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In this article, we describe a new approach to enhance driving safety via multi-media tech-
nologies by recognizing and adapting to drivers’ emotions with multi-modal intelligent car
interfaces. The primary objective of this research was to build an affectively intelligent and
adaptive car interface that could facilitate a natural communication with its user (i.e., the
driver). This objective was achieved by recognizing drivers’ affective states (i.e., emotions
experienced by the drivers) and by responding to those emotions by adapting to the cur-
rent situation via an affective user model created for each individual driver. A controlled
experiment was designed and conducted in a virtual reality environment to collect phys-
iological data signals (galvanic skin response, heart rate, and temperature) from partici-
pants who experienced driving-related emotions and states (neutrality, panic/fear,
frustration/anger, and boredom/sleepiness). k-Nearest Neighbor (KNN), Marquardt-Back-
propagation (MBP), and Resilient Backpropagation (RBP) Algorithms were implemented
to analyze the collected data signals and to find unique physiological patterns of emotions.
RBP was the best classifier of these three emotions with 82.6% accuracy, followed by MBP
with 73.26% and by KNN with 65.33%. Adaptation of the interface was designed to provide
multi-modal feedback to the users about their current affective state and to respond to
users’ negative emotional states in order to decrease the possible negative impacts of those
emotions. Bayesian Belief Networks formalization was employed to develop the user
model to enable the intelligent system to appropriately adapt to the current context and
situation by considering user-dependent factors, such as personality traits and preferences.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction and motivation

In recent years there have been increasing attempts to develop computer systems and interfaces that recognize their
users’ affective states, learn their preferences and personality, and adapt to these distinctions accordingly [1,5,27,30,
33,38,43,45,46].

The main motivation behind many of these studies is that humans are social beings that emote and are affected by their
emotions. Machine perception needs to be able to capture this experience in order to enhance everyday digital tools.
Previous studies suggest that people emote while performing various everyday tasks. For example, people emote while
interacting with computers [40] and automobile drivers emote while driving [23]. The important question is whether this
is reason enough to justify the creation of Affective Interfaces with an Intelligent Agent that recognize user’s emotional states
and respond accordingly.
. All rights reserved.
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People do not only emote, but they also are affected by their emotional states. Emotions influence various cognitive pro-
cesses of people including: perception and organization of memory [7], categorization and preference [49], goal generation,
evaluation, and decision-making [13], strategic planning [26], focus and attention[14], motivation and performance [11],
intention [16], communication [6], and learning [18]. The strong interface between emotion and cognition and the effects
of emotion on human performance in everyday tasks make it necessary to create intelligent computer systems that under-
stand users’ emotional states, learn their preferences and personality, and respond accordingly.

A common everyday task is driving, and yet research suggests that people emote while driving and their driving is af-
fected by their emotions [23]. The inability to control one’s emotions while driving is often identified as one of the major
causes for accidents. Anger is one of the emotions that negatively affects driving. When drivers become angry, they start feel-
ing self-righteous about events and anger impairs their normal thinking and judgment, as a result their perception is altered,
which leads to the misinterpretation of events [23]. Fatigue and sleepiness are other very dangerous states to be in while
driving. According to National Highway Traffic Safety Administration (NHTSA) drowsy driving is responsible for approxi-
mately 56,000 automobile crashes every year. The result of these crashes is roughly 40,000 nonfatal injuries and 1550 fatal-
ities annually. Other states that lead to negative effects while driving are frustration, anxiety, fear, and stress [17].

To be a safer driver on the highways, a person needs to be better aware of his emotions and possess the ability to control
them effectively [23]. For some drivers, once they are aware of their emotional states it becomes easier for them to respond
to the situation in a safe manner and some drivers often lack the ability to calm themselves down even when they are aware
of the fact that they are angry or frustrated [23].

James and Nahl [23] and Larson and Rodriguez [25] discussed techniques for drivers to manage their anger including
relaxation techniques to reduce physical arousal and mental reappraisal of the situation. Our aim in creating an affective
intelligent car interface is to enhance driving safety by facilitating a natural human–computer interaction with the driver
and help the driver to be better aware of his emotional state while driving. For example, when the intelligent system rec-
ognizes the anger or rage of a driver it might suggest the driver to perform a breathing exercise [25]. Similarly, when the
system recognizes driver’s sleepiness, it might change the radio station for a different tune or roll down the window for fresh
air. Taking the precautions mentioned above automatically without distracting the driver through an affectively intelligent
and adaptive system will enhance the driving safety.

Fig. 1, which was originally developed and introduced by Lisetti [28], shows the overall architecture of the system that
would recognize the driver’s current affective state and respond accordingly [5]. This architecture is the backbone of an intel-
ligent adaptive computer system called Multimodal Affective User Interface (MAUI) [29] that can recognize user emotions
and adapt to them by considering user-dependent factors such as personality traits and preferences. The affective state of
Fig. 1. Human multi-modal affect expression matched with multi-media computer sensing.
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a driver can be assessed by interpreting both the mental and the physiological components of the particular emotion expe-
rienced by the driver. Physiological components can be identified and collected from observing the driver using sensors with
different modalities: Visual (facial expressions), Kinesthetic (autonomic nervous system [ANS] arousal and motor activities),
and Auditory (vocal intonation) (V,K,A).

The input is interpreted by implementing various pattern recognition algorithms such as Artificial Neural Networks. The
output of the system is given in the form of a synthesis for the most likely emotion concept corresponding to the sensory
observations. This synthesis constitutes a descriptive feedback to the user about her current emotional state and includes
suggestions as to what action might be taken next to change that emotional state.

This research focused on recognizing the affective states of drivers by collecting physiological signals and analyzing those
signals with machine learning algorithms, and adapting to these affective states through user modeling. We designed and
conducted a driving simulator experiment in virtual reality as discussed in Section 4. In this experiment various scenarios
were created to elicit driving-related emotions and states (neutrality, panic/fear, frustration/anger, and boredom/fatigue)
from the participants. In order to effectively elicit the targeted emotions the scenarios duplicated problematic situations
in real-life driving.

