Aerodynamics

Reading: Chapter 4

IIITech

Recall: Aerodynamic Forces

- "Theoretical and experimental aerodynamicists labor to calculate and measure flow fields of many types."
- ... because "the aerodynamic force exerted by the airflow on the surface of an airplane, missile, etc., stems from only two simple natural sources:
Pressure distribution on the surface (normal to surface)
Shear stress (friction) on the surface (tangential to surface)

- Conservation of mass
\Rightarrow Continuity equation (§§ 4.1-4.2)
- Newton's second law ($F=m a$)
\Rightarrow Euler's equation \& Bernoulli's equation (§§ 4.3-4.4)
- Conservation of energy
\Rightarrow Energy equation (§§ 4.5-4.7)

IIITech

First: Buoyancy

- One way to get lift is through Archimedes' principle of buoyancy
- The buoyancy force acting on an object in a fluid is equal to the weight of the volume of fluid displaced by the object
- Requires integral (assume ρ_{0} is constant)
$\mathrm{p}=\mathrm{p}_{0}-\rho_{0} \mathrm{~g}_{0}(\mathrm{r}-\mathrm{r} \cos \theta)$
Force is
$\begin{aligned} p d A= & {\left[p_{0}-\rho_{0} g_{0}(r-r \cos \theta)\right] d A } \\ & d A=2 \pi r^{2} \sin \theta d \theta\end{aligned}$
Integrate using "shell element" approach

Buoyancy: Integration Over Surface of Sphere

- Each shell element is a ring with radius $r \sin \theta$, and width rd θ
Thus the differential area of an
$d A=2 \pi r^{2} \sin \theta d \theta$
Pressure at each point on an element is

$$
\mathrm{p}=\mathrm{p}_{0}-\rho_{0} \mathrm{~g}_{0}(\mathrm{r}-\mathrm{r} \cos \theta)
$$

- Force is pressure times area

$$
d F=p d A=\left[p_{0}-\rho_{0} g_{0}(r-r \cos \theta)\right] d A
$$

- Vertical pressure force is $d F \cos \theta=p d A \cos \theta=\left[p_{0}-\rho_{0} g_{0}(r-r \cos \theta)\right] \cos \theta d A$

Buoyancy: Integration Over Surface of Sphere (continued)

- Total vertical pressure force is found by integrating from $\theta=0$ to $\theta=\pi$:

$$
F_{v p}=2 \pi r^{2} \int\left[p_{0}-\rho_{0} g_{0}(r-r \cos \theta)\right] \cos \theta \sin \theta d \theta
$$

- The first bit is the volume of the sphere; multiplying by density gives mass of fluid displaced; multiplying by gravity gives weight of fluid displaced

IIT Tech

AOE

Buoyancy: Forces on a Sphere (continued)

- Total vertical pressure force is

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{vp}}=4 / 3 \pi r^{3} \cdot \rho_{0} \cdot g_{0} \\
& \text { Or } \\
& \mathrm{F}_{\mathrm{vp}}=W_{\mathrm{v}} \text { (weight of volume of fluid) }
\end{aligned}
$$

- Thus the total vertical force on the sphere is
$F_{v}=W_{v}-W_{s}$
where $W_{s}=m g$ is the weight of the sphere
- If $W_{v}>W_{s}$, then the net force is a positive "Lift"
- If $W_{v}<W_{s}$, then the net force is a negative "Lift"
- If $\mathrm{W}_{\mathrm{v}}=\mathrm{W}_{\mathrm{s}}$, then the sphere is said to be "neutrally buoyant"

Neutral Buoyancy Tanks

- Neutral buoyancy is useful for simulating the freefall environment experienced by astronauts
- NASA's Marshall Space Flight Center has a Neutral Buoyancy Simulator
http://www1.msfc.nasa.gov/NEWSROOM/background/facts/nbs.htm
- University of Maryland has a Neutral Buoyancy Tank http://www.ssl.umd.edu/facilities/facilities.html

The deck area of the neutral buoyancy tank. In the water is a cockup of an International Space Station truss.

What's In Our Toolbox So Far?

- Four aerodynamic quantities, flow field
- Steady vs unsteady flow
- Streamlines
- Two sources of all aerodynamic forces
- Equation of state for perfect gas
- Standard atmosphere: six different altitudes
- Hydrostatic equation
- Linear interpolation, local approximation
- Lift due to buoyancy
- Viscous vs inviscous flow

Lift from Fluid Motion

- First: Airplane wing geometry
- Span, Chord, Area, Planform, Aspect Ratio, Camber, Leading and Trailing Edges

Top View
Trailing Edge

$$
\begin{gathered}
\text { Aspect Ratio }=A R \\
\qquad A R=\frac{s^{2}}{A}=\frac{s}{c}
\end{gathered}
$$

Symmetric Airfoil

Virginia

IIITech

Some Wing Shapes AOE

Continuity

Physical principle: Mass can be neither created nor destroyed.

