
AGE-STRUCTURED MATRIX MODELS

Objectives 
• Set up a model of population growth with age structure. 
• Determine the stable age distribution of the population. 
• Estimate the finite rate of increase from Leslie matrix calculations. 
• Construct and interpret the age distribution graphs. 

Suggested Preliminary Exercises: Geometric and Exponential Population Models; Life Tables 
and Survivorship Curves 

INTRODUCTION

You’ve probably seen the geometric growth formula many times by now (see “Geometric and 
Exponential Population Models”). It has the form  
 

Nt+1 = Nt + (b – d)Nt

where b is the per capita birth rate and d is the per capita death rate for a population that is 
growing in discrete time. The term (b – d) is so important in population biology that it is given its 
own symbol, R. It is called the intrinsic (or geometric) rate of natural increase, and represents 
the per capita rate of change in the size of the population. Substituting R for b – d gives  
 

Nt+1 = Nt + RNt

We can factor Nt out of the terms on the right-hand side, to get 
 

Nt+1 = (1 + R)Nt

The quantity (1 + R) is called the finite rate of increase, �. Thus we can write  
 

   Nt+1 = �Nt      Equation 1 
 
where N is the number of individuals present in the population, and t is a time interval of interest. 
Equation 1 says that the size of a population at time t + 1 is equal to the size of the population at 
time t multiplied by a constant, �. When � = 1, the population will remain constant in size over 
time. When � < 1, the population declines geometrically, and when � > 1, the population 
increases geometrically. 
 
Although geometric growth models have been used to describe population growth, like all 
models they come with a set of assumptions. What are the assumptions of the geometric growth 
model? The equations describe a population in which there is no genetic structure, no age 
structure, and no sex structure to the population (Gotelli 2001), and all individuals are 
reproductively active when the population census is taken. The model also assumes that 
resources are virtually unlimited and that growth is unaffected by the size of the population. Can 
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you think of an organism whose life history meets these assumptions? Many natural populations 
violate at least one of these assumptions because the populations have structure: They are 
composed of individuals whose birth and death rates differ depending on age, sex, or genetic 
makeup. All else being equal, a population of 100 individuals that is composed of 35 
prereproductive-age individuals, 10 reproductive-age individuals, and 55 postreproductive-age 
individuals will have a different growth rate than a population where all 100 individuals are of 
reproductive age. In this exercise, you will develop a matrix model to explore the growth of 
populations that have age structure. This approach will enable you to estimate � in Equation 1 for 
structured populations. 
 
Model Notation 

Let us begin our exercise with some notation often used when modeling populations that are 
structured (Caswell 2001; Gotelli 2001). For modeling purposes, we divide individuals into 
groups by either their age or their age class. Although age is a continuous variable when 
individuals are born throughout the year, by convention individuals are grouped or categorized 
into discrete time intervals. That is, the age class of 3-year olds consists of individuals that just 
had their third birthday, plus individuals that are 3.5 years old, 3.8 years old, and so on. In age-
structured models, all individuals within a particular age group (e.g., 3-year-olds) are assumed to 
be equal with respect to their birth and death rates. The age of individuals is given by the letter x, 
followed by a number within parentheses. Thus, newborns are x(0) and 3-year-olds are x(3). 
 
In contrast, the age class of an individual is given by the letter i, followed by a subscript number. 
A newborn enters the first age class upon birth (i1), and enters the second age class upon its first 
birthday (i2). Caswell (2001) illustrates the relationship between age and age class as: 
 

 
 
Thus, whether we are dealing with age classes or ages, individuals are grouped into discrete 
classes that are of equal duration for modeling purposes. In this exercise, we will model age 
classes rather than ages. A typical life cycle of a population with age class structure is: 

 
 
The age classes themselves are represented by circles. In this example, we are considering a 
population with just four age classes. The horizontal arrows between the circles represent 



