

Aerospace Structures and Materials (ASM) Master Track IV: Innovation in Analysis, Design and Manufacturing

Dr. Sergio Turteltaub ASM Track Coordinator

Building Blocks of Aerospace Structures

The things we **MAKE**...

have the potential to **BREAK**

Aerospace Structures & Materials Faculty of Aerospace Engineering

Aerospace Structures and Materials

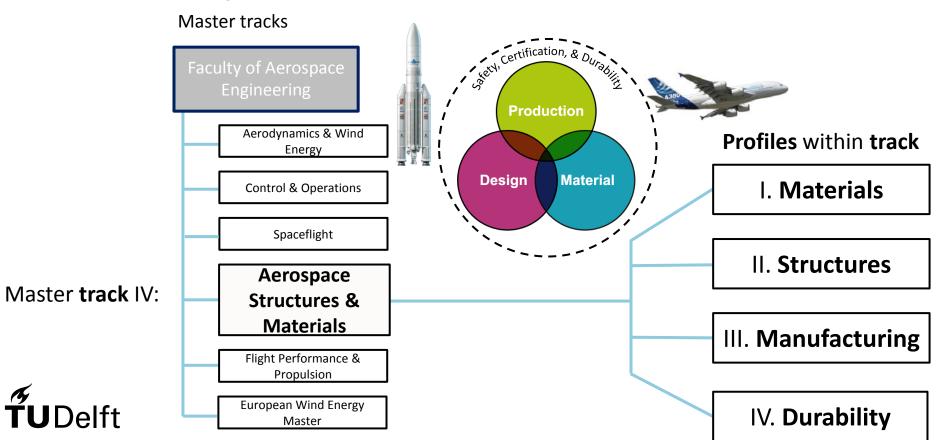
Structural Integrity & Composites

one Lab

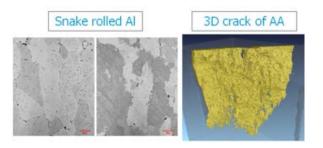
Aerospace Structures & Computational Mechanics

