

PHY 688: Numerical Methods for (Astro)Physics

Advection / Hyperbolic PDEs

PHY 688: Numerical Methods for (Astro)Physics

Notes
● In addition to the slides and code examples, my notes on PDEs with

the finite-volume method are up online:
– https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises

PHY 688: Numerical Methods for (Astro)Physics

Linear Advection Equation
● The linear advection equation provides a simple problem to explore

methods for hyperbolic problems

– Here, u represents the speed at which information propagates
● First order, linear PDE

– We'll see later that many hyperbolic systems can be written in a form
that looks similar to advection, so what we learn here will apply later.

PHY 688: Numerical Methods for (Astro)Physics

Linear Advection Equation
● We need initial conditions

● and boundary conditions

– We'll see in a moment that we only really need 1 boundary condition,
since this is a first-order equation

PHY 688: Numerical Methods for (Astro)Physics

Linear Advection Equation
● Solution is trivial—any initial configuration simply shifts to the right

(for u > 0)
– e.g. a(x - ut) is a solution
– This demonstrates that the solution is constant on lines x = ut –these

are called the characteristics
● This makes the advection problem an ideal test case

– Evolve in a periodic domain
– Compare original profile with evolved profile after 1 period
– Differences are your numerical error

PHY 688: Numerical Methods for (Astro)Physics

Finite-Difference Approximation
● We store the function value at each point in our grid:

– We will use the notation:
● Superscripts = time discretization; subscripts = spatial discretization
● We'll use 0-based indexing

– Simple discretization:

● Explicit
● 2nd order in space, 1st order in time (FTCS method)

PHY 688: Numerical Methods for (Astro)Physics

Boundary Conditions
● We want to be able to apply the same update equation to all the grid

points:

– Here, C = uΔt / Δx is the fraction of a zone we cross per timestep—this
is called the Courant-Friedrichs-Lewy number (or CFL number)

● Notice that if we attempt to update zone i = 0 we “fall off” the grid
● Solution: ghost points (for finite-volume, we'll call them ghost cells)

Grid for N points

PHY 688: Numerical Methods for (Astro)Physics

Boundary Conditions
● Before each timestep, we will the ghost points with data the

represents the boundary conditions

– Note that with this discretization, we have a point exactly on each
boundary (we only really need to update one of them)

– Periodic BCs would mean:
●

– Other common BCs are outflow (zero derivative at boundary)

General grid
of N points

PHY 688: Numerical Methods for (Astro)Physics

Implementation and Testing
● Recall that the solution is to just propagate any initial shape to the

right:

– We'll code this up with periodic BCs and compare after 1 period
– On a domain [0,1], one period is simply: 1/u

● We'll use a tophat initial profile
● Let's look at the code...

code: fdadvect.py

PHY 688: Numerical Methods for (Astro)Physics

FTCS Linear Advection
● Evolution with N=65, C=0.9, after 1 period

– Note the vertical scale!!!!
– We see nothing that looks like a tophat
– Any ideas?

code: fdadvect.py

PHY 688: Numerical Methods for (Astro)Physics

FTCS Linear Advection
● Reducing the timestep is equivalent to reducing the CFL number

– CFL = 0.1, still 1 full period
– The scale is much

reduced, but it is still
horrible

– Let's look how these
features develop

code: fdadvect.py

PHY 688: Numerical Methods for (Astro)Physics

FTCS Linear Advection
● Here we evolve for only 1/10th of a period

– CFL = 0.1
– Notice that the

oscillations are
developing right near
the discontinuities

– So far we've looked at
timestep, what about
resolution?

code: fdadvect.py

PHY 688: Numerical Methods for (Astro)Physics

FTCS Linear Advection
● This is with N = 257 points

– There is something more fundamental than resolution or CFL number
going on here...

code: fdadvect.py

PHY 688: Numerical Methods for (Astro)Physics

Stability
● The problem is that FTCS is not stable
● There are a lot of ways we can investigate the stability

– It is instructive to just work through an update using pencil + paper to
see how things grow

– Growth of a single Fourier mode
– Truncation analysis
– Graphically: we can trace back the characteristics to see what

information the solution depends on.

