
AGILE INTEGRATION:
THE BLUEPRINT FOR ENTERPRISE ARCHITECTURE

E-BOOK

by Steve Willmott and David Codelli
Edited by Deon Ballard

2redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

TABLE OF CONTENTS

PLANNING IS DEAD: ORGANIZATIONS AND AGILITY ..4

THE INFRASTRUCTURE OF AGILITY ..6

Distributed integration ... 7

Containers ..9

APIs ... 10

ARCHITECTURE OF AGILE INTEGRATION .. 12

Team practices ... 12

Infrastructure architecture .. 12

AGILE ORGANIZATIONS AND CULTURE ... 14

CONCLUSION: DELIVERING AGILE INTEGRATION .. 18

http://redhat.com

3redhat.com E-BOOK Agile integration: The blueprint for enterprise architectureredhat.com

Business success is increasingly based on your ability to react to change. As new disruptive

players enter markets and technology upends what consumers expect, organizations increas-

ingly need to change plans in much shorter cycles than ever before. Modern software archi-

tectures and processes can make organizations more effective at dealing with this change and

emerging as winners in their markets.

A new architectural framework called agile integration brings together three important architec-

tural capabilities: containers, distributed integration, and application programming interfaces

(APIs). This framework addresses how these key capabilities promote agility and power new pro-

cesses within your organization to create competitive advantage.

Industries like travel and hospitality have been transformed by new ways of doing business — new

services are now offered, and consumers interact with services differently. This trend of disrup-

tive change is extending across other major industries — from financial services to government,

spurred by new technologies and mindsets about how businesses and customers interact. These

challenges are pushing existing organizations to radically transform their own IT technologies to

deliver these new services.

To stay relevant, organizations need the ability to plan and execute changes to their software

systems quickly.

For software delivery at today’s speeds, organizations need an agile infrastructure foundation.

For this definition, agile does not refer to agile software development. It refers to the more tradi-

tional meaning of agile — flexible, able to move quickly.

 1 Oxford English Dictionary

Figure 1. Definition of agile

light on
one’s feet

light-footed

fleet-footed

limber

supple

lithe

nimble acrobatic

SYNONYMS

AGILE

Adjective: able to move
quickly and easily1

ag•ile, ‘aj l/e

PLANNING IS DEAD:

ORGANIZATIONS AND AGILITY

THE INFRASTRUCTURE OF AGILITY

Distributed integration

Containers

APIs

ARCHITECTURE OF AGILE INTEGRATION

Team practices

Infrastructure architecture

AGILE ORGANIZATIONS AND CULTURE

CONCLUSION: DELIVERING

AGILE INTEGRATION

http://redhat.com
http://redhat.com

4redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

To date, agile methodologies have focused on software development, trying to improve and stream-

line how applications are created. DevOps2 practices have tried to carry that methodology into how

these applications are deployed.

DevOps itself, however, generally only reaches so far, addressing primarily new software applica-

tions developed by the organization itself.

Infrastructure agility goes even further and creates an environment that encompasses all IT

systems, including legacy software. An agile infrastructure is an approach that takes the complexity

of existing systems, different data types, datastreams, and customer expectations, and finds a way

to unify them. This is, at its heart, an integration problem.

An organization that can change pricing overnight or make new products available for sales over-

night has an enormous advantage over one that requires a three-month staged roll out with a

cascade of manual verification steps.

We call this agile integration. Integration is not a subset of infrastructure — it is a conceptual

approach to infrastructure that includes data and applications with hardware and platforms. By

aligning integration technologies with agile and DevOps technologies, it is possible to create a plat-

form that provides your teams with the ability to change as quickly as the market demands.

PLANNING IS DEAD: ORGANIZATIONS AND AGILITY

“Planning as we know it is dead,” was the keynote message delivered by Jim Whitehurst, Red Hat

CEO, at the 2017 Red Hat Summit. “Planning in a less-known environment is ineffective.”3 As busi-

ness environments speed up and change becomes more jarring, plans break quickly and being

locked into one course of action can be extremely costly.

What that means is that the less information you have, or the less stable your environment is, the

less valuable your plans are.

You don’t know what you don’t know

Infrastructure planning typically takes a long-term approach, sometimes spanning years. Trying

to create a multi-year plan can strangle the ability to innovate or pivot as the market changes. The

“death” of planning alluded to by Jim Whitehurst comes down to the ability to plan more quickly and

then execute on those plans. It is a shorter life expectancy for plans and an environment that culti-

vates new plans.