Remarks on Continuity

- In the stream tube figure, the velocities and densities at points 1 and 2 are assumed to be uniform across the cross-sectional areas
- In reality, V and ρ do vary across the area and the values represent mean values
- The continuity equation is used for flow calculations in many applications such as wind tunnels and rocket nozzles
- Stream tubes do not have to represent physical flow boundaries

Virginia
 IIITech

AOE:

Compressible vs Incompressible

Volume
decreases,
mass
remains
constant

Density increases

- Compressible flow: flow in which the density of the fluid changes from point to point
- In reality, all flows are compressible, but $\Delta \rho$ may be negligible
- Incompressible flow: flow in which the density of the fluid is constant
- Continuity equation becomes $A_{1} V_{1}=A_{2} V_{2}$

Compressible vs Incompressible

- Incompressible flow does not exist in reality
- However, many flows are "incompressible enough" so that the assumption is useful
- Incompressibility is an excellent model for
- Flow of liquids such as water and oil
- Low-speed aerodynamics (<100 m/s or <225 mph)
- For incompressible flow, the continuity equation can be written as $V_{2}=A_{1} V_{1} / A_{2}$
- Thus if $A_{1}>A_{2}$ then $V_{1}<V_{2}$

Example 4.1

Consider a convergent duct with an inlet area $A_{1}=5 \mathrm{~m}^{2}$. Air enters this duct with velocity $V_{1}=10 \mathrm{~m} / \mathrm{s}$ and leaves the duct exit with a velocity $V_{2}=30 \mathrm{~m} / \mathrm{s}$. What is the area of the duct exit?

First, check that the velocities involved are $<100 \mathrm{~m} / \mathrm{s}$, which implies incompressible flow.
Then use

$$
A_{2}=A_{1} V_{1} / V_{2}=\left(5 \mathrm{~m}^{2}\right)(10) /(30)=1.67 \mathrm{~m}^{2}
$$

IIIITech

Example 4.2

Consider a convergent duct with an inlet area $A_{1}=3 \mathrm{ft}^{2}$ and an exit area $A_{2}=2.57 \mathrm{ft}^{2}$. Air enters this duct with velocity $V_{1}=700 \mathrm{ft} / \mathrm{s}$ and a density $\rho_{1}=0.002$ slug $/ \mathrm{ft}^{3}$, and leaves the duct exit with a velocity $V_{2}=1070 \mathrm{ft} / \mathrm{s}$. What is the density of the air at the duct exit?

First, check that the velocities involved are > $300 \mathrm{ft} / \mathrm{s}$, which implies compressible flow.
Then use

$$
\rho_{2}=\rho_{1} A_{1} V_{1} /\left(A_{2} V_{2}\right)=0.00153 \text { slug } / \mathrm{ft}^{3}
$$

Aerodynamics

Reading: Chapter 4

- Continuity equation does not involve pressure
- Pressure \Rightarrow Force \Rightarrow Change in momentum \Rightarrow Change in velocity
Force $=d($ momentum $) / d t \quad$ What Newton said
Force $=\mathrm{d}(m v) / \mathrm{d} t$ but only applies if $\mathrm{m}=$ const
$F=m d v / d t$
$F=m a$
- We apply $F=m a$ to the fluid by summing the forces acting on a single infinitesimally small particle of fluid

Virginia
 II) Tech

AOE

Free-Body Diagram

- Assume element is moving in x direction
- Force on element has three sources:

Normal pressure distribution: p
Shear stress distribution: τ_{w}
Gravity: $\rho d x d y d z g$

- Ignore gravity, smaller than other forces
- Consider force balance in x direction
- Force $=$ Pressure \times Area