Before designing the driving simulator experiment in virtual reality we studied previous research that performed emotion
recognition through analysis and interpretation of physiological signals. We designed and conducted preliminary experi-
ments to find a relationship between certain physiological signals and emotions. The following section presents previous
studies on emotion recognition through physiology.
2. Related research

This section presents information on research studying the relationship between physiology and emotions and a study
that was specifically focused on assessing level of drivers’ stress.

2.1. Emotion recognition from physiological signals

There have been several studies conducted on understanding the connection between emotions and physiological arou-
sal. Manual analyses (i.e., where no statistical analyses or computer algorithm method was employed) have been success-
fully used for this purpose [15,20]. However, interpreting the data with statistical methods and algorithms is beneficial in
terms of actually being able to map them to specific emotions. Studies have demonstrated that algorithms can be success-
fully implemented for recognition of emotions from physiological signals [39,48,50].

Picard et al. [39] used pictures and guided imagery techniques (i.e., where participants are instructed to imagine experi-
encing an emotionally loaded event) to elicit happiness, sadness, anger, fear, disgust, surprise, neutrality, platonic love, and
romantic love. The physiological signals measured were electromyogram, blood volume pressure, skin conductance, and res-
piration. The algorithms used to analyze the data were Sequential Forward Floating Selection (SFFS), Fisher Projection, and a
hybrid of these two. The best classification achievement was gained by the hybrid method, which resulted in 81% overall
accuracy in mapping the physiological signals into eight emotion groups.

In Zhai and Barreto’s [50] research participants played a computer game where they encountered stress due to the nature
of the game, while their blood volume pressure, galvanic skin response, pupil diameter, and skin temperature were collected
with a non-invasive biofeedback system. By employing Support Vector Machine learning algorithms to analyze the collected
data the researchers categorized different levels of stress with 90.1% accuracy.

In Westerink et al.’s [48] study participants watched emotionally loaded movie clips while their physiological signals
were measured. The study focused on recognizing participants’ affective states through six parameters (i.e., mean, absolute
deviation, standard deviation, variance, skewness, and kurtosis) of galvanic skin response (GSR) and of three electromyog-
raphy signals: frontalis, corrugator supercilii, and zygomaticus major. The skewness and kurtosis parameters of GSR, the
skewness of corrugator supercilii, and four parameters of zygomaticus major successfully discriminated among the four
emotion categories of negative, positive, mixed, and neutral.

All this previous research is aimed to accurately measure users’ physiological signals and classify them into affective
states, so that the technology can be integrated with the development of various user interfaces to facilitate a more natural
interaction between computers and their users.

2.2. A previous study on measuring drivers’ stress

Jennifer Healey’s research from Massachusetts Institute of Technology (MIT) Media Lab [22] was focused on recognizing
stress levels of drivers by measuring and analyzing their physiological signals. The study answered the questions about how
affective models of users should be developed for computer systems and how computers should respond to the emotional
states of users appropriately. The results showed that people don’t just create preference lists, but they use affective expres-
sion to communicate and to show their satisfaction or dissatisfaction.

Before Healey’s driving experiment was conducted a preliminary emotion elicitation experiment was designed where
eight states (anger, hate, grief, love, romantic love, joy, reverence, and no emotion i.e. neutrality) were elicited from the
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participants. These eight emotions were Clynes’ [10] original set for basic emotions. This set of emotions was chosen to be
elicited in the experiment because each was found to produce a unique set of finger pressure patterns [10]. While the par-
ticipants were experiencing these emotions the changes in their physiological responses were measured. The sensors used to
measure various physiological signals are shown in Table 1.

The experiment was conducted over 32 days in a single subject-multiple session setup resulting in 32 different experi-
ments. However only twenty sets (days) of complete data were obtained at the end of the experiment. Guided imagery tech-
nique (i.e., the participant imagines that she is experiencing the emotion by picturing herself in a certain given scenario) was
used to generate the emotions listed above. The participant attempted to feel and express eight emotions for a varying period
of 3–5 min (with random variations). At the end of the experiment, the participant reported the arousal level and the valence
(i.e., positive vs. negative) of each emotion she experienced, which is summarized in Table 2.

Eleven features were extracted from raw electromyogram (EMG), skin conductance (SC), blood volume pulse (BVP) and
respiration measurements by calculating the mean, the normalized mean, the normalized first difference mean, and the first
forward distance mean of the physiological signals. Eleven dimensional feature space of 160 emotions was projected into a
two dimensional space by using Fisher projection. Leave-one-out cross validation (i.e., where a single instance from the ori-
ginal data is used for validation and the remaining instances are used for training) was used for emotion classification. The
results showed that it was hard to discriminate all eight emotion states. However when the emotions were grouped as being
(1) anger or peaceful, (2) high arousal or low arousal, and (3) positive valence or negative valence, they could be classified
successfully as follows:

� Anger: 100%, Peaceful: 98%.
� High arousal: 80%, Low arousal: 88%.
� Positive: 82%, Negative: 50%.

Another preliminary experiment was the daily monitoring of a participant while she was performing normal activities.
The goal was to determine how feasible the ambulatory (i.e., not stationary; movable) affect detection would be. EMG,
BVP, respiration, and SC sensors were used to measure physiological signals while the participant performed her daily activ-
ities and made annotation at certain times.

The anecdotal results showed that emotion recognition is hard in ambulatory environments because of the motion arti-
facts and difficulty of capturing and coding physical and emotional events. For example EMG indicated more muscle activity
in the morning than later in the day. It might be due to an emotional episode, but it was most likely due to a motor activity
where the participant carried the wearable computer on the left shoulder in the morning and then carried it on her lap later
in the day. These findings influenced the design of the final driving experiment.

The results of the experiments described above showed that it is difficult to perform emotion recognition during natural
situations. So, the scope of Healey’s driving experiment was limited to recognition of levels of only one emotional state,
which was emotional stress.