5

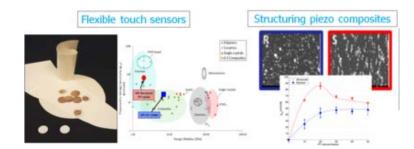
Novel Aerospace Materials



Aerospace Manufacturing Technologies

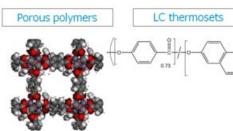

Delft ASM Laboratories

Aerospace Structures and Materials



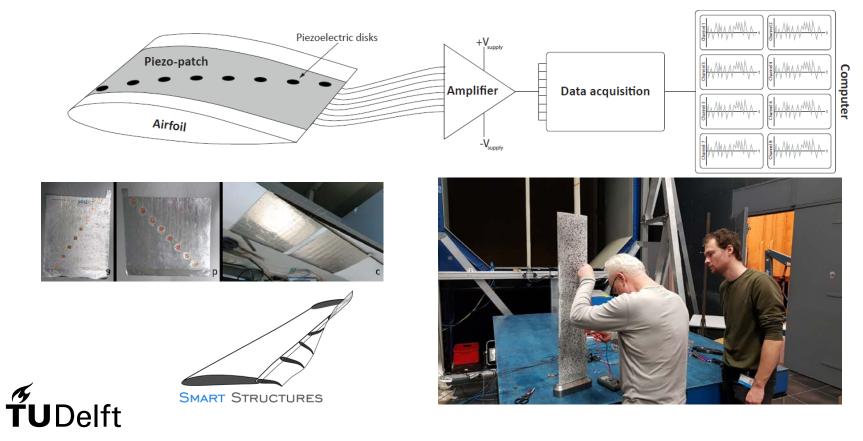
Materials

Materials: Research themes



Advanced Metallic Systems

Smart Materials



Polymers for high performance applications

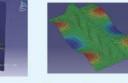
Coatings

Self Healing Materials (SHM) and functional surfaces

Applications: Smart Wing

Materials Profile: Courses Overview

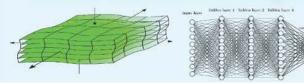
Material Design Key Material Relevant Electives	Profile Courses	I. Materials			
Design of Self Healing Materials	Polymers	\checkmark		\checkmark	
Actoriale Changeterization	Advanced Alloys	\checkmark			
Materials Characterization	Functional Coatings	\checkmark			
Materials Selection	Sensor Materials	\checkmark			\checkmark
	Trinity Exercise		\checkmark	\checkmark	
	Stability & Analysis of Structures I		\checkmark		\checkmark
JDelft	Polymer Composites Manufacturing		\checkmark	\checkmark	\checkmark
	Experimental Techniques & NDT	\checkmark	\checkmark	\checkmark	\checkmark
	Design & analysis of Composite Structures I		\checkmark	\checkmark	\checkmark
	# EC	17	18	20	17


Structures

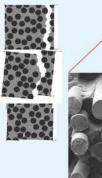
Structures: Research themes

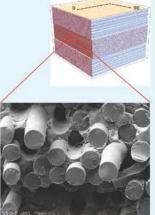
Single-Stringer compression specimen damage tolerance

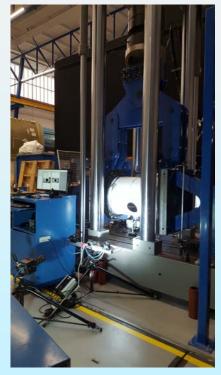
Making the composite meet local structural requirements

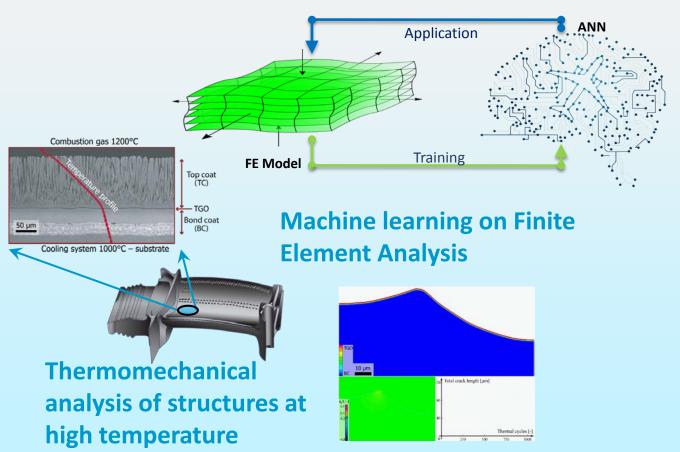


Multifidelity aeroelastic loads and stability calculation methods Understanding fracture from a multiscale perspective




Deep learning on finite element analysis


Composites design and engineering

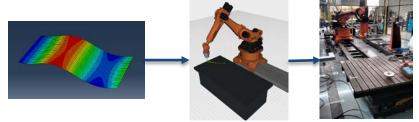


Structures: simulations and experiments

Buckling: Testing structural limits

Structures Profile: Courses Overview

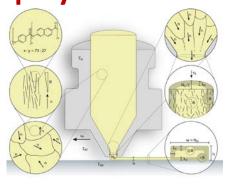
Key Structures Relevant Core Courses	Profile Courses			β	
Design of Light-weight Structures			es		t۷
Linear Modelling			ructur		urabili
Key Structures Relevant Electives			II. Stri		IV. D
Aeroelasticity	Polymers	\checkmark		\checkmark	
	Advanced Alloys	\checkmark			
Non-linear Modelling	Functional Coatings	\checkmark			
Spacecraft & Launcher Structures	Sensor Materials	\checkmark			\checkmark
•	Trinity Exercise		\checkmark	\checkmark	
Stability & Analysis of Structures II	Stability & Analysis of Structures I		\checkmark		\checkmark
Design & Analysis of Composite Structures II	Polymer Composites Manufacturing		\checkmark	\checkmark	\checkmark
	Experimental Techniques & NDT	\checkmark	\checkmark	\checkmark	\checkmark
JDelft	Design & analysis of Composite Structures I		\checkmark	\checkmark	\checkmark
	# EC	17	18	20	17