IIT Tech

- Force on left face: $F_{\mathrm{L}}=p \mathrm{~d} y \mathrm{~d} z$
- Force on right face: $F_{\mathrm{R}}=(p+[\mathrm{d} p / \mathrm{d} x] \mathrm{d} x) \mathrm{d} y \mathrm{~d} z$
$F=F_{\mathrm{L}}-F_{\mathrm{R}}=p \mathrm{~d} y \mathrm{~d} z-(p+[\mathrm{d} p / \mathrm{d} x] \mathrm{d} x) \mathrm{d} y \mathrm{~d} z$
$F=-(\mathrm{d} p / \mathrm{d} x) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
- Mass of the fluid element is
$m=\rho d x d y d z$
- Acceleration of the fluid element
$a=\mathrm{d} V / \mathrm{d} t=(\mathrm{d} V / \mathrm{d} x)(\mathrm{d} x / \mathrm{d} t)=(\mathrm{d} V / \mathrm{d} x) V$
- Newton's second law
$F=m a \Rightarrow \mathrm{~d} p=-\rho V \mathrm{~d} V$

Euler's Equation

- Also referred to as the Momentum Equation
- Keep in mind that we assumed steady flow and ignored gravity and friction, thus this is the momentum equation for steady, inviscid flow
- However, Euler's equation applies to compressible and incompressible flows
[II)Tech

Incompressible Flow

- If the flow is incompressible, then ρ is constant
- The momentum equation can be written as $\mathrm{d} p+\rho V \mathrm{~d} V=0$
- Integrating along a streamline between two points 1 and 2 gives

$$
p_{2}-p_{1}+\rho\left(V_{2}^{2}-V_{1}^{2}\right) / 2=0
$$

- Which can be rewritten as
$p_{2}+\rho V_{2}^{2 / 2}=p_{1}+\rho V_{1}^{2 / 2}$
Or
$p+\rho V^{2} / 2=$ constant along a streamline
- This equation is known as Bernoulli's equation

Euler's and Bernoulli's Equations

- Bernoulli's equation
$p_{2}+\rho V_{2}^{2 / 2}=p_{1}+\rho V_{1}^{2} / 2$
- Holds for inviscid, incompressible flow
- Relates properties of different points along a streamline
- Euler's equation $\mathrm{d} p=-\rho V \mathrm{~d} V$
- Holds for inviscid flow, compressible or incompressible
- These equations represent Newton's Second Law applied to fluid flow, and relate pressure, density, and velocity

Euler's and Bernoulli's Equations

- Bernoulli's equation
$p_{2}+\rho V_{2}^{2 / 2}=p_{1}+\rho V_{1}^{2} / 2$
- Holds for inviscid, incompressible flow
- Relates properties of different points along a streamline
- Euler's equation $\mathrm{d} p=-\rho V \mathrm{~d} V$
- Holds for inviscid flow, compressible or incompressible
- These equations represent Newton's Second Law applied to fluid flow, and relate pressure, density, and velocity

Example 4.3

Consider an airfoil in a flow of air, where far ahead (upstream) of the airfoil, the pressure, velocity, and density are $2116 \mathrm{lb} / \mathrm{ft}^{2}, 100 \mathrm{mi} / \mathrm{h}$, and 0.002377 slug/ft , respectively. At a given point A on the airfoil, the pressure is $2070 \mathrm{lb} / \mathrm{ft}^{2}$. What is the velocity at point A ?

First, we must use consistent units. Using the fact that 60 $\mathrm{mi} / \mathrm{h} \approx 88 \mathrm{ft} / \mathrm{s}$, we find that $\mathrm{V}=100 \mathrm{mi} / \mathrm{h}=146.7 \mathrm{ft} / \mathrm{s}$. This flow is slow enough that we can assume it is incompressible, so we can use Bernoulli's equation:

$$
p_{1}+\rho V_{1}^{2 / 2}=p_{A}+\rho V_{A}^{2 / 2}
$$

Where " 1 " is the far upstream condition, and " A " is the point on the airfoil. Solving for velocity at A gives

$$
V_{A}=245.4 \mathrm{ft} / \mathrm{s}
$$

IIT Tech

Example 4.4

Consider a convergent duct with an inlet area $A_{1}=5 \mathrm{~m}^{2}$. Air enters this duct with velocity $V_{1}=10 \mathrm{~m} / \mathrm{s}$ and leaves the duct exit with a velocity $V_{2}=30 \mathrm{~m} / \mathrm{s}$. If the air pressure and temperature at the inlet are $p_{1}=1.2 \times 10^{5}$ $\mathrm{N} / \mathrm{m}^{2}$ and $\mathrm{T}_{1}=330 \mathrm{~K}$, respectively, calculate the pressure at the exit.

