow rules and protocols.

4. It is not suitable for low risk projects.

5. Meeting budgetary and scheduling requirements is

very tough with this software development process.

6. Due to various customizations allowed from the

client, it is very hard to use same prototype in other

projects.

7. It needs extensive skill in evaluating uncertainties or

risks associated with the project and their

abatement.

8. The models work best for large projects only, where

the costs involved are much higher and system pre

requisites involves higher level of complexity.

9. Risk assessment expertises are required.

10. Spiral may continue indefinitely.

Advantages of the V-Shape Model:

1. Simple and easy to use

2. Testing activities are planned before coding. This

saves a lot of time and also helps in developing a

very good understanding of the project at the

beginning state.

3. Each phase has specific deliverables.

4. Works well for where requirements are easily

understood.

5. Works for small projects.

6. Higher chance of success because of the

development of test plans early on during the life

cycle.

7. The model encourages verification and validation of

all internal and external deliverables. Not just the

software products.

8. The V-shaped model encourages definition of the

requirements before designing the system and it

encourages designing the software before building

the components.

9. It defines the products that the development process

should generate, each deliverable must be testable.

Limitations of the V-Shape Model:

1. It is inflexible; it has no ability to respond to

change. It is very rigid.

2. It produces inefficient testing methodologies.

3. If any changes happen in mid way, then the best

documents along with requirement document has to

be updated.

4. Adjusting scope is difficult and expensive.

5. Software is developed during the implementations

phase, so no early prototypes of the software are

produced.

6. Model doesn’t provide a clear path for problems

found during testing phases.

7. It doesn’t handle concurrent event.

Advantages of the Rational Unified Process

1. RUP is a complete methodology to manufacture

software.

2. It is process with complement document facility.

3. RUP is openly published, distributed and supported.

4. It supports changing requirements to meet its

desired software.

5. It supports iteration process so we can integrate the

code in development life cycle in lesser time and

effort spent in integration.

6. The reuse of code easy and faster so development

time is less.

7. There is online training and tutorial available for

this process.

8. Debugging is very easy due to component base

architecture.

Limitations of the Rational Unified Process

1. The team members need to be expert in their field to

develop the software under this methodology.

2. The development process is too complex and

disorganized.

3. On cutting edge projects which utilise new

technology, the reuse of components will not be

possible. Hence the time saving one could have

made will be impossible to fulfil.

4. Integration throughout the process of software

development, in theory sounds a good thing. But on

particularly big projects with multiple development

streams it will only add to the confusion and cause

more issues during the stages of testing.

5. It’s too complex to implement, and too difficult to

learn.

6. May lead to undisciplined form of software

development.

Advantages of the Prototype Model:

1. When prototype Model is shown to the user, he gets

a proper clarity about his requirements. And feel the

functionality of the software, so can suggest the

changes and modifications.

2. This type of approach of developing the software is

used for non-IT literate people. They usually cannot

explain their requirements specifically.

3. When client is not confident about the developer’s

capabilities, he asks for a small prototype to be

built. Based on this prototype model, he can judge

capabilities of developer.

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue III, November 2012 (ISSN: 2278-7720)

P a g e | 8

4. It helps to demonstrate the concept to the investors

to get funding for project.

5. It reduces risk of failure, as potential risks can be

identified early and steps can be taken to remove

that risk.

6. Constant interaction between development team and

client provides a very good and co-operative

environment during project.

7. Time required to complete the project after getting

final SRS is reduces as the developers has a better

idea about how he should approach the project.

8. The customer does not need to wait long for

working software.

9. Feedbacks from customer are received periodically

and the changes don’t come as a last minute

surprise.

Limitations of the Prototype Model:

1. Sometimes the start-up cost of building the

development team, focused on making prototype is

high. And usually in starting Prototype is done at the

cost of the developer. So it is done using minimal

resources.

2. It is a slow process.

3. Once we get proper requirements from client after

showing prototype model, it may be of no use.

4. Too much involvement of client is not always

preferred by the developer.

5. Too many changes can disturb the development

team.

6. Customer could believe the prototype as the

working version.

7. Developer also could make the implementation

compromises where he could make the quick fixes

to the prototype and make is as a working version.

8. Often clients expect that a few minor changes to the

prototype will more than suffice their needs. They

fail to realise that no consideration was given to the

overall quality of the software in the rush to develop

the prototype.

