
AEM React
AEM components written in React

History
date author message changed chapters

21.3.17 stefan
meyer

fixed typescript source code in documentation /Getting Started/First component
/Development
Guide/ResourceComponent
/Development Guide/Registering react
component
/Development Guide/Loading Resource
/Development Guide/Java Api
/Development Guide/Vanilla component
/Configuration/Javascript
/Single Page Application/Example

21.3.17 Stefan
Meyer

- Using AemRoute to Router doc (#42)

- Added documentation for including vanilla react components and other
AEM components.
- improved Router documentation

/Getting Started/First component
/Development
Guide/ResourceComponent
/Development Guide/Registering react
component
/Development Guide/Loading Resource
/Development Guide/Java Api
/Development Guide/Vanilla component
/Configuration/Javascript
/Single Page Application/Example

4.3.17 stefan
meyer

added transitions
- added transitions
- fixed rendering of wrapper element in partial updates
- migrated to typings

/Development Guide/Vanilla component

1 Introduction
The goal of the AEM (Adobe Experience Manager) React library is to use React as a templating engine for AEM components. React is a popular javascript
ui library by facebook.

Why React and AEM?
React components are ideal to create web applications with complex client-side interactivity. AEM provides a perfect authoring interface for web content.
This project brings these technologies together, so that you can build highly interactive web pages with a professional authoring tool.

Features
Universal React rendering
High performance javascript execution with a pool of Java 8 nashorn engines.
Nesting React components in other AEM components and vice versa is supported.
Converting vanilla (plain) react components into AEM components is supported.
SPA based on react router is supported.

Projects

AEM project

The aem-react project consists of the following parts:

osgi bundle contains the Sling Script Engine to render AEM components written in react.
maven archetype is a fork of the AEM archetype and adds react support and examples.
demo content package provides examples for components and SPA.

Maven artifact is available via maven central

Javascript project

The aem-react projects relies on the aem-react-js subproject, which provides the basic javascript funtionality. It is available as npm module.

Maven archetype project

http://www.adobe.com/de/marketing-cloud/enterprise-content-management.html
https://facebook.github.io/react/
http://www.2ality.com/2015/08/isomorphic-javascript.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
https://github.com/sinnerschrader/aem-react
http://search.maven.org/#search%7Cga%7C1%7Caem-react
https://github.com/sinnerschrader/aem-react-js
https://www.npmjs.com/package/aem-react-js

Lastly a maven-archetype is avilable to quickly create an AEM maven project including react components. It is a fork of the existing offical AEM maven
archetype.

Maven artifact is available via maven central

Version
This documentation always describes the latest version (not release) of these projects.

Prerequisites
>= Java 8 (Oracle JDK with nashorn engine)
>= AEM 6.0

2 Getting Started
In this guide we will use the maven archetype to generate a project structure. It already includes some demo content and react components.

Requirements

Adobe Experience Manager 6 or higher
Apache Maven (3.x should do)

The example react components are written in Typescript. The node build tools are also assuming that you are developing in Typescript. If you want to use
another dialect you need to tewak the build scripts.

2.1 First project
To quickly get started we will use the maven archetype.

1. create maven project

 mvn archetype:generate \
 -DarchetypeGroupId=com.sinnerschrader.aem.react \
 -DarchetypeArtifactId=aem-project-archetype \
 -DarchetypeVersion=10.x \

Versions

Get the latest archetypeVersion. After generation of the project make sure that you also have the latest versions of the aem-react-js npm module
in ui.apps/src/main/ts/package.json and the latest aem-react osgi bundle in core/pom.xml .

You will then be asked a couple of questions about project name and folder names and so on. These are the same as in the original archetype. Please
find detailed explanations here in the section "Getting started in 5 minutes".