Age-Structured Matrix Models     3 
�

survival probabilities, Pi—the probability that an individual in age class i will survive to age 
class i + 1. Note that the fourth age class has no arrow leading to a fifth age class, indicating that 
the probability of surviving to the fifth age class is 0. The curved arrows at the top of the diagram 
represent births. These arrows all lead to age class 1 because newborns, by definition, enter the 
first age class upon birth. Because “birth” arrows emerge from age classes 2, 3, and 4 in the 
above example, the diagram indicates that all three of these age classes are capable of 
reproduction. Note that individuals in age class 1 do not reproduce. If only individuals of age 
class 4 reproduced, our diagram would have to be modified: 
 

 
 
The Leslie Matrix 

The major goal of the matrix model is to compute �, the finite rate of increase in Equation 1, for 
a population with age structure. In our matrix model, we can compute the time-specific growth 
rate as �t. The value of �t can be computed as  
 

 
Equation 2 

 
This time-specific growth rate is not necessarily the same � in Equation 1. (We will discuss this 
important point later.) To determine Nt and Nt+1, we need to count individuals at some 
standardized time period over time. We will make two assumptions in our computations. First, 
we will assume that the time step between Nt and Nt+1 is one year, and that age classes are 
defined by yearly intervals. This should be easy to grasp, since humans typically measure time in 
years and celebrate birthdays annually. (If we were interested in a different time step—say, six 
months—then our age classes would also have to be 6-month intervals.) Second, we will assume 
for this exercise that our population censuses are completed once a year, immediately after 
individuals breed (a postbreeding census). The number of individuals in the population in a 
census at time t + 1 will depend on how many individuals of each age class were in the 
population at time t, as well as the birth and survival probabilities for each age class. 
 
Let us start by examining the survival probability, designated by the letter P. P is the 
probability that an individual in age class i will survive to age class i + 1. The small letter l gives 
the number of individuals in the population at a given time:  
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This equation is similar to the g(x) calculations in the life table exercise. For example, let’s 
assume the probability that individuals in age class 1 survive to age class 2 is P1  = 0.3. This 
means 30% of the individuals in age class 1 will survive to be censused as age class 2 
individuals. By definition, the remaining 70% of the individuals will die. If we consider survival 
alone, we can compute the number of individuals of age class 2 at time t + 1 as the number of 
individuals of age class 1 at time t multiplied by P1. If we denote the number of individuals in 
class i at time t as ni(t), we can write the more general equation as 
 

 
Equation 3 

 
This equation works for calculating the number of individuals at time t + 1 for each age class in 
the population except for the first, because individuals in the first age class arise only through 
birth. Accordingly, let’s now consider birth rates. There are many ways to describe the 
occurrence of births in a population. Here, we will assume a simple birth-pulse model, in which 
individuals give birth the moment they enter a new age class. When populations are structured, 
the birth rate is called the fecundity, or the average number of offspring born per unit time to an 
individual female of a particular age. If you have completed the exercise on life tables, you might 
recall that fecundity is labeled as b(x), where b is for birth. Individuals that are of 
prereproductive or postreproductive age have fecundities of 0. Individuals of reproductive age 
typically have fecundities > 0. 
 
Figure 1 is a hypothetical diagram of a population with four age classes that are censused at three 
time periods: time t – 1, time t, and time t + 1. In Figure 1, all individuals “graduate” to the next 
age class on their birthday, and since all individuals have roughly the same birthday, all 
individuals counted in the census are “fresh”; that is, the newborns were just born, individuals in 
age class 2 just entered age class 2, and so forth. With a postbreeding census, Figure 1 shows that 
the number of individuals in the first age class at time t depends on the number of breeding 
adults in the previous time step. 
 