Advantages of the Iterative and Incremental Model:

1. The versions are provided after iteration of the

incremental model.

2. After using first iterated model, user can give their

suggestion and demand for changes.

3. This model does not affect anyone’s business values

because they provides core of the software which

customer needs after first iteration. To the customer

software will help him to keep running his business.

4. It is flexible to the customer’s requirements and

easy to manage model.

5. Better risk management is there in this model

because one can confirm the outcome by the

customer after every version because every version

is prepared according to the plan.

6. Easy to test as testing is done in iteration as per

requirement.

7. This model is used when requirements are clear to

some extend but project scope requires pure linear

approach.

8. Complete implementation by decided dead line.

9. Sometimes early increments can be implemented

with fewer people.

10. Lover risk of project failure compared to other

approaches.

11. Results are obtained early and periodically.

12. Parallel development can be planned.

13. Progress can be measured by setting milestone.

14. Testing and debugging during smaller iteration is

easy.

Limitations of the Iterative and Incremental Model:

1. Each phase of an iteration is very rigid and do not

overlap each other.

2. Problems may arise related to system architecture

because not all requirements are gather in initial

stage of the development process.

3. Each increment needs to be relatively small.

4. Mapping requirements to increments may not be

easy so managing documents are very difficult.

5. Common features of the software are difficult to

identify.

6. During development process changes are being done

at first iteration. As if it continues to change and it

never finished.

7. More resources may be required.

8. More management attention is required due to

frequent changes in requirements.

9. Does not allow iterations within an increment.

Advantages of the Rapid Application Development:

1. Working software is available much earlier than any

conventional method.

2. RAD produces systems more quickly and to a

business focus, this approach tends to produce systems

at a lower cost.

3. A greater level of commitment is there from

stakeholder. So user are seen as gaining more of sense

of ownership of a system, while developers are seen a

gaining more satisfaction from producing successful

systems quickly.

4. Focus on essential system elements from user

viewpoint.

5. Provides the ability to rapidly change system design as

demanded by users.

6. Gives tighter fit between user requirements and

system specifications.

7. Saving time, money and human efforts.

8. Changing or stopping the course of development on a

product that is not meeting its objectives.

9. Resulting final product often match user’s needs and

expectations very closely.

Limitations of the Rapid Application Development:

1. More speed and lower cost may lead to power overall

system quality.

2. Due to inappropriate information, developed system

might be misaligning.

3. Project may end up with more resources than needed.

4. Due to hurry, there may inconsistent designs within

and across system.

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue III, November 2012 (ISSN: 2278-7720)

P a g e | 9

5. There may be violation of programming standards

related to inconsistent naming conventions and

inconsistent documentations.

6. There can be lack of scalability in design.

7. Difficulty with module reuse for future systems.

8. High cost of commitment on the part of main user

personnel.

9. Formal reviews and audits are more difficult to

implement than for a complete system.

10. Tendency for difficult problems to be pushed to the

future to demonstrate early success to management.

11. RAD prototyping can be difficult to manage in large

organizations.

12. User can be misleading to adopt premature working

prototype as the finished product.

Advantages of the Joint Application Development:

1. Improved the communication between business

users and the project team.

2. Enhances quality.

3. It allows for the simultaneous gathering and

consolidating of large amounts of information.

4. The experts get a chance to share their views,

understand views of others, and develop the sense of

project ownership.

5. Creates a design from the customer's perspective.

6. It reduces organizational infighting. By bringing all

the decision makers together to design the system,

JAD brings conflicting objectives and hidden

agendas to light early in the project, when they can

still be addressed effectively and before they've had

time to do much damage.

7. Project teams get focused and stay focused.

In the workshop, the participants will build a

common view of the project and a common

language to discuss the issues. These elements will

stay with the team for the life of the project.

8. A natural partnership with modern development

tools.

JAD helps realize the full potential of today's

powerful development tools by providing high-

quality input requirements quickly.

9. Improves design quality.

The JAD improves the quality of the deliverable of

the design phase because it forces a definition of

that deliverable in advance. During the workshop

the participants are all focused on a common goal.

Users in the workshop will have a better

understanding of the business issues, the systems

issues, and the volume of work to be done.

