
AEROELASTICITY OF MORPHING WINGS USING NEURAL

NETWORKS

Anand Natarajan

A Dissertation Submitted to the Faculty of
Virginia Polytechnic Institute and State University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in

Aerospace Engineering

Rakesh K. Kapania, Chairman

Eric R. Johnson

William H. Mason

Daniel J. Inman

Liviu Librescu

July 03, 2002

Blacksburg, Virginia

Keywords: Morphing Wings, Neural Networks, Aeroelasticity, Adaptable Bump,
Flutter, Time Varying Systems, Variable Stiffness Wing

Copyright c©2002 Anand Natarajan



Aeroelasticity of Morphing Wings Using Neural Networks

Anand Natarajan

Abstract

In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic

problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiff-

ness. The use of adaptive materials in aircraft wings allows for the change of the contour or

the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these

deformations, can imply that the stiffness of the wing with a morphing contour changes as the

contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural

parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of

the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can

be made to vary with time. The immediate effect on the structural dynamics of the wing, is that,

the wing motion is governed by a differential equation with time varying coefficients. The study

of this concept of a time varying torsional stiffness, made possible by the use of active materials

and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here.

A time marching technique is developed for solving linear structural dynamic problems with time-

varying parameters. This time-marching technique borrows from the concept of Time-Finite Ele-

ments in the sense that for each time interval considered in the time-marching, an analytical solu-

tion is obtained. The analytical solution for each time interval is in the form of a matrix exponential

and hence this technique is termed as Matrix Exponential time marching. Using this time march-

ing technique, Artificial Neural Networks can be trained to represent the dynamic behavior of any



linearly time varying system. In order to extend this methodology to dynamic aeroelasticity, it is

also necessary to model the unsteady aerodynamic loads over an airfoil. Accordingly, an unsteady

aerodynamic panel method is developed using a distributed set of doublet panels over the surface

of the airfoil and along its wake. When the aerodynamic loads predicted by this panel method are

made available to the Matrix Exponential time marching scheme for every time interval, a dynamic

aeroelastic solver for a time varying aeroelastic system is obtained. This solver is now used to train

an array of neural networks to represent the response of this two dimensional aeroelastic system

with a time varying torsional stiffness. These neural networks are developed into a control system

for flutter suppression.

Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape

control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful

in achieving flow separation control for lateral directional maneuverability of the aircraft. Since

actuators are being used to create this bump on the wing surface, the energy required to do so

needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled

so that the loss in lift over the wing is made minimal. The design of such a ”spoiler bump” on the

surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation

while minimizing the loss in lift and energy required to deform the bump. One neural network is

trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A

second neural network is trained for calculating the actuator loads, bump displacement and lift,

drag forces over the airfoil using the finite element solver, ANSYS and the previously trained

neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface



using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.

This work enhances the traditional aeroelastic modeling by introducing time varying parameters

in the differential equations of motion. It investigates the calculation of non-conservative aerody-

namic loads on morphing contours and the resulting structural deformation for non-linear aeroe-

lastic problems through the use of neural networks. Geometric modeling of morphing contours is

also addressed.
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the present method without time marching and compared with the solution

generated by Mathematica using an accurate implicit numerical scheme . . . 30

2.2 Response of the Mathieu Equation̈x + 0.1ẋ + (1 − 0.1cos(0.25t))x = 0 by
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Chapter 1

Introduction

The use of smart materials in aircraft wings for actively changing wing shapes in flight will have

an enormous impact on the design of advanced civil and military airplanes. Specifically, the use of

adaptable wings will bring significant changes in the aeroelastic behavior of the wing as described

by Inman, et. al.1. Adaptive materials in the wing allow changing the shape of wing sections

and wing configurations in flight. Wings which are adaptable to the fluid flow around them, both

geometrically and structurally, thereby changing the wing surface contours and/or wing structural

parameters so as to provide the best design under any flight conditions can be called as morphing

wings. Theoretically, this means that there is no need for control surfaces as adaptive camber can

perform the function of a deflected flap. Morphing wings have a smooth contour thereby not allow-

ing abrupt shape changes in the direction of the air-flow. These wings also use a distributed set of

non-hydraulics based actuators. These actuators can be piezoelectric devices such as THUNDER2

or electro-active polymers3 and shape memory alloys4. Replacing current heavy hydraulic systems

1



by these light weight actuators can increase payloads and flight range5. The internal structural

components of a wing, namely the spars and ribs can also be adaptive, i.e., their structural proper-

ties can be made to vary6. This goal of a fully adaptable all wing aircraft requires the knowledge

of the behavior of a highly flexible structure subjected to changing aerodynamic forces.The ob-

jective of this dissertation is to address this important goal of analyzing some of the effects of fluid

structure interactions on adaptive wing aircraft.

The term ”smart materials”, sometimes also called intelligent materials, describes a group of mate-

rial compounds with unique properties. These unique properties usually relate to a large strain de-

formation when the smart material is subjected to electrical/thermal/magnetic fields. Smart mate-

rials which deform under an electric field are termed piezoelectric or electrostrictive. Piezoelectric

materials can deform under compression or elongation whereas electrostrictive materials usually

deform one way, that is either in elongation or in compression. Smart materials which respond to

a thermal field are called Shape Memory Alloys (SMA). These materials exhibit large deforma-

tions and phase transformations. However there response is quite slow compared to piezoelectric

materials. Smart materials which respond to magnetic fields are termed magnetostrictive mate-

rials. Just like electrostrictive materials, magnetostrictive materials can also possess anisotropic

behavior. Also, there are a few shape memory alloys which respond to magnetic fields. These

are termed as Ferromagnetic Shape Memory Alloys (FSMA). The detailed behavior of all types of

active materials can be found in Ref. 7.

The use of such smart actuators and adaptive wing spars allows the development of a variable

stiffness wing. While analyzing, the dynamics of such a variable stiffness wing, the differential

2



equations of motion will possess time varying coefficients. Hence it is required to first study the

efficient solution techniques used in studying the response of time-variant systems. Herein is con-

sidered the analysis of linear time varying systems and its application in dynamic aeroelasticity.

Since the morphing wing can possess an arbitrarily changing wing surface, it is important to pre-

dict the deformation of a surface of a wing under applied actuator loads and non-conservative

aerodynamic loads. Such a two dimensional aeroelastic analysis of a bump on a wing surface is

performed here. In order to proceed with these two novel aeroelastic problems namely the dynamic

aeroelastic behavior with time varying stiffness and the aeroelasticity of a morphing surface, the

fundamental tools in these aeroelastic computations are introduced.

1.1 Fluid Dynamic Models for Flow Over Adaptive Wings

The laws of physics which govern fluid flow remain the same whether the wing is adaptive or

non-adaptive. What does change between the fluid dynamic model of a fixed wing aircraft and

a morphing wing aircraft are the boundary conditions and the nature of any simplifying approxi-

mations. Usually aeroelastic solvers do not use the fundamental governing equation of fluid flow,

that is the Navier-Stokes equations. This is because of the essential non-linear nature of these

equations. Many of the conventional aeroelastic solvers use a technique known as the ”Doublet

Lattice Method” to model the unsteady aerodynamics. The doublet lattice method is basically de-

rived based on the assumption of irrotational flow and the governing mathematics allows the use

of the acceleration potential of a doublet as a basis for calculating the unsteady pressure over an
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oscillating wing8. Recently there have been many improvements made on the original Doublet

Lattice method9 which may enable it to be used even under transonic conditions. On the other

hand, a morphing wing may require the use of the Navier-Stokes equations. This is because, flow

separation and vortex shedding may become a factor to consider when formulating the aeroelastic

model. Also the Doublet Lattice method only models the camber of the wing. For a Morphing

wing, it is required to capture the effect of thickness changes. The Navier-Stokes equations are

solved numerically using finite difference approximations to the derivatives. Computational Fluid

Dynamics (CFD) approximates the governing partial differential equations of motion by differ-

ence equations. This basically means that the partial differential equations are now replaced by

”modified” equations consisting of truncated Taylor’s series representations of the derivatives in

the original equation. Therefore all CFD calculations involve some level of truncation and round-

off errors. In obtaining the difference equations, one replaces the original fluid continuum by a

discrete mesh, with the values of the parameters in the difference equations calculated at the nodes

of the mesh. A theorem given by Peter Lax10 states that the CFD model of the continuum con-

verges to the exact solution if the numerical scheme is stable and the truncation error approaches

zero as the finite difference step size approaches zero. The governing equations of fluid dynamics

in 2-D Cartesian co-ordinates can be represented as

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
=

∂Jx

∂x
+

∂Jy

∂y
(1.1)
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Equation (1.1) is in conservative form and it is nonlinear. Since there is no analytical solution for

Eq.(1.1), numerical approximations to the derivatives are made which result in the finite difference

equations. Another approach to solving Eq. (1.1) is to use the finite volume method. In this

approach, Eq. (1.1) is converted into an integral equation using the Gauss Divergence Theorem.

A description of the numerical techniques used to approximate the Navier-Stokes equations, Eq.

(1.1) by finite difference equations is given in Ref. 10.

Figure 1.1 displays a computational mesh around an airfoil. Each element of the mesh has nodes

placed at the vertices of a triangle. The boundary conditions are imposed at the airfoil wall and

at the far field of the mesh. The mesh density determines the accuracy of the solution in as much

as it reduces the truncation error. Mesh adaptation at the airfoil wall allows proper representation

of the boundary layer. One of the major issues in computational fluid dynamics is turbulence

modeling since the requirement is for a turbulence model that represents the turbulent behavior

and at the same time is computationally efficient. There are many turbulence models existing
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today11. The simpler turbulence models such as the one equation Spallart-Allmaras model or the

two equationk−ε model are restricted to certain types of flows and the advanced turbulence models

such as the Reynold’s 5 equation model are computationally very expensive11. This implies that

certain compromises regarding the accuracy of the results will have to be made when a highly

turbulent flow is modeled using CFD. The use of CFD calculations is required only in the case of

Figure 1.1:Computational Grid :- Triangular Grid generated using the software GAMBIT

showing the mesh surrounding an airfoil with Pressure Far Field Boundary Conditions at 10

times chord distance

compressible flow or when viscous forces play a predominant role. For incompressible inviscid

flow, the use of panel methods provides a rapid estimate of the aerodynamic forces. Panel methods

consist of distributing singularities such as sources, vortices and doublets on the surface of an

airfoil or a wing. The potential function of such singularities satisfies the governing equation of
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incompressible inviscid aerodynamics. The flow boundary conditions on the wing surface or airfoil

then determine the strengths of these singularities. Once the singularity strengths are known, it is

possible to calculate the unsteady pressure distribution at each point over the wing or the airfoil.

The details of the implementation of panel methods for morphing airfoils is presented in Chapter

5. Using panels of doublets over a morphing airfoil, the incompressible inviscid aerodynamics

is modeled. The boundary conditions that are imposed over the airfoil are the non-penetration

condition and the Kutta-condition. The non-penetration condition requires that the normal velocity

of the fluid at the airfoil wall should be equal to the airfoil surface velocity. The Kutta condition at

the trailing edge forces the vorticity of flow at the trailing edge point to be zero for steady flows.

For unsteady flows the velocity at the trailing edge should be finite. More details on the unsteady

Kutta condition can be found in Ref. 12. The position and size of the panel at the trailing edge

needs to be carefully chosen to obtain finite velocities at the trailing edge. Using this approach of

distributed doublets over an airfoil, the unsteady aerodynamic lift and moment over the airfoil can

be captured.

Unsteady aerodynamics can be treated either as a ”quasi -steady” phenomena or a ”fully unsteady”

phenomena. In a quasi -steady approach, the circulation around an airfoil is assumed to be a

function of the space co-ordinate only. If the flow is unsteady, then the circulation will be a function

of both space and time co-ordinates. It is the time-varying circulation that makes the calculation

of unsteady aerodynamic forces a formidable task. Theodorsen13 showed that the effect of the

unsteady circulation on the airfoil can be represented as a ratio of Hankel functions when the airfoil

oscillatory behavior approaches flutter. This ratio of Hankel functions was termed the Theodorsen
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function, popularly represented by the symbolC(k) wherek is the reduced frequency. The reduced

frequency in turn is expressed ask = ω b
U∞

whereω is the frequency of oscillation of the airfoil with

b as the semi-chord andU∞ as the free stream velocity. Physically, the Theodorsen function is

described as a lift deficiency factor since its effect is to reduce the net quasi-steady lift.

The unsteady lift on an airfoil subjected to an impulsive change in the angle of attack in incom-

pressible flow is analyzed using the Wagner function approach. The Wagner function13,14 is the

Fourier Transform of the Theodorsen function and it provides a measure of the circulation growth

around the airfoil when the airfoil is impulsively given an angle of attack with respect to the free

stream. This provides the solution for the sub-critical oscillations of the airfoil in irrotational flow.

By sub-critical flow is meant that the regime of oscillations of the airfoil when the velocity of the

free stream is below the flutter speed.

1.2 Aeroelasticity

Aeroelasticity deals with the science that studies the mutual interaction between aerodynamic

forces and elastic forces for an aerospace vehicle. One of the major research areas in the field

of aeroelasticity is flutter control. Flutter is a dynamic instability of a body subjected to non-

conservative forces wherein its oscillations increase without bounds. Hence this is a catastrophic

phenomena and its prevention forms a critical role in wing design. However, most materials have

some non-linearities associated with their behavior such as hardening or internal damping. Struc-

tures subject to axial compressive forces also possess geometric non-linearities associated with
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buckling. Moreover, even the fluid dynamics can be non-linear due to separation of flow or due

to the presence of a shock. These conditions of non-linearity, both structural and aerodynamic are

usually beneficial with regard to the control of flutter. They provide for a new phenomena called

limit cycle oscillations (LCO). Limit cycle oscillations are non-decaying bounded oscillations of

a non-linear system. They can occur even in the presence of damping for a non-linear system. A

classic example of limit cycle oscillations is the Van-der-Pol oscillator15. Non-linear behavior also

prevents analytical solutions in most cases, especially when the non-linearity is related to the aero-

dynamics. Hence to obtain the aerodynamic forces for a compressible viscous flow, CFD analysis

has to be performed in almost all cases.

The fluid dynamic forces and control forces form the right hand side of the aeroelastic equations

of motion. For a two degree of freedom airfoil as shown in Fig. (1.2), the aeroelastic equations of

motion are

mḧ + sαα̈ + khh = −L (1.2)

Iα̈ + sαḧ + kαα = M

In Eq. (2),h is the vertical displacement of the elastic axis as given in Fig. (1.2),α is the rotation

of the airfoil about the elastic axis,m is the mass of the airfoil,Iα is the mass moment of inertia

about the elastic axis,sα is the first moment of the area about the elastic axis,kh andkα are the

stiffnesses in plunge and pitch respectively. For an adaptive wing, changes in the geometric twist

of the wing at various sections play a major role in design considerations. The variable twist wing

has attracted attention recently16. Varying the twist by using adaptive material, requires change of

torsional rigidity. As mentioned earlier, the torsional rigidity can also be altered by using adaptive
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Figure 1.2:A two degree of freedom airfoil with pitch and plunge motion capability situated

in a uniform free stream

spars. For quasi steady systems, such variations play a small role in the dynamics of the aircraft.

However for a rapidly oscillating system, such as the one governed by Eq. (1.2), this form of

variation in the twist makes the differential equations of motion have variable coefficients, i.e.

makes them a time-variant system.

1.3 Aeroelasticity of a Morphing Surface

The analysis of the flight of birds has attracted a lot of research. Birds possess a light weight skele-

tal structure covered by a skin. Adaptive wing aircraft can be similar to birds in their construction.

The inner spars and ribs need to be stiff and strong enough to support various maneuvering loads
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on the aircraft and the outer skin needs to be flexible enough to facilitate shape changes. The effect

of the wings and the tail of a bird on flight have been studied by different authors17,18. Reference

17 shows that birds use their tail very effectively for yaw and roll control. Considering that modern

unmanned aircraft and fighter aircraft wish to avoid tails to decrease their radar signature, all-wing

adaptable aircraft need to have effective lateral directional control. All-wing aircraft such as the

XB-35 use split flaps on the wing tips to produce yawing moments created by unsymmetrical drag

forces on the wings. Aircrafts such as the YB-49 also use drag rudders for roll control and to

eliminate adverse yaw19. Many modern fighter aircraft are all-wing aircraft or aircraft without ver-

tical surfaces. The lateral directional stability of such aircraft needs to be analyzed. Conventional

tailless aircraft use split flaps on wing surfaces by using separated flow on one wing as a means

of generating yawing moment. The equivalent device for an adaptable wing aircraft are ”spoiler

bumps”. This means that the adaptive nature of the wing is used to deform small sections of the

wing to form bumps which separate the fluid flow locally. This separated flow causes localized

increase in drag over one wing. This unsymmetrical drag force can produce a significant yaw mo-

ment. However, such a procedure results in loss of lift over the wing on which the flow is separated.

Since the wing is adaptable, a cambering of the wing section is also possible in flight. A selective

local cambering of wing sections enables the aircraft to increase both its lift and provide for roll

control. In fact, recently it has been shown20 that the variable camber trailing edge can prevent

the roll reversal phenomenon from occurring even at flight speeds at which the traditional ailerons

are no longer effective. Cambering of the trailing edge as opposed to a deflected flap also elimi-

nates sharp pressure jumps near the flap hinge. This is because, unlike the sharp discontinuity in
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curvature that the deflected flap causes, variable cambering of the trailing edge ensures curvature

continuity.

Adaptive materials are used to form bumps on the wing surface for a variety of reasons such as

reduction of wave drag under transonic flow21 and boundary layer control22. Adaptive bumps

on wings can also be used for lateral directional control. Cole23 describes flutter control of a

rectangular wing with spoilers placed at10% of the chord. This was done for a wind tunnel

model. This is an action that can be made feasible in flight by using morphing wings which

have adaptable leading edge bumps. Hence the aeroelastic behavior of these bumps contribute to

studying the flutter control of adaptable wing aircraft. Adaptive shape control of the airfoil can

control buffeting24, another dynamic aeroelastic phenomena. Buffeting is the structural response

to flow separation. Control of buffeting by adaptive shape changes tells us that other aeroelastic

effects can be controlled by changing the aerodynamics. The use of adaptive devices in wings

for flow control has also received wide attention. For example, periodic excitation at the leading

edge has been used to control flow separation25. This is because the velocity of the fluid normal to

the oscillating surface is unsteady. This unsteady term in the governing boundary layer equations

allows for a reduced adverse pressure gradient which helps prevent flow separation. Sinha26 has

elaborated on the use of the Active Flexible Wall (AFW) on aircraft wings to control boundary

layer separation. Here, a small transducer located at the leading edge of the wing provides for

an oscillating wall which enables boundary layer control. Modifying the curvature at the trailing

edge can increase circulation due to Coanda effect27. The Coanda effect mainly states that the fluid

flowing along a curved surface will follow the curvature of that surface. Thus if the trailing edge
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of the airfoil is given an acute curvature downwards, then the circulation over the airfoil is greatly

increased, thus increasing the lift.

Considering that the adaptive nature of the wing is used for different purposes, it is beneficial

to study the formation of such bumps. These bumps are formed by actuator forces acting on

elastic material under aerodynamic forces. Hence the formation of such bumps involves study of

aeroelastic behavior. This sort of aeroelastic effects on a wing is different from classical aeroelastic

problems such as flutter, divergence, buffeting. The aeroelasticity of a bump on the wing, that is

caused by deforming localized portions of the wing skin, may be non-linear in terms of both the

structural response and the aerodynamic response. The structural behavior is non-linear because

the deformations are large in comparison to the size of the wing element that is undergoing that

deformation. The fluid dynamics is non-linear due to flow separation or due to the presence of a

shock in transonic flow.

Investigation of such non-linear aeroelastic systems is very beneficial as it would describe a tech-

nique that can be used for other non-linear aeroelastic problems and also provide insights for the

aeroelastic analysis of a general morphing wing. Currently, the investigation of fluid dynamic non-

linearities in the aeroelastic response is through the use of CFD data. Since CFD calculations are

expensive and time consuming, many researchers have adopted certain reduced order models to

capture the CFD analysis effectively for large time using short runs of CFD calculations. Silva28

describes the approach of a two term Volterra series model to study fluid dynamic non-linearity.

This form of mathematical reduced order models have been used by many researchers29. However,

in this work, a neural network approach is taken to represent the data obtained from computational
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fluid dynamics. These details underline the need to study the aeroelastic behavior of morphing

wing surfaces in a manner that is different from conventional aeroelastic approach, but still rapid

in its analysis.

1.4 Time Variant Structural Dynamics

The structural dynamics of rotary wings, such as those in helicopters involve differential equations

with time-varying coefficients, the variation basically being periodic. These type of differential

equations are termed Mathieu-Hill differential equations and they are of the form

ẍ + (a− qcos(λt))x = 0 (1.3)

wherea, q, λ are constants. Linear time-variant equations such as the Mathieu-Hill equation occur

in many applications such as dynamic buckling of structures and wave propagation in periodic

media. Here the time-varying coefficients are periodic. This type of variation can be analyzed by

the application of Floquet theory30. Periodic variation in system parameters has been investigated

in non-linear systems also using an extension of the Floquet theory. Sinha31 describes the method

of obtaining the state transition matrix of periodic systems in terms of Chebyshev polynomials

of the first kind. By using this solution in a Liapunov-Floquet transformation, the stability of

the equation of motion can be determined. Another type of structure which can possess a time

varying stiffness under rapid oscillations is a structure with a propagating crack. One of the most

catastrophic failures is failure due to fatigue crack growth. This crack growth is gradual initially,

but after a certain critical length, the speed of the crack growth can reach the Rayleigh wave speed
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in that material. Hence it is extremely important that the crack length is below critical length. The

flutter calculations for a structure which possesses a gradually propagating crack should be based

on differential equations such as Eq. (1.2), but with time varying stiffness. This would allow to

predict the decrement of flutter speed with crack length.

