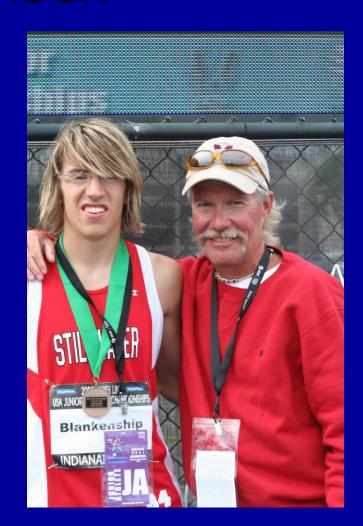
# Aerobic Capacity or Aerobic Efficiency? A Look at Race Dependent Models



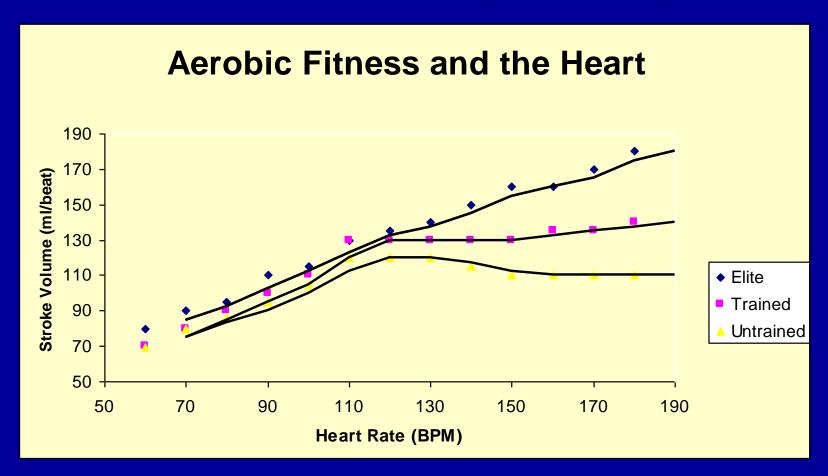

USTFCCCA Annual Meeting Orlando 2012

1/16/2013

### Scott Christensen

- Stillwater, Minnesota, head coach for 30 years.
- 1997 National High School Champions (*The Harrier*).
- Four Stillwater alumni have broken 4:00 in the mile since 2003.
- USTFCCA Co-Lead Instructor in Endurance.
- USA World Cross Country Team Leader 2003 and 2008.




### Outline of Orlando Presentation

- Scientific Theory
- Case Study Evidence
- Training Design Application
- Questions

## Accepted Scientific Theory on Aerobic Capacity and Aerobic Efficiency

### Why Run All Of Those Miles?

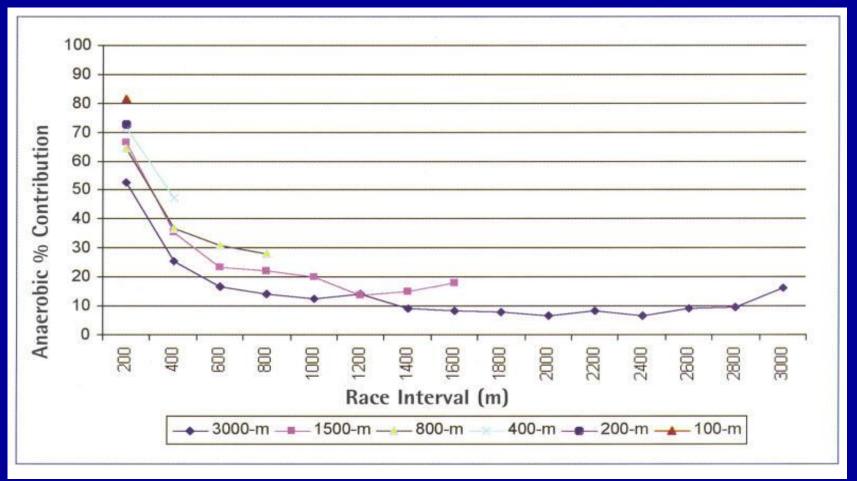
Zhou, Conlee, Jensen, et al. [MSSE 33(11)2001]