Available properties

groupId Maven GroupId

groupId Base Maven groupId

artifactId Base Maven ArtifactId

version Version

package Java Source Package

appsFolderName /apps folder name

artifactName Maven Project Name

componentGroupName AEM component group name

contentFolderName /content folder name

cssId prefix used in generated css

packageGroup Content Package Group name

siteName AEM site name

2. start AEM
AEM should now be running.

3. install demo

 mvn install -PautoInstallPackage

If your AEM instance is not running on localhost:4503 then you need to add additonal parameter

parameter default

https://github.com/sinnerschrader/aem-project-archetype
https://github.com/Adobe-Marketing-Cloud/aem-project-archetype
http://search.maven.org/#search%7Cga%7C1%7Csinnerschrader
https://github.com/sinnerschrader/aem-project-archetype/releases
https://github.com/sinnerschrader/aem-react-js/releases
https://github.com/sinnerschrader/aem-react/releases
https://docs.adobe.com/docs/en/aem/6-0/develop/dev-tools/ht-projects-maven.html

-Daem.port 4502

-Daem.host localhost

parameter default

4. Open browser
To check what was deployed we will use the Classic UI.

go to the page /content/${siteName}/en.html
find react components in sidekick: React Panel, React Text and ReactParsys
find components already on the page

The page en.html with sidekick

5. disable author mode
To check that we have actual react components in the page we will use the Classic UI.

Disabled the author mode by appending ?wcmmode=disabled to the url.
Install your react dev tool in chrome browser.
Have a look at react component tree.

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi

The page en.html with react dev tools

There are two RootComponents which means two independent react component trees. The first contains the Text component. The second contains the
Panel which is a vanilla react component and therefore wrapped by a TheWrapper component. The Panel's child is a ReactParsys which contains
another Text component and a non-react component which inserted by the ResourceInclude component.

2.2 First component
This part assumes that the project was created according to the previous chapter.

1. Start watch task
Start the watch task which transpiles, bundles and uploads the javascript files to AEM.

Open console to folder /src/main/ts and run the watch task npm run watch .

If your AEM instance is not running on localhost:4502 then you need to make these configurations:

npm config set demo:crx http://admin:admin@localhost:4502/crx/repository/crx.default

Alternatively the config in the package.json can be modified.

2. create file
Create a file MyComponent.tsx under /ui.apps/src/main/ts/.

import {ResourceComponent} from "aem-react-js/component/ResourceComponent";
import * as React from "react";
import Text from "../text/text";

export default class MyComponent extends ResourceComponent<any, any, any> {
 public renderBody(): React.ReactElement<any> {

 let label: string = this.getResource().label;
 return (
 <div>
 Hello {label}
 <Text path="text"/>
 </div>
);
 }
}

3. Register component
The component needs to be associated with a resourceType ${appsFolderName} /components/my-component. Open
/ui.apps/src/main/ts/componentRegistry.tsx and add two lines

 // add this line at the top
 import MyComponent from "./MyComponent";
 ...
 // add this line after componentRegistry is instantiated
 componentRegistry.register(MyComponent);

4. Create component configuration

Create the component configuration in the appropriate folder /apps/${appsFolderName}/components/my-component . The template is an empty file called my-
component.jsx . The edit dialog should provide a textfield for the property ./label .

/apps/${appsFolderName}/components/my-component
.content.xml
my-component.jsx
dialog.xml

5. Synchronize source code to crx
The component configuration must be uploaded to crx. This can be done via maven install -PautoInstallPackage. The watch task has already uploaded the
javascript file.

6. Open browser
find the new react component in the sidekick.

7. Continuely improve component

2.3 Demo
The aem-react project contains a demo content package.

To run the demo

1. Clone git repo

git clone https://github.com/sinnerschrader/aem-react.git

2. Install into running AEM

mvn install -PautoInstallPackage -Daem.port=<port> -Daem.host=<host>

Currently it is not possible to run the demo and the archetype in the same AEM. You need to adjust the path to the javascript in the react script
engine via the webconsole.