PHY 688: Numerical Methods for (Astro)Physics

Fourier Mode Analysis of FTCS
● Consider a solution consisting of a single Fourier mode:

– Since we are linear, we don't have to worry about different modes
“talking” to one another, so we can just deal with a single mode

● Stability will require that:

● Putting this mode into our difference equation we find
(blackboard...)

– Note there is no dependence on n – all modes grow the same
– No value of C makes things work

PHY 688: Numerical Methods for (Astro)Physics

Fourier Mode Analysis of FTCS
● FTCS is unconditionally unstable
● Note that although this method of stability analysis only works for

linear equations, it can still guide our insight into nonlinear
equations

● This methodology was developed by von Neumann during WWII at
LANL and allegedly, it was originally classified...

PHY 688: Numerical Methods for (Astro)Physics

Truncation Analysis
● Observe that:

● Let's figure out what physical equation this difference
approximation better represents

● Substitute in

● And lot's of algebra...

Finite-difference methods solve linear advection equations
approximately, but they solve modified linear advection
equations exactly

—Laney (p. 265)

PHY 688: Numerical Methods for (Astro)Physics

Truncation Analysis
● We find:

– We are more accurately solving an advection/diffusion equation
– But the diffusion is negative!

● This means that it acts to take smooth features and make them strongly
peaked—this is unphysical!

– The presence of a numerical diffusion (or numerical viscosity) is quite
common in difference schemes, but it should behave physically!

This is our original
equation

This looks like
diffusion, but look
at the sign!

PHY 688: Numerical Methods for (Astro)Physics

Upwinding
● Let's go back to the original equation and try a different

discretization
● Instead of a second-order (centered-difference) spatial difference,

let's try first order.
– We have two choices:

● Let's try the upwinded difference—that gives:
upwind downwind

PHY 688: Numerical Methods for (Astro)Physics

Upwinding
● Upwinding solution with N = 65, C = 0.9, after 1 period

– Much better
– There still is some error, but it is not unstable
– Numerical diffusion is

evident

code: fdadvect.py

PHY 688: Numerical Methods for (Astro)Physics

Upwinding
● Notice that if we do C = 1, we get an exact translation of the data

from one zone to the next:

– However, as we will see, for nonlinear eqs. and systems of linear
advection eqs., we cannot in general do C = 1, because there is not a
single speed over all the grid.

● Let's play with the code and explore resolution, number of periods,
etc...

PHY 688: Numerical Methods for (Astro)Physics

Stability Analysis of Upwinded Eq.
● We can do the same single-mode Fourier analysis and we find:

– We know that
– We need:
– Blackboard...

● The upwind method is stable for
– This is the statement that information cannot propagate more than one

cell per timestep
– We'll see that this is a pretty standard timestep restriction for

hyperbolic PDEs

PHY 688: Numerical Methods for (Astro)Physics

Stability Analysis of Upwinded Eq.
● Truncation analysis would show this method is equivalent to

– Represents physical diffusion so long as 1 – C > 0
– This also shows that we get the exact solution for C = 1

● Note that if we used the downwind difference, our method would be
unconditionally unstable
– Direction of difference based on sign of velocity

● Physically, the choice of upwinding means that we make use of the
information from the direction the wind is blowing
– This term originated in the weather forecasting community

PHY 688: Numerical Methods for (Astro)Physics

Phase Error
● Examining the behavior of a Fourier mode can also tell us if the

method introduces a phase lag
– Look at the ratio of imaginary to real parts of the amplification factor
– Some methods have severe phase lag
– We won't go into this here...

PHY 688: Numerical Methods for (Astro)Physics

Upwind Results
● Finite-difference (node-centered) grid, with N=65, 1 period:

– Tophat initial conditions, C = 0.8

PHY 688: Numerical Methods for (Astro)Physics

Upwind Results
● Finite-difference (node-centered) grid, with N=65, 5 periods:

– Tophat initial conditions, C = 0.8

Notice that the
numerical diffusion
is strongly apparent
here

What about smooth
initial conditions?

code: fdupwind.py

PHY 688: Numerical Methods for (Astro)Physics

Upwind Results
● Finite-difference (node-centered) grid, with N=65, 1 period:

– sine wave, C = 0.8

code: fdupwind.py

PHY 688: Numerical Methods for (Astro)Physics

Upwind Results
● Finite-difference (node-centered) grid, with N=65, 5 periods

– sine wave, C = 0.8

Note that the sine
wave stays in phase
(that's a good thing)

Diffusion still
apparent.