The experiment had three stages: driving in and exiting a parking garage; driving in a city; and driving on a highway. The
experiment used three subjects who repeated the experiment multiple times and six subjects who drove only once. Videos of
the participants were recorded during the experiments and self-reports were obtained at the end of each session. Task design
and questionnaire responses were used to recognize the driver’s stress separately. The results obtained from these two
methods were as follows:

� Task design analysis recognized driver stress level as being rest (e.g. resting in the parking garage), city (e.g. driving in
Boston streets), or highway (e.g. two lane merge on the highway) with 96% accuracy.
� Questionnaire analysis categorized four stress classes as being lowest, low, higher, or highest with 88.6% accuracy.

Finally, video recordings were annotated on a second by second basis by two independent researchers for validation pur-
poses. This annotation was used to find a correlation between the stress metric created from the video and the variables from
the sensors. The results showed that physiological signals closely followed the stress metric provided by the video coders.

The results of these three methods coincided in classifying the driver’s stress and showed that stress levels could be rec-
ognized by measuring the physiological signals and analyzing them by pattern recognition algorithms. Similarities and dif-
ferences between this study and our study on recognizing driving-related emotions/states were discussed in Section 4.2.
Table 1
Sensors used to measure the physiological signals.

Physiological signal Sensor

Skin conductance Skin conductance (SC) sensor
Heart activity Blood volume pressure (BVP) sensor

Electrocardiograph (EKG) sensor
Respiration Respiration sensor
Muscle activity Electromyogram (EMG) sensor
Finger pressure Sentograph



Table 2
Participant’s report on arousal level and valance of each emotion.

Low arousal High arousal

Neutral Neutral Reverence
Positive Platonic love Romantic love, joy
Negative Hate Anger, grief
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3. Preliminary emotion elicitation and recognition experiments

Before designing an applied experiment such as the driving simulator experiment we wanted to evaluate the feasibility of
emotion recognition through physiology. For this purpose we designed a preliminary experiment where we elicited not the
application specific emotions but the emotions that are experienced by people in their regular daily lives [30].
3.1. Experiment design

For this experiment we used movie clips and difficult mathematical questions to elicit six emotions – sadness, anger, sur-
prise, fear, frustration, and amusement. A non-invasive wireless wearable computer BodyMedia SenseWear Armband (Fig. 2)
and Polar chest strap (Fig. 3) that works in compliance with the armband were used to collect three different physiological
signals of our participants: galvanic skin response (GSR), skin temperature, and heart rate.

Mathematical questions were used to elicit frustration and movie clips were used to elicit the other five emotions. Movie
clips were chosen by conducting a pilot study that was guided by the previous research of Gross and Levenson [19]. Movie
scenes resulting in high subject agreement at the end of our pilot study were chosen to elicit specific target emotions.

After choosing the multi-modal stimuli for emotion elicitation, movie clips and the mathematical questions were pre-
sented to the participants in a power point slide show. The participants’ physiological signals were collected while they were
watching the slide show and their self reports were collected between each emotion elicitation session.
3.2. Machine learning algorithms

Three different algorithms were used to analyze the physiological data collected in the preliminary emotion elicitation
experiment: k-Nearest Neighbor Algorithm, Discriminant Function Analysis, and Marquardt Backpropagation Algorithm.
The following subsections describe those algorithms.
3.2.1. k-Nearest Neighbor Algorithm
k-Nearest Neighbor Algorithm (KNN) [32] used two data sets: (1) training data set (to learn the patterns) and (2) test data

set (to verify the validity of learned patterns). The training data set contained instances of GSR, skin temperature, and heart
rate values and the corresponding emotion class. The test data set was similar to the training data set, except that it did not
have the emotion information. In order to classify an instance of a test data into an emotion, KNN calculated the distance
between the test data and each instance of the training data set. Let an arbitrary instance x be described by the feature vector
ha1(x),a2(x), . . ., an(x)i, where ar(x) is the rth feature of instance x. The distance between instances xiand xj was defined as
d(xi,xj) where,
Fig. 2. BodyMedia SenseWear Armband.



Fig. 3. Polar chest strap.
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dðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

r¼1

ðarðxiÞ � arðxjÞÞ2
s

ð1Þ
The algorithm then found the k closest training instances to the test instance. The probabilities of the test instance
belonging to each emotion group were calculated by dividing the number of instances from each emotion group by k:
Pð#iÞ ¼ # of ins: from group i among k ins:
k

ð2Þ
P(#i) indicated the probability of the test instance belonging to group i. Then a random number in [0,1) was generated and
the emotion group whose probability range covered this random number was mapped to the test data.

For example if k = 5 and there were three (3) groups and if among the 5 closest instances 3 of them belonged to group 1, 1
of them belonged to group 2, and 1 of them belonged to group 3 then P(#1) = 0.6, P(#2) = 0.2, and P(#3) = 0.2. Accordingly,
the first group’s probability range was [0,0.6), the second group’s probability range was [0.6,0.8), and the third group’s prob-
ability range was [0.8,1). If the randomly generated number was 0.5 then the first emotion group was mapped to the test
instance, if it was 0.9 then the third group was mapped to the test instance.

The KNN Algorithm was the first to be implemented for emotion recognition purposes in this study. KNN was chosen to
be implemented to test the feasibility of performing pattern recognition on physiological signals that were associated with
emotions.

3.2.2. Discriminant Function Analysis
The second algorithm was developed using Discriminant Function Analysis (DFA) [35], which is a statistical method to

classify data signals by using linear discriminant functions. DFA was used to find a set of linear combinations (i.e., discrim-
inant functions) of the variables, whose values are as close as possible within groups and as far apart as possible between
groups. Thus, a discriminant function is a linear combination of the discriminating variables. In this study’s application of
discriminant analysis, the groups were the emotion classes and the discriminant variables were the data signals: GSR, skin
temperature, and heart rate. The number of discriminant functions needed was determined by finding the minimum of (1)
number of groups and (2) number discriminant variables. There were six groups (emotions: sadness, anger, surprise, fear,
frustration, and amusement) and three (data signal types: GSR, skin temperature, and heart rate). Therefore, number of func-
tions needed was three.