10. Enhanced education for participants and observers.

By participating in JAD and be the medium between

other users and IT, the business end-users will be

kept fully informed about the progress of the system

development.

11. Enables rapid development.

In JAD, information can be obtained and validated

in a shorter time frame by involving all participants

who have a stake in the outcome of the session.

12. Improved quality of deliverables—quality assurance

of deliverable is ‘built-in’ to a large extent.

Much of the system’s quality depends on the

requirements gathered. JAD involves users in the

development life cycle, lets users define their

requirements, and thus ensures that the system

developed satisfies the actual activities of the

business.

13. Reduced system cost.

Much of the system development cost is in terms of

man-hours of both system developers and business

users involved. Reduced development time reduces

the labour cost for developers, as well as users. JAD

can reduce the involvement time of business experts

and hence reduce the cost further. Cost is also

reduced by catching errors, misunderstandings and

mistakes early in the development phrase.

Limitations of the Joint Application Development

1. JAD is more expensive and can be cumbersome if

Project is large.

If the group is too large relative to the size of the

project then it would be very difficult to manage

that group in JAD workshop.

2. Highly expert people are required to manage JAD

Project.

Advantages of the Scrum:

1) Agile scrum helps the company in saving time and

money.

2) Scrum methodology enables projects where

the business requirements documentation is hard to

measure to be successfully developed.

3) Fast moving developments can be quickly coded and

tested using this method, as a mistake can be easily

rectified.

4) It is a lightly controlled method which insists on

frequent updating of the progress in work through

regular meetings. Thus there is clear visibility of the

project development.

5) Like any other agile methodology, this is also iterative

in nature. It requires continuous feedback from the

user.

6) Due to short sprints and constant feedback, it becomes

easier to cope with the changes.

7) Daily meetings make it possible to measure individual

productivity. This leads to the improvement in the

productivity of each of the team members.

8) Issues are identified well in advance through the daily

meetings and hence can be resolved in speedily.

9) It is easier to deliver a quality product in a scheduled

time.

10) Scrum can work with any technology/ programming

language but is particularly useful for fast moving web

technology or new media projects.

11) The overhead cost in terms of process and

management is minimal thus leading to a quicker

result.

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue III, November 2012 (ISSN: 2278-7720)

P a g e | 10

Limitations of the Scrum:

1) Agile Scrum is one of the leading software

development model because if there is not a definite

end date, the project management stakeholders will be

used to keep demanding new functionality to be

delivered.

2) If a task is not well defined, estimating project

costs and time will not be accurate. In such a case, the

task can be spread over several sprints.

3) If the team members are not committed, the project

will either never complete or fail.

4) It is good for small, fast moving projects as it works

well only with small team.

5) This methodology needs experienced team members

only. If the team consists of people who are new to

this technology, the project cannot be completed in

time.

6) Scrum works well when the Scrum Master trusts the

team they are managing. If they practice too strict

control over the team members, it can be extremely

frustrating for them, leading to demoralisation and the

failure of the project.

7) If any of the team members leave during a

development it can have a huge inverse effect on the

project development

8) Project quality management is hard to implement and

measure if the test team are not able to conduct failure

testing after each sprint.

Advantages of the Extreme Programming

 1) Constant feedback from customer

Developer gets constant feedback from customer

which helps them to add new features to the system

being developed.

 2) Customers are available onsite

Customers are constantly available on site. So, when

developer team required asking anything it would be

very easy.

 3) Pair programming gives better coding

As programming is done in a team of two to three

people, it would be beneficial to the coding.

Because all the people in a team have different way

of thinking relates to see a particular programming

aspect. So better coding would be outcome of these

aspects.

 4) Refactoring is also beneficial

Changes to the coding are admirable in XP. Instead

of designing the entire system up front, design as

you go, making improvements as needed. So the

interface would not change.

 5) Continuous Integration

As new code is developed, it is tested and integrated

with the old code. The entire code base is constantly

being rebuilt, and retested in an automated fashion.

 6) Silly mistakes are quickly caught

Simple mistakes such as syntax errors or repeated

variable names can be easily caught and fixed right

then and there. This might not seem like much, but

it can cut down debug time later and prevent small

irritating bugs.

 7) Better concentration

This isn’t particularly scientific, but it seems that

too people working have a lesser tendency to get

distracted. This results in shorter development times

too.