Just for fun, let's try
a downwinded
method...

code: fdupwind.py

PHY 688: Numerical Methods for (Astro)Physics

A Little More Insight on Stability
● A necessary (but not sufficient) condition for stability is that the

numerical domain of dependence contain the true domain of
dependence (see Lahey, Ch. 12 for a nice discussion)

– True domain of dependence is
found by tracing the
characteristics backwards in
time

true domain of dependence

numerical domain of dependence

Upwind method ►
For u > 0

PHY 688: Numerical Methods for (Astro)Physics

A Little More Insight on Stability
● The downwind method clearly

violates this
● Ex from Lahey:

– Consider initially discontinuous
data

– True solution at x = 0 is a01 = 1
– Downwind method:

gives:

numerical domain of
dependence

true domain of
dependence

The numerical domain of dependence doesn't include
the true domain of dependence, and we get the wrong
answer.

PHY 688: Numerical Methods for (Astro)Physics

A Little More Insight on Stability
● Necessary, but not sufficient—consider FTCS

numerical domain of
dependencetrue domain of

dependence

PHY 688: Numerical Methods for (Astro)Physics

Implicit Differencing
● If we discretize the spatial derivative using information at the new

time, then we get an implicit method
– Unconditionally stable
– You'll explore this on your homework

PHY 688: Numerical Methods for (Astro)Physics

Other Finite-Difference Methods
● There are many other finite-difference methods that build off of what

we already saw
● Lax-Friedrichs:

– Start with FTCS:
– Simple change, replace:
– We get:

– This is stable for C < 1, but notice that it doesn't contain the point we
are updating! (Let's explore this...)

● Can suffer from odd-even decoupling
● Can be more diffusive than upwinding (and gets worse for smaller C)

● You'll explore Lax-Wendroff in your homework—it is second order in
space and time. Works well, but can oscillate...

PHY 688: Numerical Methods for (Astro)Physics

Measuring Convergence
● As we move to higher-order methods, we will want to measure the

convergence of our methods
– We have data at N points for each time level
– We need a norm that operates on the gridded data. A popular choice

is the L2 norm:

– Using the grid width ensure that this measure is resolution
independent

– We can take the error of our method to be:

PHY 688: Numerical Methods for (Astro)Physics

Measuring Convergence
● For advection with periodic BCs, compare to the initial conditions

– Note: you need to be careful to end always at the same time (e.g.
exactly on a period)

code: fdupwind_converge.py

PHY 688: Numerical Methods for (Astro)Physics

Grid Types

“Regular” finite-difference grid.
Data is associate with nodes
spaced Δx apart. Note that here
we can have a point exactly on
the boundary

Cell-centered finite-difference
grid. Here we consider cells of
with Δx and associate the data
with a point at the center of the
cell. Note that data will be Δx/2
inside the boundary

Finite-volume grid—similar to
the cell-centered grid, we divide
the domain into cells/zones.
Now we store the average value
of the function in each zone.

PHY 688: Numerical Methods for (Astro)Physics

Grid Types
● Finite-difference

– Some methods use staggered grids: some variables are on the nodes
(cell-boundaries) some are at the cell centers

– Boundary condition implementation will differ depending on the
centering of the data

– For cell-centered f-d grids: ghost cells implement the boundary
conditions

● Finite-volume
– This is what we'll focus on going forward
– Very similar in structure to cell-centered f-d, but the interpretation of

the data is different.

PHY 688: Numerical Methods for (Astro)Physics

Conservation Laws
● Many systems appear as conservation laws:

– Linear advection:

– Burger's equation:

– Hydrodynamics

Understanding advection is key to each of these systems

PHY 688: Numerical Methods for (Astro)Physics

Finite-Volume Approximation
● Finite-volume methods are designed for conservation laws

– Integrate our hyperbolic equation over a control volume

● Here we write the cell-averages without the <>
● We still need to discretize in time
● Telescoping property

– Note that the flux of U that leaves one volume enters the adjacent one
—guaranteeing conservation

PHY 688: Numerical Methods for (Astro)Physics

Finite-Volume Approximation
● A second-order approximation for our advection equation is

– Notice that the RHS is centered in time
● To complete this method, we need to compute the fluxes on the

edges
– We can do this in terms of the interface state

– Now we need to find the interface state. There are two possibilities:
coming from the left or right of the interface