 
 

Figure 1. In this population, age classes 2, 3, and 4 can reproduce, as represented by the 
dashed arrows that lead to age class 1 in the next step. Births occur in a birth pulse 
(indicated by the filled circle and vertical line) and individuals are censused immediately 
after young are born. (After Akçakaya et al. 1997) 
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If we knew how many adults actually bred in the previous time step, we could compute 
fecundity, or the average number of offspring born per unit time per individual (Gotelli: 2001). 
However, the number of adults is not simply N2 and N3 and N4 counted in the previous time 
step’s census; these individuals must survive a long period of time (almost a full year until the 
birth pulse) before they have another opportunity to breed. Thus, we need to discount the 
fecundity, b(i), by the probability that an adult will actually survive from the time of the census 
to the birth pulse (Pi), (Gotelli 2001). These adjusted estimates, which are used in matrix models, 
are called fertilities and are designated by the letter F. 
 
 

 
Equation 4 

 
 
The adjustments are necessary to account for “lags” between the census time and the timing of 
births. Stating it another way, Fi indicates the number of young that are produced per female of 
age i in year t, given the appropriate adjustments. Be aware that various authors use the terms 
fertility and fecundity differently; we have followed the notation used by Caswell (2001) and 
Gotelli (2001). The total number of individuals counted in age class 1 in year t + 1 is simply the 
fertility rate of each age class, multiplied by the number of individuals in that age class at time t. 
When these products are summed together, they yield the total number of individuals in age class 
1 in year t + 1. Generally speaking, 
 

 
 
Once we know the fertility and survivorship coefficients for each age class, we can calculate the 
number of individuals in each age at time t + 1, given the number of individuals in each class at 
time t: 
 

 
 
How can we incorporate the equations in Equation 4 into a model to compute the constant, �, 
from Equation 1? Leslie (1945) developed a matrix method for predicting the size and structure 
of next year’s population for populations with age structure. A matrix is a rectangular array of 
numbers; matrices are designated by uppercase, bold letters. Leslie matrices, named for the 
biologist P. H. Leslie, have the form shown in Figure 2. 
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Figure 2. The specific form of a Leslie matrix, based on a population with four age 
classes. The letters used to designate a mathematical matrix are conventionally 
uppercase, boldface, and not italic. The rows and columns of the matrix are enclosed in 
large brackets. See P. H. Leslie’s original paper (Leslie 1945) for the classic discussion. 

 
Since our population has only four age classes, the Leslie matrix in Figure 2 is a four row by four 
column matrix. If our population had five age classes, the Leslie matrix would be a five row by 
five column matrix. The fertility rates of age classes 1 through 4 are given in the top row. Most 
matrix models consider only the female segment of the population, and define fertilities in terms 
of female offspring. The survival probabilities, Pi, are given in the subdiagonal; P1 through P3 are 
survival probabilities from one age class to the next. For example, P1 is the probability of 
individuals surviving from age class 1 to age class 2. All other entries in the Leslie matrix are 0. 
The composition of our population can be expressed as a column vector, n(t), which is a matrix 
that consists of a single column. Our column vector will consist of the number of individuals in 
age classes 1, 2, 3, and 4: 

 
 
When the Leslie matrix, A, is multiplied by the population vector, n(t), the result is another 
population vector (which also consists of one column); this vector is called the resultant vector 
and provides information on how many individuals are in age classes 1, 2, 3, and 4 in year t + 1. 
The multiplication works as follows: 
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The first entry in the resultant vector is obtained by multiplying each element in the first row of 
the A matrix by the corresponding element in the n vector, and then summing the products 
together. In other words, the first entry in the resultant vector equals the total of several 
operations: multiply the first entry in the first row of the A matrix by the first entry in n vector, 
multiply the second entry in the first row of the A matrix by the second entry in the n vector, and 
so on until you reach the end of the first row of the A matrix, then add all the products. In the 
example above, a 4 × 4 matrix on the left is multiplied by a column vector (center). The resultant 
vector is the vector on the right-hand side of the equation. 
 
Rearranging the matrices so that the resultant vector is on the left, we can compute the 
population size at time t + 1 by multiplying the Leslie matrix by the population vector at time t. 
 