As mentioned in Ref. 6, it is possible to provide for a variable torsional stiffness to the aircraft

wing by using adaptive wing spars. While the details of the type of stiffness variation are not

known, it is known that a continuous stiffness variation is possible and that the stiffness needs

to be monotonically increasing or decreasing following some power law. This stiffness variation

can be modeled based on other active stiffness variations. For example, the active control of the

stiffness of vehicle suspensions32 is in accordance with the time constant of the controller. Thus the

stiffness takes a formknew = kold+(1−e−t/∆t)∆k. Therefore the variation in torsional rigidity can

also approach such a variation, i.e. an exponential change. Hence it is required to choose methods

other than those used for periodic systems in order to solve the differential equation. One method

would be to use a stable time integration procedure such as the Wilson -θ method30. However, for

a rapidly time varying system, numerical time integration may result in erroneous results since the

natural frequencyωn being time varying, may cause the time step chosen initially for integration to

be too small or too large. The former would lead to an increase in the computational cost, while the

latter to an increased error. The presence of a closed-form analytical solution would enable us to

avoid these numerical difficulties. Closed form solutions to the state transition matrix are obtained

only for certain cases30,33,34.

Herein, a scheme is used wherein, the state transition matrix that is obtained as an exponential
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of a matrix, can be applied to any linear time-variant system. Therefore the analytical solutions

can be used for time-variant systems without setting any bounds on the type of variation of the

parameters, except for the fact that the response of the system will be linear. The novelty of the

present scheme is that although we borrow the basic approach from time invariant systems, we

still retain an analytical formulation without averaging the time varying parameters such as in Ref.

35, so that the response of time-variant systems is continuous in time and not a numerical solution

available at only some discrete points. A detailed analysis of Linear Time-varying Systems (LTV)

for single degree of freedom systems is presented in Chapter 2.

1.5 Geometric Modeling for Adaptable Surfaces

The aeroelastic behavior of adaptable airfoils and wings requires modeling the geometry of the

airfoil first. Standard airfoils are usually modeled geometrically by means of power series for the

camber and thickness. This sort of a representation is not ideal for an arbitrarily varying airfoil.

Secondly, it is required that localized variations in shape be captured without affecting the airfoil

geometry at other locations. The approach of conformal mapping as elucidated by Jones36 is a

powerful tool for airfoil modeling. However it cannot support arbitrary localized variations in

shape. Herein, the method of B-splines is used to model airfoils. B-splines are parametric splines

based on an iterative calculation. They are defined using a set of control points, a knot vector and

the degree of the curve. The knot vector is a vector that discretizes the parametric representation

of the B-spline curve. The control points are locations in the modeling space that are used to
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define the shape of the object and hence also to alter the shape in any manner. The Cox-de-Boor37

iterative formula is used for evaluating the spline points. A comprehensive description on B-splines

can be found in the book by Rogers and Adams38 and also in Farin39. Another advantage of the

use of B-spline representation is in optimization. The degree of the B-spline is independent of the

number of control points chosen. Therefore a cubic polynomial could be chosen and the number of

control polygons can be optimized for a proper representation of the airfoil. Figure 1.3 describes a

Karman-Trefftz36 airfoil modeled by B-splines.

Figure 1.3:A B-spline model of an airfoil with a finite angle trailing edge showing the airfoil

and its control polygon

Figure 1.3 shows an airfoil constructed with one fourth degree B-spline curve with 13 control

points and with a non-uniform knot vector. The non-uniform knot vector is required to construct

the pointed trailing edge. By repeating the parametric value of the B-spline curve in the knot
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vector, one can reduce the degree of continuity of the curve at that parametric value38. Hence this

pointed trailing edge which will be very difficult to obtain with a cubic spline, is easy to obtain

using a B-spline by repeating the parametric value of the curve at the trailing edgen − 1 times in

the knot vector, wheren is the degree of the curve.

1.6 Aeroelastic Analysis Using Neural Networks

Response surface methodology and neural networks have been adopted by certain authors like Rai

and Madavan40. Response surfaces are usually polynomial series approximations to the referred

data. Neural networks on the other hand are more sophisticated response surfaces as they include

non-linear functions operating on polynomial expansions. However, once the model has been

obtained, neural networks can take more floating point operations in the simulation than response

surfaces. Both types of models have been used in aerodynamic optimization40. Since neural

networks can model a wide variety of system behavior, both linear and non-linear, they are very

versatile in modeling non-linear aeroelastic response. Further, sophisticated toolboxes exist in

readily available commercial packages such as MATLAB for creating a variety of neural networks.

The concept of neural networks is an attempt at an artificial simulation of the functioning of the

human brain41. Design of a neural network consists of arranging ”neurons” in different layers,

deciding on their connectivity, defining the inputs and outputs of the system and determining the

strength of each connection in between the neurons. The output of each layer of neurons is fed to

the next layer of neurons through a selected function. The strength of the neuron connections is

18



based on training a neural network on a series of data sets. Once a neural network has been trained

using sufficient data, then the network is capable of providing the desired output given a new set of

input data. Training of the neural network is a very important task and care should be taken that the

neural network is able to reproduce the target data without over-fitting. This means that the error

margin of the neural network away from the target data should not be significantly greater than

near the target data. The neural network toolbox in MATLAB is used for the training purposes.

Two popular methods of training, namely the Levenberg-Marquardt scheme and the scheme of

”Resilient Back-propagation” are used.

There have not been significant publications in using neural networks as a rapid aeroelastic solver

that can determine the aeroelastic response by representing the actual fluid-structure coupling.

Most applications of neural networks in aeroelasticity have been in system parameter estimation

for aircraft control42 or in flutter speed prediction and flutter control from experimental data43,44.

The present dissertation looks at flutter suppression as only one aspect of a broader goal of rep-

resenting the fluid-structure coupling in adaptive wing aircraft using neural networks. Since the

coupling between the aerodynamics and the structural response is the most important factor that

has to be taken into account in computational aeroelasticity, the present work looks at an integrated

fluid-structure interaction tool using neural networks, that is capable of calculating the static and

dynamic aeroelastic response of adaptive structures without performing iterations due to fluid-

structure coupling.

The training of the neural network is accomplished using aerodynamic data from a CFD solver or

from a panel method and structural data from a finite element solver. The finite element analysis
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could be spatial for a static aeroelastic problem such as the study of a deforming bump on a wing

surface or Time-Finite element based, such as required for a structural dynamic’s problem. Given

a set of input data that describes the configuration of an airfoil and the type of flow, to the trained

neural network, it is capable of predicting the aeroelastic behavior of that airfoil. In the case of

an oscillating airfoil, the input data of the airfoil should be at each time instant considered in the

oscillation. In many cases, it is simpler to consider many trained neural networks communicating

with each other for representing the aeroelastic behavior instead of a single neural network. For

dynamic aeroelastic behavior of time-varying systems, the method developed herein for analysis

of such systems can provide a building block for training artificial neural networks also.

These two approaches to calculate the aerodynamic forces over an airfoil, i.e. CFD for viscous

flows and panel methods for irrotational flows, enable the training of neural networks for rapid

aeroelastic analysis of morphing airfoils. These methods indicate the limitations of analytical

closed form solutions such as the Theodorsen solution. Though the Theodorsen model and later

models by Wagner and Kussner provide good estimates of irrotational unsteady aerodynamics,

their usage in non-linear aeroelasticity and aeroservoelasticity may not provide the best computa-

tional model. Particularly with adaptable wings, the main goal is to broaden the flight envelope

with the best design in each flight condition. This requires accurate aeroelastic computations and

a means for high fidelity control over fluid-structure interactions. In order to provide for an ac-

tive control of the aeroelastic response, a neural network modeling of the aeroelastic system may

provide a rapid fluid-structure response solver.

Therefore a complete representation of the two dimensional aeroelasticity of adaptable wings is
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made. This means the modeling of the aeroelastic system is made with adaptive geometry, compu-

tational fluid dynamic models, numerical aerodynamics, expert systems such as neural networks

and an efficient computational tool for time-variant structural dynamic systems. The use of modern

computational resources is made use of to the fullest extent in determining a rapid and accurate

aeroelastic system model. Chapter 2 details the method of solving linear time-variant systems.

The method is based on time-finite elements in the sense that the time domain of interest is broken

down into small intervals and an analytical solution is used for each time interval. The analytical

solution within a time interval is based on a matrix exponential that is the solution to the equations

of motion of the time variant system, when formulated as an exact differential equation.

Various examples of time-varying systems are solved to prove the efficiency of the scheme. Chap-

ter 3 introduces the technique of artificial neural networks to analyze static and dynamic problems.

Different types of deterministic neural networks are described and their ability to model static

and dynamic problems is discussed. Chapter 4 uses trained neural networks to solve a non-linear

aeroelastic problem, it being, the behavior of an adaptable bump on the surface of an airfoil in caus-

ing flow separation with maximum pressure drag with minimum loss in lift and minimum strain

energy of bump deformation. This is a novel example of a static non-linear aeroelastic problem

and it requires the use of CFD and non-linear finite element analysis in order to train the neural

networks to represent the aeroelastic response. Chapter 5 extends the concept of neural networks

to dynamic aeroelasticity with time varying stiffness. The unsteady aerodynamics is described by

calculating the effect of doublet panels distributed on the surface of an airfoil immersed in a free

stream. The feasibility of using artificial neural networks to represent periodic airfoil oscillations
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is investigated. The neural network is trained using unsteady aerodynamic data obtained from the

doublet panel code and the matrix exponential time marching used for solving the dynamics of

time-variant systems. Chapter 6 concludes this dissertation and discusses the effectiveness of us-

ing neural networks for representing the aerodynamics and the aeroelastic response of a morphing

airfoil.
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Chapter 2

Linear Time Variant Systems

The presence of time varying coefficients in the differential equation for a linear dynamic system

generally prevents calculation of an analytic solution. In general if the mass of the system is

not rapidly varying with time, single degree of freedom (SDOF) linear time-variant systems are

represented by the following equation:

ẍ +
c(t)

m
ẋ + ωn

2(t)x =
f(t)

m
(2.1)

where the termsc, ωn,m, f refer to the damping, natural frequency, mass and external force

respectively.

Linear time-variant equations such as the Mathieu-Hill equation occur in many applications such

as dynamic buckling of structures and wave propagation in periodic media. The history of linear

time-variant dynamic systems dates back more than a century. Mathieu-Hill equations have the
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form

ẍ + a(1− λ cos(qt)) = 0 (2.2)

Herea, λ, q are constants depending on the nature of the problems to be solved. These type of

equations occur in many physical applications such as the dynamic buckling of a beam, stability of

side rods in locomotives, vibration of helicopter blades, etc. An application of periodic variation in

parameters in mechanical devices is in the meshing of spur gears. The damping can also be varying

with time, it being usually proportional to the stiffness. This type of variation can be analyzed by

the application of Floquet theory30,32.

The use of smart materials in wings allows the active control of the deflections of the wing

structure. These adaptive structures are preliminary models of biological structures. One of the

properties of biological structures is that they can possess time varying stiffness while execut-

ing movements45. In Ref. 45, the human elbow is explained to possess variable stiffness while

executing movements. The stiffness could be exponential varying such as in the case of tactile

sensors for end-effectors of robots as mentioned in Ref. 46. Another common example wherein

one might encounter exponential variation in the mass or stiffness terms is the time varying mod-

ulus of rigidity in a structure with internal damping that depends on the strain rate47. These type

of equations involve sophisticated mathematics even for a one dimensional problem. To avoid

this, numerical techniques are often used48. Analytical techniques for single degree of freedom

(SDOF) time-variant systems under free vibration can be obtained by using Bessel functions49.

Using specialized functions for solving the differential equation of motion for free vibration of

SDOF systems could mean that the solution procedure to arrive at an analytic representation could
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be different when considering periodic and aperiodic variations in the coefficients. Therefore the

approach herein is to derive a consistent analytical approach that can be used for any type of varia-

tion in the system parameters. A conditionally stable time integration procedure such as the Wilson

- θ method for a rapidly time varying system, may result in erroneous results since the natural fre-

quencyωn being time varying, after a passage of time, the time step chosen in the integration may

be too small or too large. The former would lead to increase in computational cost and the latter

to an increased error. Therefore this chapter endevours to explain the formulation of a near -exact

analytical solution to any linear SDOF time-variant system under free or forced oscillation.

Consider the governing differential equation of a linear time-variant system written in state-space

form

{ẋ}+ [C(t)]{x} = 0 (2.3)

This can be expressed as an exact differential equation

d

dt
(e
R t
0 [C(t)]dt{x}) = 0 (2.4)

if the exponential of the matrixe
R t
0 [C(t)]dt and[C(t)] commute, that is

e
R t
0 [C(t)]dt [C(t)] = [C(t)] e

R t
0 [C(t)]dt

HereC(t) is a matrix of time varying coefficients. Usually, the only times when the matricesC(t)

ande
R t
0 [C(t)]dt commute, are when [C] is diagonal or when [C] is a matrix of constants. None of

these is the case here. However as we shall show, Eq. (2.3) can still be used to describe linear dif-

ferential equations with time varying parameters, but within a certain time duration; the duration

being dependent on the rate of variation of parameters. Appendix (A) gives a mathematical expla-

nation for defining the state transition matrix as in Eq. (2.3), even though the matrices involved do
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not commute. We investigate the exactness of the solution to the governing Eq. (2.2), expressed

by Eq. (2.3), in terms of the rate of variation of the system parameters. Using the solution for this

time duration, we can march in time to obtain the response during the entire duration of interest.

Thus we shall arrive at a technique which is applicable to any linearly time-varying system.

2.1 The Exponential of a Matrix

Equation (2.4) requires the evaluation of an exponential of a matrix. This can be done in a number

of ways. Assuming distinct eigenvalues, the following methods are feasible.

1. Taking the Laplace transform :- For a time-invariant system, this method is very efficient as

in

e[C].t = L−1[sI − C]−1

However, when the matrix[C] is time varying, the method is not so straight forward. This

is because, the Laplace transform ofe[C(t)] may possess high degree polynomials in the

denominator which implies that the inverse Laplace transform may be difficult to evaluate,

requiring a large number of partial fraction expansions.

2. Using the eigenvectors for diagonalization:-

e[C(t)] = P e[P
−1 C P ] P−1.

whereP is the matrix of eigenvectors ofC. This method is also computationally highly

expensive, since it requires the determination of the eigenvectors of an arbitrarily varying

matrix.
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3. Using Sylvester’s theorem :- A closed form expression can be found34 as

e[C(t)] = β




c11 − c22
2 +

4
tanh(4)

c12

c21
c22 − c11

2 +
4

tanh(4)


 (2.5)

where24 =
√

(c11 − c22)
2 + 4 c12c21 and

β = e

c11 + c22

2 sinh(4)
4

In the present chapter, Eq. (2.5) will be used for the evaluation of the exponential of a matrix since

it is in a closed form and hence computationally, it is easier than methods (1) or (2). Nineteen

different methods for evaluating the exponential of a matrix are commented upon by Moler50.

2.2 Response of the Mathieu Equation

The classical problem of the buckling of a slender beam under periodic loads is governed by the

Mathieu-Hill equation

ẍ + 2 ξẋ + Ω2(a− qcos(λt))x = 0 (2.6)

whereΩ2 = 1
m (nπ

l
)
2
, a = EI(nπ

l
)
2
, q is the amplitude of the periodic external force with a

frequencyλ applied to the system. Hereξ is a measure of the system damping,m is the mass of

the beam andn is the buckling mode.

Conventional methods of solving this equation make use of the periodicity of the loading which

allows for the application of the Floquet theory. Accordingly, Eq. (2.6) is first transformed into

an undamped Mathieu-Hill equation by the transformationy(t) = exp(ξt) x(t). This reduces Eq.
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(2.6) to the form

ÿ + Ω2(b− qcos(λt))y = 0 whereb = a− ξ2

Ω2 .

Using Floquet theory, the solution to the above equation can be written in the form of

y1(t) = exp[µ t] φ(t)

φ(t) =
m∑

j=0

qm Am exp(i m t)

y2(t) = y1(t)
�

y(t) = y1(t) + y2(t) (2.7)

In Eq. (2.7) ,i =
√−1, µ is a complex constant dependent on the constant coefficients in Eq.

(2.6). The complex conjugate ofy1(t) is denoted byy∗1(t). Further details of the Floquet method

may be found in several texts (See Richards30, for instance).

To illustrate the simplicity and accuracy of the present method, Eq.(2.6) is written in the state space

form and the matrix [C] in Eq. (2.3) is given as:

C =




0 −1

Ω2(a− qcos(λt)) ξ




Let us assumeξ = 0.05, a = 1, q = 0.1, Ω = 1, λ = 0.25

We use Eq. (2.3) to obtain the solution. After performing the integration,
∫ t

0

[C(t)]dt

∫ t

0

[C(t)]dt =




0 −t

t− q
λ

sin(λt)) ξt
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the exponential of a matrix is evaluated by means of Eq. (2.4), and assuming initial conditions

asx(0) = 1, ˙x(0) = 0, the solution can be obtained from Eq. (2.3). Plotting the response ob-

tained by the above solution and comparing it with a numerical solution of the Mathieu equation

generated by Mathematica, Fig. (2.1), we find the solution to be near exact. However, the erro-

neous behavior of the response can be observed as the present solution overestimates the actual

response. The response is very accurate for times close to the initial conditions. Making use of this

observation, a modified approach is used.

The state transition matrix has been assumed to be the exponential of a matrix, Eq. (2.3), and the

plot of the solution in Fig. 2.1 shows that this is valid for small time instants close to the initial

time. In order to minimize the error with an increase in time, we divide the time duration of interest

into intervals of 0.25 seconds and use the response at the end of each 0.25 second interval as the

initial conditions for the next 0.25 second interval. In other words, the response of the system is

governed by the following procedure.



xi+1

ẋi+1


 = Φ(t) .




xi

ẋi


 (2.8)

whereΦ(t) is the state transition matrix, described previously in Eqs.(2.3) and (2.4). The result of

this procedure is shown in Fig. 2.2. This result is compared with the numerical solution that uses

an implicit Adams method and is generated by Mathematica. Figure 2.2 shows that the solution to

the Mathieu-Hill equation as described by Eqs. (2.3) and (2.6) is valid. Since the implicit scheme

generated by Mathematica gives a very accurate solution, it is taken as the exact solution for com-
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Figure 2.1:Response of the Mathieu Equation̈x+0.1ẋ+(1−0.1cos(0.25t))x = 0 by the present

method without time marching and compared with the solution generated by Mathematica

using an accurate implicit numerical scheme
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Figure 2.2:Response of the Mathieu Equation̈x + 0.1ẋ + (1− 0.1cos(0.25t))x = 0 by Matrix

Exponential Time Marching with a time step of 0.25 seconds
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parison purposes. The order of the implicit Adams method that is being used by the Mathematica

package is not known exactly. However, the implicit Adams method was seen to match with the

solution generated using a Runge-Kutta 4th order iteration.

It can be seen that the results obtained by the modified approach are identical to the reference

results as seen in Fig. 2.2. Thus for the time period considered,∆t = 0.25sec, the exponential

of the matrix as given in Eq. (2.3) is the state transition matrix. Therefore the advantage of this

modified method is that a closed form analytical solution needs to be calculated only once and it

is applied to small intervals of time with each interval borrowing its initial conditions from the

previous interval.

2.2.1 Response Sensitivity to Selected Time Step

The Mathieu-Hill equation i.e. Eq. (2.6), can be made to possess a more rapid variation by either

increasing the value ofq or by increasing the frequency of the harmonic term,cos(λt). An estimate

of the time step required is obtained by setting theL2 norm of the error between the present

solution and the reference solution to a prescribed value. A measure of the error in the response

computed by the present solution can be obtained by noting the result of the non-commutativity of

the matrices, that is

e

∫ t

t0

[C(t)]dt
[C(t)]− [C(t)] e

∫ t

t0

[C(t)]dt
= ε(t) (2.9)

Therefore even if the exact solution to the problem is unknown, an estimate of the error is obtained

as a function of time. This can be used to estimate the time step required . In the present example,
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Eq. (2.6), the main sensitivity parameter is notq or λ but q
λ
. It was determined using Eq. (2.9) that

the time step chosen, i.e. 0.25 second is appropriate for allq
λ
≤ 0.4 when theL2 norm of the error

is fixed at 0.001. Similarly one can analyze the time steps required for other values ofq
λ
.

2.3 Rapidly Time-Variant System

The method of obtaining the response of a linear time-variant system by using Eq. (2.3) is now

applied to a rapidly varying time-variant system. The system has an exponentially decreasing

stiffness. This type of a system is chosen since 1) The variation in its system properties with

respect to time is very high, thus ensuring that assumptions of slowly varying systems cannot be

applied, 2) The system is unstable. Hence if the current methodology is applicable here, it can be

used in other circumstances where an instability needs to be predicted. The system is governed by

the equation

ẍ + ωn
2(t)x = 0 (2.10)

where the time varying natural frequency is given byωn
2(t) = 40 e−t. The variation in the natural

frequency chosen above is similar to the one used by Li49. The matrix,
∫ t

t0

C(t)dt in Eq. (2.3) is

then obtained as :

∫ t

t0

−C(t)dt =




0 t− t0

40e−t − 40e−t0 0




wheret0 is the initial time. The exact solution for this type of a differential equation, is given by

a summation of Bessel functions51. Plotting the result and comparing with the reference solution,

Fig. 2.3, the present solution obtained using Eq. (2.3) is clearly erroneous. Considering that we
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are modeling a time-variant system by an exponential of a matrix, this error is not large. However

we can reduce the error and reach an almost exact fit to the reference solution. We divide the time

duration of interest into steps of 0.2 second duration each and use Eq. (2.8), with the state transition

matrix being given by Eq. (2.5). Thus using one analytical result given by equation (2.4), but with

different initial conditions for each time interval chosen, one can provide a near-exact solution for

all subsequent time. Figure 2.4 shows that the present solution matches the numerical solution to

the system with an implicit Adams numerical scheme as generated by Mathematica.