PHY 688: Numerical Methods for (Astro)Physics

First-Order Advection
● Our interface states

– Simplest choice:

– Now we need to resolve the degeneracy of the states. This requires
knowledge of the equation

● Riemann problem: two states separated by an interface
● For advection, we do upwinding

PHY 688: Numerical Methods for (Astro)Physics

First-Order Advection
● Riemann problem (upwinding):

– This is simple enough that we can write out the resulting update (for u
> 0):

– This is identical to the first-order upwind finite-difference discretization
we already studied

PHY 688: Numerical Methods for (Astro)Physics

Second-Order Advection
● Going to second-order requires making the interface states second-

order in space and time
– We will use a piecewise linear reconstruction of the cell-average data

to approximate the true functional form
– We Taylor expand in space and time to find the time-centered,

interface state
● Let's derive this on the blackboard...

PHY 688: Numerical Methods for (Astro)Physics

Second-Order Advection
● Tophat with 64 zones, C = 0.8

Notice the oscillations
—they seem to be
associated with the
steep jumps

code: fv_advection.py

PHY 688: Numerical Methods for (Astro)Physics

Second-Order Advection
● Gaussian with 64 zones, C = 0.8

This looks nice and
smooth

code: fv_advection.py

PHY 688: Numerical Methods for (Astro)Physics

Second-Order Advection
● Remember—you should always look at the convergence of your code

—if you do not get what you are supposed to get, you probably have
a bug (or you don't understand the method well enough...)

Convergence for
the Gaussian

code: fv_advection.py

PHY 688: Numerical Methods for (Astro)Physics

Second-Order Advection
● General notes:

– We derived both the left and right state at each interface—for
advection, we know that we are upwinding, so we only really need to
do the upwinded state

– But, for a general conservation law, the upwind direction can change
from zone to zone and timestep to timestep AND there can be multiple
waves (e.g. systems), so for the general problem, we need to compute
both states

● If you set the slopes to 0, you reduce to the first-order method

PHY 688: Numerical Methods for (Astro)Physics

Second-Order Advection
● We need 2 ghost cells on each end:

● Let's look at the code...

The state here
depends on the
slope in zone lo-1

This slope requires the
data from the zones on
either size of it

PHY 688: Numerical Methods for (Astro)Physics

Design of a General Solver
● Simulation codes for solving conservation laws generally follow the

following flow:
– Set initial conditions
– Main evolution loop (loop until final time reached)

● Fill boundary conditions
● Get the timestep
● Compute the interface states
● Solve the Riemann problem
● Do conservative update

● We'll see that this same procedure can be applied to nonlinear
problems and systems (like the equations of hydrodynamics)

PHY 688: Numerical Methods for (Astro)Physics

REA
● An alternate way to think about

these methods is as a
Reconstruct-Evolve-Average
process

– The second-order method we
derived is equivalent to using
a piecewise linear
reconstruction of the data in
each zone

– We can demonstrate this on
the blackboard...

PHY 688: Numerical Methods for (Astro)Physics

No-limiting Example

Here we see an initial discontinuity advected using a 2nd-order finite-volume method, where
the slopes were taken as unlimited centered differences. Note the overshoot and
undershoots

PHY 688: Numerical Methods for (Astro)Physics

Limiting
● Limiting: modify slopes near extrema to prevent overshoots.

– Can drop method down to 1st-order accurate near discontinuities
● Godunov's theorem:

– Any monotonic linear method for advection is first order accurate
– To be monotonic and 2nd-order, we need to make our method nonlinear

● There are many limiters, derived by requiring that the update not
introduce any new minima or maxima.
– Mathematially enforced by a requirement of total variation diminishing
– Ex of a simple limiter (minmod):

PHY 688: Numerical Methods for (Astro)Physics

Limiting Example

This is the same initial profile advected with limited slopes. Note that the profile remains
steeper and that there are no oscillations.

