National Center for Asphalt Technology
NCAT AUBURN UNIVERSITY

> AGGREGATE BLENDING,
> ABSORPTION, \& SPECIFIC GRAVITY

## Topics to be Covered

- Aggregate Specific Gravities
- Gradations
- Blending Stockpiles
- Batching
- Combined Specific Gravities


## Specific Gravity Tests for Aggregates

- Two tests are needed
-Coarse aggregate (retained on the 4.75 mm sieve)
-Fine aggregate (passing the 4.75 mm sieve)


## Apparent Specific Gravity, $\mathrm{G}_{\mathrm{sa}}$



Mass of Aggregate, oven dry

$$
\mathrm{G}_{\mathrm{sa}}=
$$

Volume of aggregate

## Bulk Specific Gravity, $\mathrm{G}_{\text {sb }}$

Surface Voids


Vol. of water-perm. voids

## Effective Specific Gravity, $\mathrm{G}_{\text {se }}$

Surface Voids


Effective volume = volume of solid aggregate particle + volume of surface voids not filled with asphalt

## Water Absorption

## Surface Voids



## SSD weight - Oven dry weight

Oven dry weight

## Coarse Aggregate Specific Gravity

- ASTM C127
- Dry aggregate
- Soak in water for 24 hours
- Decant water
- Use pre-dampened towel to get SSD condition
- Determine mass of SSD aggregate in air
- Determine mass of SSD aggregate in water
- Dry to constant mass
- Determine oven dry mass


## Coarse Aggregate Specific Gravity



## Coarse Aggregate Specific Gravity



## Coarse Aggregate Specific Gravity Calculations

- $\mathrm{G}_{\mathrm{sb}}=\mathrm{A} /(\mathrm{B}-\mathrm{C})$
- A = mass oven dry
$-B=$ mass SSD
- C = mass under water
- $\mathrm{G}_{\mathrm{s}, \mathrm{SSD}}=\mathrm{B} /(\mathrm{B}-\mathrm{C})$
- $\mathrm{G}_{\mathrm{sa}}=\mathrm{A} /(\mathrm{A}-\mathrm{C})$
- Water absorption capacity, \%
- Absorption \% = [(B - A) / A] * 100


## Coarse Aggregate Specific Gravity Calculations - Example Problem

- Given:
-Mass oven dry - 3625.5 (A)
-Mass SSD - 3650.3 (B)
-Mass under Water - 2293.0 (C)


## Coarse Aggregate Specific Gravity

 Calculations - Example Problem- Apparent Specific Gravity - Gsa A / (A - C)
- Bulk Specific Gravity - Gsb

$$
A /(B-C)
$$

- Absorption, \%

$$
(B-A) / A
$$

## Coarse Aggregate Specific Gravity

 Calculations - Example Problem- Apparent Specific Gravity - Gsa 3625.5/ $(3625.5-2293.0)=2.721$
- Bulk Specific Gravity - Gsb $3625.5 /(3650.3-2293.0)=2.671$
- Absorption, \% (3650.3-3625.5) / 2293.0 = $0.68 \%$


## Fine Aggregate Specific Gravity

- ASTM C128
- Dry aggregate
- Soak in water for 24 hours
- Spread out and dry to SSD
- Add 500 g of SSD aggregate to pycnometer of known volume
- Pre-filled with some water
- Add more water and agitate until air bubbles have been removed
- Fill to calibration line and determine the mass of the pycnometer, aggregate and water
- Empty aggregate into pan and dry to constant mass
- Determine oven dry mass


## Fine Aggregate Specific Gravity



## Fine Aggregate Specific Gravity

## Fine <br> Aggregate Specific Gravity



## Fine Aggregate Specific Gravity Calculations

- $G_{s b}=A /(B+S-C)$
- A = mass oven dry
- B = mass of pycnometer filled with water
- C = mass pycnometer, SSD aggregate and water
- S = mass SSD aggregate
- $G_{S b, S S D}=S /(B+S-C)$
- $G_{s a}=A /(B+A-C)$
- Water absorption capacity, \%
- Absorption \% = [(S - A) / A] * 100