 8) Its a good training ground for large software projects

Very little software is written by one person

nowadays, teams ranging from small to big are not

just the standard, they are a necessity. Pair

programming teaches you a lot of the soft skills

you’ll need: tolerance, respect, understanding and

responsibility.

 9) Combining knowledge

Computer science is a vast field and my course is

rather fast-paced. It’s hard for any single student to

have a complete knowledge of what’s been going on

in class, so two of them working together means that

they can pool their knowledge and work together.

 10) Constant planning

The problem with most projects is they attempt to

plan once and assume they are done with it. They

spend a lot of time up front to come up with a date

that everyone knows is bogus. XP takes the view

that planning is good, but you really want to be

planning and re-planning all the time. Reality

always interrupts the plans.

11) It gives customers the ability to see whether or not a

company can deliver on its promises.

12) It gives management many tools, including predictability,

flexibility of resources, consistency, and visibility into

what's really going on.

Limitations of Extreme Programming:

1) Skill disparity

This is the number one potential problem. If the

partners are of completely different skill levels, you

might have one programmer doing all the work or

constantly tutoring the other. This is ok if one wants

to set up a teacher-student relationship or are

introducing a new programmer to your system, but

if not, it can defeat the entire purpose of XP.

2) Not actually getting the work done

For some people pair programming sessions can

easily generate in socializing sessions. There are

some people who don’t work when there is someone

next to them examining their work, these people

will not benefit much either.

3) Developer egos

This is something that is not likely to happen in a

classroom setting, but in more experienced teams,

each programmer might try to push their own ideas

of how things should be done, both of which may be

perfectly valid. These sorts of conflicts can be

totally unsuccessful.

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue III, November 2012 (ISSN: 2278-7720)

P a g e | 11

4) Could not release in time

As members are working in teams, they might not

be able to reach the target in time or complete the

iteration in defined timebox. It might lead to late

delivery of final product.

5) Required very good management

If management is not done properly then it would be

very tough to get work done form the all team

members.

Conclusion:

In this paper, Researcher has tried to give pros and cons of the

different SDLC models. As all the models have their usability

and limitations, so where it can be applicable is decided by its

usability. This paper is useful for the developer to choose the

SDLC model according to their requirements. In this paper

researcher has taken 10 different SDLC models.

REFERENCE:

[1] www.en.wikipedia.org/wiki/Systems_development_life-

cycle

[2]www.en.wikipedia.org/wiki/SDLC

[3]www.waterfall-model.com/sdlc/

[4]www.condor.depaul.edu/jpetlick/extra/394/Session2.ppt

[5]www.searchsoftwarequality.techtarget.com/.../systems-

development

[6] Sharma, Manik, and Gurdev Singh. "Static and Dynamic

metrics-A Comparative Analysis." Emerging Trends in

Computing and Information Technology (2011).

[7]http://searchsoftwarequality.techtarget.com/answer/Softwar

e-development-life-cycle-phases-iterations-explained-step-by-

step

[8]www.allinterview.com › Categories › Software

[9] www.vtlglobal.com/software-development-life-cycle.html

[10]www.e-digg.com/services/software/sdlc-life-cycle.html -

 United States

[12] Sharma, Manik, et al. "Comparative study of static

metrics of procedural and object oriented programming

languages." International Journal of Computers & Technology

2.1 (2012): 15-19.

[12]www.shazsoftware.com/software-development-life-

cycle.html

http://www.searchsoftwarequality.techtarget.com/.../systems-development
http://www.searchsoftwarequality.techtarget.com/.../systems-development
http://www.google.co.in/url?url=http://www.allinterview.com/Interview-Questions/All.html&rct=j&sa=X&ei=jHcFUP6HKMmGrAfrzOitBg&ved=0CHIQ6QUoADAK&q=SDLC+phases&usg=AFQjCNF1Eo_WWxveSZn7cweEpzLBjKOvoA
http://www.google.co.in/url?url=http://www.allinterview.com/Interview-Questions/Software.html&rct=j&sa=X&ei=jHcFUP6HKMmGrAfrzOitBg&ved=0CHMQ6QUoATAK&q=SDLC+phases&usg=AFQjCNFqCs6qO0wmqm6PTXB3SU74x7-Q2Q
http://www.shazsoftware.com/software-development-life-cycle.html
http://www.shazsoftware.com/software-development-life-cycle.html