 
 

Equation 4 

For example, assume that you have been following a population that consists of 45 individuals in 
age class 1, 18 individuals in age class 2, 11 individuals in age class 3, and 4 individuals in age 
class 4. The initial vector of abundances is written 
 

 
 
Assume that the Leslie matrix for this population is 
 

 
 
Following Equation 4, the number of individuals of age classes 1, 2, 3, and 4 at time t + 1 would 
be computed as 
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The time-specific growth rate, �t, can be computed as the total population at time t + 1 divided 
by the total population at time t. For the above example, 

 
As we mentioned earlier, �t is not necessarily equal to � in Equation 1.The Leslie matrix not only 
allows you to calculate �t (by summing the total number of individuals in the population at time t
+ 1 and dividing this number by the total individuals in the population at time t), but also to 
evaluate how the composition of the population changes over time. If you multiply the Leslie 
matrix by the new vector of abundances, you will project population size for yet another year. 
Continued multiplication of a vector of abundance by the Leslie matrix eventually produces a 
population with a stable age distribution, where the proportion of individuals in each age class 
remains constant over time, and a stable (unchanging) time-specific growth rate, �t. When the 
�t’s converge to a constant value, this constant is an estimate of � in Equation 1. Note that this � 
has no subscript associated with it. Technically, � is called the asymptotic growth rate when the 
population converges to a stable age distribution. At this point, if the population is growing or 
declining, all age classes grow or decline at the same rate. In this exercise you’ll set up a Leslie 
matrix model for a population with age structure. The goal is to project the population size and 
structure into the future, and examine properties of a stable age distribution.  
 
PROCEDURES

General directions followed by a step-by-step breakdown of these directions, as well as other 
explanatory comments, are given. If you are not familiar with an operation called for in these 
instructions, refer to “Spreadsheet Hints and Tips.”  
 
As always, save your work frequently. 
 
INSTRUCTIONS
 
A. Set up the spreadsheet. 

1. Set up new column headings as shown in Figure 3. 
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Figure 3. 

2. Enter values in the Leslie matrix in cells B5–E8 as shown in Figure 4. Remember that the 
Leslie matrix has a specific form. Fertility rates are entered in the top row. Survival rates are 
entered on the subdiagonal, and all other values in the Leslie matrix are 0. 
 
3. Enter values in the initial population vector in cells G5–G8 as shown in Figure 4. The initial 
population vector, n, gives the number of individuals in the first, second, third, and fourth age 
classes. Thus our population will initially consist of 45 individuals in age class 1, 18 individuals 
in age class 2, 11 individuals in age class 3, and 4 individuals in age class 4. 
 
 

 
Figure 4. 
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4. Set up a linear series from 0 to 25 in cells A12–A37. We will track the numbers of individuals 
in each age class over 25 years. Enter 0 in cell A12. Enter =1+A12 in cell A13. Copy your 
formula down to cell A37. 
 
5. Enter formulae in cells B12–E12 to link to values in the initial vector of abundances (G5–G8). 
Enter the following formulae: 
 
• B12 =G5
• C12 =G6
• D12 =G7
• E12 =G8

6. Sum the total number of individuals at time 0 in cell G12. Enter the formula 
=SUM(B12:E12). Your result should be 78. 
 
7. Compute �t for time 0 in cell H12. Enter the formula =G13/G12. Your result will not be 
interpretable until you compute the population size at time 1.  
 
8. At this point, your spreadsheet should resemble Figure 5. Save your work. 
 
 

 
Figure 5. 
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B. Project population size over time. 

1. In cells B13–E13, enter formulae to calculate the number of individuals in each age class in 
year 1. In your formulae, use the initial vector of abundances listed in row 12 instead of column 
G. 
 