Figure 2.3:Response of the rapidly varying system,̈x + 40 Exp[−t]x = 0 using the present

method but without resorting to a time marching procedure

Figure 2.5 shows the same result upto 40 seconds. The present method captures the reference

solution very well indeed. The results also tally with a fourth order Runge-Kutta method. How-

ever, the Runge-Kutta method requires a time step which is an order of magnitude less than the

present method. We now compare our scheme with the widely used, Newmark-β and Wilson-θ
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Figure 2.4:Response of the rapidly varying system,̈x + 40 Exp[−t]x = 0 using Matrix Expo-

nential time marching with a time step of 0.2 seconds.

methods. Among the explicit schemes, the fourth-order Runge-Kutta is seen to perform well. Fig-

ure 2.6 shows the response of the same system given by Eq. (2.10), but calculated by using the

Newmark-β method and Wilson-θ method with a time step of 0.04 seconds. These are compared

to the fourth-order Runge-Kutta scheme which gives an accurate solution. The present scheme is

seen to match the Runge-Kutta method even though a time step one order higher in magnitude is

used whereas the Newmark-β method and Wilson-θ method show erroneous results. The explicit

methods use discrete time steps since it is a numerical iteration for obtaining solutions to the gov-

erning differential equation Eq. (2.8). The present method provides a continuous solution in each

time interval of 0.2 second chosen in the present example.

Table 1 gives the error involved in using these numerical schemes and compares these schemes

with the present methodology. The Newmark-β and Wilson-θ methods are extremely sensitive to

34



the time steps chosen. To obtain results given in Table 1, a time step of 0.04 second was used as

an example. The time marching method with the exponential of a matrix was also performed at

intervals of 0.04 second to facilitate comparison with the other methods. One can see that the
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Figure 2.5:Response of the rapidly varying System̈x + 40 Exp[−t]x = 0 as computed using

Matrix Exponential Time Marching for large time with a time step of 0.2 seconds

present method can give excellent results even for a rapidly time-variant system. To approach the

accuracy of the present method, the time steps needed for the Newmark-β and Wilson-θ methods

has to be of the order of 0.002 second . Whereas, as shown in Fig. 2.5, using the time marching

scheme with the exponential of a matrix, an accurate result is obtained even with a time step of 0.2

second, two orders of magnitude better than the two widely used methods.
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Figure 2.6:Response of the rapidly varying System̈x + 40 Exp[−t]x = 0 using explicit nu-

merical schemes with a time step of 0.04 seconds and compared with the present method

Table 2.1: Results for Free Vibration using a 0.04 Second Time Step

Displacement of mass after 40 seconds

Method x(t)-Free Vibration Percentage Error

from Exact

Newmark-β 38.9785 12.57%

Wilson-θ 40.8566 18.005%

Present Method 34.6580 0.102%

2.4 Forced Oscillations of a Time-Variant System

All of the examples given previously dealt with free vibrations only. Now we consider a forcing

function. The exact differential equation formulation, Eq. 2.3 will be modified as
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d

dt
(e
R t
t0

[C(t)]dt{x}) = e
R t
t0

[C(t)]
Q (2.11)

where Q is the vector containing the forcing function. The exact solution of the problem will be

x(t) = xh(t) + xp(t) (2.12)

xh(t) andxp(t) are respectively, the homogenous solution and the particular integral. The homoge-

nous solution is the solution to the free vibration problem which has been examined in a great detail

previously. The particular integral is given by

xp = e
R t
t0

[−C(t)]dt

∫ t

t0

(
e
R t
t0

[C(τ)]dτ
Q

)
dt (2.13)

Depending on the type of time variation present in the exponential of a matrix in the above equa-

tion, Eq. (2.11), the integral may be difficult to evaluate, but in most cases it can be simplified.

To illustrate this procedure we consider the same example of Eq.(2.8), but with a forcing function.

The governing equation of the system is :

ẍ + ωn
2(t)x = 2 cos(0.5t) (2.14)

where the time varying natural frequency is given byωn
2(t) = 40 e−t. For simplifying the partic-

ular solution given by Eq. 2.11, we make the approximations that

limz→0 cosh(z) = 1 andlimz→0 sinh(z)− > z

This does not cause any discrepancy for the time interval sizes chosen in this analysis that is of

the order of 0.1 second. Having done this, the particular solution can be evaluated analytically in

a closed form. Using equations (2.11) and (2.12), the exact analytical solution for a small time
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period and the initial conditions for the subsequent time period can be calculated. Therefore the

procedure for obtaining the response of a time-variant system under forced vibrations is written as



xi+1

ẋi+1


 = Φ(t) .




xi

ẋi


 +




xpi

ẋpi


 (2.15)

1 2 3 4
time

- 2

- 1

1

2

x

-- - Numerical Adams

Implicit Method

____ Present Solution

with Time Marching

Figure 2.7: Response of the Forced System̈x + 40 Exp[−t]x = 2 cos(0.5t) using Matrix

Exponential Time Marching with a time step of 0.08 seconds

Figures (2.7) and (2.8) show the response of the forced damped system. The error between the

solution using Adams implicit scheme and the present method is seen to be negligible. It can be

verified from this that the present method can indeed predict the behavior of the system for all

times. Again this method was compared with Newmark-β and Wilson-θ methods. Table (2) shows

the comparison between the results obtained using the various methods. The present method is

shown to be much more accurate than the other methods. This is because an analytical solution
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was first determined. Hence this solution will be extremely accurate provided the time step selected

for time marching is small enough such that the non-commutativity of the matrices involved in the

exact differential formulation, Eq. (2.11), will not cause a discrepancy. For the present example,

we have chosen a time step of 0.08 second. Depending on the nature of the variation, a suitable
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Figure 2.8:Response of the forced system̈x + 40 Exp[−t]x = 2 cos(0.5t) for large time using

Matrix Exponential Time Marching with a time step of 0.08 seconds

time step will need to be chosen. However, it is emphasized that the current methodology can use

time steps one order larger than that required for methods such as the Wilson-θ and the Newmark-

β procedures and still get much better results as shown in Table 2. Wilson-θ and Newmark-β

methods were also run at a time step of 0.08 second. The value of the parameterθ in the Wilson

method was chosen as 1.4 as this ensures unconditional stability. Both these schemes show a lot of

sensitivity to the time step as shown in Fig. 2.9 wherein it is seen that the response of the system

after a time of 40 seconds moves away from the exact value of -81.7 as the time step is increased
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from 0.02 second to 0.08 second. The present scheme is quite insensitive to small variations in the

time step.
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Figure 2.9:Response of the forced system̈x+40Exp[−t]x = 2cos(0.5t) obtained by Newmark

-β and Wilson - θ methods showing their sensitivity to the time step

2.4.1 Forced Vibration of the Mathieu-Hill Equation

Shahruz52 gives an example of the Mathieu-Hill equation such as Eq. (2.5), but with a forcing

function on the right hand side,

ẍ + 1.8ẋ + (1− 0.8 cos(0.25t))x = cos(0.5t)

The authors52 used a ”time freezing” technique at particular instants to evaluate the solution and
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Table 2.2: Results for Forced Vibration using a 0.08 Second Time Step

Displacement of mass after 40 seconds

Method x(t)-Forced Vibration Percentage Error

from Exact

Newmark-β -73.935 9.65%

Wilson-θ -70.236 14.16%

Present Method -81.886 0.071%

this did not provide satisfactory results. Using the technique described here, of successive approx-

imation of the state transition matrix and using an updated initial conditions (Eq. 2.8) we obtain a

near exact result as shown in Fig. 2.10:

10 20 30 40 50 60
time

- 1

- 0.5

0.5

1

1.5

2

x

-- - Numerical Adams

Implicit Method
___ Present Method

with Time Marching

Figure 2.10:Response of the Mathieu-Hill Equationẍ+1.8ẋ+(1−0.8cos(0.25t))x = cos(0.5t)

using Matrix Exponential Time Marching with a time step of 0.08 seconds
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2.5 Stability Analysis

In the previous sections it was shown that the scheme of matrix exponential time marching is very

accurate and can be applied to any arbitrarily varying SDOF system. The question now arises as to

whether the stability of an arbitrarily varying system can be predicted by this method. This would

be an extremely advantageous result as there has been no single scheme that can be readily used for

any type of time varying coefficients. The present method of Matrix Exponential time marching

presents a simple technique of knowing the stability of any linear time varying system.

Consider Eq. (2.8) for the solution to an arbitrarily varying system. This is a time marching scheme

where the solution for the time intervali + 1 depends on the state transition matrix for that time

interval and the initial conditions for that time interval. However the initial conditions for this time

interval depends on the state transition matrix for the previous interval. This explanation can be

extended backwards to the start of the time marching. Hence the stability of the scheme depends

on the state transition matrix. This is calculated using Eq. (2.5). The coefficient multiplying the

matrix in Eq. (2.5) is the terme
c11 + c22

2
sinh(∆)

∆
. This is the multiplying factor through out

the time marching scheme. Hence for stability of the scheme

|e
c11 + c22

2
sinh(∆)

∆
| < 1 ∀t > 0 (2.16)

Using Eq (2.9), the time interval for the validity of the matrix exponential marching scheme can be

determined. Once this has been done, the use of Eq. (2.16) reveals the stability of the system. For

example, consider Eq. 2.6. This is a stable system. The plot ofe
c11 + c22

2 sinh(∆)
∆ versus time
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as shown in Fig. 2.11 shows a monotonically decreasing function with a value below 1. Hence the

method as described by Eq. (2.16) immediately verifies that this is a stable system. On the other

hand, consider the system governed by equation (2.10). The plot ofsinh(∆)
∆

versus time as shown

in Fig. 2.12 shows a monotonically increasing function saturating at a value of one. Hence by

using Eq. (2.16) we conclude that this is an unstable system. This was verified to be true from the

response shown in Fig. 2.8. Thus the stability of any linear time variant system can be predicted

without having to solve the respective differential equation.

2.6 Critically Damped Time-Variant System

Damping was considered in studying the response of the Mathieu equation. However, the damp-

ing was not time varying. The understanding of system damping is still a research area. Many

authors like Amabili53 consider proportional damping to a time-variant stiffness. Here, we define

a critically damped system possessing time variance in stiffness and damping. A critically damped

system is required whenever the time for the system to return to equilibrium position should be a

minimum. An example of such an application is in shock absorbers for mounting motors or other

equipment where vibration of the assembly is not acceptable. Critical damping is also used in

control systems to stop oscillations of the system about the equilibrium value. For a time-invariant

single degree of freedom (SDOF) system, it is a standard practice to define the coefficient of damp-

ing asζ = c
2
√

km
and classify the damping depending on whetherζ is greater, less than or equal to

unity.
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When we consider the parameters to be varying with time, such a classification can still be used

if the system parameters are slowly time varying. For a time-invariant system, a critically damped

case would mean identical roots to the characteristic equation of the differential equation of mo-

tion. This means that the eigenvalues are not distinct. The assumption was made in the previous

sections involving calculation of the exponential of a matrix, that the equation shall possess distinct

eigenvalues. This can also be similarly evaluated for non-distinct eigenvalues, but for the critically

damped system, we shall make use of a different approach. Consider the system governed by Eq.

2.1 with no external forcing. The assumption is now made that the rate of change of the natural

frequency is always negligible in comparison with the natural frequency itself. If this is the case,

then the system with a damping coefficient that does not vary significantly away from unity can be

modeled as

d

dt

(
1

ωn(t)

d

dt

(
x e

R t
0 ωn(t)dt

))
= 0 (2.17)

This equation when expanded will result in:

ẍ + (2 ωn(t)− ω̇n(t)

ωn(t)
)ẋ + ω2

n(t)x = 0 (2.18)

Clearly if ωn(t) is slowly time varying, thenω̇n(t)
ωn(t)

is small in comparison with(2 ωn(t)). If this

assumption is made, then this time-variant system given by Eq (2.14) will always be critically

damped.

The natural frequency is assumed to vary in an exponential fashion as

ωn(t) = 10− 1

(0.5 exp[−t] + 2)
(2.19)

This variation in natural frequency is similar to the bending stiffness variation in viscoelastic ma-
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Figure 2.13:Variation of the natural frequency of the critically damped systemẍ+(2ωn(t)−
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Figure 2.15:Response of the critically damped system̈x + (2 ωn(t)− ω̇n(t)
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terials as assumed by Ackleh47. The variation of this function is shown in Fig. 2.13.

From Eq. (2.15), we can see that the coefficient of damping would be given as

ζ(t) = 1− ω̇n(t)

2ω2
n(t)

(2.20)

The variation of the coefficient of damping is shown in Fig. 2.14 and it shows that the damping

coefficient is almost uniformly equal to unity. The response of the system from Eq. (2.15) is

x(t) = e−α (c1 α + c2) whereα = 10t− 0.5 ln(0.25 + et)

The plot of the response is shown in Fig. 2.15. This response is the exact response for the critically

damped system.

Thus the concept of critical damping has been described for a SDOF system with slowly time

varying natural frequency and an analytical procedure for determining its response for all times has

been described. The method of using the exponential of a matrix can also be used here. However,

when the system is subjected to the restriction that the rate of change of the natural frequency is
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always much less than the natural frequency itself and is critically damped, the above procedure

of writing the equation of motion in the form of Eq. (2.15) is more lucid in its delineation of the

system behavior.

2.7 Comparison with Other Similar Techniques

Reference 35 recommends averaging the time varying parameters over each subdivided time pe-

riod. Thus for each time interval, the governing differential equation becomes a constant coefficient

differential equation, the constant coefficients being the average of the time varying parameters

over that interval. To compare the present methodology with the method proposed in Ref. 35,

the Mathieu differential equation in Eq. (2.6) is solved with the constants taken asa = 0.9975,

λ = 0.25 andq = −1.9. It should be noted that the choice of such constants in Eq. (2.6) renders

the system to be unstable. The differential equation , Eq. (2.6) is solved for each period with the

time varying parameter replaced by its average for that period. Using this approach, Eq. (2.6) was

solved using the same times step as before, that is 0.1 second. One can see from Fig. 2.16 that the

results are not accurate. However, the present method of matrix exponential time marching with a

time step of 0.1 second gives very accurate results as seen in Fig. 2.17. Thus it can be concluded

that the time varying parameters should not be averaged over the time period, if such large time

steps are desired. Instead, use Eq. (2.8) with the state transition matrix for each time period being

given by Eq. (2.5).

Figure 2.18 compares the result obtained using the method provided in Ref. 35 wherein the time
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Figure 2.16: Comparison of the response of the Mathieu Equation̈x + 0.1ẋ + (0.9975 +

1.9cos(0.25t))x = 0 by the Matrix Exponent Time marching method with Averaging the

time varying parameters over each time period with the Implicit Adams Method

varying parameters are averaged over each time period, with the exact solution for the system with

an exponentially varying stiffness that is governed by Eq. (2.8). It can be seen that the solution

obtained thus is erroneous. The present method with a time step of0.08 seconds predicts very

good matching with the theoretical result as seen in Fig. 2.19. From these illustrations it can be

concluded that the present method for solving arbitrary time varying systems is very accurate and

efficient for single degree of freedom systems. The method is also extremely stable and hence can

be used to predict instabilities.

Since the method is based on integration over a time domain, it is similar to the concept of time
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Figure 2.17: Comparison of the response of the Mathieu Equation̈x + 0.1ẋ + (0.9975 +

1.9cos(0.25t)x = 0 by the Matrix Exponent Time Marching method without averaging the

time varying parameters with the Implicit Adams Method

finite elements wherein the governing equation is integrated over a period of time

∫ t

0

(mẍ + cẋ + kx− f(t))ξ(t) = 0 (2.21)

Here,m, c, k represent the mass, damping and stiffness respectively andf(t), ξ(t) represent the

forcing function and a weighting function respectively. In time finite elements, the solution is

taken as

{x(t) =
n∑

i=0

Ciχi(t) (2.22)

whereCi are nodal displacements andχi(t) is the trial function which could be a Legendre polyno-

mials or Chebyschev polynomials. Equation 2.18 is now substituted in Eq. (2.17). The weighting

function,ξ(t) is usually taken as the trial function itself. An advantage of this, is the fact that many
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Figure 2.18:Comparison of the response of the rapidly varying system,̈x + 40 exp[−t]x = 0

using Matrix Exponent time Marching with averaging the time varying parameters over each

time step with the Implicit Adams Method

trial functions are orthogonal with respect to themselves or orthogonal with respect to the product

of the trial function with another variable. This greatly simplifies the integral in Eq. (2.20). How-

ever in this type of representation given by Eq. (2.20) and (2.21), the initial conditions have to be

enforced in the form of constraints.

In the method presented in this chapter, the time domain was divided into sub-intervals with an

analytical solution for each sub interval. The matrix exponential of the coefficient matrix was used

as the trial function. In this sense, this method is similar to the method of Time-finite elements.

However, the initial conditions are directly formulated into the problem and are not imposed in the

form of constraints. As can be seen from the various comparisons, Figs 2.1-2.19, this method of

matrix exponential time marching is highly accurate and stable.
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Figure 2.19:Comparison of the response of the rapidly varying system,̈x + 40 exp[−t]x = 0

using Matrix Exponent time marching without averaging the time varying parameters with

the Implicit Adams Method
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Chapter 3

Artificial Neural Networks

As mentioned in the Introduction, artificial neural networks attempt to imitate the function of the

human nervous system. In this dissertation, the application of neural networks to track the re-

sponse of fluid-structure interactions is considered. Figure 3.1 describes the general architecture

of a neural network. The main constituents of a neural network are the weights which multiply

each input and the functional operation performed to each such weighted input. For example if the

functional operation,f(x) which happens to be the transfer function of the first layer, is a linear

operator, then the output of the first layer is a weighted sum of the inputs, i.e., the output of the

first layer is

y =
n∑

i=0

Wixi

On the other hand, if the operatorf(x) happened to be a non-linear function, such as a Sigmoidal

function, then the output of the first layer could be
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Thus depending on the layer transfer function, a rich blend of system representations can be made.

Further, as seen in Fig. (3.1), the output from each layer is used as the input to another layer

for more functional operations. Thus the underlying mathematics of the neural networks can be-

come quite complex. Neural networks are classified based on whether they represent deterministic

Figure 3.1: Schematic diagram depicting two layers of a neural network, with input weights

��, layer transfer functions, ���	 and ���	, Neuron Biases, � and �

systems or stochastic systems. Stochastic neural networks have a probabilistic state associated

with each neuron and they are usually trained based on thermodynamic principles. In this work,

only deterministic neural networks will be considered. These can be classified according to the

organization of neurons as

1. Feed Forward Networks: In this type of neural network architecture, the flow of data is
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always uni-directional, that is, the input of one layer of the neural networks is obtained

only from the previous layer. However, during the training process, the neural networks

require back propagation techniques, that is, the weights of a layer are adjusted depending

on the output of the next layer. If an input vector,x = [x0, x1, ...xn] and an output vec-

tor y = [y0, y1, ...yn] are defined, then feed-forward networks provide a mapping,ν(W,x),

parameterized by the weightsW to map the defined inputs given to the first layer with the

defined outputs that emerge from the last layer. Feed forward neural networks are gener-

ally used for input-output mapping where the mapping is not time dependent. However

dynamical systems can also be modeled using feed forward networks if appropriate training

algorithms are used.

2. Recurrent Neural networks: Recurrent neural networks have the output of the network fed

back to previous layers to form a new input of the network. Hence recurrent neural networks

are able to represent time delays and transient response. These neural networks can represent

dynamical systems. Some of the popular recurrent neural networks are the Hopfield, Elman

and Jordan networks. The names are based on the authors of the networks. Hopfield54

networks are capable of converging to a stable attractor of the dynamical system given an

initial conditions set. Hence they can be used to locate stable fixed points of the dynamical

system. For obtaining the transient response of the system, Elman or Jordan networks are

used. These networks have the output of the previous time step as an input to the hidden

layers55. Jordan and Elman neural networks differ only by the layer from which the feedback

occurs. In Jordan type networks the output of one time state is fed-back to the input layer

55



for the next time state. In Elman neural network, the output is fed-back from the first hidden

layer to the input layer. The number of layers is not important provided at least one hidden

layer exists. The design of the layers needs to be carefully selected so that the number of

layers used is minimized.

3. Self Organizing Maps: The basic Self-Organizing Map (SOM) is a sheet-like neural-network

array of neurons which arrange themselves according to some fixed pattern. A random

output vector is chosen from the given data set. The weights of the neuron are chosen such

that the weights that best map the input to the output get trained best. Now another output

vector is chosen for which the process repeated. Hence this results in a pattern of neurons,

each pattern capable of reproducing one type of output. As is evident, this type of neural

networks are usually used in image processing or speech recognition. The design of these

type of networks was first implemented by Kohonen56 in 1982.

3.1 Aeroelastic Applications

Aeroelastic calculations involve fluid-structure response coupling. This means that every displace-

ment of the structure under fluid dynamic loads predicted by a structural solver will in-turn alter

the fluid dynamic response. This coupling between the aerodynamics and structural behavior can

lead to very large computational costs for aeroelastic analysis that requires use of computational

fluid dynamics/computational structural mechanics. Hence efficient alternative methods that can

provide rapid aeroelastic response solutions need to be investigated. In the present dissertation,
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both static and dynamic aeroelastic problems will be investigated through the use of neural net-

works. Neural networks must be able to represent the aeroelastic response of a structure given

the system parameters. In a static problem, the boundary conditions will be specified and in a dy-

namic problem, the initial conditions are specified. The type of neural networks required is largely

dependent on the inputs/outputs of the network.

The static aeroelastic problem that will be handled here, different from the classical divergence

problem, is the deformation of an adaptive bump on the surface of an airfoil. This bump is de-

formed based on elasticity principles under the action of actuator forces. However, since the bump

is situated on an airfoil in a free stream, there are also non-conservative aerodynamic forces which

change significantly as the bump deforms. Such a problem requires a large number of data sets that

can capture the bump shape and the fluid dynamic pressure over its surface. However, the amount

of data sets for the network training could be minimized by fitting suitable functions to the data and

using the coefficients of such fits as the inputs/outputs of the neural network. The deformation can

also be represented incrementally with respect to the increase/decrease of actuator loading. From

the above classification of neural networks, the best representation would be a feed-forward neural

network.