1/16/2013

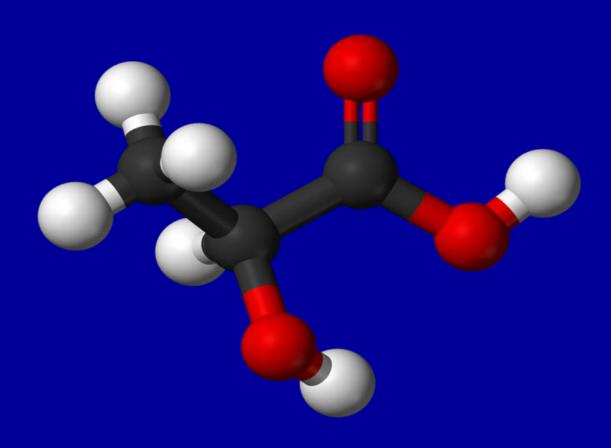
### Combined Zone Races

All races from the 800 meters and longer have an aerobic and anaerobic component of energy contribution, and are called combined zone races.


Combined zone races have a comfort zone and a critical zone. The critical zone is where the race is won or lost.

## Energy Contributions at Max Effort Astrand 2003, Noakes 2004, Chapman 2004

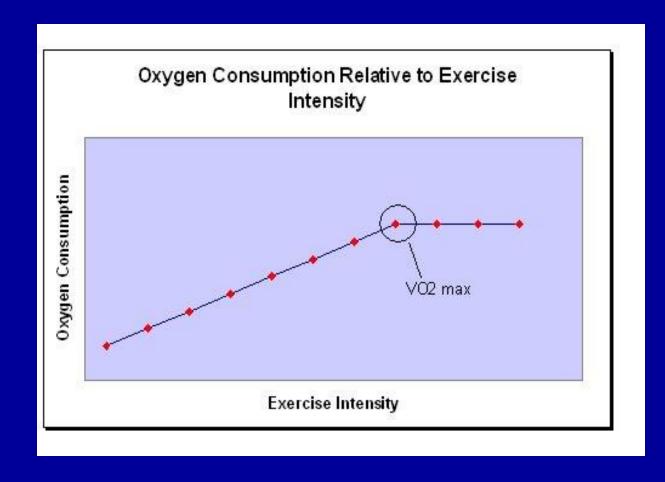
| Event            | Duration      | Aerobic | KCAL<br>used | Anaerobic<br>Glycolytic | KCAL<br>used | Anaerobic<br>Alactic | KCAL<br>used | Total<br>KCAL<br>used |
|------------------|---------------|---------|--------------|-------------------------|--------------|----------------------|--------------|-----------------------|
| 800<br>Meters    | 2<br>minutes  | 50 %    | 45           | 44 %                    | 40           | 6 %                  | 5            | 90                    |
| 1600<br>Meters   | 4<br>minutes  | 70 %    | 100          | 28 %                    | 42           | 2 %                  | 3            | 145                   |
| 3200<br>Meters   | 10<br>minutes | 87 %    | 249          | 13 %                    | 36           | <1 %                 | 1            | 286                   |
| 5000<br>Meters   | 15<br>minutes | 92 %    | 372          | 8 %                     | 32           | <1 %                 | 1            | 405                   |
| 10,000<br>Meters | 30<br>minutes | 95 %    | 700          | 5 %                     | 30           | <1 %                 | 1            | 730                   |