Let xdata be the average value of a specific data signal. The function used to solve the coefficients was:
fiðxgsr; xtemp; xhrÞ ¼ u0 þ u1 � xgsr þ u2 � xtemp þ u3 � xhr ð3Þ
The objective of DFA was to calculate the values of the coefficients u0, u1, u2, and u3 in order to obtain the linear combi-
nation. In order to solve for these coefficients, we applied the generalized Eigenvalue decomposition to the between-group
and within-group covariance matrices. The vectors gained through this decomposition were used to derive coefficients of the
discriminant functions. The coefficients of each function were derived in order to get a maximized difference between the
outputs of group means and a minimized difference within the group means. Every function was orthogonal to each other.

3.2.3. Marquardt Backpropagation Algorithm
The third algorithm used was a derivation of a backpropagation algorithm with Marquardt–Levenberg modification called

Marquardt Backpropagation (MBP) [21]. In this technique, first the Jacobian matrix, which contains first derivatives of the
network errors with respect to the weights and biases, is computed. Then the gradient vector is computed as a product of
the Jacobian matrix J(x) and the vector of errors e(x) and the Hessian approximation is computed as the product of the Jaco-
bian matrix J(x) and the transpose of the Jacobian matrix JT(x) [21].

Then the Marquardt–Levenberg Modification to the Gauss–Newton method is given by the following equation:
Dx ¼ ½JTðxÞJðxÞ þ lI��1JTðxÞeðxÞ ð4Þ
When l is 0 or a small value, then this becomes the Gauss–Newton method that uses the Hessian approximation. When l
is a large value, then this equation is a gradient descent with a small step size (1/l). The aim is to make l converge to 0 as
fast as possible, and this is achieved by decreasing l when there is a decrease in the error function and increasing it when
there is no decrease in the error function. And the algorithm converges when the gradient value reaches below a previously
determined value [21]. This algorithm was chosen to be implemented due to its fast converging nature.
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3.3. Results

Collected physiological signals were normalized in order to minimize the individual differences among participants. The
values of each data type were normalized by using the average value of corresponding data collected during the relaxation
period for the same participant. For example, Eq. (5) shows how the GSR values were normalized for a specific participant:
normalized GSR ¼ original GSR-relaxation GSR
relaxation GSR

ð5Þ
After the normalization, four features (minimum, maximum, mean, and standard deviation) were extracted for each
physiological data type, which resulted in a total of 12 features. Three supervised learning algorithms discussed in Section 3.2
were implemented to analyze these 12 features of each data instance: KNN [32], DFA [35], and MBP [21]. The neural network
architecture used with the MBP was a multi-layer neural network with 12 input nodes for 12 features and 6 output nodes for
6 emotion groups. The overall classification accuracies of KNN, DFA, and MBP are given in Fig. 4 with corresponding error
bars. More detailed recognition accuracies for each specific emotion can be found in [30].

4. Driving simulator experiment

Findings from the aforementioned emotion elicitation experiment showed that emotions experienced by people can be
recognized by finding patterns in their physiological signals. Designing and conducting an experiment that focuses on a spe-
cific application and elicits emotions that are related to driving safety was the next step.

4.1. Driving environment

The driving simulator (Fig. 5) operating in virtual reality (Fig. 6) used in our experiment is located in the new Engineering
Building of the University of Central Florida (UCF). The simulator was created using virtual reality technologies and is oper-
ated by the Center for Advanced Transportation Systems Simulation (CATSS) at UCF. Fig. 7 shows the control room of the
simulator.

The various driving scenarios designed to elicit driving-related emotions were run on this simulator. During each session
an ongoing video of each driver was recorded for annotation and future facial expression recognition purposes.

4.2. Driving simulator experiment scenarios

In order to elicit driving-related emotions a set of scenarios that contained a series of traffic events were created. The
events were ordered in a way that they would first elicit panic/fear, then frustration/anger, and finally boredom/fatigue.
Baselines were inserted before and after eliciting each emotion and neutrality was elicited through those baselines. Below
are the events that were created to elicit each specific emotion:

4.2.1. Panic/fear
While driving downhill in an accident scene, a child suddenly walked to the middle of the road and stopped and the driver

hit him unavoidably. Even when the driver tried to avoid hitting the child; the maneuver was prevented by disabling the
Fig. 4. Overall classification accuracies with KNN, DFA, and MBP.



Fig. 5. Car operating in virtual reality.

Fig. 6. Virtual reality environment.
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simulator car’s brakes and also by placing barricades to both sides of the road so that the driver could not change lanes
(Fig. 8).
4.2.2. Frustration/anger
After hitting the child, the driver was directed to a city scenario, which was created to elicit frustration/anger. These emo-

tions were elicited through a series of events since only one event would not suffice to elicit the target emotions.
First the driver had to stop in the middle of the road and wait for a couple of men who were carrying a big sheet of glass

and who had stopped to talk to a third man they met on the road, thus blocking the road.
After passing the glass carrying men, the driver was instructed to turn right at the next intersection; however driver was

blocked by a car that spent an excessive amount of time at the lights to make a right turn.



Fig. 7. Control room of the driving simulator.

Fig. 8. Child walking to the middle of the road.
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When the driver finally turned right, having traveled approximately 20 feet, the road was again blocked with a big gar-
bage truck that was trying to make a 3-point turn and park (Fig. 9). Also, there was a taxi behind the participant’s car that
honked its horn constantly to annoy the driver.

After passing by the garbage truck that parked, the driver was instructed to turn left at traffic lights. At this point there
was a white car in front of the participant’s car that was waiting to turn left (Fig. 10). However, as soon as the lights turned to
green, several pedestrians started passing across the road and the lights turned to red again before the driver had chance to
turn left.