PHY 688: Numerical Methods for (Astro)Physics

Limiting
● There are many different limiters (examples below with 128 zones, 5 periods, C = 0.8)

code: fv_advection.py

PHY 688: Numerical Methods for (Astro)Physics

PPM
● We saw that

– Piecewise constant reconstruction is first order
– Piecewise linear is second order in space and time
– Piecewise parabolic is the next step

● Average under parabola to find amount that can reach interface over the
timestep

● In practice, the method is still second-order in time because of the
centering of the fluxes, but has less dissipation

● Limiting process described in Colella & Woodward (1984)

PHY 688: Numerical Methods for (Astro)Physics

PPM

Piecewise constant

Piecewise linear
(dotted are unlimited
slopes)

Piecewise parabolic
(dotted are unlimited
parabola)

PHY 688: Numerical Methods for (Astro)Physics

PPM

code: advect.f90

PHY 688: Numerical Methods for (Astro)Physics

PPM

code: advect.f90

PHY 688: Numerical Methods for (Astro)Physics

PPM

Note: this was done with limiting on, which can reduce the ideal
convergence

code: advect.f90

PHY 688: Numerical Methods for (Astro)Physics

Multi-Dimensional Advection
● 2-d linear advection equation:

● Average state updates due to fluxes through all interfaces

PHY 688: Numerical Methods for (Astro)Physics

Multi-Dimensional Advection
● Simplest method: dimensional splitting

– Perform the update one dimension at a time—this allows you to reuse
your existing 1-d solver

● More complicated: unsplit prediction of interface states
– In Taylor expansion, we now keep the transverse terms at each

interface
– Difference of transverse flux terms is added to normal states
– Better preserves symmetries
– See Colella (1990) and PDF notes on course page for overview

PHY 688: Numerical Methods for (Astro)Physics

Multi-Dimensional Advection

323 gaussian advected with unsplit reconstruction and C = 0.8
code: https://github.com/zingale/pyro2

PHY 688: Numerical Methods for (Astro)Physics

Burger's Equation
● Recall that for the advection equation, the solution is unchanged

along lines x – ut = constant
– These were called the characteristic curves

x

t

Initial point, x
0

Characteristic curve, x = x
0
+ ût

PHY 688: Numerical Methods for (Astro)Physics

Burger's Equation
● Consider the following nonlinear hyperbolic PDE:

– This is the (inviscid) Burger's equation
– We can use this as a model of the nonlinear term in the momentum

equation of hydrodynamics
– The nonlinearity admits nonlinear waves like shocks and rarefactions

● Again, the characteristic curves are given as: dx/dt = u
– But now u varies throughout the domain

PHY 688: Numerical Methods for (Astro)Physics

Shocks
● Shocks form when the characteristics intersect (see Toro Ch. 2 for a nice discussion)

– Solution is to put a shock at the intersection

PHY 688: Numerical Methods for (Astro)Physics

Shock Jump Conditions
● Consider a (right moving) shock over a short time interval ¢ t

– We can take the speed to be constant in this short interval
● Apply the integral form of the conservation law:

(LeVeque, Ch. 11)

PHY 688: Numerical Methods for (Astro)Physics

Shock Jump Conditions
● Integrating over time, we have:

– If the intervals are small, then u is roughly constant

– Taking s ≈ Δx/Δt

(LeVeque, Ch. 11)

For Burger's Eq.

This is called the
Rankine-Hugoniot
condition

PHY 688: Numerical Methods for (Astro)Physics

Rarefaction
● Consider the opposite case: characteristics diverge

– This is a rarefaction. There is no compression (or shock)

tail
head

PHY 688: Numerical Methods for (Astro)Physics

Burger's Equation Riemann Problem
● Together, these allow us to write down the Riemann solution for

Burger's equation
– We only need the solution exactly on the interface between zones
– If ul > ur then we are compressing (shock):

– Otherwise: rarefaction:

PHY 688: Numerical Methods for (Astro)Physics

Solving Burger's Equation
● The solution to Burger's equation is very similar to the advection

equation, with the following changes
– We now use the Burger's Riemann problem solution
– The timestep is estimated by looking at the max abs(u) on the grid

PHY 688: Numerical Methods for (Astro)Physics

Burger's Examples

Sine wave steepening into a
shock

Rarefaction from an initial
discontinuity

Code: https://github.com/zingale/hydro_examples/blob/master/burgers/burgers.py

PHY 688: Numerical Methods for (Astro)Physics

Hydrodynamics
● The equations of hydrodynamics share similar ideas

– Now there are 3 waves (and three equations). We need to consider
waves moving in either direction

– Shocks and rarefactions are still present
– The system is nonlinear

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