SPA with a two level page hierachy

Local url: /content/reactdemo/cities.html

The SPA (single page application) is based on the react router library. The SPA has a welcome view (/cities.html) and a detail view for each city (e.g.:
/cities/hamburg.html).

Welcome view

localhost:4502/editor.html/content/reactdemo/cities.html
https://github.com/ReactTraining/react-router

Detail view

The main AEM react component is CityFinder . A city can be selected from the list on the left. This list is part of the CityListView react component which is
displayed on all views. Its child component is either Home for the welcome view or CityView for the detail view. In the author mode each view is a single
AEM page. Each page contains the CityFinder component which contains the router. Home and CityListView are plain react components while CityFinder
and CityView are AEM react components.

A simplified version of CityFinder looks like this:

export default class CityFinder {
 renderBody() {
 return (

 <Router history={history}>
 <Route path="cities.html" component={CityListView}>
 <IndexRoute component={Home} baseResourcePath={resourcePath}/>
 <Route path="cities/(:name).html" resourceComponent={CityView} component={ResourceRoute}/>
 </Route>
 </Router>

);
 }
}

The purpose of the generic ResourceRoute component is to translate the current routes dynamic path into a resource path which is passed to CityView .

Component list

Local url: /content/reactdemo/overview.html

The list of components include:

simple text component
embedded component
accordion component which shows client-side interactivity and serves as a container.
vanilla component
vanilla panel which serves as a container

localhost:4502/editor.html/content/reactdemo/overview.html

Overview of example components

3 Development Guide

3.1 ResourceComponent
ResourceComponent is the base class for AEM components. It provides access to the resource (content). It also adds the necessary wrapper element, so
that the component can be edited in the author mode.

The main method to implement in a ResourceComponent is renderBody() . It is called by the render method once the resource is successfully fetched. The
resource is available via this.getResource() .

import {ResourceComponent} from "aem-react-js/component/ResourceComponent";
import * as React from "react";
import Text from "../text/text";

export default class MyComponent extends ResourceComponent<any, any, any> {
 public renderBody(): React.ReactElement<any> {

 let label: string = this.getResource().label;
 return (
 <div>
 Hello {label}
 </div>
);
 }
}

Container
If the component is a container then it must to render its children by itself. One option is to call renderChildren which turns the component into a parsys like
container for any child components. If the child components are restricted to a certain type then a custom rendering might be a better solution.

public renderBody(): React.ReactElement<any> {

 let label: string = this.getResource().label;
 let children: React.ReactElement<any>[] =this.renderChildren(this.getResource(), "children");
 return (
 <div>
 Hello {label}
 {children}
 </div>
);
}

Embed AEM components
To embed another AEm component you use <ResourceInclude/> and pass path and resourceType.

 return (<div><ResourceInclude resourceType="/components/text" path="test"/></div>)

3.2 Registering react component

There must be one instance of RootComponentRegistry . It is responsible for mapping each React component to a resourceType. A component is a
registered with one of the ComponentRegistry s which are maped to a resource path.

import ComponentRegistry from "aem-react-js/ComponentRegistry";
import RootComponentRegistry from "aem-react-js/RootComponentRegistry";
import MyComponent from "./MyComponent";

let registry: ComponentRegistry = new ComponentRegistry("yourproject/components");
registry.register(MyComponent); // resource type of MyComponent is 'yourproject/components/my-component'

let rootComponentRegistry: RootComponentRegistry = new RootComponentRegistry();
rootComponentRegistry.add(componentRegistry);
rootComponentRegistry.init();
AemGlobal.registry = rootComponentRegistry; // expose registry to Nashorn

If your project was created by the maven archetpye then the RootComponentRegistry is already instantiated and you just need to add your
ComponentRegistry .`

3.3 Loading Resource
The resource will be loaded as json by calling getResource() and therefore the number of levels of the resource tree need to be defined in advance by
overriding the method getDepth() . In accordance with the sling conventions 0 means a single level.