First, compute density at inlet using equation of state:

$$
\rho_{1}=p_{1} /\left(R \mathrm{~T}_{1}\right)=1.27 \mathrm{~kg} / \mathrm{m}^{3}
$$

Assuming compressible flow, use Bernoulli's equation to solve for p_{2} :

$$
p_{2}=p_{1}+\rho\left(V_{1}^{2}-V_{2}^{2}\right) / 2=1.195 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

Virginia
(IITTech

Consider a long dowel with semicircular cross section

See pages 135-141 in text

Aerodynamics

Reading: Chapter 4

Virginia

IIIT Tech
§4.10: Low-Speed Subsonic Wind Tunnels
Assumption: Steady incompressible flow

Continuity and Bernoulli's Equation apply

Wind Tunnel Calculations

Continuity $\Rightarrow \mathrm{V}_{1}=\left(\mathrm{A}_{2} / \mathrm{A}_{1}\right) \mathrm{V}_{2}$
Bernoulli $\Rightarrow V_{2}{ }^{2}=2\left(p_{1}-p_{2}\right) / \rho+V_{1}{ }^{2}$
Combine to get

$$
V_{2}=\left\{2\left(p_{1}-p_{2}\right) /\left[\rho\left(1-\left(A_{2} / A_{1}\right)^{2}\right)\right]\right\}^{1 / 2}
$$

The ratio A_{2} / A_{1} is fixed for a given wind tunnel, and the density ρ is constant for low-speed tunnels, so the "control" is $p_{1}-p_{2}$

How to determine $p_{1}-p_{2}$?

$$
\begin{aligned}
& p_{1} A=p_{2} A+w A \Delta h, \quad w=\rho_{f} g \\
& p_{1}-p_{2}=A+w \Delta h, \text { So } \quad \Delta h \Rightarrow V_{2}
\end{aligned}
$$

Example 4.13

In a low-speed subsonic wind tunnel, one side of a mercury manometer is connected to the reservoir and the other side is connected to the test section. The contraction ratio of the nozzle $A_{2} / A_{1}=1 / 15$. The reservoir pressure and temperature are $p_{1}=1.1 \mathrm{~atm}$ and $\mathrm{T}_{1}=300 \mathrm{~K}$. When the tunnel is running the height difference between the two columns of mercury is 10 cm . The density of liquid mercury is $1.36 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the airflow velocity V_{2} in the test section.

§4.11: Measurement of Airspeed

- Total pressure vs static pressure
- Static pressure is the pressure we've been using all along, and is the pressure you'd feel if you were moving along with the fluid
- Total pressure includes the static pressure, but also includes the "pressure" due to the fluid's velocity, the so-called dynamic pressure
- Imagine a hollow tube with an opening at one end and a pressure sensor at the other, and imagine inserting it into a flow in two different ways

Pitot Tube

- This device is called a Pitot Tube (after Henri Pitot, who invented it in 1732; see §4. 23)
- The orientation on the left measures the static pressure (the pressure in all our calculations so far)
- The orientation on the right measures the total pressure, or the pressure if the flow is reduced to zero velocity

AOE Flow

Pitot Tube for Incompressible Flow

- The two tube orientations are used together
- One measures static pressure p, and the other measures total pressure p_{0}
- Since the total pressure is measured by removing all the velocity, and we're assuming incompressible flow, we can apply Bernoulli's equation to see that

$$
p+\rho V^{2} / 2=p_{0}
$$

Static pressure + Dynamic Pressure = Total Pressure

- Dynamic pressure, the $\rho V^{2} / 2$ term, is frequently denoted by $q=\rho V^{2} / 2$

Using the Pitot-static Probe

- The two pressures are measured by a pressure transducer
- Bernoulli's equation (incompressible flow only!) can be written as

$$
p_{0}=p+q \quad\left(q=\rho V^{2} / 2\right)
$$

- Solve for velocity

$$
V=\left[2\left(p_{0}-p\right) / \rho\right]^{1 / 2}
$$

- A Pitot-static tube provides an airspeed measurement

Example 4.16

The altimeter on a low-speed Cessna 150 reads 5000 ft . The outside temperature is $\mathrm{T}=505^{\circ} \mathrm{R}$. If a Pitot tube on the wingtip measures $p=1818$ $\mathrm{lb} / \mathrm{ft}^{2}$, what is the true velocity of the airplane? What is the equivalent airspeed?

Overview of the "Rest" of Aerodynamics

- We will not cover the remainder of Ch. 4, but here are some highlights
- First Law of Thermodynamics leads to relationships between energy, temperature, heat, enthalpy, and specific heat
- Energy has units of Joules
- Enthalpy has units of Joules but also accounts for temperature
- Adiabatic \Rightarrow no heat is added or removed
- Reversible \Rightarrow no frictional losses
- Isentropic \Rightarrow adiabatic and reversible