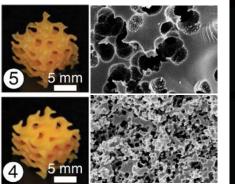
Manufacturing

Manufacturing: Research themes

From design to robot language



Press forming FPRC



Hierarchical structure of

the LCP polymer

Bioinspiration: hierarchical architectures

3D - Printed - broken

Manufacturing: emerging topics

Life Cycle of composites

Footprint

End of Life

Recycling

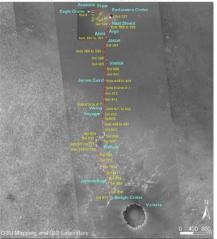
Manufacturing Profile: Courses Overview

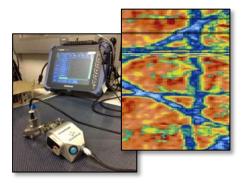
Key Manufacturing Relevant Core CoursesManufacturing of Aerospace Struct. & Mat.Design of lightweight structures IKey Manufacturing Relevant Electives	Profile Courses	I. Materials		III. Manufacturing	
Aircraft Manufacturing Laboratory	Polymers	\checkmark		\checkmark	
Industrial Composite Manufacturing	Advanced Alloys	\checkmark			
	Functional Coatings	\checkmark			
Sheet Metal Forming	Sensor Materials	\checkmark			\checkmark
Design of lightweight structures II	Trinity Exercise		\checkmark	\checkmark	
	Stability & Analysis of Structures I		\checkmark		\checkmark
JDelft	Polymer Composites Manufacturing		\checkmark	\checkmark	\checkmark
	Experimental Techniques & NDT	\checkmark	\checkmark	\checkmark	\checkmark
	Design & analysis of Composite Structures I		\checkmark	\checkmark	\checkmark
	# EC	17	18	20	1

Durability

A380 full scale fatigue test - Airbus

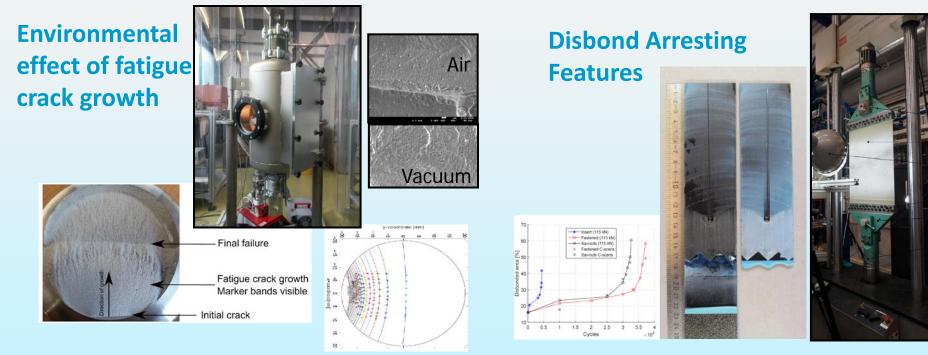
Durability: Research themes


Fatigue & Durability





Opportunity Traverse Map (Sol 87



NDT/SHM

Safety & Certification 20

Durability: safety first

Challenging the notion of crack closure as an explanation for mean-stress effects on fatigue crack growth in metals Enabling certification of bonded joints through use of design features that arrest incidental damage growth under fatigue