Now we are ready to project the population sizes into the future. Remember, we want to multiply 
the Leslie matrix by our initial set of abundances to generate a resultant vector (which gives the 
abundances of the different age classes in the next time step). Recall how matrices are multiplied 
to generate the resultant vector: 
 

 
 
See if you can follow how to calculate the resultant vector, and enter a formula for its calculation 
in the appropriate cell—it’s pretty easy to get the hang of it. The cells in the Leslie matrix should 
be absolute references, while the cells in the vector of abundances should be relative references. 
We entered the following formulae: 
 
• B13 =$B$5*B12+$C$5*C12+$D$5*D12+$E$5*E12
• C13 =$B$6*B12+$C$6*C12+$D$6*D12+$E$6*E12
• D13 =$B$7*B12+$C$7*C12+$D$7*D12+$E$7*E12
• E13 =$B$8*B12+$C$8*C12+$D$8*D12+$E$8*E12

2. Copy the formula in cell G12 into cell G13. 

3. Copy the formula in cell H12 into cell H13. Your spreadsheet should now resemble Figure 6. 
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Figure 6. 

 
4. Select cells B13–E13 and copy their formulae into cells B14–E37. Select cells G13–H13 and 
copy their formulae into cells G14–H37. This will complete your population projection over 25 
years. Save your work. 
 
C. Create graphs. 

1. Graph the number of individuals in each age class over time, as well as the total number of 
individuals over time. Use the X Y (Scatter) graph option, and label your axes clearly. Your 
graph should resemble Figure 7. 

 
Figure 7. 
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It’s often useful to examine the logarithms of the number of individuals instead of the raw data. 
This takes the bending nature out of a geometrically growing or declining population (see 
“Mathematical Functions and Graphs”). To adjust the scale of the y-axis, click on the values in 
the y-axis. Open Format���Current�Selection | Format�Selection ��Axis�Options.  Check the 
Logarithmic�scale box, and then click the close button. Your scale will be automatically 
adjusted. It’s sometimes easier to interpret your population projections with a log scale. 
 
2. Generate a new graph of the same data, but use a log scale for the y-axis. Your graph should 
resemble Figure 8. 
 

 
Figure 8. 

 
3. Save your work. 
 
QUESTIONS 

1. Examine your first graph (Figure 7). What is the nature of the population growth? Is the 
population increasing, stable, or declining? How does �t change with time? 
 
2. Examine your semi-log graph (Figure 8) and your spreadsheet projections (column 
H). At what point in the 25-year projection does �t not change (or change very little) from year to 
year? When the �t’s do not change over time, they are an estimate of �, the asymptotic growth 
rate, or an estimate of � in Equation 1. What is � for your population, and how does this affect 
population growth? If you change entries in your Leslie matrix, how does � change? 
 
3. Return your Leslie matrix parameters to their original values. What is the composition of the 
population (the proportion of individuals in age class 1, age class 2, age class 3, and age class 4) 
when the population has reached a stable distribution? Set up headings as shown: 
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In cell I12, enter a formula to calculate the proportion of the total population in year 25 that 
consists of individuals in age class 1. Enter formulae to compute the proportions of the remaining 
age classes in cells J12–L12. Cells I12–L12 should sum to 1 and give the stable age distribution.  
 
4. How does the initial population vector affect �t, � and the stable age distribution? How does it 
affect �t and the age distribution prior to stabilization? Change the initial vector of abundances so 
that the population consists of 75 individuals in age class 1, and 1 individual in each of the 
remaining age classes. Graph and interpret your results. Do your results have any management 
implications? 
 
5. What are the assumptions of the age-structured matrix model you have built? 
 
6. Assume that the population consists of individuals that can exist past age class 4. Suppose that 
these individuals have identical fertility functions (F) as the fourth age class and have a 
probability of surviving from year t to year t + 1 with a probability of 0.25. Draw the life cycle 
diagram, and adjust your Leslie matrix to incorporate these older individuals. How does this 
change affect the stable age distribution and � at the stable age distribution? 
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