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Recall:  Aerodynamic Forces
• “Theoretical and experimental aerodynamicists labor to 

calculate and measure flow fields of many types.”
• … because “the aerodynamic force exerted by the airflow 

on the surface of an airplane, missile, etc., stems from only 
two simple natural sources:
Pressure distribution on the surface (normal to surface)
Shear stress (friction) on the surface (tangential to surface)

p τw



Fundamental Principles

• Conservation of mass
⇒ Continuity equation   (§§ 4.1-4.2)

• Newton’s second law (F = ma)
⇒ Euler’s equation  & Bernoulli’s equation (§§ 4.3-4.4)

• Conservation of energy
⇒ Energy equation (§§ 4.5-4.7)



First:  Buoyancy
• One way to get lift is through Archimedes’

principle of buoyancy
• The buoyancy force acting on an object in a 

fluid is equal to the weight of the volume of 
fluid displaced by the object

• Requires integral
(assume ρ0 is constant)

p = p0-ρ0g0(r-r cos θ)

Force is
p dA = [p0-ρ0g0(r-r cos θ)] dA

dA = 2 π r2 sin θ dθ
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Integrate using “shell element” approach



Buoyancy: Integration Over 
Surface of Sphere

• Each shell element is a ring with radius  r sin θ, and 
width  r dθ
Thus the differential area of an element is

dA = 2 π r2 sin θ dθ
• Pressure at each point on 

an element is
p = p0-ρ0g0(r-r cos θ)

• Force is pressure times area
dF = p dA = [p0-ρ0g0(r-r cos θ)] dA

• Vertical pressure force is
dF cos θ = p dA cos θ = [p0-ρ0g0(r-r cos θ)] cos θ dA
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Buoyancy: Integration Over 
Surface of Sphere (continued)

• Total vertical pressure force is found by integrating 
from θ = 0 to θ = π :

Fvp = 2πr2 ∫[p0-ρ0g0(r-r cos θ)] cos θ sin θ dθ

• Some useful identities:

∫cos θ sin θ dθ = � ½ sin2θ 

∫cos2θ sin θ dθ = � -1/3 cos3θ 

• Put them together to get
Fvp = 4/3πr3  • ρ0  • g0

• The first bit is the volume of the sphere; multiplying 
by density gives mass of fluid displaced; multiplying 
by gravity gives weight of fluid displaced  
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Buoyancy: Forces on
a Sphere (continued)

• Total vertical pressure force is 
Fvp = 4/3πr3  • ρ0  • g0

or
Fvp = Wv (weight of volume of fluid)

• Thus the total vertical force on
the sphere is
Fv = Wv - Ws
where Ws = mg  is the weight of the sphere

• If Wv > Ws, then the net force is a positive “Lift”
• If Wv < Ws, then the net force is a negative “Lift”
• If Wv = Ws, then the sphere is said to be “neutrally 

buoyant”
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Neutral Buoyancy Tanks
• Neutral buoyancy is useful for simulating the freefall 

environment experienced by astronauts
• NASA’s Marshall Space Flight Center has a Neutral 

Buoyancy Simulator
http://www1.msfc.nasa.gov/NEWSROOM/background/facts/nbs.htm

• University of Maryland has a Neutral Buoyancy Tank
http://www.ssl.umd.edu/facilities/facilities.html



What’s In Our Toolbox So Far?
• Four aerodynamic quantities, flow field
• Steady vs unsteady flow
• Streamlines
• Two sources of all aerodynamic forces
• Equation of state for perfect gas
• Standard atmosphere: six different altitudes
• Hydrostatic equation
• Linear interpolation, local approximation
• Lift due to buoyancy
• Viscous vs inviscous flow



Lift from Fluid Motion
• First:  Airplane wing geometry
• Span, Chord, Area, Planform, Aspect Ratio, 

Camber, Leading and Trailing Edges



Some Wing Shapes



Continuity
Physical principle:  Mass can be 
neither created nor destroyed.

A1, V1, ρ1
dm = ρ1A1V1dt

A2, V2, ρ2
dm = ρ2A2V2dt

1 2

Volume bounded by streamlines 
is called a stream tube

At entry point (1):
dm/dt = ρ1A1V1

At exit point (2):
dm/dt = ρ2A2V2

Since mass is 
conserved, these two 
expressions must be 
equal; hence

ρ1A1V1= ρ2A2V2

This is the continuity 
equation for steady 
flow

Assumption:  Steady flow



Remarks on Continuity
• In the stream tube figure, the velocities and 

densities at points 1 and 2 are assumed to be 
uniform across the cross-sectional areas

• In reality, V and ρ do vary across the area and 
the values represent mean values

• The continuity equation is used for flow 
calculations in many applications 
such as wind tunnels and rocket nozzles

• Stream tubes do not have 
to represent physical flow 
boundaries

1 2



Compressible vs Incompressible

v1, m

ρ1 = m/v1

v2, m

ρ2 = m/v2

ρ2  > ρ1

compression

Volume 
decreases, 
mass 
remains 
constant

Density 
increases

• Compressible flow:  flow in which the density of the 
fluid changes from point to point
– In reality, all flows are compressible, but Δρ may be negligible