 public getDepth(): number {
 return 2;
 }

Lazy Loading
If the resource is not fetched synchronuously then the render method will call renderLoading instead to display a loading spinner or similar ui.
Asynchronuous loading happens when a ResourceComponent's path prop is changed or a new ResourceComponent is added to the resource tree in the
client. This is often the case when the react router library is used.

 public renderLoading(): React.ReactElement<any> {

 return (
 Loading data ...</spany>
);
 }

3.4 Author mode
React components are not instantiated in the author mode to prevent anyy interference between AEM javascript and react. For a lot of components this
means that they need to be displayed differently. For example an Accordion must display all panels and its corresponding parsys. Use isWcmEnabled() on
the server to detect the author mode.

3.5 Java Api
Presentation logic is often implemented in sling models. To access a sling model or an osgi service the fully qualified java class name needs to be passed
to appropriate method. The object returned is a aem-react-js/ServiceProxy , which has a single method invoke . That method's first parameter is the actual
java method to invoke and the remaining parameters are passed to that method.

method description

getResourceModel(className) adapt the current resource to the given class name.

getRequestModel(className) adapt the current request to the given class name.

getOsgiService(className) get the osgi service by its service class name

 import ServiceProxy from "aem-react-js/ServiceProxy";
 ...
 public renderBody(): React.ReactElement<any> {
 let model: ServiceProxy = this.getRequestModel(`com.example.LabelModel`);
 let label: string = model.invoke('getLabel')
 return (
 <div>
 Hello {label}
 </div>
);
 }

The Java API methods will be invoked only if the component's is rendered on the server. Otherwise the return value is served from the cache which was
created during server rendering. It is safe to invoke a java method in the renderBody method. But it must be invoked unconditionally and always with the
same parameters. Initially renderBody will always be invoked on the server but it can be invoked on the client many times after that.

If a service is needed to load data based on user input then you should not use the Java api but use a custom http service via plain ajax.

3.6 Vanilla component
A vanilla react component can be registered as a AEM component as well.

registry.registerVanilla({component: TextField});
registry.registerVanilla({component: Panel, parsys: {path: "content"}, depth: 2});

All resource properties are passed as props to the component.

For a simple component that only needs a single level of the resource tree and doesn't display children it is sufficient to define the React component class
that should be registered. The following additional parameters are available

parameter type description

depth number the number of levels of the resource available

props? any extra props that are passed

parsys? object define this property to define a parsys as the only child of this component

parsys.path string the relative content path to store children

parsys.className? string class name added to the parsys element

parsys.elementName? string name of the parsys element (default is "div")

parsys.childElementName? string If provided each child is wrapped in an extra element

parsys.childClassName? string class name added to children elements.

transform? function a function to tranform the resource into react props

Container
If the parsys property is set then the vanilla component will be turned into an AEM container. The .content.xml must also set the corresponding attribute:

 <?xml version="1.0" encoding="UTF-8"?>
 <jcr:root xmlns:sling="http://sling.apache.org/jcr/sling/1.0" xmlns:cq="http://www.day.com/jcr/cq/1.0" xmlns:jcr="http://www.jcp.org/jcr/1.0"
 jcr:primaryType="cq:Component"
 jcr:title="My Title"
 cq:isContainer="true"
 />

Resource transformation
If the resource's structure does not match the props of the vanilla component then a transformation can be used. A transformation is a function that is
passed the resource and the resourceComponent and returns the props that will be passed to the react component.

In this example a sling model is used in the transformation:

let transform: any = (resource: any, wrapper: ResourceComponent<any, any, any>) => {
 let model: ServiceProxy = r.getResourceModel("demop.core.models.MyModel");
 let newProps: any = {title: resource.label};
 newProps["imageSrc"] = model.invoke("getImageSrc");
 return newProps;
};

registry.registerVanilla({
 component: myComponent, transform: transform
});

Include vanilla wrapper
When including a vanilla component registered as an AEM component directly in a jsx you need to use <VanillaInclude/> . Otherwise it will not be editable
on the page.