## Fine Aggregate Specific Gravity Calculations - Example Problem

Given

$$
\begin{aligned}
& A=\text { mass oven dry }=489.3 \\
& B=\text { mass of pycnometer filled with water }=666.5 \\
& C=\text { mass pycnometer, SSD aggregate and } \\
& \text { water }=982.3 \\
& S=\text { mass SSD aggregate }=500.1
\end{aligned}
$$

## Fine Aggregate Specific Gravity

## Calculations - Example Problem

- $\mathrm{G}_{\mathrm{sb}}=\mathrm{A} /(\mathrm{B}+\mathrm{S}-\mathrm{C})=498.9 /(666.5+500.1-982.3)$

$$
=2.707
$$

- $\mathrm{G}_{\mathrm{sb}, \mathrm{ssD}}=\mathrm{S} /(\mathrm{B}+\mathrm{S}-\mathrm{C})=500.1 /(666.5+500.1-982.3)$

$$
=2.714
$$

- $\mathrm{G}_{\mathrm{sa}}=\mathrm{A} /(\mathrm{B}+\mathrm{A}-\mathrm{C})=498.9 /(666.5+498.9-982.3)$

$$
=2.725
$$

- Water absorption $=[(\mathrm{S}-\mathrm{A}) / \mathrm{A}] * 100=$
(500.1-498.9)/498.9 = 0.24 \%


## Aggregate Gradation

- Distribution of particle sizes expressed as percent of total weight
- Determined by sieve analysis


## Types Of Gradations

* Open graded
- Few points of contact
- Stone on Stone contact
- High permeability
* Well graded
- Good interlock
- Low permeability

* e80 y raco
- Lacks intermediate sizes
- Good interlock
- Low permeability



## Superpave Aggregate Gradation



## Definitions

90 - Nominal Maximum Aggregate Size - one size larger than the first sieve to retain more than 10\%

22 - one size larger than nominal maximum size

## Superpave Mix Size Designations

Superpave Designation
19.0 mm
12.5 mm
9.5 mm
9.5
12.5


## 9.5 mm

## 12.5 mm


19.0 mm

## Blending of Aggregates

- Reasons for blending
-Obtain desirable gradation
-Single natural or quarried material not enough
-Economical to combine natural and process materials


## Blending of Aggregates

- Numerical method
-Trial and error -Basic formula


## Blending of Aggregates

- $P=A a+B b+C c+\ldots$
- Where:
- P = \% of material passing a given sieve for the blended aggregates
- A, B, C, .. = \% material passing a given sieve for each aggregate
- a, b, c, ... = Proportions (decimal fractions) of aggregates to be used in blend


## Blending of Aggregates <br> $$
P=A a+B b+\ldots
$$

| Material | Aggregate No. 1 |  | Aggregate No. 2 |  | Blend | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% Used |  | a 30.0\% |  | b 70.0\% |  |  |
| Sieve | \% Passing | \% Batch | \% Passi | \% Batch |  |  |
| 318 | A 100 | 30.0\% | B 100 | 70.0\% | 100.0\% | 100 |
| No. 4 | 90 | 27.0\% | 100 | 70.0\% | 97.0\% | 90 to 100 |
| No. 8 | 30 | 9.0\% | 100 | 70.0\% | 79.0\% | 36 to 76 |
| No. 16 | 7 | 2.1\% | 88 | 61.6\% | 63.7\% |  |
| No. 30 | 3 | 0.9\% | 47 | 32.9\% | 33.8\% |  |
| No. 50 | 1 | 0.3\% | 32 | 22.4\% | 22.7\% |  |
| No. 100 | 0 | 0.0\% | 24 | 16.8\% | 16.8\% |  |
| No. 200 | 0 | 0.0\% | 10 | 7.0\% | 7.0\% | 2 to 10 |