After passing the pedestrians and starting to drive on a narrow road, a bus driver drove right toward the participant’s car
like they were going to collide. The bus driver turned his wheel at the last moment avoiding an accident; however verbally
insulted the driver as he passed by.

4.2.3. Boredom/fatigue
After leaving the city where the frustrating events occurred, the participants drove on a straight and long road where no

event occurred.



Fig. 9. Garbage truck making a 3-point turn.

Fig. 10. Waiting for the pedestrians to cross.
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4.2.4. Baseline (for neutrality)
Baseline contained an eventless and enjoyable drive between the emotion eliciting events.
One of the biggest differences between Healey’s work [22] and our own research was the driving environments. In Hea-

ley’s experiments real-life traffic was used as opposed to a simulator in a virtual reality. A virtual reality environment pro-
vides a totally controlled environment and the advantages of this controlled environment over the unpredictable real-life
traffic environment are:

� Every participant experiences the exact same events, which makes it possible to do comparisons between the participants
and derive general results.
� Distracters such as noise and motion that influence the physiological signals are kept equal within each scenario includ-

ing the baselines, which makes it possible to capture the changes in responses that are only due to the changes in emo-
tional states of the participants.
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4.3. Driving simulator experiment setup

4.3.1. Sample
The sample included 41 students (both undergraduate and graduate) enrolled in UCF. There were 5 females and 36 males

and their ages ranged from 18 to 55. Specific ages were not requested; therefore, a mean age was not calculated.

4.3.2. Procedure
One subject participated in the study during each session. After signing the consent forms and filling out the pre-study

questionnaires, the non-invasive BodyMedia SenseWear Armband (Fig. 2) was placed on the participants’ left arm (to collect
galvanic skin response and temperature values). After the armband was activated the Polar chest strap (Fig. 3) that works in
compliance with the armband was placed on the participants’ chest (to collect heart rate values). Once the chest strap sig-
naled that it had started communicating with the armband the participants were told the following: (1) They would be driv-
ing a Saturn car that in a virtual reality environment had an automatic transmission. (2) They were expected to obey the
regular traffic rules such as not driving over the speed limit and stopping at red lights and stop signs. (3) The red and yellow
arrows on the simulator screen would show them which way to turn (4) The car had motion and as a result it could cause
motion sickness. In case that happened they should stop the car and not continue the experiment.

After the participants took their places in the driving seat of the simulator car, they were told the following: (1) to fasten
their seat belts, (2) to start the car by turning on the ignition key, and (3) to put the gear in ‘D’ (Drive) and start driving. The
driving simulator scenarios discussed in Section 4.2 was activated once they turned the ignition key to ‘on’. While the par-
ticipants were driving the car, a video of their faces were recorded with a digital camcorder that was mounted on the dash of
the simulator car. These videos were saved for future facial expression recognition studies. The scenarios lasted for 12–
16 min depending on the driving speed of each participant. The simulator informed the participants vocally when the sce-
narios were over. After they put the gear in park, stopped and left the car, chest straps and armbands were removed and the
data collected in the armbands were downloaded to a computer. Finally the participants were asked to fill out the post-study
questionnaire. After the post-study questionnaires were collected the participants were thanked for their time and for join-
ing the study and they were asked if they had any questions.

4.3.3. Measures
The pre-questionnaire included demographic questions about profession, gender, age range, participants’ driver’s license

history, and driving frequency of the participants. The post-study questionnaire included seven questions (three on the emo-
tions experienced, one on how realistic the simulator was, and three on the participants’ experiences in real-life traffic). Each
of the first three questions asked whether the participants experienced the elicited target emotion, the intensity of this emo-
tion on a 6-point scale (6 being highest) if they experienced it, and whether there was another emotion they experienced.
The fourth question asked how realistic the participants found the driving simulator on a 6-point scale (6 being highest).
Finally, the last three questions asked the participants how often they got frustrated or angry, how often they got panicked
or fearful, and how often they got bored while driving on a 6-point scale (1 being never, 6 being always).

4.4. Emotion recognition with machine learning

The physiological signals that were measured during the Driving Simulator Experiment were analyzed using k-Nearest
Neighbor [32] and Marquardt-Backpropagation [21] discussed in Section 3.2.3 and Resilient Backpropagation (RBP) [41] dis-
cussed in Section 4.4.2.

4.4.1. Feature extraction
After determining the time slots corresponding to the point in the driving scenarios where the intended emotion was

most likely to be experienced, the experiment resulted in the following set of physiological records: 30 for neutrality, 29
for panic/fear, 30 for frustration/anger, and 27 for boredom/sleepiness (total of 116 physiological records) from 34 different
participants out of 41 participants. Seven (7) of the 41 participants either did not complete the experiment or physiological
data collected from them was missing one or more physiological data signal type. For some of the 34 participants data loss
occurred for specific emotions (e.g. for participant #3, only neutrality, panic/fear, and frustration/anger physiological data
was complete), which is the reason for having varying numbers of data instances for each emotion group.

Collected data was stored and normalized and the features minimum, maximum, mean, and standard deviation were
extracted for each physiological signal type (GSR, temperature, and heart rate). Data was stored in a three dimensional array
of real numbers: (1) the subjects who participated in the experiment, (2) the emotion classes (neutrality, panic/fear,
frustration/anger, and boredom/sleepiness) and (3) extracted features of data signal types (minimum, maximum, mean,
and standard deviation of GSR, temperature, and heart rate).

Each slot of the array consisted of a unique feature of a data signal type, belonging to one participant while s/he was expe-
riencing an emotion. For example, one slot of the array contained the mean value of normalized skin temperature of partic-
ipant #1 while s/he was experiencing anger. Another slot contained the standard deviation value of normalized GSR of
participant #5 while s/he was experiencing sadness.
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The corresponding emotions for the data instances were also stored in a three dimensional array: (1) the subjects who
participated in the experiment, (2) the emotion classes (neutrality, panic/fear, frustration/anger, and boredom/sleepiness)
and (3) four digit binary representation that indicates the emotion group. For example, for neutrality the first value was
set to 1 and the rest were set to zero, for panic/fear the second value was set to 1 and the rest were set to 0, etc.