For dynamic aeroelastic applications such as flutter control or gust alleviation, a time stepping

aerodynamic scheme and a time stepping structural dynamic scheme are required. Using conven-

tional finite difference schemes for the numerical integrations of the equations of aeroelasticity

(Eq. 1.2), requires very small time steps of the order of10−3. Similarly, training of neural net-

works based on these numerical results for dynamic aeroelastic problems requires that the time
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step is small. Otherwise, noise generation could be a problem. For such time stepping schemes,

the use of recurrent neural networks is advantageous. Here, the neural networks are trained for a

small sample of the output, which could be the pitching angle of an airfoil, the coefficient of lift

etc. This sample output which is confined to a certain time interval will be one of the inputs to

the next sample of the succeeding time interval. Figure 3.2 shows the result of using a recurrent

neural network for training a time variant dynamical system. As can be seen, the initial response
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Neural Network Response
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Figure 3.2:Response of the system̈x + (100 + 10sin(t))x = 20Sin(t) as computed using an

Elman recurrent neural network with 0.04 second interval of time used in the time marching

is erroneous in the amplitude and also possesses some noise. However, as time progresses, there

is an improvement in the quality of the neural network simulation when compared with the theo-

retical result. Feed-forward neural networks can also be used for dynamic aeroelastic problems,

provided a suitable training algorithm is developed. In Chapter 5, a suitable representation of

dynamic aeroelastic response through feed-forward neural networks is presented.
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3.2 Neural Network Training

The training of the neural network is the most important process in the representation of any sys-

tem using neural networks. Most neural network training routines are gradient based, that is they

require the calculation of the derivatives of the output with respect to some parameters. Accord-

ingly, the methods of training that are used can be classified as steepest descent methods, conjugate

gradient methods or Gauss-Newton methods. The steepest descent and conjugate gradient methods

are first order methods that require the computation of the Jacobian of the estimated error in the

output with some parameters. These methods can be written in the following form

xk+1 = xk − δk Jk (3.1)

Here, the output at iterationk + 1 is dependent on a learning rateδk and the Jacobian matrixJk

constitutes the first derivatives of the error in the neural network output with respect to the neu-

ron weights. The learning rate is a constant for the steepest method. Conjugate gradient methods

choose the direction of the gradient based on certain conditions. Two popular Conjugate gradi-

ent schemes are the Fletcher-Reeves and the Polak-Ribiere method. More information on these

schemes can be found in Ref. 57.

A second order gradient based scheme is the Gauss-Newton method, a popular version of which is

the Levenberg-Marquardt method. Here the first and second derivatives of the error in the neural

network output needs to be estimated. Thus the Jacobian and Hessian matrices needs to be evalu-

ated. The computation of the matrix of the second derivatives of the error with respect to the neuron

weights constitutes the Hessian matrix. It is clear that the Gauss-Newton second-order methods
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are computationally expensive and need a significant amount of system memory. However they

are very reliable numerical schemes and have a faster rate of convergence than the conjugate gra-

dient/steepest descent methods. The Levenberg-Marquardt method can be written mathematically

as

xk+1 = xk − (H + I δ)−1JT e (3.2)

whereH is the Hessian matrix,δ is a constant diagonal multiplier ande is the error in the output.

The Levenberg-Marquardt algorithm provides for a diagonally dominant matrix by means of the

added constantδ. Many of the neural networks trained in the aeroelastic analysis that are described

in Chapters 4 and 5 are based on the Levenberg-Marquardt method.

The MATLAB software package has a versatile neural network toolbox and in this dissertation, the

training of neural networks is done using this toolbox. Figure 3.3 depicts the training process using

the MATLAB routine, ”trainrp” or training using the method of resilient back-propagation. This is

a steepest descent method with scaled partial derivatives. One can see that, using this method, the

error in the network output for the given data set is far from the desired tolerance of10−8. Hence

the data set, the network architecture or the training routine must be changed. If a different training

routine performs to satisfaction, then the data set and the network need not be altered. The same

network is now trained using the Levenberg-Marquardt method.

Figure 3.4 shows the convergence obtained between the Neural network output and the desired

target using the Levenberg-Marquardt method. One can see that within a short duration of training,

the desired accuracy was obtained. Hence for the designed network with the given data sets, the

Levenberg-Marquardt method should be used for training. Figure 3.5 describes the goodness of
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Figure 3.3:Convergence of the Neural Network to the desired target using the Resilient Back-

Propagation training routine

fit between the neural network simulation of the target data and the actual target. For a perfect

fit, the plot of the simulated output versus the original output should be a straight line with a unit

slope. Figure 3.5 shows that this is nearly achieved in this training process. However, as mentioned

earlier, care must be taken that the network behaves appropriately when interpolating between the

original design points that were used in training.

The time duration of one training session depends on the size of the data set and the number of

neurons in the neural network. Figure (3.3) and (3.4) show that the neural network was trained for

100 ”epochs”. Each ”epoch” is the time taken for sampling a different input pattern, i.e. each time

during the training that the weights of the neurons in one layer are adjusted so as to change the input

to the next layer in order to reach the target. The duration of each epoch depends on the input data
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size and the time taken for each iteration of the gradient based training scheme. For the networks

used in this dissertation, the average epoch training time was around 15 seconds. Therefore 100

epochs of the training take approximately 25 minutes. Some of the networks like the ones used in

Chapter 5 for dynamic aeroelasticity may take slightly less time. Some networks used in Chapter

4 for static aeroelastic calculations may take slightly longer, but the average time is around 25

minutes. Sometimes, this training may not be satisfactory like the routine depicted in Fig. (3.3)

and hence alterations have to be made in the neural network or in the training routine and a new

training sequence has to be initiated. In Fig. (3.4) a new training routine, the Levenberg-Marquardt

method was used which was shown to converge to the desired accuracy level.

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

10
2 Performance is 7.9321e−08, Goal is 1e−08

100 Epochs

Tr
ai

ni
ng

 E
rr

or
 N

or
m

Figure 3.4:Convergence of the Neural Network to the desired target using the Levenberg-

Marquardt training routine

For dynamical systems, the input-output relationship must capture the state of the system. Haykin41

defines a state of a system as ”A set of quantities that summarizes all the information about the
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Figure 3.5:The result of an accurate training of a neural network, showing the output of the

neural network fitting the target data very closely

past behavior of the system that is needed to uniquely describe its future behavior, except for the

purely external effects arising from the applied output” Hence for dynamical systems, first a state

space model must be developed before developing the neural network model. The next two sec-

tions describe the method of developing neural network models and their application to non-linear

systems.

3.2.1 Algorithm For Selection and Training of Neural Networks

Here the procedure for designing a neural network to represent the desired input-output mapping

is outlined.

1. Decide on the type of system output, whether it is of stochastic nature or deterministic. In
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the present work, only deterministic networks are described.

2. Decide the type of neural network connectivity, i.e., is it feed-forward, recurrent or some-

thing else. This is a critical factor especially when dealing with dynamical systems or with

very large data quantities.

3. Decide on the layer transfer functions to be used depending on whether the system that is

being represented behaves non-linearly or linearly. Typically the common layer transfer

functions are a) Linear Ramp, b) a threshold type function, c) Hyperbolic Tangent and d)

Sigmoidal or Logistic functions. The details of these transfer functions can be obtained from

Ref. 41.

4. Arrange the neurons in different layers for optimal performance. The input layer typically

has one neuron for every input item that has to be weighted. The output layer has as many

neurons as output data items. In between the input layer and the output layer, are present the

hidden layers whose neural structure has to be carefully designed.

5. Choose the training routine. As was mentioned earlier, gradient based schemes can be first

order or higher order based convergent schemes. There are also non-gradient based schemes

for training neural networks. One such method is the use of Genetic Algorithms. Genetic

Algorithm is a rule based scheme which is usually used to select global optima for a par-

ticular objective. However, they can be tuned to minimize the error in the neural network

representation of the target data. One training routine may not be sufficient. The trained

network may need to be adapted suitably when different input data sets are presented to it.
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6. Decide on the input and output data set. Scale the data sets to a constant order of magnitude.

For non-linear problems, the neural networks will have to be properly initialized since the

convergence of the training routine can depend on the initial conditions.

7. Test the trained neural network with different sets of data to check for consistent perfor-

mance. The neural network simulation should not deteriorate drastically in the domain de-

fined by the input data sets.

8. If the performance is consistent, then decide on the boundaries of operation of the neural

network with regard to the input data. If the performance is below tolerance, then change

the data sets, the training routine or the initial conditions. If no clear training routine can

be selected even after repeated trials for correct input and output data sets, then re-start the

procedure from item 2.

3.3 Representation of Non-linear Systems

The output of the neural network is a weighted summation of the inputs operated upon by a non-

linear function. This type of representation is a parametric representation and it is ideal for simu-

lating non-linear behavior. The Weiner-Hammerstein model for parametric representation of non-

linear systems allows for any non-linear dynamical system to be decomposed into

a) A zero memory non-linearity operated upon by a linear dynamical model.

b) A linear dynamical system operated upon by a zero memory non-linearity.

These methods are termed to be parametric because the given non-linear system is represented by
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assuming a fixed model. What remains to be decided is the estimation of the design parameters

of this fixed model. Hence a neural network is a parametric representation. On the other hand,

non-parametric representations of non-linear systems also exist. Here the model structure has to

be decided first, before deciding on the design. A popular non-parametric representation of non-

linear dynamical systems is the Volterra series. In the Volterra series representation, the response

of the non-linear system is evaluated as an infinite summation of higher order impulse response

functions.

y(r) = h0 +
n∑

i = 0

h1(i) x(r− i) +
n∑

i = 0

n∑

j = 0

h2(i, j) x(r− i) x(r− j) + ... (3.3)

Herehi are the impulse response for a sudden change in the functionx. Higher order impulse

responses are the evaluation of the system response to the sudden inputsx given at different time

instants. As can be seen such a representation can be very complicated. Nonlinear Aeroelas-

tic representations using Volterra series has been used by Silva13 and Librescu58 Another type of

parametric representation of non-linear systems are the NARMA models. Nonlinear Autoregres-

sive Moving Average Model(NARMA) is a discrete time representation of a non-linear system by

state values at N previous time instants.

y(k) = F(y(k− 1), ...,y(k−N),u(k− 1), ...,u(k−N)) (3.4)

HereF is a non-linear function operating on the response of the systemy(k− i) and the system in-

putu(k− i). For a linear system, the functional operationF would be only a weighted summation.

This is called an Autoregressive Moving Average Model (ARMA). From the details of recurrent

neural networks, the method used is a type of ARMA or NARMA model, since the neural network

66



is based on functions operating on past network outputs and current inputs. Further details on

NARMA can be found in Ref. 59.

As can be seen, neural networks that represent dynamical systems must be able to remember past

states. Recurrent neural networks possess this capacity. Recurrent neural network representations

of dynamical systems implicitly possess the impulse function response of the system to the given

input. Hence theoretically once the dynamical system has been represented by the right recurrent

neural network architecture, the neural network should be able to emulate the dynamics of that

particular system under any loading. Recurrent neural networks can be looked as ”folded” feed-

forward networks. There is one folded layer for every time instant of operation. This folded layer

has its output fed back to the input of the previous layer for the next time step. The feedback

causes a time delay and also gives the network the capability to possess memory about its past

states. A recurrent neural network can be ”unfolded” by removing this time delay and duplicating

the previous layers as feed-forward connections. This implies that the new feed-forward network

obtained from the recurrent network is much more massively inter-connected and hence cannot be

computationally efficient. However, many training algorithms for recurrent neural network training

implement this ”unfolding” procedure to train the network using back-propagation algorithms.

Apart from recurrent networks, feed-forward networks can also be used to represent dynamical

systems, if the network has the capacity to emulate the state of the system for every time instant

of interest in the domain of computation. The main factor to be taken into account while training

neural networks to represent dynamical systems is that a sufficiently large time step for transient

response simulation must be made possible. Otherwise, very large data sets will be necessary to
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account for the state variables at every time step. Large data sets in the training routine can lead

to improper data fitting. Neural networks are a more advanced version of response surfaces and as

such each layer of the neural network is a type of ”response surface” which is operated upon by

further layers of the neural network.

In the following chapters is described the analysis of aeroelastic response through neural networks.

Chapter 4 discusses the static aeroelastic response calculations for an adaptable bump on the sur-

face of an airfoil. In Chapter 5, a feed-forward neural network is designed for dynamic aeroelastic

response calculations. Hence both static and dynamic aeroelastic computations can be performed

through neural networks. This allows for a computationally rapid calculation of the fluid-structure

interaction. Conventional aeroelastic computations used to treat the airfoil as a flat plate and in-

viscid aerodynamics were used. With developments in the aerospace industry, this representation

was no longer accurate. Accurate fluid dynamics and accurate geometry of the airfoil or wing

surface are required. Such aeroelastic analysis could also possess non-linear aerodynamic and/or

non-linear structural dynamic calculations. The coupling between the aerodynamic and structural

responses for the aeroelastic analysis also provides tremendous computational challenges. Hence

a lot of interest has been generated60,61 in rapid computational schemes for aeroelastic analysis.

Neural network representations of fluid-structure coupling are suitable means to implement such a

rapid aeroelastic solver for both linear and non-linear aeroelasticity.
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Chapter 4

Aeroelastic Analysis of a Deforming Surface

using Neural Networks

The use of Computational Fluid Dynamics (CFD) for obtaining gradient information for optimiza-

tion methods is a very daunting task. It can be extremely difficult to extract gradients of aerody-

namic coefficients with respect to airfoil surface parameters using CFD alone. However for the

computational analysis of flows wherein there is separation, there is no alternative to using compu-

tational fluid dynamics. Hence numerical techniques such as the continuous adjoint method62 have

been devised to extract the sensitivity information of the flow parameters to various independent

variables. To extract gradient data regarding the sensitivity of the flow to airfoil surface contours,

it is easier to use expert systems such as neural networks which are trained with aerodynamic data

from prior CFD runs. This chapter focuses on the aeroelastic analysis of a deforming bump on

an airfoil surface. The design of this bump results in sufficient drag for lateral directional control
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of the aircraft while at the same time minimizing loss in lift due to fluid separation. The idea is

borrowed from the concept of split flaps or spoilers that are used in tailless aircraft such as the B-2

bomber. The deflected spoilers use flow separation on one wing to cause an unsymmetrical drag

force resulting in a significant yawing moment. Here a bump is used to separate the flow over the

airfoil. Higher drag increases are obtained for higher curvature changes in the bump shape. How-

ever, the larger the curvature change, the higher is the energy required for the bump deformation.

The energy available for deformation is limited due to the use of non-hydraulic actuators. Also,

a bump situated at the leading edge can separate the flow for a much smaller bump size than a

bump situated downstream. But the flow is very sensitive to leading edge perturbations resulting

in drastic reduction in lift. Hence this is an optimization problem of designing a deforming surface

that provides maximum drag for maneuverability with minimum loss in lift and minimum strain

energy of deformation.

The aerodynamic analysis is performed using the CFD software Fluent. The structural analysis

of the airfoil bump is done using the ANSYS software. Since the structural model that is used

involves buckling of an elastica under various loads, a non-linear finite element calculation is per-

formed using frame elements. The structural analysis is performed in an incremental fashion with

the aerodynamic pressures before deformation of the bump being corrected using the trained neural

network after deformation of the bump. The bump deforms under the actuator loads and aerody-

namic loads. The effect of this deformation is to change the aerodynamic loads. The changed

aerodynamic static pressure is calculated using the neural network that had been trained using

FLUENT data. The ANSYS analysis is again performed using this changed aerodynamic pres-
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sure. This procedure is repeated until an equilibrium position of the bump is achieved. A series of

such ANSYS runs is performed using a variety of actuator loading. The results obtained are used

in training a Neural Network for the structural model.

Figure 4.1: Actuation mechanism for creating an adaptable bump at the leading edge of an

airfoil

4.1 Yaw Moment Generation

The change in drag over the wing due to a leading edge bump will lead to a yaw moment. If 2D

aerodynamics is used to calculate the drag, then the yawing moment coefficient is defined by
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In Eq. (4.1),η is the non-dimensional span andc(η) is the chord variation across the span. For

the drag force to be effective, the bump must be located on the outboard wing; from the wing tip

to a certain span distanceβ. Since the leading edge governs the formation of the boundary layer,

the bump must be situated near the leading edge. The flow on the bottom side of the airfoil is

quite insensitive to the presence of bumps. The size, shape and location of this bump is critical

to the determination of the drag rise. Bauer63 describes the yaw moments generated due to the

presence of micro drag generators (MDGs) on the top surface of the wing. Raney64 details the

effect of shape change arrays on an adaptable wing in producing yaw. These accounts indicate that

a yaw moment coefficient of the order of10−3 is adequate. Incorporating the wing geometry in

Eq. (4.1) would then reveal the change in drag force required to obtain the desired yaw moment

coefficient. The usual practice for control of aircraft lateral dynamics is to use deflected spoilers.

This is extremely dependent on the rate of spoiler deflection65. Moreover, spoilers separate flow

by providing an obstacle to the boundary layer. Whereas, in the present work, the adaptive bumps

separate flow by providing for an adverse pressure gradient. Therefore the size of the bumps at

the leading edge are much smaller compared to the width of a spoiler. In contrast, if the bump is

provided at the trailing edge as an imitation of a spoiler, the size of the bump required to generate

sufficient yaw moment would be too high and hence the actuation energy needed to create such a

bump would be too high to be realistic.
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4.2 Structural Model

Here it is proposed to analyze the structural deformation of the bump using a beam model. The

bump is deformed using applied axial and transverse actuator loads under the non-conservative

aerodynamic loads. Since one of our requirements is to minimize the energy required for defor-

mation, we look at the minimum energy curve. The minimum energy curve is the curve described

by a pinned-pinned elastica. This curve is obtained by applying horizontal forces greater than the

Euler critical load to the ends of the elastica.

Figure 4.1 describes a portion of the leading edge of the airfoil. Under the airfoil skin is shown

a curved elastica. Using the actuator forces as a means for buckling the elastica element, a bump

is created on the airfoil surface. Vertical actuator forces to change the shape of the bump are also

required. The elastica shape is the minimum energy bump on the airfoil surface for a specified

bump height and size. However, this bump will not give highest drag. Thus the bump shape

is optimized such that sufficient drag for the production of a yawing moment is obtained, while

minimizing the actuation energy required. The behavior of the elastica after bending, is non-

linear with respect to the elastica slope. The aerodynamic forces on the bump also continously

change with the bump shape and size. Therefore, we have a non-linear system subject to non-

conservative forces. The solution to such a problem, even in 2-D is not straightforward. Since

the aerodynamic forces are also non-uniform over the bump, a finite element model is used to

solve the problem. These aerodynamic forces are evaluated from the CFD model. The effect of

these changing aerodynamic forces on the actuators is significant in the sense that maintaining
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a state of constant deformation is difficult. In order to modify this elastica shape into a curve

which produces more drag, additional actuator forces will need to be applied normal to the airfoil

skin. Thus a distributed array of actuators is required depending on the extent of shape change

necessary. This analysis of the deformation of the bump under a set of actuator forces and fluid

dynamic pressure is done using ANSYS. A frame finite element is used with 2 nodes per element.

The frame finite element has 3 degrees of freedom per node that is 2 translations and an in plane

rotation. Non-Linear analysis is performed in ANSYS using incremental loading and specifying

the number of steps for each load to be applied in full. For each load step the displacement is

determined using a Newton-Raphson iteration.
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Bump A Bump B

Bump C Bump D

Bump E

Figure 4.2: Various bump shapes that were used for training neural networks to represent

the aerodynamic load over the bump
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4.3 Aerodynamic Model

Figure 1.1 shows the computational grid, made around an8% thick symmetric airfoil. The free

stream is at an angle of attack of50. The free stream Mach number is set at one of the two values

of 0.3 or 0.7. This is to investigate effectiveness of the bump shape optimization at low speed flow

and moderately high speed flow. Since drag forces varies as the square of the velocity, the bump

deformation for a higher Mach number, may not require as large a deformation as the bump used

in the lower flow velocity. However this remains to be investigated.

Using pressure far field boundary conditions, ak − ε turbulence model and an implicit coupled

Navier-Stokes solver with upwind finite differencing, the fluid flow is modeled in the CFD software

Fluent. Better turbulence models such as Reynold’s averaged stress 5 equation model could not

be used due to the computational time involved. Thek − ε model uses the Boussinesq hypothesis

wherein the turbulent stresses are expressed as the product of the isotropic eddy viscosity and the

mean velocity strain rate. A variation of the standardk − ε termed as ”Realizablek − ε” model

is provided by FLUENT and this is used herein. The Reynolds numbers of the current study is

close to107. Since this is a high Reynold’s number region, we use the Realizablek − ε model as

suggested by Shih66. For separated flow, an unsteady flow solver is used. The convergence limit

is based on the convergence of the aerodynamic forces. The airfoil is modeled using B-splines.

The mesh representation of the airfoil must reflect the true leading edge shape and the bump shape.

Hence the grid is extremely fine near the airfoil surface. To capture the effect of flow separation and

possible subsequent re-attachment, a grid adaptation is done at the airfoil surface. The aerodynamic
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loads on the bump surface can be obtained at every incremental step in the process of increasing the

bump size. These aerodynamic forces are made available to the structural model. The effect of the

bump on the flow can be seen even before flow separation, by noting the boundary layer thickness.

Once a vortex shedding pattern emerges at the bump, the flow solver is switched from the steady

solver to an unsteady implicit solver. Though the separated flow is unsteady and turbulent, it is not

chaotic. There is repeatability in the analysis with regard to the aerodynamic forces.

4.4 Neural Network Implementation

Neural Networks are a very versatile tool to predict a system response given prior data about the

system behavior. Optimization procedures based on neural networks has been used for analyzing

wing structures using equivalent skin analysis67. In the present work, an aeroelastic optimization

tool is developed using trained neural networks. The neural network package available in the

MATLAB software is used. The data required for training the neural network is :

1. The bump parameters : Size, shape and location.

2. The aerodynamic forces : Lift, drag, static pressure over the bump.

3. The actuation energy required, the actuator loads.

The parameterization of the bump is done using cubic splines. Though other representations of the

bump such as Hicks-Henne bump functions were tried, it was found that a single cubic spline fit is

satisfactory. Then the equation of the splines is given as
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y(x) = a0 + a1x + a2x
2 + a3x

3

where, the bump is defined byy(x) and the coefficientsa0−a3 need to be determined for different

bump shapes. The coefficients of the cubic spline which represent the bump are used as inputs to

the neural network. The x span values of the bump are normalized so that they range between0−1.