1/16/2013

# Anaerobic Contribution in Distance Events (Duffield and Noakes 2010)

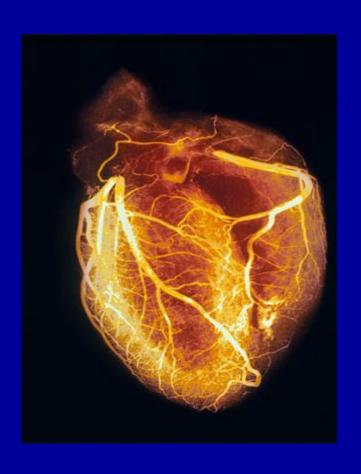


1/16/2013


# The toleration of disassociated Lactic Acid (C₃H₅O₃⁻ + H⁺)



### **Energy Continuum**


| 200 meters   | Anaerobic capacity   |                          |
|--------------|----------------------|--------------------------|
| 400 meters   | Anaerobic efficiency |                          |
| 800 meters   | Anaerobic efficiency | Lactate tolerance        |
|              | Aerobic capacity     |                          |
| 1500 meters  | Aerobic capacity     | <u>Lactate tolerance</u> |
| 5000 meters  | Aerobic capacity     | <u>Lactate tolerance</u> |
| 10000 meters | Aerobic efficiency   |                          |

### What is Aerobic Capacity?



### A Critical Understanding of VO<sub>2 max</sub> is Necessary in Aerobic Capacity

- Aerobic capacity improves due to cardiovascular development.
- Cardiac Output (Q) = HR xSV
- VO<sub>2 max</sub> = HR x SV x A- $vO_2$  diff
- $\blacksquare$  HR**max** = 207 0.7 x age
- VO<sub>2 max</sub> pace HR is ~88% of HRmax



### VO, max Field Tests

Buchfuhr protocol: 10 min to exhaustion.(d)

 Astrand protocol: 2 miles at exhaustive pace. (t)

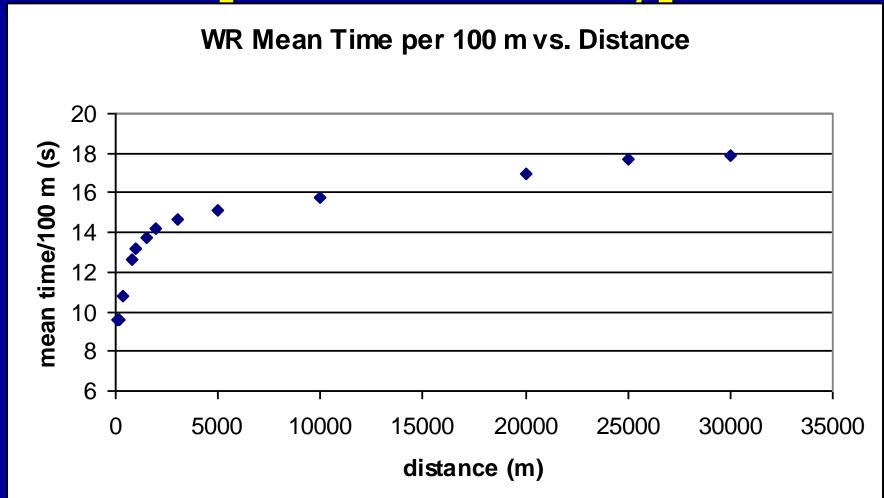
Taylor protocol: 65% of date pace exhaustive 400 meters. (p)