After the four features were extracted for each data type, they were analyzed with the three supervised learning algo-
rithms: KNN [32], MBP [21], and Resilient Backpropagation Algorithm [41]. Fig. 11 shows how emotion recognition is per-
formed by extracting more features and the following section describes the Resilient Backpropagation Algorithm.

4.4.2. Resilient Backpropagation Algorithm
Resilient Backpropagation Algorithm (RBP) [41] was a derivation of a backpropagation algorithm, where the magnitude of

the derivative of the performance function had no effect on the weight update and only the sign of the derivative was used to
determine the direction of the weight update. When the derivative of the performance function had the same sign for two
consecutive iterations, the update value for each weight was increased and when the derivative of the performance function
changed sign from the previous iteration, the update value was decreased. No change was made when the derivative was
equal to 0.

Each weight and bias value X was adjusted according to the following formula:
dX ¼ DX � signðgXÞ; ð6Þ
where the elements of DX were all initialized to the initial D and gX was the gradient value. The elements of DX are modified
after each iteration. If gX had the same sign with the previous iteration then corresponding DX was incremented and if gX
changes sign from the previous iteration, then the corresponding DX is decremented.

4.4.3. Emotion recognition accuracy with KNN, MBP, and RBP
The data was first analyzed with KNN [32] and MBP [21] algorithms. The architecture used with the MBP Algorithm was a

multi-layer neural network consisting of an input layer with 12 nodes (number of extracted features), a hidden layer with 9
nodes, and an output layer with 4 nodes (number of emotion groups). We did not have enough data instances to use in order
to optimize the parameters of the neural network such as the number of hidden nodes; therefore the number of hidden
nodes used was not optimized. The number of hidden nodes (9) was chosen randomly among the numbers between the
number of input nodes (12) and the number of output nodes (4). The transfer functions used with the architecture were log-
arithmic sigmoid transfer function and saturating linear transfer function with the hidden nodes and the output nodes
respectively.
Fig. 11. Emotion recognition with feature extraction.
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A total of 116 usable (i.e., without data loss) physiological records of GSR, temperature, and heart rate values were col-
lected from the participants for four emotion groups. Twelve features (four for each data signal type) were extracted for each
of the physiological record. As a result, a set of 116 data instances to train and test the KNN algorithm or the neural network
was obtained.

Both the KNN algorithm and the neural network with MBP were trained by leave-one-out method (every time KNN and
the network with MBP were trained, data from one participant was left out). As a result they were trained with 34 different
data sets. Each one of the data sets included all the instances except these that belonged to a specific participant. Therefore,
the number of instances in each data set was equal to the number of all instances (116) minus the number of instances that
belonged to a specific participant (1–4 depending on the data loss). Then the KNN algorithm’s and neural network’s perfor-
mances were tested on the instances that were left out. This enabled us to test the performance of the algorithms on test data
belonged to a participant that had not been seen before. As a result of having 4 nodes on the output layer, the neural network
could be tested every time for all possible outputs.

KNN [32] algorithm and the neural network with MBP were trained and tested with MBP 50 times for each of 34 different
training and test data sets. For the neural network with MBP a different set of random initial weights was used at each run.
Tables 3 and 4 show the average, minimum, maximum, and standard deviation of correctly classified instances over 50 runs
with KNN and MBP algorithms respectively. Figs. 12 and 13 show the average recognition accuracies over 50 runs with error
bars, for KNN and MBP algorithms respectively.
Table 3
Emotion classification accuracy with KNN for each emotion (over 50 runs).

Total
instances

Correctly classified instances
(average)

Correctly classified instances
(min–max)

Correctly classified instances
(st. dev.)

Average
accuracy (%)

Neutrality 30 20.06 18–23 1.54 66.87
Panic/fear 29 21.92 20–24 1.50 75.59
Frustration/

anger
30 21.12 19–23 1.41 70.40

Boredom 27 12.22 9–16 2.08 45.26

Table 4
Emotion classification accuracy with MBP for each emotion (over 50 runs).

Total
instances

Correctly classified instances
(average)

Correctly classified instances
(min–max)

Correctly classified instances
(st. dev.)

Average
accuracy (%)

Neutrality 30 21.84 20–23 1.11 72.80
Panic/fear 29 24.14 23–26 1.03 83.24
Frustration/

anger
30 20.26 17–22 1.59 67.53

Boredom 27 18.74 17–21 1.44 69.41

Fig. 12. Emotion classification accuracy with KNN for each emotion.
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As can be seen from Table 4 and Fig. 13, the MBP algorithm was not as successful as it was in recognizing the six emotions
elicited in emotion elicitation experiment with movie clips. This is the reason why RBP [41] algorithm was implemented.

The neural network architecture trained by the RBP algorithm had the same number of input, output, and hidden nodes as
the one trained with the MBP algorithm. The transfer functions used with the neural network with RBP were hyperbolic tan-
gent sigmoid transfer function and logarithmic sigmoid transfer function with the hidden nodes and the output nodes
respectively. The same leave-one-out method and the same experimental design were used for the architectures that were
trained with both MBP and RBP.
Fig. 13. Emotion classification accuracy with MBP for each emotion.

Table 5
Emotion classification accuracy with RBP for each emotion (over 50 runs).

Total instances Correctly classified
instances (average)

Correctly classified
instances (min–max)

Correctly classified
instances (st. dev.)

Average accuracy (%)

Neutrality 30 20.76 19–23 1.46 72.80
Panic/fear 29 26.24 25–28 1.10 83.24
Frustration/anger 30 27.94 27–29 0.82 67.53
Boredom 27 20.88 19–22 1.04 69.41

Fig. 14. Emotion classification accuracy with RBP for each emotion.