This rapid change can be challenging when teams are accustomed to 6-month or even 24-month

development cycles. The problem is exacerbated when more traditionally structured organiza-

tions must compete with startups that are approaching the market in entirely new ways. There are

obvious examples with Netflix and Blockbuster, or Uber and traditional taxi services, but the disrup-

tive effect of startups goes back to the earliest days of the Information Age, starting with Amazon in

1993 or personal computers in the 1980s.

 2 Innovate faster with DevOps https://www.redhat.com/en/insights/devops

 3 Jim Whitehurst keynote address at 2017 Red Hat Summit.
https://www.cbronline.com/news/enterprise-it/software/red-hat-ceo-planning-know-dead/

“The demand for
agility to continuously
win, serve, and retain

customers requires
the interfaces between

systems of engagement
and systems of records

to become more
agile — agile in terms

of scalability but also
in the ability to adapt

quickly, for example, to
add a new attribute on

existing APIs and for
the future to provide

more context.”

 HENRY PEYRET

THE FORRESTER GROUP

Peyret, Henry. “TechRadarTM:
Integration Technologies, Q2

2015.” Forrester Research, Inc.
June 23, 2015.

http://redhat.com
https://www.redhat.com/en/insights/devops
https://www.cbronline.com/news/enterprise-it/software/red-hat-ceo-planning-know-dead/

5redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

INDUSTRY TRADITIONAL
SERVICE

DISRUPTOR EFFECTS

Transportation Taxis, public transit Uber, Lyft Creating uniform customer experi-

ence that is nearly impossible for

small, local firms to replicate

Wealth management Investment firms Automated funds Shifting fund management

differentiators from personnel

to algorithms

Retail Physical shopping Amazon Changing shopping habits from

offline to online purchasing

Search engines Google, browser-

based search

Voice search Affecting Google’s primary

channel to market and allowing in

new entrants

The advantage that startups and disruptors have is the freedom they have to structure their infra-

structure, teams, application, architecture, and even their deployment processes. It is more than

having an innovative idea — they are able to execute those ideas because they aren’t held back by

legacy infrastructure — or as Rachel Laycock jokingly put it, “legacy people.”4 They can be agile.

Beyond the ability to build something new, these organizations also build systems that are ready

for change. Software infrastructure is part of their differentiating power, and almost any part of the

system can be swapped out, updated, or removed in response to changing market needs. As start-

ups age, some suffer from a reduced ability to adapt, but the best organizations ensure their ability

to change is protected at all costs.

Rising to the challenge

To succeed in fast-moving environments, the entire IT infrastructure must function in an

agile manner.

Change needs to occur at two levels:

• Organizational and cultural support of agile processes — from architectural design to team

communication.

• Technical infrastructure that creates the ability to upgrade, add, and remove capabilities rapidly.

Technical and cultural change do not create agility. They are the foundation for it.

Marty Cagan, product manager from eBay, applies what he calls a tax to every project — some time

and resources are set aside from every routine project to work on new infrastructure projects.5 This

makes new projects and innovations a priority.

 4 Rachel Laycock, [“Continuous Delivery”] Afternoon general session, Red Hat Summit – DevNation 2016. July 1, 2016,
San Francisco, California. https://youtube.com/watch?v=y87SUSOfgTY

 5 Cagan, Marty, “Inspired: How to Create Products Customers Love.” Wiley Press, 2017

TABLE 1: DISRUPTORS ACROSS INDUSTRIES

http://redhat.com
https://youtube.com/watch?v=y87SUSOfgTY

6redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

“If you can’t
out-experiment and

beat your competitors
in time to market and
agility, you are sunk.

Features are always a
gamble. If you’re lucky,

10% will get the desired
benefits. So the faster

you can get those
features to market and

test them, the better off
you’ll be. Incidentally,
you also pay back the

business faster for the
use of capital, which
means the business

starts making money
faster, too.”

 GENE KIM

THE PHOENIX PROJECT

Gene Kim, Kevin Behr, and George
Spafford, The Phoenix Project:
A Novel about IT, DevOps, and

Helping Your Business Win.
Portland, Oregon: IT

Revolution Press, 2013.

THE INFRASTRUCTURE OF AGILITY

A barrage of new technology often does not help create an agile infrastructure since different

groups move in different directions to explore options for improvement. Without a coherent set of

top-level goals, it can be difficult to determine which set of new capabilities will make a genuine dif-

ference to the overall functioning of the organization.

The three pillars of agile integration

Three main technologies underpin an agile integration approach.