# Percentage of VO<sub>2 max</sub> as a Function of Race Velocity

#### **Event**

- 800 Meters
- 1500-1600 Meters
- 3000-3200 Meters
- 5000 Meters

#### % of VO<sub>2</sub> max


120-136%

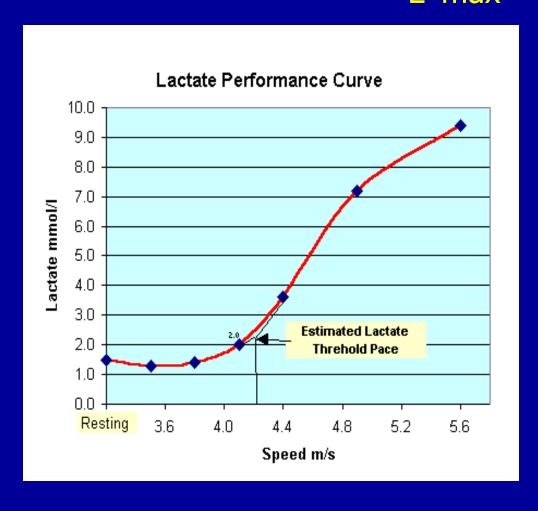
112-114%

102-100%

97%

# When Does Efficiency Become More Critical Than Capacity? [Rate vs. Economy]



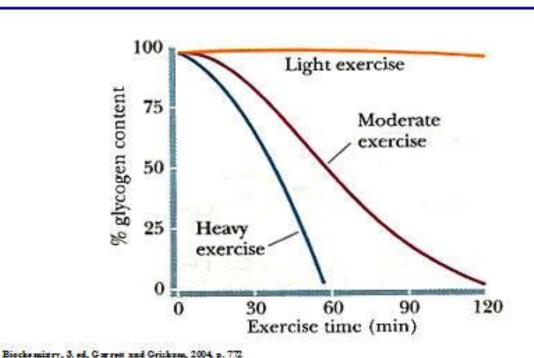

# Aerobic Efficiency Training at the Thresholds

■ Aerobic threshold pace occurs at about 70% of VO<sub>2 max</sub> pace. 50% fatty acids and 50% carbohydrate is the fuel.

Lactate threshold pace occurs at about 85% of VO₂ max pace. 32% fatty acids and 68% carbohydrate is the fuel.

1/16/2013

# Aerobic Efficiency Dynamics 70-90% of VO<sub>2 max</sub>




# Cell State Before and After 100/5000/12000

| Cellular ATP     | 5 mmoL/kg  | 5 mmoL/kg  |  |  |
|------------------|------------|------------|--|--|
|                  | 5 mmoL/kg  | 5 mmoL/kg  |  |  |
|                  | 5 mmol/kg  | 5 mmol/kg  |  |  |
|                  |            |            |  |  |
| Creatine         | 25 mmoL/kg | 7 mmoL/kg  |  |  |
| Phosphate        | 24 mmoL/kg | 8 mmoL/kg  |  |  |
|                  | 24 mmoL/kg | 7 mmoL/kg  |  |  |
| Carbohydrate (as | 56 mmoL/kg | 18 mmoL/kg |  |  |
| glucose)         | 70 mmoL/kg | 68 mmoL/kg |  |  |
|                  | 74 mmoL/kg | 35 mmoL/kg |  |  |

# Carbohydrate Management Factors

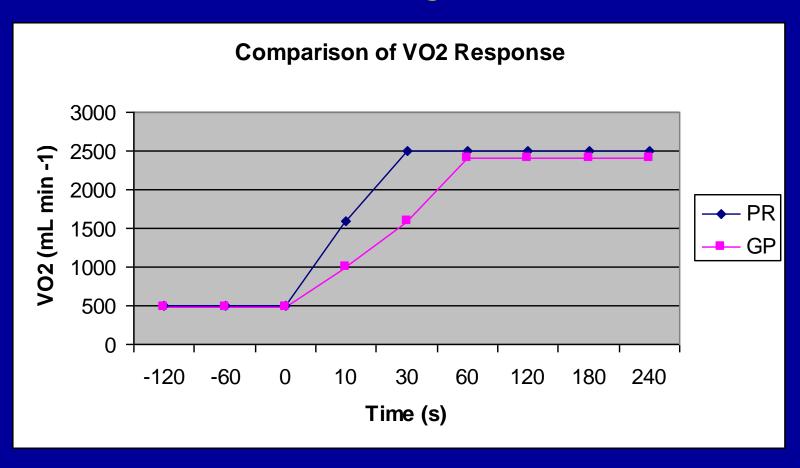
#### Glycogen Utilization in Working Muscle