Table 6
Emotion classification accuracy with KNN, MBP, and RBP for all emotions.

Total instances Correctly classified
instances (average)

Average
accuracy (%)

KNN 116 75.32 65.93
MBP 116 84.98 73.26
RBP 116 95.82 82.60

Fig. 15. Overall classification accuracy with KNN, MBP, and RBP.
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Table 5 shows the average, minimum, maximum, and standard deviation of correctly classified instances over 50 runs
with RBP algorithm. Fig. 14 shows the average recognition accuracy over 50 runs with error bars, for the RBP algorithm.
Our results show that the RBP algorithm outperformed both the KNN and the MBP algorithms. We believe the improvement
in performance provided by Resilient Backpropagation Algorithm was due to the fact that the learning parameters are
adapted during the learning process and as a result RBP was not sensitive to the initial selection of these learning parameters
[41]. Table 6 and Fig. 15 report the overall emotion classification accuracy of KNN, MBP, and RBP algorithms for all emotion
groups over 50 runs.

5. User modeling

A use model is defined as ‘‘the description and knowledge of the user maintained by the system” [36]. An adaptive system
should modify the user model as the individual user changes, because each individual user’s responses are different from
other users’ while interacting with an intelligent system and even same specific user may change their behavior during
the interaction [36]. This makes it necessary to build user models that will enable the system to record relevant user infor-
mation to be able interact with its users appropriately.

Conventional user models were built on what the user knew or did not know about the specific context, what her/his
skills and goals were, and her/his self-report about what s/he liked or disliked. The applications of this traditional user mod-
eling include e-learning, web search, health care, e-commerce, and user guidance systems [3,4,8,24,31,42,47,51]. None of
those conventional user models included a very important component of human intelligence: affect and emotions.

Our approach for building affectively intelligent and adaptive car interfaces is twofold: recognizing drivers’ emotional
states and adapting to those emotional states accordingly. After recognizing the user’s emotions successfully with the pat-
tern recognition algorithms, and giving feedback to them about their emotional state, the next step was adapting the system
to the user’s emotional state by considering the current context and user dependent specifics, such as user’s preferences and
personality traits. Bayesian Belief Networks (BBN) [37] formalization was employed to create these user models to enable
the interface to adapt its interaction for each individual user. Fig. 16 presents the complete user interaction and emotion
recognition system integrated with affective user modeling for the driving safety application.

5.1. Bayesian Belief Networks

Bayesian Belief Networks (BBN) (also known as Bayesian Network or probabilistic causal network) were used to build the
user modeling in this system. Bayesian Belief Networks [37] are directed acyclic graphs (DGA), where each node represents a



Fig. 16. Interaction with user modeling.
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random discrete variable or uncertain quantity that can take two or more possible values. The directed arcs between the
nodes represent the direct causal dependencies among these random variables. The conditional probabilities that are as-
signed to these arcs determine the strength of the dependency between two variables.

A Bayesian Belief Network can be defined by specifying:

1. Set of random variables: {X1,X2,X3, . . .,Xn}.
2. Set of arcs among these random variables. The arcs should be directed and the graph should be acyclic. If there is an arc

from X1 to X2, X1 is called as the parent of X2 and X2 is called as the child of X1.
3. Probability of each random variable that is dependent on the combination of its parents. For a random variable Xi, the set

of its parents is represented as par (Xi), and the conditional probability of Xi is defined as:
PðXi j parðXiÞÞ
4. If a node has no parents unconditional probabilities are used. Unlike the traditional rule-based expert systems, BBNs are
able to represent and reason with uncertain knowledge. They can update a belief in a particular case when new evidence
is provided.

5.2. User modeling with Bayesian Belief Networks

The Bayesian Belief Network representation of the user model that records related user information (preferences, person-
ality, affective information, etc.) in the driving environment is shown in Fig. 17.



Fig. 17. Bayesian Belief Network representation for user model of a driver.
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As shown in Fig. 17, the user model for the driving environment was built as a decision support system. There were var-
ious parameters that would affect the optimal action that should be chosen by the adaptive interface. These parameters (i.e.
nodes of the Belief Network) were:

� Recognized emotion of the driver (e.g. anger, panic, etc.).
� Accuracy of the emotion recognition system (i.e. rate of false negatives and false positives).
� Driver’s personality traits (e.g. extravert, open, etc.).
� Driver’s previous responses when interacting with the interface (i.e. driver’s satisfaction).
� Driver’s age.
� Driver’s gender.
� Possible actions that can be taken by the interface.

Personality trait, age, and gender were chosen to be included in the model since previous studies suggest that they have
influence on how people drive. Possible emotions and states that a driver can experience were chosen as: anger, frustration,
panic, boredom, and fatigue and their influence on one’s driving are discussed in Section 1.

Personality traits of the driver were included in the user model, because previous studies suggest that personality differ-
ences result in different emotional responses and physiological arousal to the same stimuli [23], and the preferences of a
person are affected by her personality [34]. Questionnaires can be used in order to successfully identify a driver’s personality.
Five-Factor-Model was chosen to determine the personality traits [12]. Following are the personality traits based on the Five-
Factor-Model:

� Neuroticism (high neuroticism leads to violent and negative emotions and interferes with the ability to handle problems).
� Extraversion (high extravert people work in people oriented jobs, while low extravert people mostly work in task oriented

jobs).
� Openness to experience (open people are more liberal in their values).
� Agreeableness (high agreeable people are skeptical and mistrustful).
� Conscientiousness (high conscientious people are hard-working and energetic) [12].

These personality traits influence the way people drive. Cellar et al.’s study [9] showed that Agreeableness had a slight
negative correlation with the number of driving tickets and Arthur and Graziano’s study [2] showed that people with low
Conscientiousness level have higher a risk of being in a traffic accident.