1. Distributed integration. A few dozen high-level integration patterns reflect enterprise work and

dataflows. When these integration patterns are deployed within containers, the integration pat-

terns can be deployed at the scale and location needed for specific applications and teams. This is

a distributed integration architecture, rather than the traditional centralized integration architec-

ture, and it allows individual teams to define and deploy the integration patterns that they need

with agility.

2. APIs. Stable, well-managed APIs have a huge effect on collaboration between teams, develop-

ment, and operations. APIs wrap key assets in stable, reusable interfaces, allowing those inter-

faces to work as building blocks for reuse across the organization, with partners, and with

customers. APIs can be deployed together with containers to different environments, allowing

different users to interact with different sets of APIs.

3. Containers. For both API and distributed integration technologies, containers work as the under-

lying deployment platform. Containers allow the exact service to be deployed within a specific

environment in a way that is easy and consistent to develop, test, and maintain. Because con-

tainers are the dominant platform for DevOps environments and microservices, using contain-

ers as your integration platform enables a much more transparent and collaborative relationship

between development and infrastructure teams.

Figure 2. Three pillars of agile integration

Tools and processes

DISTRIBUTED
INTEGRATION

APIs CONTAINERS

SCALABILITYREUSABILITYFLEXIBILITY

• Light-weight
• Pattern-based
• Event-oriented
• Community sourced

• Cloud native solutions
• Lean artifacts,
 individually deployable
• Container-based
 scaling and high
 availability

• Well-defined, reusable,
 and well-managed
 end points
• Ecosystem accessibility

http://redhat.com

7redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

These three technologies make IT infrastructure more agile because they each raise the level of

abstraction at which different teams can work together. Using a container platform with APIs and

distributed integrations abstracts the implementation of the integration from the integration itself.

Teams can be more agile because APIs and distributed integration patterns package specific

assets at a level that can be broadly understood — without having to understand or alter the

underlying infrastructure.

Individually, each of these technologies will provide significant agility to specific integration chal-

lenges. When used together, they provide a multiplier effect. Underscoring the technology is culture:

the benefits of the technology are increased when combined with DevOps practices — especially auto-

mation and deployment processes.

Distributed integration

One of the biggest challenges of current IT systems is that they need to connect applications from

across organizations. The difficulty of integration services has led to increasingly complex, cen-

tralized integration hubs. These hubs, often implemented as enterprise service buses (ESBs), have

become extremely complex bottlenecks that are too rigid for rapid change.

Distributed integration achieves many of the same technical objectives of previous generations of

ESBs, but in a way that is more adaptive to teams within an organization. As with ESBs, distributed

integration technology offers transformation, routing, parsing, error handling, and alerting capabili-

ties. The difference is the architecture of the integration.

A distributed integration architecture treats each integration point as a separate and unique deploy-

ment, rather than part of a larger, centralized integration application. The integration can then be

containerized and deployed locally for a specific project or team without affecting any other integra-

tions deployed throughout the organization. This distributed approach allows the flexibility that agile

projects require. It also uses the same toolchain as the agile or DevOps teams by using the underly-

ing container platform, increasing the ability of teams to manage their own integrations with their

own tools and schedules. This essentially treats integration as a microservice,6 which increases the

speed of development and release integrations.

Alignment with developer tools and processes is critical. A core aspect of distributed integra-

tion is that it is not a centralized software infrastructure developed and managed by a specialized

set of users in one department and deployed separately from the software development process.

Distributing the integration architecture, with a common platform and tooling, keeps it accessible to

all developers at a project level and supports lightweight deployments wherever and whenever inte-

gration is needed.

 6 See Martin Fowler’s helpful definition of microservices: https://martinfowler.com/articles/microservices.html

http://redhat.com
https://martinfowler.com/articles/microservices.html

8redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

To use an ESB, a team is forced to use that ESB’s tools for the entire life cycle, in addition to what-

ever tools are being used in the development and operations environments. This limitation leads to

awkward, inefficient, and error-prone operations.

Messaging strengthens integration

Architecturally, distributed integration treats integrations as microservices. They have
the ability to be containerized, are easily and locally deployable, and can have rapid
release cycles.

Integration technology needs to be able to support this kind of lightweight, microser-
vices-based architecture. Red Hat® Fuse allows users to treat integrations as code,
which can run anywhere — including in a container.

Additionally, Fuse is bundled with Red Hat JBoss AMQ to provide a messaging infra-
structure. A strong messaging infrastructure ensures events and data are routed
between systems effectively. Messaging is an important architectural tool with
microservices because its asynchronous nature requires no dependencies.