### Muscle Glycogen Stores

#### 800 meter runners tested

Muscle glycogen stores of 86.3 mmoL/kg of wet muscle weight


#### 10000 meter runners tested

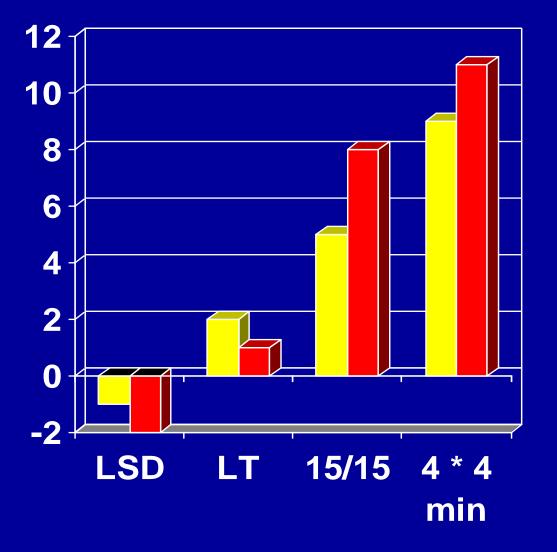
Muscle glycogen stores of 133.5 mmoL/kg of wet muscle weight

# Case Studies in Aerobic Capacity and Aerobic Efficiency

### VO₂ Kinetics to Steady State

@16 km/hour (Paula Ratcliffe/General Population)
Jones and Berger 2008




### VO<sub>2 max</sub> Training Study 12 week Training Period (Helgerud et al, 2007)

- LSD: CR for 45 min @70% VO<sub>2 max</sub>
  - LT: CR for 25 min @85% VO<sub>2 max</sub>
- 15/15: 47 reps @90% HR max, 15 s rest
  - 4\*4 min: 4 min repeats @ VO<sub>2 max</sub>

Workout repeated twice per week, 40 mile weeks.

## % Change VO<sub>2 max</sub> & Stroke Volume (12 Weeks)

Helgerud et al, 2007, MSSE



- VO2 max
- Stroke volume

# Deena Kastor's vVO<sub>2 max</sub> Development

- Tested VO2 max :
- Age 22 (1995) VO2 max: 77.5 ml/kg/min
- Age 27 (2000) VO2 max: 80.5 ml/kg/min
- Age 32 (2005) VO2 max: 81.1 ml/kg/min
- Tested VO2 uptake at Lactate Threshold:
- Age 22 (1995): 61.8 ml/kg/min (79%)
- Age 27 (2000): 62.2 ml/kg/min (79%)
- Age 32 (2005): 67.8 ml/kg/min (83%)

# Stillwater Aerobic Capacity Development Case Study

|        | vV0 <sub>2</sub> | 5K    | vV0 <sub>2</sub> | 5K    | vVO <sub>2</sub> | 5K    | vVO <sub>2</sub> | 5K    | 5K    |
|--------|------------------|-------|------------------|-------|------------------|-------|------------------|-------|-------|
|        | 9                | 9     | 10               | 10    | 11               | 11    | 12               | 12    | PR    |
| Ben B  | 5:12             | 16:55 | 4:59             | 16:22 | 4:56             | 16:01 | 4:44             | 15:38 | 13:56 |
|        | <u>16:42</u>     |       | <u>16:00</u>     |       | <u>15:52</u>     |       | <u>15:20</u>     |       |       |
| Luke W | 5:03             | 16:26 | 4:49             | 15:34 | 4:48             | 15:29 | 4:46             | 15:20 | 13:35 |
|        | <u>16:16</u>     |       | 15:35            |       | 15:28            |       | 15:21            |       |       |
| Sean G | 5:16             | 16:54 | 4:50             | 16:18 | 4:48             | 15:54 | 4:47             | 15:25 | 13:21 |
|        | 16:55            |       | <u>15:40</u>     |       | <u>15:28</u>     |       | 15:25            |       |       |
| Jake W | 5:11             | 16:53 | 4:51             | 16:12 | 4:50             | 15:39 | 4:44             | 15:20 | 13:49 |
|        | <u>16:42</u>     |       | <u>15:49</u>     |       | 15:40            |       | 15:20            |       |       |
| Andy T | 5:05             | 16:37 | 4:59             | 16:08 | 4:49             | 15:33 | 4:42             | 15:11 | 13:59 |
|        | <u>16:21</u>     |       | <u>16:00</u>     |       | 15:35            |       | 15:11            |       |       |