## Blending of Aggregates <br> $$
P=A a+B b+\ldots
$$

| Material | Aggregate No. 1 |  | Aggregate No. 2 |  | Blend | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% Used |  | a 50.0\% |  | b 50.0\% |  |  |
| Sieve | \% Passing | \% Batch | \% Passi | \% Batch |  |  |
| 318 | A 100 | 50.0\% | B 100 | 50.0\% | 100.0\% | 100 |
| No. 4 | 90 | 45.0\% | 100 | 50.0\% | 95.0\% | 90 to 100 |
| No. 8 | 30 | 15.0\% | 100 | 50.0\% | 65.0\% | 36 to 76 |
| No. 16 | 7 | 3.5\% | 88 | 44.0\% | 47.5\% |  |
| No. 30 | 3 | 1.5\% | 47 | 23.5\% | 25.0\% |  |
| No. 50 | 1 | 0.5\% | 32 | 16.0\% | 16.5\% |  |
| No. 100 | 0 | 0.0\% | 24 | 12.0\% | 12.0\% |  |
| No. 200 | 0 | 0.0\% | 10 | 5.0\% | 5.0\% | 2 to 10 |



## Classroom

 Problem
## Blending of Aggregates

|  | Aggregate 1 |  | Aggregate 2 |  | Aggregate 3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% Agg Used |  |  |  |  |  |  |  |  |
| Sieve Size | $\begin{gathered} \% \\ \text { Pass } \end{gathered}$ | $\begin{gathered} \text { \% } \\ \text { Batch } \end{gathered}$ | $\begin{gathered} \% \\ \text { Pass } \end{gathered}$ | $\begin{gathered} \text { \% } \\ \text { Batch } \end{gathered}$ | $\begin{gathered} \% \\ \text { Pass } \end{gathered}$ | $\begin{gathered} \text { \% } \\ \text { Batch } \end{gathered}$ | Blend | Specification |
| 318 | 100 |  | 100 |  | 100 |  |  |  |
| No. 4 | 87 |  | 100 |  | 100 |  |  | 90 to 100 |
| No. 8 | 63 |  | 100 |  | 100 |  |  | 36 to 76 |
| No. 16 | 19 |  | 93 |  | 100 |  |  |  |
| No. 30 | 8 |  | 88 |  | 100 |  |  |  |
| No. 50 | 5 |  | 55 |  | 100 |  |  |  |
| No. 100 | 3 |  | 36 |  | 97 |  |  |  |
| No. 200 | 2 |  | 3 |  | 88 |  |  | 2 to 10 |

## Batching of Aggregate Blends

-Why Batch?

- We Want To Reproduce the Desired Gradation for Mix Design


## Batching

- Things We Need To Know To Batch - \% of Each Stockpile in Blend - \% Retained For Each Sieve of Each Stockpile


## Batching

$$
\mathbf{M}_{\text {per sieve }}=\% \text { Ret } * \% A g g^{*} \mathbf{M}_{\text {batch }}
$$

$M_{\text {per sieve }}=$ Mass of one aggregate in the blend for one sieve size
\%Ret = Percent retained on the sieve expressed in decimal form
\%Agg = The percent of the stock pile to being used in the blend in decimal form
EXAMPLE:
How much 1.18 mm material do I need from Aggregate \#1 for a 4,000 gram batch given the following:
\% Retained on 1.18 mm sieve $=23.0$ \%
\% Agg. \#1 Used in Blend = 30.0 \%
Total Batch wt. = 4000 grams

Mass of 1.18 mm material $=0.230 * 0.300 * 4000=276.0$ grams


## Example Problem

## Batching of Aggregates

Total Batch Size: 4600.0 grams

| Material | Aggregate No. 1 |  | Aggregate No. 2 |  | Mass of Agg | Mass of |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% Used | 50.0\% |  | 50.0\% |  | \# 1 | \# 2 |
| Sieve | \% | \% | \% | \% |  |  |
|  | Passing | Retained | Passing | Retained |  |  |
| $3 / 8$ | 100.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| No. 4 | 90.0 | 10.0 | 100.0 | 0.0 | 230.0 | 0.0 |
| No. 8 | 30.0 | 60.0 | 100.0 | 0.0 | 1380.0 | 0.0 |
| No. 16 | 7.0 | 23.0 | 88.0 | 12.0 | 529.0 | 276.0 |
| No. 30 | 3.0 | 4.0 | 47.0 | 41.0 | 92.0 | 943.0 |
| No. 50 | 1.0 | 2.0 | 32.0 | 15.0 | 46.0 | 345.0 |
| No. 100 | 0.0 | 1.0 | 24.0 | 8.0 | 23.0 | 184.0 |
| No. 200 | 0.0 | 0.0 | 10.0 | 14.0 | 0.0 | 322.0 |
| Passing 200 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 230.0 |
| Total Mass |  |  |  |  | 2300.0 | 2300.0 |