This combination of integrations and messaging improves the overall performance of
the integration architecture by offering more effective routing, support for multiple
languages and protocols, asynchronous throughput, and better data management.

“In software, when
something is painful,

the way to reduce the
pain is to do it more

frequently, not less.”

 DAVID FARLEY

CONTINUOUS DELIVERY: RELIABLE

SOFTWARE RELEASES THROUGH BUILD,

TEST, AND DEPLOYMENT AUTOMATION

David Farley and Jez Humble,
Continuous Delivery: Reliable

Software Releases Through
Build, Test, and Deployment

Automation. Addison-Wesley
Professional, 2010.

LIFE CYCLE STEP ESBS, MOST INTEGRATION
PLATFORM-AS-A-SERVICE (IPAAS)

SUPPORTING DISTRIBUTED
INTEGRATION TECHNOLOGIES

Version control Proprietary Github and others

Build Proprietary Maven and others

Deploy Proprietary Containers and other DevOps tools

Manage and scale Proprietary Containers and other DevOps tools

TABLE 2. A COMPARISON OF INTEGRATION TECHNOLOGIES FOR EACH STAGE OF THE
SOFTWARE LIFE CYCLE

http://redhat.com

9redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

Containers

Virtualization, cloud, and containers are similar technologies that try to accomplish a similar goal.

These technologies abstract the operating environment for software away from the physical hard-

ware so that it is possible to stack more instances on hardware and manage utilization, scale, and

deployment more efficiently. However, they address that challenge in different ways. Virtualization

abstracts the operating system layer. Cloud removes the concept of permanent, dedicated server

instances. Containers define a just-enough version of an operating environment and libraries to run

a single application.

The more prescriptive and lightweight approach outlined by container technology is what has made

it an ideal tool for modern software environments. Each instance uses an immutable definition, from

the operating system to the exact version of each library included. This makes the environment

highly repeatable and consistent for each instance, which is ideal for continuous integration and

continuous delivery (CI/CD) pipelines. Additionally, because a container image only defines what is

needed for a single application, containers are matched with microservices, and container orchestra-

tion can also orchestrate the deployment and management of large microservices infrastructures.

The combination of lightweight and repeatable makes containers an ideal technology platform for

agile integration.

“A new competitive
rivalry, often

referred to as digital
transformation, is

driving the need for
organizations to rethink

their IT architecture;
redistribute workloads

across on-premises
infrastructure, clouds

and things; and
interoperate to support

business strategy and
operations. All of these
changes require a new

approach to integration
– an approach we
refer to as ‘hybrid

integration.’”

 CARL LEHMANN

451 GROUP

Carl Lehman, 451 Research,
“The Disruptive Role of

Integration PaaS and APIs in the
New Hybrid Integration Platform

Market.” July 2017.
https://451research.com/

report-long?icid=3862.

Following a trend

Container adoption is growing — but by how much? And why? 451 Research predicts a
250% growth in the market7 — but that’s in spending, not deployments. Actual deploy-
ments are a little harder to gauge. A Bain survey commissioned by Red Hat found
about 20% of customers currently are deploying containers in production, and
roughly the same amount in development and test environments — but over 30% were
evaluating containers or running proofs-of-concept.8

Part of the murkiness lies around what it means to use containers. The Enterprisers
Project outlined four different patterns for container adoption: using it as a general
development or deployment platform, using it as a cloud-native or microservices plat-
form, using it within a hybrid cloud, or using it for innovation projects.9 How you are
using containers can influence how you view its adoption.

For agile integration, the idea is to create an infrastructure platform that can support
existing operations. The platform may borrow from all of the implementation patterns,
but at its core, it works as a platform — a foundation for both new projects and
existing services.

 7 451 Research infographic based on the Cloud-Enabling Technologies Monitor report, January 2017.
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-
7bn-in-2020_final_graphic.pdf

 8 Bain survey: For Traditional Enterprises, the Path to Digital and the Role of Containers, November 2016.
https://www.redhat.com/en/resources/path-digital-containers

 9 https://enterprisersproject.com/article/2017/8/4-container-adoption-patterns-what-you-need-know

http://redhat.com
https://451research.com/report-long?icid=3862
https://451research.com/report-long?icid=3862
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-7b
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-7b
https://www.redhat.com/en/resources/path-digital-containers
https://enterprisersproject.com/article/2017/8/4-container-adoption-patterns-what-you-need-know

10redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

APIs

Most information infrastructures contain hundreds or even thousands of systems, applications, and

assets, but it can be very difficult for these systems to interact — and it may not be possible for IT

administrators to know what systems are even available.