### Stillwater Aerobic Efficiency Development Case Study

|        | 8k LT<br>9   | 5K<br>9 | 8k LT<br>10  | 5K<br>10 | 8k LT<br>11  | 5K<br>11 | 8k LT<br>12  | 5K<br>12 | 5K<br>PR |
|--------|--------------|---------|--------------|----------|--------------|----------|--------------|----------|----------|
| Ben B  | 28:38        | 16:55   | 27:34        | 16:22    | 26:51        | 16:01    | 25:58        | 15:28    | 13:56    |
|        | <u>17:21</u> |         | <u>16:42</u> |          | <u>16:16</u> |          | <u>15:40</u> |          |          |
| Luke W | 28:17        | 16:26   | 26:51        | 15:34    | 26:29        | 15:29    | 26:08        | 15:20    | 13:35    |
|        | <u>17:08</u> |         | <u>16:16</u> |          | <u>16:03</u> |          | <u>15:50</u> |          |          |
| Sean G | 29:22        | 16:54   | 27:57        | 16:18    | 26:49        | 15:54    | 26:12        | 15:25    | 13:21    |
|        | <u>17:47</u> |         | <u>16:55</u> |          | <u>16:16</u> |          | <u>15:51</u> |          |          |
| Jake W | 28:45        | 16:53   | 27:16        | 16:12    | 26:53        | 15:39    | 26:06        | 15:20    | 13:49    |
|        | <u>17:23</u> |         | <u>16:31</u> |          | <u>16:16</u> |          | <u>15:50</u> |          |          |
| Andy T | 29:12        | 16:37   | 27:31        | 16:08    | 26:24        | 15:33    | 25:24        | 15:11    | 13:51    |
|        | <u>17:44</u> |         | <u>16:42</u> |          | <u>16:02</u> |          | <u>15:25</u> |          |          |

# Training Design Applications for Aerobic Capacity and Aerobic Efficiency Development

### **Aerobic Efficiency Components**

- Base mileage
- Longer tempo runs
- Aerobic intervals
- Long run

### **Aerobic Capacity Components**

- Interval runs
- Repetition runs
- Shorter tempo runs
- VO<sub>2 max</sub> pace runs
- Long run

# The 5 Paces of the Multi-Paced Training Scheme

- VO<sub>2 max</sub> Run (800-3200 meters)
- Special Endurance 2 (300-600 meters)
- Special Endurance 1(150-300 meters)
- Speed Endurance (60-150 meters)
- Speed (30-60 meters)

# 12 Day Multi-Paced Microcycle Aerobic Capacity Preparation

- Day 1: VO<sub>2 max</sub>
- Day 2: Hills
- Day 3: Long Run
- Day 4: Special 1
- Day 5: Recovery Run
- Day 6: Race

- Day 7: Special 2
- Day 8: Tempo Run
- Day 9: Recovery Run
- Day 10: Speed Endur.
- Day 11: Recovery Run
- Day 12: Speed

# 9 Day Multi-Paced Microcycle Aerobic Efficiency Preparation

- Day 1: VO<sub>2 max</sub>
- Day 2: Hills or Speed
- Day 3: Recovery Run
- Day 4: Special 1
- Day 5: Recovery Run
- Day 6: Race
- Day 7: Long Run
- Day 8: Special 2
- Day 9: Tempo Run

Date pace intervals

Max effort intervals

Date pace continuous

Goal pace intervals

Date pace continuous

Date pace continuous

Date pace continuous

Goal pace intervals

Date pace continuous

1/16/2013

### More Endurance Information Available at the Following:

The Complete Guide to Track and Field Conditioning for Endurance Events.

Online courses in CC and the 800/1600

By Scott Christensen



http://completetrackandfield.com/scott-christensen