• Incompressible flow:  flow in which the density of the 
fluid is constant
– Continuity equation becomes   A1V1 = A2V2



Compressible vs Incompressible

• Incompressible flow does not exist in reality
• However, many flows are “incompressible 

enough” so that the assumption is useful
• Incompressibility is an excellent model for 

– Flow of liquids such as water and oil
– Low-speed aerodynamics (<100 m/s or <225 mph)

• For incompressible flow, the continuity 
equation can be written as   V2 = A1V1/A2

• Thus if  A1>A2   then V1<V2 



Example 4.1
Consider a convergent duct with an inlet area 
A1 = 5 m2.  Air enters this duct with velocity 
V1 = 10 m/s and leaves the duct exit with a 
velocity V2 = 30 m/s.  What is the area of the 
duct exit?

First, check that the velocities involved are 
< 100 m/s, which implies incompressible flow.  
Then use 

A2 = A1V1/V2  = (5 m2)(10)/(30) = 1.67 m2



Example 4.2
Consider a convergent duct with an inlet area 
A1 = 3 ft2 and an exit area A2 = 2.57 ft2.  Air 
enters this duct with velocity V1 = 700 ft/s and a 
density ρ1 = 0.002 slug/ft3, and leaves the duct 
exit with a velocity V2 = 1070 ft/s.  What is the 
density of the air at the duct exit?

First, check that the velocities involved are 
> 300 ft/s, which implies compressible flow.  
Then use 

ρ2 = ρ1A1V1/(A2V2) = 0.00153 slug/ft3
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Momentum Equation
• Continuity equation does not involve pressure
• Pressure ⇒ Force ⇒ Change in momentum 

⇒ Change in velocity
Force = d(momentum)/dt What Newton said
Force = d(mv)/dt but only applies if m=const
F = m dv/dt
F = ma

• We apply F = ma to the fluid by summing the 
forces acting on a single infinitesimally small 
particle of fluid



Free-Body Diagram

z

x

y

p

dx

p + (dp/dx)dx

• Assume element is moving in x direction
• Force on element has three sources:

Normal pressure distribution:  p
Shear stress distribution:  τw

Gravity:  ρ dx dy dz g

• Ignore gravity, smaller than other forces
• Consider force balance in x direction
• Force = Pressure × Area

dz

dy



Force Balance
• Force on left face:  FL = p dy dz 
• Force on right face:  FR = (p+[dp/dx]dx) dy dz

F = FL - FR = p dy dz - (p+[dp/dx]dx) dy dz
F = -(dp/dx) dx dy dz

• Mass of the fluid element is
m = ρ dx dy dz

• Acceleration of the fluid element
a = dV/dt = (dV/dx)(dx/dt) = (dV/dx)V

• Newton’s second law
F = ma  ⇒ dp = -ρ V dV Euler’s Equation

• Also referred to as the Momentum Equation
– Keep in mind that we assumed steady flow and ignored 

gravity and friction, thus this is the momentum equation for 
steady, inviscid flow

– However, Euler’s equation applies to compressible and 
incompressible flows



Incompressible Flow

• If the flow is incompressible, then ρ is constant
• The momentum equation can be written as

dp + ρ V dV = 0
• Integrating along a streamline between two 

points 1 and 2 gives
p2 – p1 + ρ (V2

2 – V1
2)/2 = 0

• Which can be rewritten as
p2 + ρ V2

2/2 = p1 + ρV1
2/2

Or
p + ρ V2/2 = constant along a streamline

• This equation is known as Bernoulli’s equation



Euler’s and Bernoulli’s Equations

• Bernoulli’s equation
p2 + ρ V2

2/2 = p1 + ρV1
2/2

– Holds for inviscid, incompressible flow
– Relates properties of different points along a 

streamline

• Euler’s equation
dp = -ρ V dV
– Holds for inviscid flow, compressible or 

incompressible

• These equations represent Newton’s Second 
Law applied to fluid flow, and relate pressure, 
density, and velocity



Euler’s and Bernoulli’s Equations

• Bernoulli’s equation
p2 + ρ V2

2/2 = p1 + ρV1
2/2

– Holds for inviscid, incompressible flow
– Relates properties of different points along a 

streamline

• Euler’s equation
dp = -ρ V dV
– Holds for inviscid flow, compressible or 

incompressible

• These equations represent Newton’s Second 
Law applied to fluid flow, and relate pressure, 
density, and velocity



Example 4.3
Consider an airfoil in a flow of air, where far ahead 
(upstream) of the airfoil, the pressure, velocity, and 
density are 2116 lb/ft2, 100 mi/h, and 0.002377 slug/ft3, 
respectively.  At a given point A on the airfoil, the 
pressure is 2070 lb/ft2.  What is the velocity at point A?