APIs are the interfaces for all of the assets that can be connected using integration technology. APIs

are a set of definitions or rules that set up how applications communicate with each other.

As organizations shift from a centralized, integration technology center-based approach to a distrib-

uted approach, self-service becomes a key priority. Agile teams need the authority and autonomy

to seek out, test, and use services developed both inside and outside their companies. A strong API

capability delivers this authority and autonomy to those teams. With APIs, the teams get the integra-

tion they need while the organization can ensure that security, authorization, and usage policies are

managed and enforced. APIs provide reference to teams on how integrations can be designed.

APIs are different from a final application. They determine how applications can interact, and then

individual developers use them as building blocks within their projects. APIs give developers and

teams a common language. An organization can even use their APIs to foster communities that

share and cooperate to create new, innovative uses for the services.

Containers require orchestration

Each container represents a single service or application, like a microservice repre-
sents a single, discrete functionality. In a microservices architecture, there can be
dozens or even hundreds of separate services — and those are duplicated across devel-
opment, test, and production environments.

For that number of instances, the ability to orchestrate instances and perform
advanced administration tasks is critical for the container environment to be effective.

Red Hat OpenShift combines Docker containers with Google’s Kubernetes orchestra-
tion project, and includes centralized administration, such as instance management,
monitoring, logging, traffic management, and automation, which would be almost
impossible in an environment with containers alone.

Red Hat OpenShift also supplies developer-friendly tools like self-service catalogs,
instance clustering, application persistence, and project-level isolation.

This combination balances the requirements of operations, particularly for stability and testing,

with developer needs for easy use and rapid delivery.

Traditional integration approaches had a highly centralized structure, with ESBs located at major

points in the infrastructure. Distributed integration and API management both have a decentralized

architecture that deploys only the required functionality to a specific location or team. Containers

work as the underlying platform for both approaches because their immutable nature keep images

and deployments consistent across environments so they can be rapidly deployed or replaced

without opaque dependencies or conflicts.

The key of a distributed architecture — whether with integrations or with APIs — is that there has to be

a way to design and deploy new services without a complex approval process.

Containers allow distributed integrations and APIs to be treated as microservices. They provide a

common tooling for both development and operations teams and the ability to use rapid develop-

ment processes with managed release processes.

http://redhat.com

11redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

The right API platform can help your developers do more

The power of APIs comes from the ability of others to use those APIs — both internal
developers and external users. Red Hat 3scale API Management Platform provides
tools to help all users. It provides a developer portal for developers to collaborate on
creating APIs, and an admin portal to be able to publish those APIs.

3scale API Management Platform also helps make those APIs consumable externally
by providing authentication, integrating with major cloud providers, and running
inside containers.

API strategy combines API design with a way to take that API public. 3scale API
Management Platform, especially 3scale on top of a container platform, provides the
means to execute that strategy.

API
consumers

Internet Public cloud

Authorization
and reporting

Any other
publicly accessible

endpoint

API management
platform

Your API team

Developer
portal

Admin
portal

Developers

Figure 3. A view of API management, endpoints, and the public cloud

Different APIs, or different subsets of an API, can be made available to different audiences. The

needs of a vendor may be different from those of internal development teams or community devel-

opers. API management includes designing the API for the application and the user group, as well

as managing the life cycle of the API. APIs are increasingly managed as products, with different

teams responsible for each API, but there is a need to ensure uniformity and ease of use across all of

these resources.

As with distributed integration, containers can serve as a platform to develop, deploy, and manage

APIs in ways that align API development with larger development and operations processes

and tools.

http://redhat.com

12redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

ARCHITECTURE OF AGILE INTEGRATION

Team practices

Agile integration pillar technologies are most effective when deployed and available to teams as

reusable capabilities.

What we mean by capability is that authorized groups can use the technologies in a self-service

manner, follow organizational guidelines easily, and gain access to best practice information.

Information architects or IT administrators have to define clear processes for the individual teams,

such as:

• Providing widely available usage guidelines.

• Enforcing usage and best practice rules where appropriate but allowing freedom for experimenta-

tion beyond those rules.

• Having well-defined processes for moving from prototype, through test, go-live, updates, and

retirement.

• Allowing information sharing for new deployments and developments.

• Using infrastructure teams as enablers and providers of self-service capabilities rather than

forcing them to be part of every process.

For example, it should be possible for a software team to develop, test, and prepare a new API for

launch in an entirely self-service way, with processes in place to update other groups and documen-

tation. There may be processes and cross checks with other teams before publishing or moving into

production, but the infrastructure should automate the process as much as possible.