The Neural network is trained using the Levenberg-Marquardt algorithm. This is a variation of the

Gauss-Newton’s method involving a second order Taylor’s series expansion of the minimization

function about an initial value. The advantage of the Levenberg-Marquardt scheme is that the

Jacobian matrices that are involved in the Taylor’s series expansion of the minimization function

are forced to be diagonally dominant for each iteration in the minimization process. This ensures

faster convergence than the Gauss-Newton scheme for non-linear data fitting. The disadvantage of

the Levenberg-Marquardt scheme is that there is a limit to the amount of data that it can handle

due to memory constraints.

Two neural networks are used for the aeroelastic analysis.

1. The neural network NN-CFD is trained based on the data from FLUENT. The output of this

neural network is the aerodynamic pressure acting on the bump. Its input is the bump shape

parameters in the form of the coefficients of the cubic spline that describes the bump. The

aerodynamic pressure over the bump as output by NN-CFD is used by the ANSYS package

to calculate the deformation of the bump. The result of the ANSYS analysis, in the form

of new bump shape parameters is fed back to this neural network to calculate the changed

aerodynamic pressure. Sufficient amount of ANSYS runs are performed on different bump

shapes in order to estimate the required actuator loads and the strain energy.
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2. Using the structural data, namely the strain energy, actuator loads, a second neural network,

NN-STR is trained. This neural network has as its output the strain energy of forming the

bump, the actuator loads, the lift and drag coefficients. The inputs for NN-STR are the bump

shape parameters in the form of the coefficients of the cubic spline that describes the bump.

The present two neural networks, NN-STR and NN-CFD use three inter connected layers. The

output function of the layers and the number of neurons per layer are given below

1. Layer 1: Hyperbolic Tangent Sigmoid, 20 neurons

2. Layer 2: Log Sigmoid, 12 neurons

3. Layer 3: PureLin linear ramp function. Number of neurons depends on the number of out-

puts of this neural network which was 4 in case of NN-CFD, representing the static pressure

over the bump and 7 in the case of NN-STR, signifying the actuator loads, their location and

the lift and drag coefficients over the airfoil.

The number of neurons in each layer are determined by trial and error during the training process.

The training routine in MATLAB which is used, assigns appropriate neuron weights and biases.

The neural network is trained on input bump shapes such as those shown in Fig. 4.2. These two

neural networks replace the analysis performed using FLUENT and ANSYS for aerodynamics and

structures respectively.
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Software Validations

As described in the earlier sections, the CFD software Fluent is used to analyze the effect of the

bump on the flow field over the airfoil. The bump deformation due to actuator loads and aerody-

namic loads is analyzed using ANSYS. Before starting the actual analysis, the ANSYS and Fluent

softwares were tested for procedures providing desired results. The documentation accompanying

the Fluent 5 software describes the appropriate boundary conditions and grid generation for analy-

sis of flow of an airfoil. Accordingly, ’Pressure far-field’ boundary conditions were applied at the

far stream which were situated at 10 chord distance from the airfoil surface. This means that the far

field pressure, air density and flow velocity are specified along with any turbulence intensity levels

at the four far-field boundaries of the mesh surrounding the airfoil. The grid structure is shown

in Fig. 1.1. The computational equations that are used are the coupled Navier-Stokes equations

using second order upwind finite differencing. As mentioned earlier, the realizable k-ε model as

suggested by Shih is used. Fluent 5 provides three turbulence models, a one equation model, three

variants of the the two equation k-ε model and the five equation Reynold’s averaged model(RSM).

Though the RSM model is the best amongst these options, it is extremely time consuming. Using

the RSM model, an analysis of flow separation as caused by a leading edge bump could take more

than 6 hours on an SGI origin machine while using 4 processors. Considering that a large database

has to be provided for training and testing the neural networks, it is not feasible to use the RSM

model. The next best model amongst the available choices is the realizable k-ε model and this was

what was used.
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Figure 4.3:Comparison of the present CFD pressure distribution with the experimental result

obtained by Webster68

Figure 4.4:Comparison of the present CFD skin friction coefficient with the experimental

result obtained by Webster68
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To test the flow solver that was being used, an appropriate problem from literature was used.

This was the two dimensional study of the turbulence of the flow over a bump situated in a wind

tunnel. This problem is especially appropriate as this experimental result had also been modeled

using CFD with various turbulence representations. Having a CFD model for a wind tunnel test is

advantageous as it provides a picture of the computational domain which the original wind tunnel

test does not provide. Accordingly the results of Webster68 and Wu69 are used. Here the bump is

described by one convex circular arc and two concave arcs at both the ends of the convex arc. The

wind tunnel allows the development of the boundary layer leading to the bump. The free stream

flow velocity is at 16.6 m/s with a 0.2% turbulence intensity. The exit stream has a slight drop

in pressure. The experimental results are mentioned to have an uncertainty of 5% for the normal

stresses and 10% for the shear stresses.

The same unstructured triangulated grid that is used to model the airfoil with the bump is used in

this analysis also. The realizable k-ε model and second order upwind differencing with a coupled

Navier-Stokes solver are used. It was not possible to specify an exact boundary layer height at the

start of the bump in the Fluent model as was mentioned in the wind tunnel testing. Apart from

this, the computational domain of this wind tunnel model was achieved based on the CFD analysis

of Wu69. Figure 4.3 describes the coefficient of pressure as calculated by the present CFD model

in Fluent and the experimental results. As can be seen, the CFD result behaves similar to the

experimental result but possesses some differences especially at the inlet and at the bump peak(

minimum pressure location). A comparison of the CFD analysis by Wu69 on the same bump shows

that the RANS model also predicts a higherCp at the start of the bump and a lowerCp at the bump
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peak, unlike the experimental results. This is the trend observed in the present calculations also.

Also considering that ak − ε model is being used, there will be some deviation between this CFD

result and the actual results. Figure 4.4 describes the variation in skin friction coefficient. This

parameter is also experimentally difficult to obtain. The RANS model predicts a higherCf than

the experiment at the bump peak69. The present model also predicts a higherCf through the bump

span. However the trends in theCf variation are same between the present CFD solution using the

k − ε model and the experimental model. In both Fig. 4.3 and Fig. 4.4, the computational span is

the domain of the CFD analysis that includes the bump along with the upstream and downstream

regions. The domain of the bump is confined between the locations 0-1 as marked in Fig. 4.3 and

Fig. 4.4.

These results show that the computational solution consisting of the unstructured triangular mesh

with the Navier stokes solver using second upwind differencing and the realizablek− ε turbulence

model is acceptable for the analysis that is being attempted here, the main purpose of which is to

train neural networks to represent the aerodynamic loads over the airfoil.

The structural package ANSYS is used to analyze the beam model of the bump which is treated as

an elastica. Under axial compression, a non-linear finite element analysis is required. The ANSYS

package provides the verification for a straight beam elastica under axial compressive loading. This

verification has an example program which when run shows the good match between the ANSYS

results and the theoretical results on the load-deflection diagram. Since this example has been veri-

fied by ANSYS, herein the same model is followed to analyze the bump, the only difference being,

the addition of non-conservative non-uniform transverse forces along with the axial compressive
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force. However, since the non-linear finite element solver for the elastica example verification used

by ANSYS already uses an incremental load step procedure, the same solver is used for the bump

analysis also. At each incremental load step, along with the updation of the axial load, the non-

conservative aerodynamic loads are also updated in accordance with the bump deformation. The

”NLGEOM” function in ANSYS is used to account for the geometric non-linearity. The BEAM3

finite element is used as referenced in the ANSYS documentation for the elastica problem. This

has 2 nodes per element and 3 degrees of freedom per node, they being, two translational degrees

of freedom and one rotational degree of freedom.

4.5 Low Speed Aerodynamics

The FLUENT CFD software was used to analyze the fluid flow over the selected airfoil using the

grid shown in Fig. 1.1. For the low speed analysis the free stream velocity is assumed to be at

Mach 0.3. The far-field pressure boundary conditions are specified on all the four faces of the

boundary. The bump is located just after the leading edge at0.4% of the airfoil chord on the upper

surface of the airfoil. The size of the bump is blown up from ay co-ordinate value of0.2% of the

airfoil chord to a value of0.4% of the airfoil chord. The effect of the variation of the bump size on

the lift and drag is studied. Figure 4.5 shows the velocity magnitude contours. It can be seen that

beyond a bump size on the order of0.35% of the chord, there is a total separation of the flow.

However as the bump height is further increased, as seen in the last portrait in Fig. 4.5 there is a

re-attachment of the flow after an initial separation at the bump. This re-attached flow is not stable

and separates after a zone of attached turbulent flow. Both from the point of view of actuation
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a) Leading Edge Bump Height 0.2% Chord

b) Leading Edge Bump Height 0.35% Chord

c) Leading Edge Bump Height 0.4% Chord

Figure 4.5:Velocity Contours generated using the FLUENT software showing the flow sep-

aration due to a leading edge bump located at 0.4% of the airfoil chord at a Free Stream

Velocity of Mach 0.3

energy and of aircraft control, it is necessary to confine the bump size to the region of predictable
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separation. This means that the required bump height is of the order of ����� of the airfoil chord.

Any further increase in the bump height produces an unstable region before a full separation of

the flow over the top surface of the airfoil takes place. Since the purpose of having this bump

is to provide a yaw control mechanism, it needs to be determined whether the drag produced by

the specified bump size is sufficient. At the same time, the lift generated by the airfoil should not

be seriously reduced. Figure 4.6 describes the variation of the pressure drag coefficient and the

Figure 4.6: Effect of the size of the Leading Edge Bump located at 0.4% of the airfoil chord

on the Drag and Lift at a Free Stream Velocity of Mach 0.3

coefficient of lift with respect to the bump height. The lift appears not to be seriously affected. At

the position of maximum pressure drag, the drop in the lift is about 20�. Above the bump height
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of 0.085” or 0.35% of the chord, the drag and lift forces are oscillatory with respect to further

increase in bump height. This is because of the re-attachment phenomena and further separation

after re-attachment. This flow regime is also highly unsteady due to vortex shedding. It is seen that

a pressure drag coefficient on the order of 0.04 is attainable. Using Eq. (4.1) and wing properties

as

Span = 20m, Root Chord = 8m, Tip Chord = 2m, Aspect ratio = 4.0 and Wing material = Alu-

minum, maximum bump height =0.35% chord, the yaw moment coefficient can be estimated as

Cn = 0.002.

As mentioned earlier, thisCn is comparable to those estimated in Refs.63 and64. Figure 4.7

displays the effect of the same type of bump as in Fig. 4.3 but at a location further down the airfoil.

One can notice from the two figures that the height of the bump required to cause separation is

greater than the earlier version. In Fig 4.3, the bump was at a location of0.4% of the airfoil chord,

while in Fig 4.5 , the bump is at a location,3.8% of the airfoil chord. Therefore, the boundary layer

has thickened and consequently a larger bump is required for separation.

Figure 4.8 displays the variation in the lift coefficient and the drag coefficient with bump size.

Again, after a certain bump height, oscillatory patterns are observed in the coefficient of lift. The

main detail that emerges from these figures is that sufficient drag for yaw moment can be achieved

without serious deterioration in the lift. The decrement in lift is ”not substantial” since we are

dealing with morphing wings, wings for which any loss in lift can be overcome with adaptive

cambering of wing sections or changes in the wing twist20 at locations where the flow does not

separate. The rate of loss in lift as seen in Fig. 4.8 is smaller than that seen in Fig 4.6.
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a) Turbulent Boundary layer

b) Onset of Boundary layer Separation

c) Fully Separated Flow

Figure 4.7:Velocity contours generated using the FLUENT software showing the fluid sepa-

ration over the airfoil at a free stream velocity of Mach 0.3 from a bump located at 3.8% of

the airfoil chord

This suggests that large changes in the fluid flow occur with small changes in the bump size and

shape when the bump is placed at the leading edge than away from the leading edge.
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Figure 4.8: Effect of the Size of a Bump, located at 3.8% of Chord on the Drag and Lift of the

airfoil. ( Free Stream Velocity of Mach Number = 0.3)

4.6 High Speed Aerodynamics

The previous section dealt with analysis of the effect of bump height on an airfoil with fluid flow at

Mach 0.3. Typically the adaptable bumps that have been the subject of widespread investigation as

mentioned earlier�� have been to study wave drag reduction. The flow is transonic over the airfoil.

Therefore, we investigate a flow speed of Mach 0.7 over the same �� thick airfoil. Figure 4.9

displays the velocity magnitude contours over the airfoil. The first portrait shows the airfoil with

no leading edge bump. A strong shock is seen over the airfoil. This naturally leads to a substantial

wave drag. Now an adaptive bump is grown at a location of �
�

 ����. The next two portraits
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in Fig. 4.7 display the velocity contours at bump heights at0.1%, 0.28% of the airfoil chord. It

can readily be observed that the shock is weakened significantly. At a bump height of0.2% of

airfoil chord, there is boundary layer separation. On further increase of the bump height to0.28%,

the shock is completely lost and we get total boundary layer separation. From the point of view

of actuation energy required to produce this bump, it can be seen that a very small bump size is

enough to nullify the shock. In contrast, typical wave drag minimization bumps have been situated

near the edge of the shock, towards the trailing edge with a maximum bump size of0.5% of the

airfoil chord21. This limit on the bump size to0.5% of the chord is to prevent boundary layer

separation.

4.7 Boundary Layer Separation Control

The basic mechanism for drag creation used in this chapter is a controlled disturbance to the bound-

ary layer at its initiation. This disturbance to the boundary layer comes in the form of a shape

change at the leading edge. There have been other mechanisms that have been used for boundary

layer control at the leading edge. For example, periodic excitation at the leading edge has been

used to control flow separation. A wide variety of techniques for providing for this perturbation

are available. A substantial discussion on these techniques can be found in Ref. 27. All these tech-

niques involve the presence of an external agency such as air blowing, air suction or a periodically

vibrating media. The present method employs internal actuators to morph the shape of an adaptive

material. This therefore provides for a direct method for boundary layer control at
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a) Clean airfoil

b) Leading Edge Bump Height 0.1% Chord

c) Leading Edge Bump Height 0.28% Chord

Figure 4.9:Velocity Contours generated using the FLUENT software showing the effect of

the bump size on the shock and the boundary layer (Free Stream Mach No. 0.7)

the leading edge.
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Reference 2 describes the boundary layer control through an adaptive leading edge bump for caus-

ing delay of the onset of flow separation at negative angles of attack. Here the leading edge has an

adaptive bump which is deflected using the THUNDER actuator. However, the authors2 mention

that the control of the position and shape of this bump is a difficult task without knowing before

hand the change in aerodynamic forces with bump displacement. It is therefore necessary to per-

form an aeroelastic analysis, to estimate the effect of the actuator forces on the bump shape and

the resulting changed aerodynamic forces. Neural networks trained from CFD analysis and struc-

tural analysis can be used to predict the best shape for controlled flow separation. The following

sections describe the training of such a neural network.

4.8 Optimization Variables and Constraints

As mentioned earlier, the bump is defined by a single cubic spline. Hence this curve has four

undetermined coefficients. Since axial displacement is allowed, the location of the curve end

becomes another variable. Thus there are five geometric design variables. A geometric constraint

that is imposed is that the bump maintainsC0 continuity between its ends and the airfoil surface

throughout the optimization procedure.

Structurally, the bump is modeled as a pinned-pinned beam as shown in Fig. 4.10. This figure

describes the actuator loads as an unknown axial compressive load and an unknown transverse

load. The axial load is unknown in magnitude. The transverse load is unknown in magnitude,

direction and location. The optimum bump size determines these loads. Hence structurally there
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are four unknown variables.

The design goal is to maximize pressure drag while minimizing losses in lift and minimizing the

strain energy of deformation. Hence the design constraint is minimal loss in lift and minimum

strain energy of deformation while the objective is to increase pressure drag so as to generate

sufficient yawing moment. The constraints will be included in the objective function as penalty

functions. In order to facilitate the constraint of minimum strain energy, the structural deformation

of the bump is modeled as an elastica as the elastica curve is the minimum energy curve.

4.9 Low Speed Aeroelastic Optimization

Using the aerodynamic results from FLUENT, the neural network, NN-CFD capable of predicting

the fluid static pressure at four points over the bump was trained. Since the bump itself was only

1.3% of the airfoil chord, using 4 points over the bump to evaluate the pressure variation was found

to be sufficient. A variety of bump shapes similar to those depicted in Fig. 4.2 are used in the

training. The static pressures calculated by the neural network are inputs to the ANSYS structural

analysis of the bump. Using ANSYS, both the actuator loads and the strain energy required for

forming the bump are obtained and are used as targets for the second neural network, NN-STR.
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Figure 4.10:Freebody diagram of the bump as a beam under axial and transverse loading.

Figure 4.11:Process of evaluating the aeroelastic response of the bump by training two Neural

Networks, one for predicting the aerodynamic loads over the bump and the other for the

structural response of the beam model and actuator loads that deform it
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This neural network also uses the drag and lift coefficients over the airfoil as targets. Using these

targets the neural network is trained to predict strain energy, actuator loads, lift and drag over the

airfoil, given the coefficients of a cubic spline fit to the bump as its input. Once the relevant data

has been obtained from FLUENT and ANSYS, the training of the neural networks in MATLAB

is completed in a quick time of about 20 minutes. The trained neural networks are then stored in

binary files. These trained neural networks are used for optimizing the bump shape.

The bump is subjected to fluid dynamic pressure, a compressive axial load and an arbitrary vertical

load. The axial and vertical loads are the actuator loads. Figure 4.10 describes the free body

diagram of the bump as a curved beam subjected to an axial compressive load,B, aerodynamic

pressure,P and an arbitrary loadT . The loadT is arbitrary in the sense that its direction and

magnitude as well as its location needs to be fixed by the optimization process. The beam length

is small, being1.3% of the chord in the case of low speed flow and3.5% of the chord in case

of high speed flow. Figure 4.11 depicts a flow chart which describes the process of training the

neural networks for obtaining the structural loads and energy for deformation of the bump and the

fluid dynamic pressure over the bump along with the aerodynamic lift and drag. We formulate the

optimization problem as

Minimize:

1

Cd
2 + G ∗ (Cl − 0.47)2 + G2 ∗ κ2

Subject to:C0 continuity between bump and the airfoil (4.2)

Here,Cl, Cd represent the coefficients of lift and drag respectively.κ represents the scaled strain

energy, scaled with respect to the the largest deformation strain energy,G andG2, two penalty
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Figure 4.12: Process of optimizing the bump shape using the trained neural networks

weights, selected by trial and error depending on the rate of minimization of the objective func-

tion and also the �� continuity between the bump and the airfoil. This problem is schematically

represented in the flow chart shown in Fig 4.12.

The optimization is performed using the conjugate gradient method. Since this problem is non-

linear, the number of iterations for convergence for the conjugate gradient method is not fixed.

However, it is still better than the method of steepest descent. The direction of the gradient is de-
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termined using Newton-Raphson’s method. TheC0 boundary conditions for the bump are fixed by

imposing a penalty on the objective function to be minimized. Since the conjugate gradient method

requires the calculation of the Jacobian and Hessian matrices, a finite difference approximation for

the derivatives at each point in the iteration is calculated. At each step in the iteration, the neural

network NN-STR simulates the new actuator loads, strain energy and resulting drag and lift over

the airfoil. However, the problem is non-linear. Hence, the optimum value for the bump shape

that is obtained from the neural network may be a local optimum. The optimization is repeated

for a set of bumps with initial aerodynamic and structural parameters; the aerodynamic parameters

being the drag and lift, the structural parameters being the actuator loads and the strain energy.

Amongst this calculated set of optimal solutions, the best solution is that which approaches the

design lift constraint of 0.47 and still provides a drag coefficient of at least10−2. The calculated

bump shapes which minimize the objective function is shown in Fig. 4.13. The neural network

was trained based on bump shapes similar to those shown in Fig 4.2. One can conclude that, of

all bump shapes that are within the range of those used in training the neural network, the bump

shapes shown in Fig. 4.13 minimize the strain energy and retain maximum drag and minimum

loss in lift. The latter criterion, i.e. minimum loss in lift is significant. The created airfoil surface

bump, not only provides for drag sufficient for yaw control, but also allows for a minimum loss

in lift such that it can be compensated by slight cambering of a different wing section. Since the

neural network NN-STR is capable of simulating the aeroelastic interactions of the bump, we have

a rapid 2-D static aeroelastic optimization tool.

The three bump shapes shown in Fig. 4.13 detail the optimum shapes for minimal loss in lift.
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As given by Eq. (4.2), we require that the lift should not be drastically reduced below a value of

0.47. The drag and lift coefficient values are given along with the figures. Due to the limitations

of the neural network training, the predicted values of drag and lift using the neural network are

about10% away from the corresponding CFD results. The predicted strain energy using the trained

neural network is approximately16% away from the corresponding strain energy as predicted by

ANSYS.

1. Figures 4.13 (a) shows a bump that was formed without any axial load. The bump has only a

vertical actuator load at its center. As shown in the figure, there is a moderate drag increase

without substantial loss in lift.

2. Both Fig 4.13(b) and 13(c) show bumps formed with axial and tranverse actuator loads. A

moderate drag increase without serious loss in lift is obtained from the bumps.

From the obtained drag, lift and strain energy for the bumps shown in Fig. 4.13, it can be said that

Fig. 4.13(b) describes the optimum bump shape amongst the set of bumps that can be generated

from the beam model shown in Fig. 4.10. Table 4.1 compares the optimized results with other

bumps used for training the neural networks. The bumps shown in Fig. 4.2 are taken as reference

for comparing the data for the Optimized bump shapes. Each column of the data in Table 4.1

for the non-optimized bumps refers to Fig. 4.2. Thus a drag coefficient of the order of 0.02 is

attainable without serious loss in lift and by minimizing the strain energy required for forming the

bump. The clean airfoil obtains a lift coefficient of 0.52 at 5 degrees angle of attack.
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a) ��=0.0227, ��=0.4543, Strain Energy=115.7 J/cm width

b) ��=0.0245, ��=0.456, Strain Energy=109.6 J/cm width

c) ��=0.0222, ��=0.4393, Strain Energy=128.4 J/cm width

Figure 4.13: Optimized bump shapes for an adaptable bump on the surface of the airfoil when

the airfoil is placed in a free stream with a velocity of Mach 0.3
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Therefore there are lift losses of the order of12%. However, since we are dealing with an adaptable

wing, the wing can possess adaptive cambering at a section different from wing section that has a

bump. A1% camber increase at a location of70% of the chord of an airfoil section with attached

flow is enough to offset the decrement in lift due to the bump.