Forensic Engineering

Durability Profile: Courses Overview

Key Durability Relevant Core Courses	Profile Courses				
Fatigue of Structures & Materials					5
Design of lightweight structures I					Durabili
Key Durability Relevant Electives					Z. D
Structural Integrity & Maintenance	Polymers	\checkmark		\checkmark	
Forensic Engineering	Advanced Alloys	\checkmark			
	Functional Coatings	\checkmark			
Design & Analysis of Composite Structures II	Sensor Materials	\checkmark			\checkmark
	Trinity Exercise		\checkmark	\checkmark	
Design of Self Healing Materials	Stability & Analysis of Structures I		\checkmark		\checkmark
JDelft	Polymer Composites Manufacturing		\checkmark	\checkmark	\checkmark
	Experimental Techniques & NDT	\checkmark	\checkmark	\checkmark	\checkmark
	Design & analysis of Composite Structures I		\checkmark	\checkmark	\checkmark
	# EC	17	18	20	17

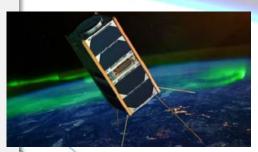
New: Space Profile

Increased interest in Space: Early announcement:

- **New** profile with **space**-related courses and projects
- Combination of topics from ASM and Space Track
- New courses from ASM already being developed and implemented
- Details **TBA**

Courses on Spacecraft and Launcher Structures

Falcon Heavy: Reusable



Payload Launcher Adapter

AE4-ASM-523 Design of Spacecraft and Launcher Structures

AE4-ASM-524

Advanced Design, Development and Verification of Spacecraft and Launcher Structures

CubeSat

ESA – Vega Launcher

Aerospace Structures & Materials

The people behind ASM

We pursue research that will help enable the aerospace products of tomorrow meet the ever rising demands on performance, and do so for the entire life of the product.

Rinze Benedictus

ŤUDelft

Our research is both explorative and fundamental in nature but successful concepts are developed up to a level suitable for absorption by the industry.

Sybrand van der Zwaag

Delft

Pim Groen

Roeland De Breuker

Typically, our research projects combine engineering expertise with the use of advanced computational tools in order to develop design solutions relevant to societal needs. The final product of the research can be a prototype of an innovative technology or design methodology for use in industry.

Chiara Bisagni

Clemens Dransfeld

Aerospace Manufacturing requires an interdisciplinary approach between materials science, engineering and manufacturing. There are simulation methods that are very accurate, but that last for days or weeks. But I prefer a fast prediction of 80% reliability in three hours than a solution of 100% accuracy in a week. The industry is often willing to take that risk

The ASM department: research staff

Enlightness

V

Education evaluation

ŤUDelf

- Monthly ASM drink
 - Drinks
 - Pub quizzes
 - For students, phd's and staff

ASMstudentsociety-LR@tudelft.nl

Company event

ŤUDelf

Potential jobs & internships

TEIJIN DIAMEN Airborne

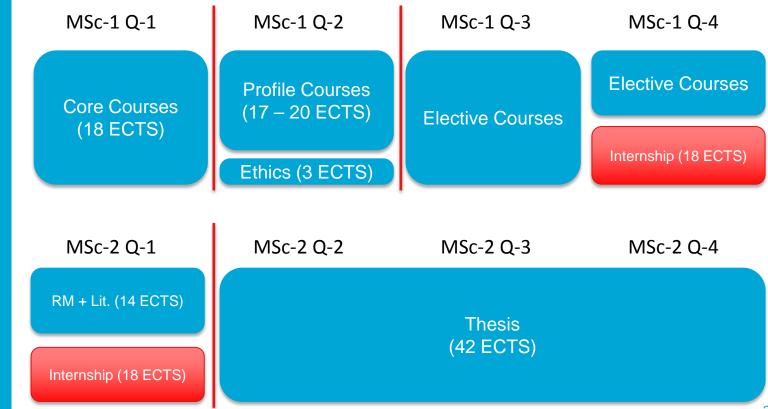
ASMstudentsociety-LR@tudelft.nl

The Structures and Materials Track may be a good choice for you if you find many things that you like:

- When you like **real-life aircraft** and **space structures**
- When you like to think about new aerospace concepts
- When you like mechanics and simulations
- When you like creating **new materials** and **innovate** existing ones
- When you like **experimental** work in a **real** laboratory
- When you are interested in mathematical complexity
- When you like science as much as engineering
- When you care about safety
- When you like making **real** objects
- When you like robot control and automation
- When you want to provide new tools to the industry