Infrastructure architecture

Figure 4. How agile integration technologies cut across application stacks

Custom apps Mobile apps Intelligent data apps

Process-driven apps

Integration

APIs

Containers

Shrink-
wrapped

apps

http://redhat.com

13redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

Containers, APIs, and integration act together to provide solid foundational layers for an
organization’s internal software ecosystems — and, in many cases, the access points for
external integrations.

Different types of systems expose a variety of reusable endpoints, each visible as a reusable
API and many running within containers for scalability and ease of deployment. Integrations
provide transformation, composition, or inline business logic wherever needed through the
system by integrating a group of individual services or gathering results from different parts of
the organization.

Integrated applications can be further aggregated before serving end-user applications.

Figure 5. An infrastructure design with containers, APIs, and distributed integration

APIs

Container-
based

Scalable
lightweight
microservices

External
resource
consumption

SaaS
Legacy

Legacy
system
support

Self-service
capability

Composed
microservices

SaaSMobile Partners

There is no assumption that all systems will be decomposed into increasingly small pieces or pass

through multiple layers of API abstraction. Such operations can reduce efficiency, add latency, or

add unnecessary complexity of their own. In some areas, it may be the right choice to keep exist-

ing legacy ESB functionality to retain connections between specific applications. The dependencies

between distributed systems also need to be tracked and managed using appropriate tools.

However, for the system as a whole, recasting architecture in terms of containers, APIs, and integra-

tion means the right choices can be made for each service, integration point, and customer interac-

tion. For example, high-volume inbound requests can be security checked and then routed directly to

the correct backend service, without going through a single ESB bottleneck.

http://redhat.com

14redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

In hybrid, distributed cloud environments, many of the backend systems in question may reside in

different physical locations. Integrating locally proximate systems to serve a local need provides

more efficiency and security than routing everything through a single central integration system

that holds key business logic.

AGILE ORGANIZATIONS AND CULTURE

The life cycle of infrastructure is very different from the life cycle of software development or opera-

tions. The cycle for development is to complete a project and then move on to the next project — effi-

ciency means increasing how quickly a product can be released or how many features can be

produced in a given time. Even for operations, which is focused more on maintenance and stability,

it is still beneficial to apply security patches and updates, deploy new services, or rollback changes

more efficiently and quickly.

However, infrastructure has a very different approach. Infrastructure tends to be worked on at

longer timeframes and with disparate, highly specialized groups, which is very different from the

cross-functional teams working on a specific software engineering project. Infrastructure projects

are typically much larger than software projects, which means that the short release cycles may not

be able to accomplish much — or may leave things incomplete. As Andrew Froelich, an enterprise IT

professional, wrote in InformationWeek, infrastructure has a point of no return limitation — especially

with hardware and datacenters, but even with public cloud, there is a point where you can no longer

scrap a project and start over.10 Infrastructure is permanent. However, it is possible to reconcile

methodologies with the performance of infrastructure.

The benefits of responsive, iterative processes like agile and DevOps are apparent for development

and operations teams, but less so for infrastructure teams. However, Froehlich’s pro/con analysis of

agile for infrastructure misses one critical aspect: aligning infrastructure teams with development

and operations teams. Rohan Pearce wrote in CIO about changing infrastructure teams into agile-

style work cells rather than functional teams.11 Telstra Enterprise Services teams were having devel-

oper groups simply ignore their internal systems because the process to check out systems or make

updates was so painful and complex. Adjusting their working groups reduced cycle times from 212

days to 42 days.12

This example illustrates how critical process change can be for infrastructure teams to more effec-

tively serve their internal groups.

Agile integration technologies underpin a more agile infrastructure. APIs, container images, and dis-

tributed integrations become new methods of discourse in software infrastructure conversations.

 10 Froehlich, Andrew, “Should IT go agile? The pros and cons.” October 6, 2015.
http://www.informationweek.com/infrastructure/pc-and-servers/
should-it-go-agile-the-pros-and-cons/d/d-id/1322448

 11 Pearce, Ronan, “Can infrastructure be agile?” June 20, 2013.
https://www.cio.com.au/article/465436/can_infrastructure_agile_/

 12 http://agilemanifesto.org/

http://redhat.com
http://www.informationweek.com/infrastructure/pc-and-servers/should-it-go-agile-the-pros-and-cons/d/
http://www.informationweek.com/infrastructure/pc-and-servers/should-it-go-agile-the-pros-and-cons/d/
https://www.cio.com.au/article/465436/can_infrastructure_agile_/
http://agilemanifesto.org/

15redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

Agile integration uses technology to support culture change within infrastructure teams. It serves

as the foundation for infrastructure strategy. It aligns the infrastructure technologies and its teams

more closely with development and business strategies.