4.10 High Speed Aeroelastic Optimization

For the free stream flow velocity of Mach 0.7, Fig. 4.9 describes the effect of the leading edge bump

on the shock and also the boundary layer. The same Realizablek− ε model was used, as was done

in the low speed case. This turbulence model may not be adequate for such high speed flows,

but due to limits in computational time, a more advanced model such as the 5 equation Reynold’s

stress model could not be used. This can be a topic of future research work, i.e. significance of

turbulence models on aeroelastic analysis. As described earlier, a very small perturbation (of the

order of0.1% of the chord) decreases the wave drag. Further increase in the bump size leads to

flow separation. From the actuator point of view, the main concern here is the rapidly changing

aerodynamic pressure over the bump with small perturbations in the bump height. The leading

edge bump could not be used for high speed flow as a steady state bump equilibrium is difficult to

achieve due to the rapid fluctuation in the aerodynamic load over the bump with even minute bump

shape changes.

Also the drastic changes in pressure over the bump with minute changes in bump shape could not

be captured by the neural network.
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a) Clean Airfoil,Cd=0.0433Cl = 0.717

b) Cd = 0.0482,Cl = 0.632

c) Cd = 0.0536,Cl = 0.613

Figure 4.14:Static pressure contours over the airfoil as generated using the FLUENT soft-

ware showing the effect of the bump at a Free Stream Velocity of Mach 0.7

Since this effort is not concerned with shock control, the bump is placed downstream of the shock.
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This allows for choosing a bump shape that is not drastically affected by changing aerodynamic

pressure. Even then, the low pressure over the bump, does not allow for axial compression, unlike

the low speed model. This is because the bump is now susceptible to buckling at very low axial

loads. Hence a pinned-pinned beam is considered subjected to an arbitrarily oriented load at any

arbitrary position.

As was done for the case of low speed, a total of 14 to 15 runs were performed in FLUENT

and ANSYS with different bump shapes to collect sufficient data to train a neural network. The

trained neural network is then used to optimize the bump shape that provides maximum drag with a

minimum loss in lift and minimum strain energy required to form the bump. Figure 4.14 shows the

effect of bump on the shock and the boundary layer. It can be seen that the amount of separation

generated is lesser than the low speed case. This means that the amount of drag increase is also

less as can be seen in Fig. 4.14. The effect of the bump on the shock is also seen. Compared to

Fig. 4.9, Fig. 4.14 shows that a much larger bump size is required to cause a full weakening of the

shock. The height of the bump in Fig. 4.14 (c) which shows the weakened shock is of the order

of 0.92% of the airfoil chord. Many such bump shapes were used in training the neural network.

Again the Levenberg-Marquardt training algorithm is used. The trained neural network is used to

operate a conjugate gradient scheme to select the optimum bump shape for high drag with low loss

in lift and low actuation energy. Fig. 4.14 shows that the low pressure exists over the bump even

at large bump heights as can be seen from Fig 4.14(c).
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a)Cd=0.0498Cl = 0.681, Strain Energy = 104 J/unit cm Thickness

b) Cd = 0.0519,Cl = 0.653, Strain Energy = 198.5 J/unit cm Thickness

Figure 4.15:Optimized Bump Shapes for an adaptable bump on the airfoil surface when the

airfoil is placed in a free stream with a velocity of Mach 0.7
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The objective function is the same as was used for the low speed case, i.e. Eq. (4.2), but the

lift coefficient was fixed at 0.63, not 0.47 as in Eq. (4.2). The bump shapes that minimize this

objective function are shown in Fig 4.15. Again, many initial conditions were tried to select the

best optima. The two optimized bump shapes are shown in Fig. 4.15: The optimized bump shapes

from the neural network predicted the drag and lift coefficients within10% of the corresponding

results as predicted by the Fluent software. As in the case of low speed analysis the strain energy

of deformation as predicted by the trained neural networks was within12%− 16% of the ANSYS

result.

1. A moderate pressure drag coefficient increase of 0.005 but with a low loss in the lift and low

strain energy required to form the bump as shown in Fig. 4.15(a).

2. Fig. 4.15 (b) shows the bump with a significant drag increase and with a low loss in the lift

and moderate strain energy required to form the bump.

These two bump shapes can be selected depending on the amount of drag that is required. Note

that the strain energy reported is per unit cm thickness of the beam.

The bumps used in high speed optimization were larger than those used in the low speed case. This

was due to the fact that the bump for the high speed case was situated downstream of the shock.

However the rise in the coefficient of drag for the high speed case due to the effect of the bump

was lesser than the coefficient of drag rise for the low speed case. Since the drag force varies as the

square of the flow velocity, this lower coefficient of drag rise in high speed is acceptable. Another

feature in high speed flow, is the fact that initial bump deformations reduce the net drag over the
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airfoil due to the fact that the wave drag is reduced as the shock weakens.

4.11 Effectiveness of Neural Networks for Aeroelastic Optimiza-

tion

The first advantage of the use of neural networks is the saving in time. A typical CFD run using

the Fluent software during the training process took around 2 hours on an SGI origin machine

using 4 processors. The ANSYS runs were much shorter in time. A convergence solution with one

set of actuator loads and aerodynamic loads takes about 10 minutes. However, the aerodynamic

loads change after this convergence and hence the ANSYS iterations have to be re-initiated. On

the contrary using the two neural networks NN-STR and NN-CFD, one need not perform any

iteration between the structural and fluid dynamic solver for an aeroelastic analysis. However,

iterations have to be performed for aeroelastic optimization. Each aeroelastic simulation using the

neural networks takes only a few seconds using 1 processor on the SGI origin machine. Hence

one optimization routine starting with an initial bump shape can be completed in a few minutes.

However the result of the optimization may not be a global optima and hence many trial runs need

to be performed with various bump shapes. The aerodynamic load output of the trained neural

networks was within10% of the corresponding CFD results. The structural loads and strain energy

that were predicted by the neural network was about16% away from the corresponding ANSYS

result.
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The adaptive bump at low speed being close to the leading edge attains much higher coefficient

of drag rise than the bump at high speed. At high speeds, the low pressure over the bump can be

used as an advantage in deforming the bump. Hence the bigger bump sizes that were used in the

high speed flow analysis are achievable, but they still provide less coefficient of drag rise. This is

however compensated by the fact that the drag force depends on the square of the flow velocity.

Hence at transonic speeds also the bumps can be effective.

Neural Networks were able to capture the non-linear aeroelastic effects of the deforming bump on

the aerodynamic behavior of an airfoil. However, it was found that the neural networks respond

accurately only for a certain range of bump shapes. This is due to the procedure used in training

the networks and also the type of data that were used in the training. The neural networks also

showed erroneous behavior if extreme fluctuations in the static pressure were present for very

small changes in bump shape. Merely increasing the data quantity does not improve the accuracy.

A better training algorithm may also have to be used. The neural networks used here showed

promising behavior.

This facilitates a rapid calculation of aeroelastic behavior of the airfoil bump. However, the sensi-

tivity of the response to the shape of the structure is still confined to a certain domain of shapes,

since the neural networks are trained using gradient based schemes. Improvements in the neural

network performance may be possible if non-gradient based training schemes such as Genetic Al-

gorithms or Simulated Annealing are used. A clear representation of the aeroelastic behavior of

an adaptive wing through neural networks speaks of a high potential in the design of an active

aeroservoelastic flight control system.
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Table 4.1: Comparison of Optimized Results with Other Results

Bump Shapes used in Training A B C D E Optimized Shapes

Clean Airfoil: Cd = 0.005, Cl = 0.52

Strain Energy-J/cm Thickness 17.24 91.536 89.43 25.71 133.09 115.704 128.628 109.64

Cd 0.0174 0.039 0.0274 0.0078 0.018 0.0227 0.0222 0.0245

Cl 0.453 0.3689 0.414 0.4771 0.4686 0.4559 0.4393 0.4476

Axial Load - N 4000 9012 4000 0 0 0 1566 1086

X-Load - N -5000 0 3000 0 -30000 0 -28110 -3582

Y -Load - N 8000 0 20000 19000 60000 50010 64950 60990

Position of X-Y Load % Span 18% 0 70% 45% 73% 45% 19.94% 47.92%

Objective Function 3529.1 10879 4468.3 16487 3089.2 2140.1 2972.3 2168.3
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Chapter 5

Dynamic Aeroelastic Analysis of an

Adaptive Airfoil using Neural Networks

An airfoil exhibiting two degrees of freedom, that is, motion in pitch and plunge displacements is

considered as depicted in Fig. (1.2). The torsional stiffness of this system described in Fig. (1.2)

is allowed to be time varying. The solution procedure for a time-varying system is described in

Chapter 2 and the same procedure is adopted herein to train artificial neural networks to compute

the structural dynamic response of the 2-D system. The unsteady aerodynamic loads over the

airfoil are calculated using distributed doublet panels. Artificial neural networks are trained using

the panel code to represent the unsteady aerodynamics. Thus the dynamic aeroelastic response of

the system with a time varying torsional stiffness can be represented using neural networks. Having

done so, a flutter suppression system based on this concept of a variable stiffness is designed using

the trained neural networks.
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For incompressible inviscid flow, panel methods provide a more rapid estimate of the unsteady

fluid dynamic forces as compared to CFD. Panel methods consist of distributing singularities such

as sources, vortices and doublets on the surface of an airfoil or a wing. The boundary conditions

on the wing or airfoil then determines the strengths of these singularities. Once the strengths of the

singularities are known, it is possible to calculate the unsteady pressure distribution at each point

over the wing or airfoil. A descriptive detail of various panel methods can be found in Ref. 70.

The classical aerodynamic analysis was framed in the frequency domain wherein Fourier Trans-

forms were used to describe the unsteady aerodynamics. This analysis resulted in analytical solu-

tions for the unsteady lift and pitching moment in the form of complex Bessel functions. However

such analysis was confined to represent the aerodynamics over a flat plate. Using panel methods

on the other hand allows the shape of the airfoil to be considered in the analysis. Furthermore, the

presence of a time-varying stiffness changes the aeroelastic solution from the classical solution.

Hence we model the unsteady aerodynamics numerically in a time marching scheme.

In the present chapter, we are considering only two dimensional aerodynamics. Using distributed

doublet panel elements over the surface of a morphing airfoil, the incompressible inviscid aero-

dynamics is modeled. The boundary conditions that are imposed over the airfoil are the non-

penetration condition and the Kutta condition. The non-penetration condition requires that the

normal velocity of the fluid at the airfoil wall should be equal to the airfoil surface velocity. The

summation of the normal velocity of the fluid at the airfoil surface due to the motion of the airfoil,

the free stream and the doublet perturbation must be zero. The Kutta condition at the trailing edge

requires that the flow velocity at the trailing edge point to vanish. Numerically this is difficult to
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achieve, hence the position and size of the panel at the trailing edge needs to be carefully chosen.

Figure 5.1: Distribution of constant strength doublet panels over the airfoil surface and wake

to model the unsteady aerodynamic loads over the airfoil in inviscid incompressible flow

Panels of constant strength doublets are distributed over the surface the airfoil and the strength of

the doublets for steady flow is determined by applying the boundary conditions:

0,
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(5.1)

where , is the velocity potential, �� 9 are the geometry variables of the airfoil, &� is the free

stream velocity and 9 
 ���	 is the function describing the airfoil surface. The influence of each

panel on every other panel on the airfoil is calculated. For unsteady calculations, the influence of

the wake on the airfoil is also very important. A time-marching scheme is used and at each time

step, one doublet panel is shed into the wake from the airfoil trailing edge. The combined influence

of all the wake panels on the airfoil panels is calculated for every time step.
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The mathematical derivation for panel methods comes from the governing Laplacian equation for

incompressible potential flow, namely,

∇2φ = 0 (5.2)

whereφ is the velocity potential. Equation 2 is valid in steady and unsteady incompressible

flow. Using Green’s theorem and Eq. (5.2), it can be proved that71, any surface in incompressible

potential flow can be replaced by a summation of doublets and sources. Typically in thin airfoil

theory, a doublet represents the lifting component and a source represents the airfoil thickness.

To make the analysis simpler, we are considering only doublet representations over the airfoil.

According to Ref. 70, the absence of source panels is not a disadvantage for lifting airfoils. Having

determined the doublet potential for each panel, the unsteady Bernoulli equation (Eq. 5.3) can be

used to determine the coefficient of pressure at every point over the morphing airfoil.

Cp = 1− u2

u∞2
− 2

u∞2

∂φ

∂t
(5.3)

whereu is the local fluid velocity over the airfoil andu∞ is the free stream velocity.

5.1 Steady Aerodynamics

Before computing unsteady aerodynamics, steady state computations are performed using dis-

tributed doublets over the surface of the airfoil with an infinite wake. After successfully performing

calculations for steady flow, unsteady aerodynamic computations will be performed for validation

with theoretical results. Figure 5.1 describes the panel distribution at the trailing edge of the airfoil.

It should be understood that the same panel distribution is present throughout the airfoil surface.
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Equation 5.1 is used withg(x) being described by the parametric representation given by B-splines.

The free stream velocityu∞ is taken as unity without losing any generality. The influence of each

doublet panel on the free stream velocity is then formulated as70

ui =
µ

2π
(

z

(x− xi)
2 + z2 −

z

(x− xi+1)
2 + z2 )

wi =
−µ

2π
(

x− xi

(x− xi)
2 + z2 −

x− xi+1

(x− xi+1)
2 + z2 )

aij = (−sin(θj − θi), cos(θj − θi)) · (uij,wij)
T (5.4)

Hereµ is the unknown doublet potential,(xi, 0) is the location of the doublet panel in its co-

ordinate frame andθi is the orientation of the doublet paneli. The influence of this doubleti on

every other doublet panelj is calculated using the velocity componentsuij andwij. The Kutta

condition is enforced by making the vorticity at the trailing edge to be zero. This is given as

µt1 − µt2 + µw1 = 0 (5.5)

whereµt1 andµt2 are the two trailing edge doublet panels andµw1 is the first wake panel. Equation

(5.1) can be discretized for satisfying the no penetration condition as

{U∞ + u,W∞ + w}.n̂ = 0 (5.6)

whereu,w are the local velocity perturbations from the doublets andU∞,W∞ are the free stream

velocity components.̂n is the direction of the unit normal to the airfoil surface. When Eqs. (5.4)

and (5.5) are substituted in Eq. (5.6), a series of algebraic equations in the unknown doublet po-

tentials,µi are obtained. The software code for performing this in MATLAB is given in Appendix

B.
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The doublet potential across the airfoil surface,µi, is solved and the pressure coefficient at every

point on the airfoil surface is calculated using the Bernoulli equation, Eq. 5.3. Figure 5.2 describes

the distribution of pressure over a symmetric airfoil at an angle of attack of50. This matches the

theoretical solution over the airfoil except at the trailing edge. This discrepancy near the trailing

edge is due to numerical problems of satisfying the Kutta condition exactly at the trailing edge.
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Figure 5.2:Steady state pressure distribution at an angle of attack of50 over a symmetric

airfoil as predicted by the doublet panel code and compared with the theoretical solution

The Kutta condition is satisfied numerically by forcing the vorticity at the trailing edge due to the

doublet panels to be zero. In Ref. 70 also, the numerical scheme results are not shown at the airfoil

trailing edge for steady flow. Instead, the theoretical solution is used. Theoretically, the velocity

of flow should be zero at the trailing edge, as long as the trailing edge is not a cusp. Therefore

the theoretical value for the coefficient of pressure should be unity. This is difficult to realize
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Figure 5.3:Response of the Doublet Panel Code to an Impulsive Change in Angle of Attack

and compared with the theoretical Wagner solution

numerically without manipulating the trailing edge panel. However, the trailing edge coefficient

of pressure is still finite and close to unity. Even though the trailing edge creates some numerical

problems, the code is able to replicate the steady state pressure.

5.2 Unsteady Aerodynamics

The theoretical solution to the unsteady aerodynamic lift and pitching moment on an airfoil in

inviscid flow is calculated using convolution integrals of the pitch rate with the Wagner function13.

Physically, the Wagner function is a measure of the circulatory lift on the airfoil due to a unit step
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change in angle of attack. It is given as

Φ(s) =
1

2πi

∫ ∞
−∞

C(k)

k
eiksdk (5.7)

Herek is the reduced frequency,s is the non-dimensional time,C(k) is the Theodorsen function

which was explained in the Introduction. Reference 13 provides more details of the Theodorsen

and Wagner functions. The Wagner function has a value of 0.5 just after the impulse has been

imparted and then grows to a steady state value of 1 for infinite time.

The steady state panel code as given in Appendix B needs to be modified by introducing a time

stepping procedure. At each time step, one doublet panel is added to the wake. Initially when

the flow starts, that is at time,t = 0, there is no wake. For each time step, the wake potential is

changed by the addition of one doublet panel. This growing wake contributes to the circulation

over the airfoil. The effect of the wake is captured by using the known potential of the wake

doublets in the no-penetration boundary condition. For simulating an impulsive angle of attack,

the airfoil is at zero incidence to the free stream at initial time. At the first time step when the first

wake panel is shed, the airfoil suddenly acquires an angle of incidence. The growth of circulation

over the airfoil is captured by the wake shedding process. The effect of this is shown in Fig. 5.3.

Figure 5.3 shows the growth of the lift with time as predicted by the present code. It can be seen

that the solution approaches the Wagner solution. However, the initial impulsive start that is ob-

tained using the theoretical result based on the Wagner function is not attainable by the doublet

panel code. This is because the doublet panel code is a time domain solution. The Wagner func-

tion is derived in frequency domain and hence it is able to represent the impulsive jump in the lift
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at zero time exactly. A time domain code on the other hand takes a finite time, no matter how

small, to approximate this jump in lift. However, it should be noted that both solutions approach

the same steady state solution. The response shown in Fig 5.3 is similar to that obtained by Basu

and Hancock72 for a symmetric Von-Mises airfoil. Basu and Hancock used a panel scheme con-

sisting of distributed vortex and sources panels over the airfoil and wake. The authors72 make no

explanation for the discrepancy between the theory and the panel code, but simply state that” It

can be seen that there are significant differences among various solutions up totU∞
c

= 2.0”. Since

in the time domain, an impulse is provided over a time step, the response of the system as shown

in Fig. 5.3 will change depending on the time step size. Further, theoretically, the angular velocity

of the airfoil is infinite at zero time. A time domain result will result in a finite velocity and finite

inertial effects at the first time step. The time step used in the time stepping scheme determines the

vortex shedding frequency into the wake. Hence it is required to select an optimum time step that

captures the effect of the sudden change in angle of attack on the aerodynamics and the subsequent

growth of circulation. The effect due to the finite angle trailing edge and the consequent wake

modeling are very important in determining the rate of change of circulation.

This doublet panel method can also represent the unsteady aerodynamics over a pitching airfoil.

The airfoil is given sinusoidal pitching amplitudes and the aerodynamic loads on the airfoil are

calculated using the time stepping panel method. Figure 5.4(a) shows the unsteady lift over a

symmetric airfoil with a constant amplitude sinusoidal pitching motion. Figure 5.4(b) shows the

unsteady lift over a symmetric airfoil with a variable amplitude pitching motion. The theoretical

solutions for both the problems in Fig. (5.4) are obtained using a convolution of the sinusoidal
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Figure 5.4: Unsteady coefficient of lift over the airfoil as computed by the doublet panel

method when the airfoil is placed into pitching motion with two different sinusoidal oscilla-

tions
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pitch rate with the Wagner function. It was seen previously (Fig. 5.3), that the time domain

solution does not provide the same response to an impulsive change in angle of attack as computed

from the theoretical Wagner solution. Therefore the convolution of the sinusoidal functions with

the Wagner response will not exactly match the time domain solution obtained from the doublet

panel code for a sinusoidally pitching airfoil but must still be similar.

5.3 Numerical Intricacies

The panel method of computing aerodynamic loads involves a large number of numerical compu-

tations. These computations are performed in Matlab. Appendix B provides the Panel code for

steady and unsteady aerodynamic load calculations using distributed doublet panels. The follow-

ing points are very useful when implementing panel methods and conform to the experience of the

author.

1. The fluid flow over an airfoil is extremely sensitive to the shape of the airfoil. Using panel

methods, the software code sees the shape of the airfoil through the effect of the distributed

doublets. Hence sufficient number of doublet panels need to be distributed over the airfoil

to capture the airfoil shape. According to Eqs. (5.3) and (5.4), the velocity components of

the influence of the doublets on the free stream are a function of the doublet panel length.

Very small panel lengths means large amount of doublet panels. This can lead to numerical

inconsistencies. Hence an optimal number of panels that describe the airfoil shape but do not

contribute to numerical errors needs to be used. In the present work, 80-120 doublet panels
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were distributed over the airfoil.

2. Another source of numerical ill-conditioning is the trailing edge angle. The doublet panels

on the top and bottom surface of the airfoil are very close to each other at the trailing edge.

This distance again comes into picture in Eqs. (5.3) and (5.4). Trailing edge angles below

60 were found to produce a lot of numerical fluctuations in the aerodynamic pressure. The

present work used a Van-De-Vooren airfoil with a trailing edge angle of100.

3. The Kutta condition requires that the flow velocity vanishes at the trailing edge for a finite

trailing edge angle. This is however, numerically difficult to achieve. In literature, it has

been suggested that modifying the trailing edge panel co-ordinates by very small amounts73

can enforce the Kutta condition better. The type of numerical Kutta condition used is very

significant. In the present work, the trailing edge flow was in the direction that bisected the

trailing edge. More than the position of the trailing edge, it was found that taking smaller

panel sizes at the trailing edge helped enforce the Kutta condition. Also as mentioned before,

the trailing edge angle needs to be carefully determined.

4. The time step size determines the wake shedding frequency. Hence care needs to be taken as

to the exact time size. Also usage of the non-dimensional time asT = t b
u∞

is advantageous.