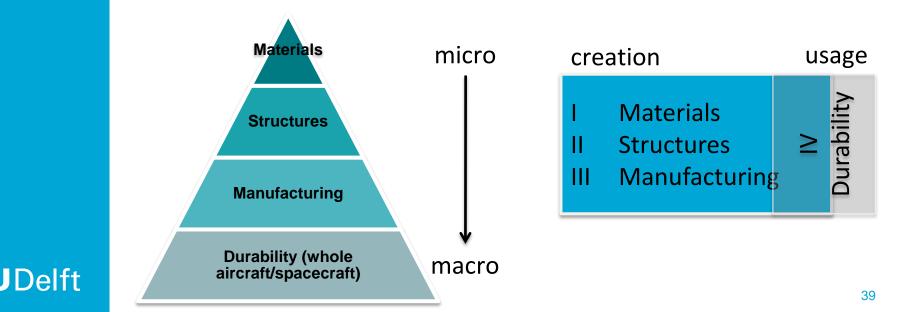
Aerospace Structures & Materials

Practical Information


ASM MSc programme

- Flexible profile and elective choice
- Hands on supervision
- Thriving MSc Student Society
- Many industry contacts

Outline ASM MSc programme


ŤUDelft

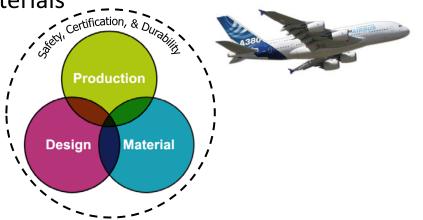
ASM Track Design

EDIT / DELETE SLIDE

1 Common core of 15 ECTS in 1st period Followed by a choice of 4 thematic profiles:

AE4ASM001 AE4ASM002 AE4ASM003 AE4ASM004 AE4ASM005

WM0324LR


ASM Core Programme (all in period 1)

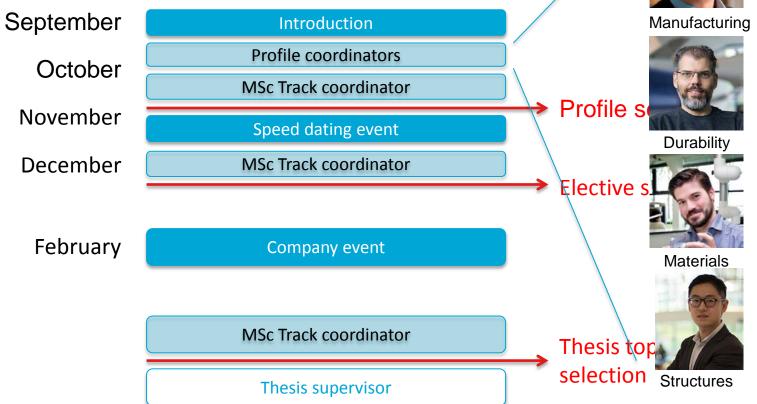
Design of Lightweight Structures I: Composites & Metals Designing Materials with Aerospace Specific Properties Linear Modeling (using F.E.M.)

Manufacturing of Aerospace Structures & Materials

Fatigue of Structures & Materials

Ethics (in period 2)

40


ASM Core Module

- The core module of the new ASM MSc curriculum has been designed to cover all aspects of structures and materials for the development of an aircraft wing.
- Core topics span from creation and design to analysis, manufacturing and life-time durability monitoring.

Interaction

We Work Well With Others

So why ASM ?

- We maintain strict supervision to help you finish in time
- You can apply for the aircraft construction course
- You are part of a lively MSc student body
- You can play in the best labs of the faculty
- All our student find a job soon after graduating

ASM MSc Track Coordinator Faculty of Aerospace Engineering, TU Delft

E-Mail: <u>MScCoordinator-ASM@tudelft.nl</u>

Ir.tudelft.nl/asm

We're looking forward to seeing you in September!