The agile methodology identifies some key parts of a software project, such as individuals, builds,

and dependencies. It can then define relationships between these elements. When approaching inte-

gration infrastructure as an agile project, there are similar elements and relationships that can be

identified, paralleling those defined by agile — such as teams, container images, APIs, and integration

points. Table 3 describes some of these parallels.

Figure 6. Core principles for software development, from the Agile Manifesto

The Agile Manifesto defines four core principles for software development.12 In an agile,
integration-based infrastructure, these principles can be applied to the integration strategy.

Individuals and interactions over processes and tools.
With infrastructure, the discussion is focused on interactions between teams. Interactions include direct
communication, governed by APIs, messaging, and traffic patterns; systems-level interdependencies; and
testing and release process, such as CI/CD pipelines.

Working software over comprehensive documentation.
Infrastructure by its nature must be functional 24/7/365, with gradual adaptation rather than major changes.
In that sense, a working infrastructure is always an implied requirement. As an infrastructure strategy,
“working” means that the infrastructure component delivers the expected end-user behavior in the expected
performance envelope.

Customer collaboration over contract negotiation.
With infrastructure systems, contracts represent how infrastructure teams manage system dependencies, such
as security policies, service-level agreements, and even published APIs. Customers include both internal and
external users of those systems. Agility gives those users a voice in potential changes in policies and interfaces
associated with systems and lets them see those changes executed more quickly. Using distributed integrations
extends that collaboration by giving control to develop and deploy integrations directly to teams.

Responding to change over following a plan.
This is a principle where technology supports process. For infrastructure, the systems should remain stable, but
newer technologies like containers provide a platform that is elastic. It is possible to dynamically add and remove
instances according to demand, to automate deployments and updates, and to orchestrate changes across multiple
instances. Published API definitions provide reusable tools to help development be more consistent. This approach
makes a stable platform that is designed to adapt to change.

1

2

3

4

http://redhat.com

16redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

PROJECT ORGANIZATION DETAIL

Individuals Teams Teams are responsible for particular parts of the infrastruc-

ture. This identifies information surrounding team responsi-

bilities, such as the systems or APIs managed by the team,

team leaders, and the goals of the team.

Modules APIs Well-defined interfaces (APIs) are stable over time, have

their own roadmaps, are run by specific teams, and create a

particular capability important within the organization.

Builds Container

images

Releases are based on deployable units that have been

tested, tagged, and can be deployed dependably by any team

that has access. This replaces monolithic, versioned code.

Compile

dependencies

Integrations This element identifies the integrations and mappings

between different components in these distributed systems.

These integration points can then be managed, commis-

sioned, decommissioned, versioned, and tested just like any

other part of the system.

Build testing Infrastructure

automation

This is full life-cycle management, from the ability to test

software builds, performance, and user requirements to

operating and monitoring multiple systems.

TABLE 3. COMPARISON OF ELEMENTS OF SOFTWARE AGILE AND
INFRASTRUCTURE AGILE

http://redhat.com

17redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

Applying agile principles to infrastructure planning

Most change management approaches require comprehensive documentation of all
subsystems. This documentation has to cover, in detail, every aspect of the system,
from monitoring method to performance parameters to responsible teams. Agile prin-
ciples require collaboration and adaptability, which is in conflict with documentation-
heavy change management.

Rather than trying to prescriptively define all potential stakeholders, changes, and
system components, define a set of guidelines and standards that can be used to eval-
uate change requests and planning. Consider these questions:

• What is the intended end-to-end experience for the user?

• How is everybody — each team, API, and system — contributing to improving this experience

over time?

• How will monitoring and alerting be defined, and for what parameters, to maintain

service levels?

• What kind of automated testing is needed to verify the expected behavior?

• What is the release pipeline for teams to test and deploy new versions of their own subsys-

tems without disrupting the user experience?

• How does a failure in a component service affect the service levels of the whole system?

Change management within an agile infrastructure should be less of a contract and
more of an ongoing collaboration.

Are the odds in your favor?