Hereb is the semi chord andt is the time in seconds. The theoretical equations for calculation

of the unsteady aerodynamic forces require evaluation of convolution integrals such as

∫ t

0
Φ(t− τ) ˙α(τ)dt

To evaluate such integrals numerically, the best procedure is to use Fourier transforms. Also
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numerical differentiation can lead to a lot of numerical instabilities. It is better to avoid

numerical differentiation wherever possible.

5. For unsteady flow, the modeling of the wake is critical to the development of the unsteady

lift. Using panel methods, one panel is added to the wake at every time step. This gradually

builds up the wake potential with the passage of time. An obvious question is what should

be the length of each wake panel. Since the wake moves at the free stream velocity, a

first assumption would be that the length of each wake panel isU∞ ∆t. However, this is

false as can be readily assessed from the fact that a large free stream velocity implies a

large wake panel. In implementation, the wake panel length should be of the same order

as the length of the panels comprising the airfoil. Using non-dimensional time and also

non-dimensionalizing the length of the panels with respect to the airfoil chord allows for the

selection of the optimum wake panel length .

5.4 Dynamic Aeroelasticity

The panel method described in the previous sections is applied now to a one dimensional aeroelas-

tic system, that is a system with only angular displacements in pitching motion. Accordingly the

governing equation of this system will be

α̈ + k α = Mp(t) (5.8)

whereα is the airfoil pitching angle,Mp(t) is the unsteady pitching moment calculated using

panel methods. This system will theoretically show no instabilities, but we use this system to test
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Figure 5.5: Comparison between the Wagner solution and the panel code solution for the

1-D.O.F. pitching airfoil α̈ + 5 α = M(t)

the panel method routine and also determine any differences between the panel method solution

and the theoretical Wagner solution. As noted in the earlier section on unsteady aerodynamics,

the theoretical solution treats the airfoil as a flat plate and hence its solution will not match the

panel method calculation exactly. This fact is also noted in Ref. 73. However the two solutions

should still be near similar for thin airfoils. The theoretical result is computed using Laplace

Transformation of the governing differential equation, Eq. 5.8, with right hand side replaced by

the Wagner solution for the unsteady pitching moment. The Wagner solution is given by
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L(t) = πρb2(ḧ + U α̇− baα̈)− 2πρb U
(
Φ(s)wa(0)+

∫ s

0

Φ(s− τ)ẇadτ
)

M(t) = πρb2(baḧ− b(0.5− a)U α̇− b(
1

8
+ a2)α̈)− 2πρb2 (0.5 + a)U

(
Φ(s)wa(0)+

∫ s

0

Φ(s− τ)ẇadτ
)

s =
Ut

b

Φ(s) = 1− 0.165e−0.0455s − 0.335e−0.3s (5.9)

whereL(t) andM(t) are the lift and pitching moment,α is the pitch angle,wa is the downwash

velocity andh is the plunge displacement.Φ(s) is the Wagner function which is evaluated using

the approximate expression since an exact analytical expression is not possible. The numerical

solution couples the derived doublet panel method with a4th order Runge-Kutta solver to obtain

the response of the system described by Eq. 5.8. The stiffness is constant at 5 units. Figure 5.5

describes the result of this comparison. The response of the numerical panel code which is coupled

with the Runge-Kutta solver to solve the system given in Eq. (5.8) is seen in Fig. 5.5 to be very

similar to the theoretical solution to Eq. (5.8) as computed by using the Wagner solution (Eq. 5.9)

in Eq. (5.8). Thus the numerical aeroelastic solver is verifiable with the theoretical solution.

For a two dimensional aeroelastic system, we shall add a plunge displacement also to the system

described by Eq. (5.10). In this aeroelastic analysis, the concept of a time-varying torsional stiff-

ness is analyzed as a possible means of flutter suppression. The equation of motion for such a 2-D
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aeroelastic system will be

mḧ + sαα̈ + khh = −Lp(t) (5.10)

Iα̈ + sαḧ + kα(t)α = Mp(t)

where the time varying torsional stiffness,kα(t) is given as

kα(t) = k0 + k01 (1− c1 e−c2t) (5.11)

Here in Eq. 5.10,Lp(t) is the unsteady lift calculated using the panel method andMp(t) is the

unsteady pitching moment calculated using the panel method. The method of analysis introduced

in Chapter 2 regarding the matrix exponential time marching approach to solve linear time varying

systems will be used herein. Accordingly this technique will be used to train neural networks

to represent the dynamic aeroelastic response given by Eq. (5.10). As was noted in Chapter 3,

recurrent neural networks can predict erroneous results especially for time varying systems. This

was also observed in Fig. 3.2. Herein, using the method of matrix exponential time marching a

feed forward network will be designed to predict the dynamic aeroelastic response of the 2-D time

varying system given by Eq. (5.10).

123



0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

Time (Seconds)

Pi
tc

h 
An

gl
e 

(D
eg

re
es

)

a) Angular displacement of the airfoil

0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

12
x 10

−3

Time (Seconds)

Pl
un

ge
 D

is
pl

ac
em

en
t

b) Vertical displacement of the airfoil

Figure 5.6:Solution to the equation5ḧ+0.05α̈+0.25h = −L(t), 0.53Iα̈+0.05ḧ+5α = M(t)

using the time domain numerical code consisting of the Matrix Exponential time marching

method coupled with the doublet panel method
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5.5 Neural Network Training to Represent Dynamic Aeroelas-

ticity

The training of the neural network is performed using the Levenberg-Marquardt scheme that is

available with the MATLAB software. A description of this technique was presented in Chapter

3 under the section titled ”Neural Network Training”. In order to use the concept of Matrix Ex-

ponential time marching that was explained in Chapter 2 to describe the time varying aeroelastic

system, 3 neural networks are required to be trained in the manner described below. Therefore the

number of neural networks is governed by the principal constituents of the matrix exponential time

marching method.

1. ANN(1) Input -




ti

ti+1

kα(ti+1)




, Output -[µ]

2. ANN(2) Input -




ti

ti+1

u∞

h

ḣ

α

α̇




, Output -




cli

cli+1

cmi

cmi+1
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3. ANN(3) Input -




ti

ti+1

kα(ti+1)

cli

cli+1

cmi

cmi+1




Output -{λ}

Here, the first network, ANN(1), describes the state transition matrix,µ of the time varying system

numerically for the desired time interval,ti, ti+1. The next neural network, ANN(2), describes

the non-conservative unsteady aerodynamic loading over the airfoil for the time interval,ti, ti+1.

The last neural network, ANN(3) described the forced response,λ of the aeroelastic system at the

time instantti+1 given the initial conditions at timeti and the outputs of the networks, ANN(1),

ANN(2).

All three neural networks use 3 layers of neurons. The input and output layers have a linear transfer

function. The hidden layer has a Hyperbolic tangent transfer function. Since the matrix exponential

time marching approach to solve linear time variant systems is extremely accurate even with large

time steps of the order of 0.1 seconds, the data sets required for training the neural networks over a

given time duration can be reduced as compared to recurrent neural networks described in Chapter

3. This is very significant for training dynamic neural networks since large data sets can cause

improper convergence of the training routine. However, using the present method, feed-forward

neural networks can be used with a control over the size of the data sets required for training.
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5.6 Aeroelastic Computations

The plunging motion of the airfoil also adds to the downwash velocity of the flow over the air-

foil. According to Eq. (5.4) and (5.6), this effect of the added downwash,w due to the plunging

motion changes the doublet potential. Figure 5.4 depicts the lift coefficient and pitching moment

coefficient over an airfoil that is undergoing sinusoidal oscillations in pitch and plunge. This data

is close to the theoretical solution. The unsteady aerodynamic loads from the doublet panel code

can now be coupled with a structural dynamics solver based on the method of Matrix Exponential

time marching to represent an aeroelastic solver. Figure 5.6 displays the aeroelastic solution to a

constant stiffness 2-D system with the plunge stiffness,kh = 0.25 units and the torsional stiffness,

kα = 5 units.

Hence the variable stiffness system will be used at the flutter boundary to retrieve the unstable

aeroelastic system back into the stable boundary. This analysis will be performed using the trained

neural networks in order to provide a rapid aeroelastic solver that can be used as flutter suppres-

sion system. As mentioned earlier, the Levenberg-Marquardt routine in the MATLAB toolbox for

neural networks is used to train the three neural networks titled ANN1, ANN2, ANN3 to represent

the dynamic aeroelastic system. The networks are designed with respect to both a fixed system

stiffness and a varying torsional stiffness. The variation in the torsional stiffness is according As

can be seen, the system is stable, meaning the flutter boundary has not been crossed. Therefore till

this flutter boundary, the constant stiffness system can be used. A neural network system will be

developed which shall detect this onset of instability and then use a variable torsional stiffness to
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Figure 5.7:Testing the array of neural networks trained using the method of Matrix Expo-

nential Time Marching for obtaining the response of the constant stiffness aeroelastic system

as described by Eq. 5.10 at the onset of flutter and comparing this response with the theoret-

ical solution

regain stability of motion. to Eq. (5.11).

Having trained, the network with a set of stiffness parameters at various free stream velocities,

we test the ANN at different system stiffnesses. Since we have trained 3 different ANN units

separately, the combination of the 3 units needs to be tested to see if the true aeroelastic response is

achievable. Accordingly, a state of flutter is looked at. Considering the constant stiffness system of

Fig. 5.6 but in a state of flutter, the trained neural networks are presented with its system parameters

and the initial conditions with the flow data. The response is compared with the theoretical solution.

This is shown in Fig. 5.7. As can be seen, the neural networks represent the numerical solution

very well. However, for a varying stiffness system, since it is not possible to train the neural
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Figure 5.8:Testing of the neural network array for the aeroelastic system described by Eq.

5.10 with a variable torsional stiffness given byk = 5 + 12 (1− 1.33e−t)

network system for all possible stiffness variations, testing the neural networks for a different

stiffness variation is necessary. Accordingly, during the training process, Eq. (5.11) uses certain

constants,c1 andc2 and during testing, the constants will be changed. This tests the fidelity of

the system to different system parameters. If the testing is successful, then it also establishes an

adaptive aeroelastic controller wherein, stability in oscillations can be obtained using a variable

stiffness system.

The ANN array will be tested for a variable stiffness aeroelastic system. Accordingly in Eq. (5.11),

we considerc1 = 1.33, c2 = 1, k0 = 5, k01 = 12 for the testing of the ANNs’. Note that, the

parametersc1 andc2 different from those used for the training routine. Figure 5.8 displays the

result of the testing. As we can see, the aeroelastic system as represented by neural networks does

show some differences from the numerical aeroelastic system, but these errors reduce with time.
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Moreover, the overall behavior of the neural network system follows the numerical solver quite

accurately. Hence we conclude that the neural network system represented by three networks,

ANN1, ANN2, ANN3 as described earlier can be used to describe the aeroelastic system given by

Eq. 5.10.

The neural network is tested to see if the flutter reduced frequency that it predicts is close to the

theoretical Theodorsen result. The flutter reduced frequency as predicted by the neural network

solver for the constant stiffness system with parameters askh = 0.25, kα = 5,m = 5, I =

0.53, sα = 0.05 is 0.87 when the 2-D airfoil is given an initial pitch displacement of20 angle of

attack. Now a Theodorsen type Flutter analysis is done on this system. The Theodorsen equations

for flutter are listed in Ref. 13. Using these equations, the Theodorsen flutter reduced frequency

was calculated for the same system as represented by the neural network. The Theodorsen reduced

frequency at flutter is 0.79. Hence the neural network is very accurate in calculating the Theodorsen

flutter frequency and the percentage error between the neural network prediction and the theoretical

result is10.1%.

5.7 Flutter Suppression

This array of trained neural networks now provides an adaptive representation of the aeroelastic

system with time varying stiffness. The representation is said to be adaptive because the neural

network is able to respond correctly to a range of torsional variations. Each time the stiffness

variation rate or magnitude changes, the numerical solver need not be used. On the other hand,
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Figure 5.9: Array of neural networks for calculating the dynamic aeroelastic response of a

2-D aeroelastic system. The array shows both the constant stiffness network and the variable

torsional stiffness network for flutter suppression

one can use the neural network system. This allows for the design of a flutter suppression toolbox.

Consider the diagram in Fig. 5.9. This shows the three designed neural networks linked together

to describe the output of the aeroelastic system. A feedback loop is also shown which evaluates

the stability of the system. The stability is based on the response of the system during one period

of oscillation. In the state space plot, if ���� ������# : ���� �����, the system is unstable. Here, the

period of oscillation is 1 and the stability is calculated at a time step � � 1 . Since this is a linear

system, this approach is valid. In general, the procedure to detect flutter is to calculate the work

done over a period of oscillation by the external non-conservative forces. Hence the system is at
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the flutter boundary if

4Wnc =

∫ t+T

t

{f(t)}T.{ẋ}dt = 0 (5.12)

wheref(t) is the no-conservative aerodynamic loads andẋ is the vector containing the system

velocities. If instability is detected by the solver over one period of oscillation, the neural networks

for representing the structural response, that is , ANN(1) and ANN(3) are switched over to the

adaptive mode wherein they can represent a time varying torsional stiffness according to Eq. 5.10.

In Fig. (5.10), the initial dynamic aeroelastic response is calculated using the constant stiffness

structural neural networks, ANN1 and ANN3. Once the system is tested to be unstable, the variable

stiffness adaptive neural networks are switched on for the structural dynamics so as to bring the

system again within the stability boundary. To achieve this, the neural network array that was tested

and developed in Fig. (5.8) with different stiffness variations is used. The reduced frequency of the

aeroelastic system is set to 1.1 which is just over the flutter reduced frequency for this system. It

can be seen from Fig. 5.10(a) that the oscillations are unstable. Based on the procedure explained

in Fig. 5.9, the neural network controller detects the unstable system after the first period and

then switches over to the variable stiffness mode. The stiffness is now increased according to Eq.

(5.11) till stability of oscillations is achieved. This is shown in Fig. 5.10(b) which depicts a stable

oscillatory pattern for the time history of the airfoil’s pitching angle. For Fig. 10(b), the stiffness

variation that was used waskα(t) = 5 + 12 (1 − 1.33e−t). This was found to be sufficient to

restore stability within one period of oscillation of the aeroelastic system. The computational time

required for the neural network simulation is extremely small. For example the 5 seconds of neural

network simulation shown in Fig. 5.10(a) was obtained within a few seconds on an
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Figure 5.10:Flutter suppression of a 2-D aeroelastic system governed by Eq. 5.10 using a

variable torsional stiffness springk = 5 + 12 (1 − 1.33e−t) with trained neural networks

based on the approach of Matrix Exponential Time Marching
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SGI Origin machine using 1 processor in Matlab. Whereas the numerical aeroelastic routine cou-

pling the structural dynamics solver with the doublet panel method takes almost 4 hours for the

same response calculation. Since the neural network array allows such a rapid simulation, the

controller can directly calculate the response to detect instability and prevent it using the variable

stiffness approach.

5.8 Effectiveness of Neural Networks to Represent Dynamic

Aeroelasticity

The Dynamic aeroelastic behavior of an airfoil was calculated using a time domain numerical

code that coupled a panel method using distributed doublets with a time marching structural dy-

namics code. These results were then used in the design of artificial neural networks to capture the

dynamic aeroelastic response. Three neural networks were trained separately, each representing

one constituent of the aeroelastic behavior of the system. When these three neural networks were

inter-connected, the dynamic aeroelastic response of the airfoil with a time-varying stiffness was

obtained. The neural network architecture allows the representation of the fluid-structure coupling

accurately and rapidly. The time step used in this neural network simulation was the order of 0.05

seconds which is an order of magnitude greater than the time step required by the numerical dou-

blet panel code. This neural network representation is valid for any two dimensional time-varying

linear aeroelastic system. The errors in the neural network approximation of the numerical re-

sult were shown to be within a10% range. The Theodorsen flutter reduced frequency was also
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within 11% of the neural network prediction of the flutter reduced frequency. The method of Ma-

trix Exponential time marching upon which the neural network architecture is based provides for

an accurate training scheme and hence the simulation of the neural network for different system

stiffness parameters is accurate.
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Chapter 6

Conclusions

Methods were developed based on trained neural networks to solve static and dynamic aeroelas-

tic problems associated with morphing wing structures. The static aeroelastic problem that was

studied was the shape control of a deforming bump on an airfoil surface. Such a static aeroelastic

problem represents a fundamental aeroelastic problem in morphing wing theory, that is the defor-

mation of a surface in a flow field. Here, this aeroelastic problem was combined with the concept of

lateral dimensional moment generation for tailless aircraft maneuvering. This analysis required the

use of CFD, since the control of flow separation played a major part in the design. The structural

analysis was performed using the non-linear finite element solver package present in the software

ANSYS. A neural network based approach for aeroelastic optimization of bumps on airfoils was

demonstrated. The shape of the bumps was designed for maximum drag with minimum loss in lift

and minimum strain energy of actuation. This design goal was based on the requirement for yaw

moment generation caused by increased drag over one wing. The analysis was done at two free
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stream velocities of Mach 0.3 and 0.7. For the low speed case, the bump was situated at the leading

edge whereas for the high speed case, the bump was moved downstream. Two Neural networks

were trained, one to represent the aerodynamic loading over the bump and the other to represent

the structural deformation and actuator loading. An optimization scheme was devised based on

the conjugate gradient scheme and using these trained neural networks. The results of the opti-

mization showed the best bump designs to realize the objective and these results were verified with

CFD and the finite element solver. For low speeds with free stream velocity of Mach number 0.3, a

drag coefficient rise of 0.015 was realizable with a lift loss of the order of12%. For transonic free

stream speeds, initial bump displacements contribute to wave drag reduction and hence the overall

drag over the airfoil is reduced. As the bump size is increased, the pressure drag rise is greater

than the reduction in wave drag. The optimized bump shapes showed a coefficient of drag rise of

0.01 with a loss in lift of the order of9%. The computed values of drag and lift from the neural

network were within10% of the corresponding CFD result. The strain energy of deformation as

computed by the neural network for the optimized results was approximately16% away from the

ANSYS result.

The utilization of neural networks for dynamic aeroelastic studies was next explored. Calculation

of the dynamic response requires the correct representation of the state variables of the concerned

system at every time instant of interest. The system considered was a two dimensional aeroelastic

system with a time-varying torsional stiffness. The concept of a variable stiffness wing has at-

tracted a lot of attention recently and hence the investigation performed here utilized this concept

of a time varying stiffness in the analysis of the dynamic aeroelastic equations of equilibrium. Ini-
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tial attempts at using recurrent neural networks to represent such a time varying system did not

prove to be computationally efficient since they required small time steps and were very sensitive

to the training procedure. Hence an efficient and accurate time marching scheme was sought to ob-

tain the response of linear time varying systems. Using this time-marching scheme, feed-forward

neural networks could then be trained to represent the dynamic aeroelastic problem.

A scheme termed as Matrix Exponential Time Marching was devised for solving any linearly time

variant system. This scheme used an analytical solution in the form of a matrix exponential as

the state transition matrix within a certain time interval for single degree of freedom systems.

Using this analytical solution, a time marching procedure was developed whereby the response

of the linear time variant system could be determined for any time duration. This scheme was

tested using many examples and was found to be extremely accurate even with large time steps.

This scheme allowed the representation of the dynamic aeroelastic problem by three feed-forward

neural networks. Using this scheme of Matrix Exponential time marching, these three neural

networks were trained to represent the state of the system at any time interval. In order to train

the neural networks to represent the unsteady aerodynamic loading over the airfoil, a panel method

based on distributed doublets was developed. This panel method also used a time marching scheme

to represent the unsteady circulation over the airfoil.

The training of the neural network was performed for both a constant stiffness aeroelastic system

and a variable torsional stiffness system. Once trained, this array of neural networks was used as a

flutter suppression system. Here the response of the constant stiffness system as simulated by the

neural networks is tested for stability. If an instability is detected over a period of oscillation of
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the airfoil, then the variable stiffness neural network array switches on, thereby using the concept

of an increasing torsional stiffness to bring the aeroelastic system back into the stable domain of

the response. This is achieved computationally. Practical experiments on the development of a

variable stiffness wing need to be investigated.