 <div>
 <VanillaInclude path="test" component={MyVanillaComponent}/>
 </div>

alternatively you can also use the standard include:

 <div>
 <ResourceInclude path="test" resourceType="/components/my-vanilla"/>
 </div>

4 Configuration
The configuration consists of the osgi service configuration and the javascript configuration. The latter is done separately for server and client as there is a
single javascript file for both server and client each.

4.1 OSGI
The main OSGI service is the ReactScriptEngineFactory which has the following properties:

name description

scripts.paths resource paths to the javascript files for the server

pool.total.size pool size for nashorn engines. Correlates with the number of concurrent requests

scripts.reload whether changes to javascript file should be observed

subServiceName subService name for accessing the crx. If left blank then the deprecated admin is used.

name description

4.2 Javascript
There must be two separated javascript bootstrap files. Apart from the Bootstrap files the bundled javascript file includes all the React components, which
are the same for both client and server.

Server
For the server the bootstrap file must provide the method renderReactComponent and the RootComponentRegistry on the global variable AemGlobal . The
global variable AemGlobal is created by the ScriptEngine. The Scriptengine will call AemGlobal.renderReactComponent when an AEM component is
rendered.

declare var Cqx: any;
declare var AemGlobal: any;

let rootComponentRegistry: RootComponentRegistry = new RootComponentRegistry();
AemGlobal.registry = rootComponentRegistry;

AemGlobal.renderReactComponent = function (path: string, resourceType: string, wcmmode: string): any {
 ...
}

The implementation of renderReactComponent instantiates the the Sling implementation for the server which uses the global variable Cqx provided by the
ScriptEngine. Cqx is specific to the current request. The configuration of the javascript is based on a container which must at least contain the cache and
the sling implementation.

 let container: Container = new Container();
 container.register("javaSling", Cqx.sling);
 let cache: Cache = new Cache();
 let serverSling = new ServerSling(cache, container.get("javaSling"));
 container.register("sling", serverSling);
 container.register("cache", cache);

 let serverRenderer: ServerRenderer = new ServerRenderer(rootComponentRegistry, container);
 return serverRenderer.renderReactComponent(path, resourceType, wcmmode);

Client
The javascript for the client is included in the html in the usual way. The bootstrap code must instantiate the ComponentManager and call
initReactComponents on it. This should be done after the document was rendered. Both server and client have an instance of RootComponentRegistry ,
which is basically the same. One main difference between the setups is the Sling instance which is registered with the container.The Sling instance for
the client uses the cache created on the server or gets data via ajax while the server instance uses the Java API directly.

interface MyWindow {
 AemGlobal: any;
}
declare var window: MyWindow;
if (typeof window === "undefined") {
 throw "this is not the browser";
}

let rootComponentRegistry: RootComponentRegistry = new RootComponentRegistry();
rootComponentRegistry.add(componentRegistry);
rootComponentRegistry.init();

let container: Container = new Container();
let cache: Cache = new Cache();
let clientSling: ClientSling = new ClientSling(cache, host);
container.register("sling", clientSling);
container.register("cache", cache);

let componentManager: ComponentManager = new ComponentManager(rootComponentRegistry, container);
componentManager.initReactComponents();

window.AemGlobal = {componentManager: componentManager};

5 Single Page Application
This section explains how to create a single page application (SPA) using the react-router library. The goal of a single page application is to provide
content to the user spread across different views that can be navigated like any website but does not require a slow browser reload. Each view in this SPA
should be bookmarkable if appropriate. The initial view should be rendered on the server for performance reasons and also to make the page crawlable by
search bots and the likes.

5.1 Example
Usually a single react component contains the router configuration. In this configuration all views and their urls are configured. These urls may contain
dynamic parts, which are sometimes made available to the components comprising the views.

The example application consists of two views.