How likely is your IT project to succeed? First, it depends on knowing your criteria for
success — is it meeting specifications, increasing customer adoption, or just releas-
ing it? Project management training group 4PM defines success as completing a
project on budget, on time, and to specifications.13 With that definition, they estimate
about 70% of IT projects fail.13 Those numbers are starting to shift. A recent Project
Management Institute survey revealed that more projects are meeting their planned
targets than in the past five years.14 They attribute the uptick to stronger alignment
between IT and business teams, leading to better information about strategy and
customer needs.8

One of the reasons for that strategic alignment is implementing agile teams. Agile
encourages collaboration and feedback, a holistic view of problems and systems, and
creative approaches.

 13 4PM.com, “Why projects fail so often.” September 27, 2015.
http://4pm.com/2015/09/27/project-failure/

 14 Florentine, Sharon, “IT project success rates finally improving.” February 27, 2017.
https://www.cio.com/article/3174516/project-management/it-project-success-rates-finally-improving.html

http://redhat.com
http://4pm.com/2015/09/27/project-failure/
http://www.informationweek.com/infrastructure/pc-and-servers/should-it-go-agile-the-pros-and-cons/d/
https://www.cio.com/article/3174516/project-management/it-project-success-rates-finally-improving.ht

18redhat.com E-BOOK Agile integration: The blueprint for enterprise architecture

Having a shared technology stack moves discussions away from independent code to systems

and their interdependencies. This is systems-level thinking, treating the entire collection of soft-

ware infrastructure — including internally developed software, vendor systems, and the connections

between them — as a single system. APIs and messaging systems can span the entire infrastructure

and work to unify the software systems.

Because APIs and distributed integrations can be developed and understood within individual devel-

opment or operations teams, the knowledge of team responsibilities for integrations is much clearer.

The integrations themselves are better understood because the interdependencies between systems

and applications are recognized by the teams handling the development and the deployment.

Using integration as the foundation for infrastructure, and then distributing responsibility for that

integration across teams, creates an infrastructure environment where agile approaches are

more relevant.

CONCLUSION: DELIVERING AGILE INTEGRATION

Agility is a process, not a project.

It has never been more important for organizations to be able to react to change in the market,

and it is largely IT systems that must deliver this ability to launch new services or update existing

ones quickly. Rethinking IT infrastructure has never been more important, as it is the foundation of

digital services.

Infrastructure teams have historically been tied to very long, modulated processes because of the

need to mitigate risk and maintain stability. However, it is possible to shift the mindset of infrastruc-

ture from hardware or platform-based to integration-based. Integration is not a subset of infrastruc-

ture. It is a conceptual approach to infrastructure that includes data and applications with hardware

and platforms.

We define this approach as agile integration, a way of using integration technologies to help create a

more agile and adaptive infrastructure. There are three technology pillars to agile integration:

• Distributed integration, which uses messaging and enterprise integration patterns to integrate

data and systems. These are broken down into small, team-driven integrations that are distributed,

as needed, across projects and touchpoints.

• Internal API management, which creates a reusable set of interfaces to allow development teams

to engage with applications and systems. APIs provide guidance and structure to how applications

should interact.

• Containers, which allow integration projects to be closely aligned with development and opera-

tional projects and enable integrations to be developed, tested, and released similarly to software

projects using DevOps methods.

http://redhat.com

Copyright © 2018 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus
Torvalds in the U.S. and other countries.

facebook.com/redhatinc
@RedHat

linkedin.com/company/red-hat

NORTH AMERICA
1 888 REDHAT1

ABOUT RED HAT

Red Hat is the world’s leading provider of open source software solutions, using a community-
powered approach to provide reliable and high-performing cloud, Linux, middleware, storage, and
virtualization technologies. Red Hat also offers award-winning support, training, and consulting
services. As a connective hub in a global network of enterprises, partners, and open source
communities, Red Hat helps create relevant, innovative technologies that liberate resources for
growth and prepare customers for the future of IT.

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

redhat.com
f11423_0518

Technology has to be used to support culture change, and that means working to make infra-

structure teams — and not just their software — more agile. As infrastructure teams work to align

themselves with agile principles, technology can gradually be introduced to support those

changes. There is no single project that will rearchitect an entire organization to be agile. It may

be more effective to implement one agile integration technology or change one area of the busi-

ness and then extend those changes incrementally.

Improving the responsiveness of IT infrastructure to change is a long-term strategic goal.

Sweeping, organization-wide changes do not need to be made for there to be progress. It may

not even be necessary to try to make changes in isolation and then roll them out.

Agile integration provides a framework, both technical and organizational, to help reshape

IT infrastructure.

E-BOOK Agile integration: The blueprint for enterprise architecture

http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://redhat.com