Age and gender also have effect on people’s driving [44]. Younger drivers are more prone to being involved in accidents
(with a distinguished difference between 18–19-years-olds and 25-years-olds) and more likely to take risks. They display the
highest driving violation rates and associate a lower level of risk perception. In contrast, older drivers tend to show a greater
frequency of drowsy driving and are more likely suffer from visual impairments that affect their driving [44]. When it comes
to gender differences, men are most likely to have accidents because of rule violations, and they make up the majority of
aggressive drivers. Women on the other hand, are most likely to be involved in accidents caused by perceptual or judgmental
errors and they have the lowest driving confidence [44].

The node Action (represented by A) represents the possible actions (states) that can be taken by the interface. These
actions include:
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� Change the radio station.
� Suggest the driver to stop the car and rest.
� Roll down the window.
� Suggest the driver to do a relaxation exercise.
� Tell the driver to calm down.
� Make a joke.
� Splash some water on the driver’s face.

The node Utility (represented by U) represents the possible outcomes of the interface’s chosen action in terms of an in-
crease in the safety of the driver. The node is called the utility node, and the outcomes are called utilities. The three possible
outcomes are:

� �1 (decrease in safety, i.e. decrease in probability for no accident),
� 0 (no change),
� 1 (increase in safety, i.e. increase in probability for no accident).

For example, if the driver was angry and the interface’s action was suggesting the driver to perform a relaxation exercise,
and if this made the driver angrier, the outcome was �1. The variables determining this outcome are Safety and Action.

The posterior probability for Safety is calculated and it is used to calculate the expected utility of choosing each action. The
action yielding the highest expected utility is chosen as the interface’s action. The formula for the posterior probability of
each state of Safety is given by:
PðSijE; P;A;GÞ ¼
PðE; P;A;GjSiÞPðSiÞ

PðE; P;A;GjS1ÞPðS1Þ þ PðE; P;A;GjS2ÞPðS2Þ
ð7Þ
The formula for the expected utility of each action is given by:
EUðAiÞ ¼ UðS1;AiÞPðS1jE; P;A;GÞ þ UðS2;AiÞPðS2jE; P;A;GÞ ð8Þ
Bayesian Belief Networks was chosen to model the users in the driving environment because of the BBN’s ability to rep-
resent uncertain knowledge. There were five nodes (events) that affected the action that could be chosen by the adaptive
interface. Each of these events could occur in several different ways (for example recognized emotion might be anger, bore-
dom, or panic or user’s personality trait one of the five described above), which leads to hundreds of different possible
combinations of events thus hundreds of different possibilities for choosing the optimal interface action. This model will
be complete when an expert or experts provide the missing knowledge in the form of causal dependencies among the
variables.
6. Discussion

6.1. Summary

To relate physiological signals to driving-related emotions, a driving experiment was designed and conducted in a highly
controlled virtual reality environment as opposed to a real-life traffic environment. This controlled virtual reality environ-
ment enabled all the participants to experience the exact same events, thus making it possible to do comparisons between
the participants and derive general results. Virtual reality also enabled us to keep the distracters such as noise and motion
that influence the physiological signals equal within each scenario including the baselines, thus making it possible to capture
the changes in responses that were only due to the changes in emotional states of the participants. Another advantage pro-
vided by the virtual reality environment was that allowed us to design an experiment with scenarios that would not be pos-
sible to design in a real-life traffic environment. For example, generating a panic/fear scenario with a similar accident in real
traffic would be impossible and generating a similar frustration/anger scenario would be very hard and expensive. Unfortu-
nately, since we have not designed the equivalent of this experiment in real-life traffic we don’t know whether the drivers’
experiences of the emotional states would be different in those events. Depending on the event encountered by the driver in
the real traffic the intensity of the specific emotion experienced by the driver might be higher or lower when compared to
the intensity of the same emotion experienced by the driver in our driving simulator experiment. Our algorithms focused on
recognizing the specific emotion, but not its intensity. Future work includes recognizing the intensity levels of the emotional
states, therefore our intelligent computer systems would be adapting to different intensities differently.

The driving simulator experiment discussed in this article consisted of various traffic events and was created to elicit
panic/fear, frustration/anger, and boredom/fatigue from the participants. BodyMedia SenseWear Armband and Polar chest
strap were used to measure galvanic skin response, heart rate, and skin temperature. k-Nearest Neighbor (KNN), Marquardt
Backpropagation (MBP), and Resilient Backpropagation [RBP] Algorithms were used to classify the physiological signals into
corresponding emotions. Overall, KNN could classify these three emotions with 65.33%, MBP could classify them with 73.26%
and RBP could classify them with 82.6% accuracy.



Table 7
Consequences related to emotion recognition.

Emotion
experienced

Emotion
recognized

Consequence

Yes Yes Accurate emotional state
recognition

Yes No False negative
No Yes False positive
No No Accurate emotional state

recognition
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6.2. Conclusion and future work

An important issue while evaluating the performance of the algorithms in real-life applications is the rate of false nega-
tive results (i.e. system does not recognize the negative emotional state of the user) and false positive results (i.e. system
recognizes a negative emotional state of the user although she is not experiencing this state) obtained by analyzing the phys-
iological signals of the user. Table 7 summarizes the results that can be obtained while performing emotion recognition.

Due to the nature of emotion recognition problem, it is impossible to prevent all false negatives and false positives; how-
ever the rate of false negatives and false positives can be decreased by implementing various techniques. One of these tech-
niques is combining different pattern recognition algorithms for higher recognition accuracy. Another useful technique to
increase recognition accuracy might be integrating different modalities that the emotions can be recognized from such as
physiology, facial expressions, and vocal intonation.

All experiments discussed in this article were conducted in controlled environments and during all those experiments,
physiological data was analyzed after the experiment was completed. An important next step will be collecting physiological
data during real-life situations and analyzing it and performing emotion recognition in real-time. Another improvement to
our study will be applying different feature extraction techniques and combining different pattern recognition algorithms for
increased accuracy in emotion recognition.
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