In conclusion, this dissertation studied two novel aeroelastic problems in morphing wing aircraft

using neural networks. Both static and dynamic aeroelastic problems that can be applied to mor-

phing wing aircraft were analyzed. This analysis showed the efficiency of neural networks in

representing linear and non-linear aeroelastic system. The major contributions of this work are in

the representation of linear and non-linear aeroelastic response through the use of neural networks,

its application to morphing wings and the efficient computation of solutions to arbitrarily time

varying linear dynamical systems.
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Appendix A

The matrix exponent,

exp(
∫ t

0
[C(t)]dt) =

(
d11 d12

d21 d22

)

where

C(t) =

(
0 −1

c21 c22

)

is the matrix of time varying coefficients of the differential equation Eq. (2.2), that is
{ẋ}+ [C(t)]{x} = 0. The matricesexp(

∫ t

0
[C(t)]dt) andC(t) must commute , i.e.

e
R t
0 [C(t)]dt [C(t)] = [C(t)] e

R t
0 [C(t)]dt

for a differential equation to be expressed in the form of Eq. (2.3). It is well known that is not the
case for a matrix with variable elements. However we seek to know how valid is Eq. (2.3) when
the matrices involved do not commute. For this purpose, we perform the following operations.
Define

C(t) exp

(∫ t

0

[C(t)]dt

)
=

(
0 −1

c21 c22

) (
d11 d12

d21 d22

)

=

( −d21 −d22

c21d11 + c22d21 c21d12 + c22d22

)
(A-1)

exp

(∫ t

0

[C(t)]dt

)
C(t) =

(
d11 d12

d21 d22

) (
0 −1

c21 c22

)

=

(
d12c21 −d11 + d12c22

d22c21 −d21 + d22c22

)
(A-2)
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Equating Eqs. (A-1) and (A-2), the following relations are obtained,

d21 = −d12 c21

d22 = d11 − d12 c22 (A-3)

Now, we note that, for arbitrarily time-variant matrices, the above relations cannot in general hold
and we therefore wish to obtain how approximate is the above equation for the case of time-variant
parameters. From Eq. 4, the following relations are obtained,

d21 = β

∫ t

t0

c̃21dt

d12 = β (t0 − t)

d22 = β

(∫ t

t0

c̃22

2
dt +

4
tanh(4)

)

d11 = β

(∫ t

t0

− c̃22

2
dt +

4
tanh(4)

)
(A-4)

The termsβ and4 are as explained in Eq. 4. We superscribec22 andc21 with a tilde, to indicate
that they are arbitrarily time varying. Using the relations Eq. A-4 in Eq. A-3,

c21 = −d21

d12

=

∫ t

t0
c̃21dt

t− t0

c22 = −d22 − d11

d12

=

∫ t

t0
c̃22dt

t− t0
(A-5)

Now, it is readily evident that the terms on the right hand side of Eq. A-5 is the average of the
time varying quantity over a time intervalt − t0. If the termsc21 or c22 are time invariant, then
the relationship in Eq. A-5 is exact. If the termsc21 andc22 are time variant, then a suitable time
intervalt− t0 can be selected which will make the relations in Eq. A-5 near exact.
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Appendix B

The MATLAB programs to calculate the steady pressure distribution over an airfoil and the un-
steady aerodynamic loads is given below. The airfoil is constructed using B-Splines.
%This program calculates the steady pressure distribution over an airfoil.
clear all; close all;
np = input(’enter the number of panels ’);
alpha = input(’enter the angle of attack ’);
alpha=alpha*pi/180;
uinf = input(’enter free stream velocity ’);

% Having collected the data ,establish a Bspline representation and get the panels
v = [0 0 0 1 2 3 4 4 4];
for j=1:np,
[x, z] = Vooren(v,np,j);
if j == 1
panelx = x;
panelz= z;
else
panelx=cat(2,panelx,x);
panelz=cat(2,panelz,z);
end
end

lx = min(size(panelx));
lz = min(size(panelz));

%get the location of the collocation point in each panel and calculate the slope
for j = 1:np,
coloc(j,1) =(panelx(1,j)+panelx(lx,j))/2;
coloc(j,2) = (panelz(1,j)+panelz(lz,j))/2;
if j <= np/2
sn = -1;
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else
sn = 1;
end

for k = 1:lx,
if (panelx(k,j)> coloc(j,1) & j > np/2)
break
elseif (panelx(k,j)< coloc(j,1) & j <= np/2)
break
end
end
slope(j) = atan2(sn*(panelz(k,j)-panelz(k-1,j)),sn*(panelx(k,j)-panelx(k-1,j)));
end

%calculate the influence coefficients
for j = 1:np,
for k = 1:np,
xt = coloc(j,1)-panelx(1,k);
zt = coloc(j,2)-panelz(1,k);
x2t = panelx(lx,k)-panelx(1,k);
z2t = panelz(lz,k)-panelz(1,k);
xl = xt*cos(slope(k))+zt*sin(slope(k));
zl = -xt*sin(slope(k))+zt*cos(slope(k));
x2 = x2t*cos(slope(k))+z2t*sin(slope(k));
z2 = 0;

r1 = (xl2 + zl2);
r2 = ((xl − x2)2 + zl2);

if j == k
ul = 0;
wl = -1/(pi*xl);
else
ul = 1/(2*pi)*(zl/r1-zl/r2);
wl = -1/(2*pi)*(xl/r1-(xl-x2)/r2);
end
u = ul*cos(-slope(k))+wl*sin(-slope(k));
w = -ul*sin(-slope(k))+wl*cos(-slope(k));
dob(j,k) = -u*sin(slope(j))+w*cos(slope(j));
B(j,k) = u*cos(slope(j))+w*sin(slope(j));
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end
end

leng = sqrt((panelx(lx,np)-panelx(1,np))2+(panelz(lz,np)-panelz(1,np))2);
% Use the Kutta condition as MuW = Mu(np)-Mu(np/2) and calculate its influence
for j =1:np,
r1 = ((coloc(j,1)-panelx(1,1))2+(coloc(j,2)-panelz(1,1))2);
r2 = ((coloc(j,1)-(panelx(lx,np)+0.1))2+(coloc(j,2)-panelz(lz,np))2);
wl = -1/(2*pi)*((coloc(j,1)-panelx(1,1))/r1);
ul = 1/(2*pi)*((coloc(j,2)-panelz(1,1))/r1);
dob(j,np+1)= wl*cos(slope(j))-ul*sin(slope(j));
B(j,np+1) = ul*cos(slope(j))+wl*sin(slope(j));
if j == 1
dob(np+1,j) = -1;
elseif j == np
dob(np+1,j) = 1;
else
dob(np+1,j) = 0;
end
end
dob(np+1,np+1) = -1;

for j = 1:np+1,
for k = 1:np+1;
as(k) = dob(j,k);
end
act(j) = max(abs(as));
for k = 1:np+1,
dob(j,k) = dob(j,k)/act(j);
end
end

% Apply the normal boundary conditions
for j = 1:np,
Nm(j) =(uinf*sin(-alpha+slope(j)))/act(j);
end

Nm(np+1) = 0;

%Get the doublet potential
Mu = inv(dob)*(Nm’);
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c = 1;
for l2 = 1:np,
temp = 0;
if l2 > np/2
sn = 1;
else
sn = -1;
end
for l1 = 1:np+1,
temp = temp+B(l2,l1)*Mu(l1);
end
if l2 =1 & l2 = np
r = sqrt((coloc(l2+1,1)-coloc(l2-1,1))2+(coloc(l2+1,2)-coloc(l2-1,2))2);
vloc = sn*(Mu(l2+1)-Mu(l2-1))/r;
elseif l2 == np
r = sqrt((coloc(np-1,1)-coloc(np,1))2+(coloc(np-1,2)-coloc(np,2))2);
vloc = (Mu(np)-Mu(np-1))/r;
else
r = sqrt((coloc(2,1)-coloc(1,1))2+(coloc(2,2)-coloc(1,2))2);
vloc = -(Mu(1)-Mu(2))/r;
end

vel = (cos(alpha)*cos(slope(l2))+sin(alpha)*sin(slope(l2)))*uinf+temp+vloc/2;
uu(l2) = vel*cos(slope(l2));
vv(l2) = vel*sin(slope(l2));
if l2 = np/2+1 & l2 = np/2 & l2 = 1
xp(c) = coloc(l2,1);
yp(c) = coloc(l2,2);
cp(c) = -1+(vel2)/uinf2;
c = c+1;
end
end
figure(1);
plot(xp,cp,’*’,xp,cp,’-r’,xp,yp,’k’); title(’Coefficient of Pressure’)
ylabel(’-Cp’)
cl = 0;
ml = 0;

for l2 = 2:np/2-2,
leng = sqrt((panelx(lx,l2)-panelx(1,l2))2+(panelz(lz,l2)-panelz(1,l2))2);
ml = ml -(-cp(l2)*cos(slope(l2))+cp(np-l2+1)*cos(slope(np-l2+1)))*leng*cos(alpha)*(xp(l2)-panelx(1,1)/4);
cl = cl +(cp(np-l2+1)*cos(slope(np-l2+1))-cp(l2)*cos(slope(l2)))*leng*cos(alpha);
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end

File Vooren.m
% This program gives an airfoil with a finite trailing edge
function[B1x,B1y] = Vooren(x,np,num);
a = 0.3;ep = 0.1; kk = 2-(10*pi/180)/pi;
c = 1;
j1 = 2*pi-(num-1)*(2*pi)/(np);
j2 = 2*pi-num*(2*pi)/(np);
inc = -abs(j1-j2)/7;

for th = j1:inc:j2,
r1 = sqrt((a ∗ cos(th)− a)2 + a2 ∗ sin(th)2);
r2 = sqrt((a ∗ cos(th)− ep ∗ a)2 + a2 ∗ sin(th)2);
th1 = atan2(a*sin(th),(a*cos(th)-a));
th2 = atan2(a*sin(th),(a*cos(th)-ep*a));
Bx(c) = 1 + 0.1124 + r1kk/r2(kk−1) ∗ cos(kk ∗ th1− (kk − 1) ∗ th2);
By(c) = r1kk/r2(kk−1) ∗ sin(kk ∗ th1− (kk − 1) ∗ th2);
c= c+1;
end

k = 3;n = length(x)-3;
N = zeros(n+k-1,k+1);
count = 0;
t= zeros(length(Bx),1);
total = 0;
for d = 2:length(Bx),
temp = (Bx(d)-Bx(d-1))2 + (By(d)-By(d-1))2;
total = total+sqrt(temp);
end
for l = 2:length(Bx),
for d = 2:l,
t(l,1) = t(l,1) + sqrt((Bx(d)-Bx(d-1))2+(By(d)-By(d-1))2);
end
t(l,1)=t(l,1)/total *x(length(x));
end
q =1;

%Given the data points, calculate the control points using Cox-De-Boor algorithm
while q< length(t)+1
while t(q,1)< count +1
N(k+count,1) = 1;
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for l = 2:k,
for j = k+count-(l-1):k+count,
if (x(j+l-1)-x(j)) = 0
N(j,l) = ((t(q,1)-x(j))*N(j,l-1))/(x(j+l-1)-x(j));
end
if (x(j+l)-x(j+1)) = 0
N(j,l) = N(j,l) + ((x(j+l)-t(q,1))*N(j+1,l-1))/(x(j+l)-x(j+1));
end
end
end
for h = 1:k+count,
M(q,h) = N(h,k);
end
q = q+1;
N = zeros(n+k+1,k+1);
if q == length(Bx) +1
count = count+1;
break
end
end
count = count+1;
if count == x(length(x)-1)
count = count -1;
t(q,1) = count+0.99;
end
end
% Calculate the new control polygon points and the Airfoil curve
Px = inv(M’*M)*M’*Bx’;
Py = inv(M’*M)*M’*By’;
B1x = M*Px;
B1y = M*Py;
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% Panel code for Unsteady Aerodynamics

File UnsPanelFull.m
% Initiates the unsteady aerodynamics calculations
clear all; close all;
np = input(’enter the number of panels ’);
uinf = input(’enter free stream velocity ’);

v = [0 0 0 1 2 3 4 4 4];
for j=1:np,
[x, z] = Vooren(v,np,j);
if j == 1
panelx = x;
panelz= z;
else
panelx=cat(2,panelx,x);
panelz=cat(2,panelz,z);
end
end

lx = min(size(panelx));
b = panelx(lx,np)/2;

%Set the time step
tstep = 0.007;
[angul, h, tt2, cl2,ml2] = Morph(uinf,panelx,panelz,np,tstep);
plot(tt2,cl2,tt2,ml2,’c’);
ylabel(’Cm’)
xlabel(’time’)
grid on
angul = angul*180/pi;
figure(2);
plot(tt2,angul,tt2,h);
ylabel(’Angle Degrees’)
xlabel(’time’)
grid on

Function that performs the time stepping for the unsteady aerodynamics
function[an1, an2, ttA, clA,mlA] = Morph(uinf,panelx,panelz,np,tstep)
alpha = 0;
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% Get the Size Of the panel matrix
lx = min(size(panelx));
lz = min(size(panelz));
b = panelx(lx,np)/2;
mm = 7; sa = 0.05; ia =0.38 ∗mm ∗ b2;
d2 =mm ∗ ia− sa2;
ff = 1;
cc = 1;

fid = fopen(’NeuroData1.dat’,’w’);
%get the location of the collocation point in each panel and calculate the slope
for j = 1:np,
coloc(j,1) =(panelx(1,j)+panelx(lx,j))/2;
coloc(j,2) = (panelz(1,j)+panelz(lz,j))/2;
if j ¡= np/2
sn = -1;
else
sn = 1;
end
for k = 1:lx,
if (panelx(k,j)> coloc(j,1) & j > np/2)
break
elseif (panelx(k,j)< coloc(j,1) & j <= np/2)
break
end
end
slope(j) = atan2(sn*(panelz(k,j)-panelz(k-1,j)),sn*(panelx(k,j)-panelx(k-1,j)));
end

%calculate the influence coefficients
for j = 1:np,
for k = 1:np,
xt = coloc(j,1)-panelx(1,k);
zt = coloc(j,2)-panelz(1,k);
x2t = panelx(lx,k)-panelx(1,k);
z2t = panelz(lz,k)-panelz(1,k);
xl = xt*cos(slope(k))+zt*sin(slope(k));
zl = -xt*sin(slope(k))+zt*cos(slope(k));
x2 = x2t*cos(slope(k))+z2t*sin(slope(k));
z2 = 0;
r1 = (xl2 + zl2);

155



r2 = ((xl − x2)2 + zl2);
if j == k
ul = 0;
wl = -1/(pi*xl);
if j ¿ np/2
p(j,k) = -0.5;
else
p(j,k) = 0.5;
end
else
ul = 1/(2*pi)*(zl/r1-zl/r2);
wl = -1/(2*pi)*(xl/r1-(xl-x2)/r2);
p(j,k) = -1/(2*pi)*(atan2(zl,(xl-x2))-atan2(zl,xl));
end
u = ul*cos(-slope(k))+wl*sin(-slope(k));
w = -ul*sin(-slope(k))+wl*cos(-slope(k));
dob(j,k) = -u*sin(slope(j))+w*cos(slope(j));
B(j,k) = u*cos(slope(j))+w*sin(slope(j));
end
% Use the Kutta condition as MuW = Mu(np)-Mu(1) and calculate its influence
xt = coloc(j,1)-panelx(lx,np);
zt = coloc(j,2)-panelz(lz,np);
x2t = 0.25*tstep*b*(cos(alpha));
z2t = 0.25*tstep*b*sin(alpha);
xl = xt*cos(-alpha)+zt*sin(alpha);
zl = -xt*sin(-alpha)+zt*cos(alpha);
x2 = x2t*cos(-alpha)+z2t*sin(alpha);
z2 = 0;
r1 = (xl2+zl2);
r2 = ((xl − x2)2 + zl2);
wl = -1/(2*pi)*(xl/r1-(xl-x2)/r2);
ul = 1/(2*pi)*(zl/r1-zl/r2);
u = ul*cos(alpha)+wl*sin(alpha);
w = -ul*sin(alpha)+wl*cos(alpha);
p(j,np+1) = -1/(2*pi)*(atan2(zl,(xl-x2))-atan2(zl,xl));
dob(j,np+1)= w*cos(slope(j))-u*sin(slope(j));
B(j,np+1) = u*cos(slope(j))+w*sin(slope(j));
if j == 1
dob(np+1,j) = -1;
elseif j == np
dob(np+1,j) = 1;
else
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dob(np+1,j) = 0;
end
end
dob(np+1,np+1) = -1;
invIC = inv(dob);

%Computation Of velocities at each time step
%Start the Unsteady Computation
lmt = 0;
vel = 0.0;
vel2 = 0;vel3 = 0;
angul = [0.04 0.04];
h = [0 0.002];
c = 0;
count = 1;
for t = tstep:tstep:6.0,
if count> 1
velo2(count) = vel2;
hev(count) = vel3;
Tw(count) = velo2(count);
else
Tw(count) = vel;
hev(count) = 0;
end
thet = angul(count);
if count> 1
tau(count-1) = t;
cl(count-1) = 0;
ml(count-1) = 0;
end
for j = 1:np,
L(1) = 0;L(2) = 0;
q(j)= 0;
S(j) = 0;
% Calculate the normal velocity
Nm(j) = uinf*sin(-alpha-thet+slope(j))-hev(count)*cos(-alpha-thet+slope(j))...
+vel2*(coloc(j,1)-panelx(1,1)/2)*cos(slope(j));
%calculate the vertical velocity from the wake doublets
for k = 1:count-1,
add1= b*cos(alpha+angul(count-k+1))*tstep;
add2= b*sin(alpha+angul(count-k+1))*tstep;
L(1) = L(1)+add1;
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L(2) = L(2)+add2;
xt = coloc(j,1)-(panelx(lx,np)+L(1));
zt = coloc(j,2)-(panelz(lz,np)+L(2));
x2t = add1;
z2t = add2;
xl = xt*cos(alpha+angul(count-k+1))+zt*sin(alpha+angul(count-k+1));
zl = -xt*sin(alpha+angul(count-k+1))+zt*cos(alpha+angul(count-k+1));
x2 = x2t*cos(alpha+angul(count-k+1))+z2t*sin(alpha+angul(count-k+1));
z2 = 0;
r1 = (xl2 + zl2);
r2 = ((xl-x2)2+zl2);
wl = -Muw(k)/(2*pi)*(xl/r1-(xl-x2)/r2);
ul = Muw(k)/(2*pi)*(zl/r1-zl/r2);
u = ul*cos(-alpha-angul(count-k+1))+wl*sin(-alpha-angul(count-k+1));
w = -ul*sin(-alpha-angul(count-k+1))+wl*cos(-alpha-angul(count-k+1));
Nm(j) = Nm(j)-(w*cos(slope(j))-u*sin(slope(j)));
S(j) = S(j)+u*cos(slope(j))+w*sin(slope(j));
q(j) = q(j)-Muw(k)/(2*pi)*(atan2(zl,(xl-x2))-atan2(zl,xl));
end
end
Nm(np+1) = 0;

%Get the doublet potential
Mu = invIC*(Nm’);
Muw(count) = Mu(np+1);
%Save the potential of the previous time step
if count>1
phi1 = phi;
else
for j = 1:np,
phi1(j) =0;
phi(j) = 0;
end
end
for l2 = 1:np,
temp = 0;
phi(l2) =0;
if l2 > np/2
sn = 1;
else
sn = -1;
end
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% Calculate velocity and potential at each panel
for l1 = 1:np+1,
temp = temp+B(l2,l1)*Mu(l1);
phi(l2) = phi(l2) + p(l2,l1)*Mu(l1);
end
if count> 1
phi(l2) = phi(l2)+q(l2);
temp = temp+S(l2);
end
if l2 =1 & l2 = np
r = sqrt((coloc(l2+1,1)-coloc(l2-1,1))2+(coloc(l2+1,2)-coloc(l2-1,2))2);
vloc = sn*(Mu(l2+1)-Mu(l2-1))/r;
elseif l2 == np
r = sqrt((coloc(np-1,1)-coloc(np,1))2+(coloc(np-1,2)-coloc(np,2))2);
vloc = (Mu(np)-Mu(np-1))/r;
else
r = sqrt((coloc(2,1)-coloc(1,1))2+(coloc(2,2)-coloc(1,2))2);
vloc = -(Mu(1)-Mu(2))/r;
end
%Find the net velocity at each panel
vel = (cos(alpha+thet)*cos(slope(l2))+sin(alpha+thet)*sin(slope(l2)))*uinf+temp+vloc/2;
vel = sqrt(vel2+(Tw(count)*(coloc(l2,1)-panelx(1,1)/2)*cos(slope(l2))-hev(count)*cos(alpha-thet+slope(l2)))2);
uu(l2) = vel*cos(slope(l2));
vv(l2) = vel*sin(slope(l2));
xp(l2) = coloc(l2,1);
yp(l2) = coloc(l2,2);
%Calculate the unsteady coefficient of pressure if count>= 2
cp(l2) = -1+(vel2)/(uinf2)+(2/uinf2)*((phi(l2)-phi1(l2))/tstep);
else
cp(l2) = -1+(vel2)/(uinf2);
end
end

%Calculate the lift and pitching moment
if count> 1
for l2 = 1:np/2-1,
leng = sqrt((panelx(lx,l2)-panelx(1,l2))2+(panelz(lz,l2)-panelz(1,l2))2);
ml(count-1) = ml(count-1) +(cp(l2)*cos(slope(l2))-cp(np-l2+1)*cos(slope(np-l2+1)))*leng*cos(thet)*(xp(l2)-
panelx(1,1)/2);
cl(count-1) = cl(count-1) +(-cp(np-l2+1)*cos(slope(np-l2+1))+cp(l2)*cos(slope(l2)))*leng*cos(thet);
end
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% Stiffness allocation
kk2(count-1) = 0.25;
kk(count-1) = 5;
kk1 = [kk(count-1);kk2(count-1)];

f11 = 2*(b2)*(uinf 2)*1.225*(ml(length(ml)));
f21 = b*(uinf2)*1.225*(cl(length(cl)));
f = [f11;f21];
xx=[angul(count);vel2;h(count);vel3];
[y2]= Runge2(xx,f,kk1,mm,ia,tstep);

angul = cat(2,angul,y2(1,1));
h = cat(2,h,y2(3,1));
vel2 = y2(2,1);
vel3 = y2(4,1);

if mod(tau(count-1),0.056) == 0
if tau(count-1)> 0.1
x0 = [angul(lmt+1);v11;h(lmt+1);v22];
inpcc = [tau(lmt);tau(count-1);uinf;x0(1,1);x0(2,1);x0(3,1);x0(4,1)];
oupcc = [ml(lmt);ml(count-1);cl(lmt);cl(count-1)];
else
x0 = [angul(count-6);0;h(count-6);0];
inpcc = [lmt;tau(count-1);uinf;x0(1,1);x0(2,1);x0(3,1);x0(4,1)];
oupcc = [ml(count-7);ml(count-1);cl(count-7);cl(count-1)];
end
fprintf(fid,’%f %f %f %f %f %f %f’,inpcc);
fprintf(fid,’%f %f %f %f’,oupcc);
cc=cc+1;
lmt = (count-1);
v11 = vel2;
v22 = vel3;
end
end

count = count+1;
end
for i = 3:length(tau),
an1(i-2) = angul(i);
mlA(i-2) = ml(i);
clA(i-2) = cl(i);
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ttA(i-2) = tau(i);
an2(i-2) = h(i);
end
fclose(fid);

Function for Runge-Kutta time marching
function[y2] = Runge2(y0,g,k,m,ia,tstep)
s = [0 -1 0 0;k(1,1) 0 0 0;0 0 0 -1;0 0 k(2,1) 0];
A = [1 0 0 0;0 ia 0 0.05;0 0 1 0;0 0.05 0 m];
Ai = inv(A);
s = Ai*s;
g2 = [0;g(1,1);0;g(2,1)];
g2 = Ai*g2;
k1 = tstep*(g2-s*y0);
k2 = tstep*(g2-s*(y0+k1/2));
k3 = tstep*(g2-s*(y0+k2/2));
k4 = tstep*(g2-s*(y0+k3));
y2 = y0+1/6*(k1+2*k2+2*k3+k4);
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