First, we must use consistent units.  Using the fact that 60 
mi/h ≈ 88 ft/s, we find that V = 100 mi/h = 146.7 ft/s.  
This flow is slow enough that we can assume it is  
incompressible, so we can use Bernoulli’s equation:

p1 + ρ V1
2/2 = pA + ρVA

2/2
Where “1” is the far upstream condition, and “A” is the 
point on the airfoil.  Solving for velocity at A gives

VA = 245.4 ft/s



Example 4.4
Consider a convergent duct with an inlet area A1 = 5 m2.  
Air enters this duct with velocity V1 = 10 m/s and leaves 
the duct exit with a velocity V2 = 30 m/s.  If the air 
pressure and temperature at the inlet are p1 = 1.2 x 105

N/m2 and T1 = 330K, respectively, calculate the pressure 
at the exit.

First, compute density at inlet using equation of state:

ρ1 = p1/(R T1) = 1.27 kg/m3

Assuming compressible flow, use Bernoulli’s equation to 
solve for p2:

p2 = p1 + ρ(V1
2-V2

2)/2 = 1.195 x 105 N/m2



Example 4.5
Consider a long dowel with semicircular cross section
…
See pages 135-141 in text
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 §4.10: Low-Speed Subsonic Wind Tunnels

Continuity and Bernoulli’s Equation apply

Assumption:  Steady incompressible flow

A1, p1, V1 A2, p2, V2 A3, p3, V3

Test section
Nozzle

Diffuser

Model 
Mounted 
on “Sting”

Settling 
Chamber 
(reservoir)



Wind Tunnel Calculations

Continuity ⇒ V1 = (A2/A1)V2

Bernoulli   ⇒ V2
2 = 2(p1-p2)/ρ + V1

2

Combine to get
V2 =  { 2(p1-p2) / [ρ(1- (A2/A1)2)] }½

The ratio A2/A1 is fixed for a given wind tunnel, 
and the density ρ is constant for low-speed 
tunnels, so the “control” is p1-p2

How to determine p1-p2?



Manometer

Δh

p1

Reference fluid, 
typically mercury

Density ρf

p2

Test section 
pressureReservoir 

pressure

p1 A = p2 A + w A Δh,    w = ρf g
p1 - p2 = A + w Δh,  So      Δh ⇒ V2



Example 4.13
In a low-speed subsonic wind tunnel, one side of a 
mercury manometer is connected to the reservoir 
and the other side is connected to the test section.  
The contraction ratio of the nozzle A2/A1 = 1/15.  
The reservoir pressure and temperature are 
p1=1.1 atm and T1=300 K.  When the tunnel is 
running the height difference between the two 
columns of mercury is 10 cm.  The density of liquid 
mercury is 1.36 ×104 kg/m3.  Calculate the airflow 
velocity V2 in the test section.



 §4.11: Measurement of Airspeed
• Total pressure vs static pressure
• Static pressure is the pressure we’ve been using all 

along, and is the pressure you’d feel if you were 
moving along with the fluid

• Total pressure includes the static pressure, but also 
includes the “pressure” due to the fluid’s velocity, the 
so-called dynamic pressure

• Imagine a hollow tube with an opening at one end 
and a pressure sensor at the other, and imagine 
inserting it into a flow in two different ways



Pitot Tube
• This device is called a Pitot Tube (after Henri 

Pitot, who invented it in 1732; see §4. 23)
• The orientation on the left measures the static 

pressure (the pressure in all our calculations so 
far)

• The orientation on the right measures the 
total pressure, or the pressure if the flow is 
reduced to zero velocity

Measures p
Measures p0

Stagnation point



Pitot Tube for Incompressible Flow     
• The two tube orientations are used together
• One measures static pressure p, and the other 

measures total pressure p0

• Since the total pressure is measured by 
removing all the velocity, and we’re assuming 
incompressible flow, we can apply Bernoulli’s 
equation to see that
p +  ρ V2/2 = p0

Static pressure + Dynamic Pressure = Total Pressure
• Dynamic pressure, the ρ V2/2 term, is 

frequently denoted by  q = ρ V2/2 



Using the Pitot-static Probe

• The two pressures are measured by a pressure 
transducer 

• Bernoulli’s equation (incompressible flow 
only!) can be written as

p0 = p + q (q = ρV2/2) 
• Solve for velocity

V = [2(p0 – p)/ρ]½

• A Pitot-static tube provides an airspeed 
measurement

Static pressureTotal pressure



Example 4.16

The altimeter on a low-speed Cessna 150 reads 
5000 ft.  The outside temperature is T = 505°R.  
If a Pitot tube on the wingtip measures p = 1818 
lb/ft2, what is the true velocity of the airplane?  
What is the equivalent airspeed?



Overview of the “Rest” of Aerodynamics

• We will not cover the remainder of Ch. 4, but 
here are some highlights

• First Law of Thermodynamics leads to 
relationships between energy, temperature, 
heat, enthalpy, and specific heat

• Energy has units of Joules
• Enthalpy has units of Joules but also accounts 

for temperature
• Adiabatic ⇒ no heat is added or removed
• Reversible ⇒ no frictional losses
• Isentropic ⇒ adiabatic and reversible 