Welcome view

The welcome view presents a list of cities on the left and a welcome message on the right.

https://reacttraining.com/react-router

wireframe of welcome view

The welcome component tree consists of the CityListView and the Welcome component

component tree of welcome view

City view

The city view presents a list of cities on the left and a welcome message on the right.

wireframe of city view

The welcome component tree consists of the CityListView and the CityView .

component tree of city view

Router

There are two routes in this example:

1. The route to the welcome view is static: /cities/index.html
2. The second route points to the individual city views and is dynamic: /cities/(:name).html

Another aspect of the route definition is how it affects the component tree. The CityListView is present in all routes while its child depends on the individual
route. The router configuration looks like this:

<Router history={history}>
 <Route path='/cities.html' component={CityListView}>
 <IndexRoute component={Welcome}/>
 <AemRoute path='/cities/(:name).html' resourceComponent={CityView} component={ResourceRoute}/>
 </Route>
</Router>

Note that the component of the city view is not the CityView component but a general ResourceRoute component. Its purpose is to translate the path to a
resourcePath and pass it to the component defined by the resourceComponent property.

To use this component you create AEM pages resemble the router configuration.

/cities.html
/cities/hamburg.html
/cities/münchen.html

Important
The router component must be located in the same path relative to the page's root (e.g. jcr:content/par/city_finder).

To decouple the absolute path from the router component it makes sense to store a depth property in the router component which makes it possible for the
router component to derive the root route from the current page path.

Example The current page is /cities/hamburg.html and the depth is 1 then the root route is /cities and the

 let root = ...
 <Router history={history}>
 <Route path={root+".html"}' component={CityListView}>
 <IndexRoute component={Welcome}/>
 <AemRoute path={root+"/(:name).html"} resourceComponent={CityView} component={ResourceRoute}/>
 </Route>
 </Router>

generated on 21.3.17 by count-docu

6 Tools
This section describes the development tools for react components that are installed in projects created with the maven archetype. The tools are installed in
the directory ui.apps/src/main/ts .

6.1 Build Task
The build task transpiles all typescript files and bundles them into two javascript files and copies them into the appropriate target folder in the ui.apps
project ui.apps/target/classes/etc/designs/${appsFolderName}/clientlib-site/ :

reactClient.js
reactServer.js

 npm run start

6.2 Watch Task
The watch task will watch files in the target folder of the ui.apps project and deploys them in to AEM. Start the watch task with npm run watch . To configure
the address of the running AEM instance you need to use npm:

npm config set demo:crx http://admin:admin@localhost:4502/crx/repository/crx.default

All typescript files are watched and automatically as described in the previous chapter to two javascript files. All files below
ui.apps/target/classes/etc/designs/${appsFolderName} are watched and deployed into AEM. This includes both the transpiled javascript files.

https://github.com/sinnerschrader/count-docu

	AEM React
	History
	1 Introduction
	Why React and AEM?
	Features
	Projects
	AEM project
	Javascript project
	Maven archetype project

	Version
	Prerequisites

	2 Getting Started
	2.1 First project
	1. create maven project
	2. start AEM
	3. install demo
	4. Open browser
	5. disable author mode

	2.2 First component
	1. Start watch task
	2. create file
	3. Register component
	4. Create component configuration
	5. Synchronize source code to crx
	6. Open browser
	7. Continuely improve component

	2.3 Demo
	To run the demo
	SPA with a two level page hierachy
	Component list

	3 Development Guide
	3.1 ResourceComponent
	Container
	Embed AEM components

	3.2 Registering react component
	3.3 Loading Resource
	Lazy Loading

	3.4 Author mode
	3.5 Java Api
	3.6 Vanilla component
	Container
	Resource transformation
	Include vanilla wrapper

	4 Configuration
	4.1 OSGI
	4.2 Javascript
	Server
	Client

	5 Single Page Application
	5.1 Example
	Welcome view
	City view
	Router
	Important

	6 Tools
	6.1 Build Task
	6.2 Watch Task