## Classroom Problem

## Batching of Aggregates

Total Batch Size: 4600.0 grams

| Material | Aggregate No. 1 |  | Aggregate No. 2 |  | Mass of | Mass of |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% Used | $30.0 \%$ |  | 70.0\% |  | \# 1 | \# 2 |
| Sieve | \% | \% | \% | \% |  |  |
|  | Passing | Retained | Passing | Retained |  |  |
|  |  |  |  |  |  |  |
| 318 | 100.0 |  | 100.0 |  |  |  |
| No. 4 | 90.0 |  | 100.0 |  |  |  |
| No. 8 | 30.0 |  | 100.0 |  |  |  |
| No. 16 | 7.0 |  | 88.0 |  |  |  |
| No. 30 | 3.0 |  | 47.0 |  |  |  |
| No. 50 | 1.0 |  | 32.0 |  |  |  |
| No. 100 | 0.0 |  | 24.0 |  |  |  |
| No. 200 | 0.0 |  | 10.0 |  |  |  |
| Passing 200 | 0.0 |  | 0.0 |  |  |  |
| Total Mass |  |  |  |  |  |  |
| Aggregate Blending, Absorption \& Specific Gravity |  |  |  |  |  | 41 |

## Combined Specific Gravity

$$
\left.G_{\mathrm{sb}}=\frac{\left(\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}\right)}{\sqrt{\frac{\mathbf{P}_{\mathrm{A}}}{\mathrm{G}_{\mathrm{A}}}}+\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{G}_{\mathrm{B}}}}+\frac{\mathbf{P}_{\mathrm{C}}}{\mathrm{G}_{\mathrm{C}}}\right]
$$

Where: $P_{A}, P_{B} \& P_{C}=$ percent by mass of each aggregate in blend

$$
\begin{gathered}
\mathbf{G}_{A}, \mathbf{G}_{B} \& \mathbf{G}_{C}=\text { Bulk Specific Gravity } \\
\text { of each aggregate }
\end{gathered}
$$

## 

$$
G_{\mathrm{sb}}=\frac{\left(\mathbf{P}_{\mathrm{A}}+\mathbf{P}_{\mathrm{B}}+\mathbf{P}_{\mathrm{C}}\right)}{\left[\frac{\mathbf{P}_{\mathrm{A}}}{\mathrm{G}_{\mathrm{A}}}+\frac{\mathbf{P}_{\mathrm{B}}}{\mathrm{G}_{\mathrm{B}}}+\frac{\mathbf{P}_{\mathrm{C}}}{\mathrm{G}_{\mathrm{C}}}\right]}
$$

$$
\text { Where: } \begin{array}{r}
P_{A}, P_{B} \& P_{C}=\text { percent by mass of } \\
\text { each aggregate in blend } \\
G_{A}, G_{B} \& G_{C}=\text { Bulk Specific Gravity } \\
\text { of each aggregate }
\end{array}
$$

Based on the information given:

$$
\begin{aligned}
\mathbf{P}_{\mathrm{A}}=50 \% & \mathrm{G}_{\mathrm{A}}=2.695 \\
\mathbf{P}_{\mathrm{B}}=25 \% & \mathrm{G}_{\mathrm{B}}=2.711 \\
\mathbf{P}_{\mathrm{C}}=25 \% & \mathrm{G}_{\mathrm{C}}=2.721 \\
& \mathrm{G}_{\mathrm{sb}}=\frac{(50+25+25)}{\left[\frac{50}{2.695}+\frac{25}{2.711}+\frac{25}{2.721}\right]}=2.705
\end{aligned}
$$

## Questions does it all make sense?



