
ptg

Agile Product
Management
with Scrum

Creating Products that
Customers Love

Roman Pichler

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of Wow! eBook

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Pichler, Roman.
Agile product management with Scrum : creating products that customers love /

Roman Pichler.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-60578-8 (pbk. : alk. paper)
1. Agile software development. 2. Scrum (Computer software development) I. Title.
QA76.76.D47P494 2010
005.1—dc22

2010000751

Copyright © 2010 Roman Pichler

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-60578-8
ISBN-10: 0-321-60578-0
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, March 2010

From the Library of Wow! eBook

ptg

To Melissa

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

CONTENTS

Foreword by Jeff Sutherland xv
Foreword by Brett Queener xvii
Preface xix
Acknowledgments xxiii
About the Author xxv

1. Understanding the Product Owner Role 1
The Product Owner Role 2
Desirable Characteristics of a Product Owner 3

Visionary and Doer 4
Leader and Team Player 4
Communicator and Negotiator 5
Empowered and Committed 6
Available and Qualified 6

Working with the Team 7
Collaborating with the ScrumMaster 9
Working with Customers, Users, and Other Stakeholders 10
Scaling the Product Owner Role 12

The Chief Product Owner 12
Product Owner Hierarchies 13
Choosing the Right Product Owners 15

Common Mistakes 16
The Underpowered Product Owner 17
The Overworked Product Owner 17
The Partial Product Owner 18

ix

From the Library of Wow! eBook

ptg

The Distant Product Owner 19
The Proxy Product Owner 19
The Product Owner Committee 20

Reflection 20

2. Envisioning the Product 23
The Product Vision 24
Desirable Qualities of the Vision 25

Shared and Unifying 25
Broad and Engaging 26
Short and Sweet 27

The Minimal Marketable Product 27
Simplicity 31

Ockham’s Razor 31
Less Is More 31
Simple User Interfaces 32

Customer Needs and Product Attributes 33
The Birth of the Vision 35

Using Pet Projects 35
Using Scrum 36

Techniques for Creating the Vision 37
Prototypes and Mock-ups 37
Personas and Scenarios 38
Vision Box and Trade Journal Review 39
Kano Model 39

Visioning and the Product Road Map 41
Minimal Products and Product Variants 42
Common Mistakes 43

No Vision 43
Prophecy Vision 44
Analysis Paralysis 44
We Know Best What Is Good for Our Customers 45
Big Is Beautiful 45

Reflection 46

x • • • CONTENTS

From the Library of Wow! eBook

ptg

3. Working with the Product Backlog 47
The DEEP Qualities of the Product Backlog 48

Detailed Appropriately 48
Estimated 49
Emergent 49
Prioritized 49

Grooming the Product Backlog 49
Discovering and Describing Items 51

Discovering Items 51
Describing Items 53
Structuring the Backlog 53

Prioritizing the Product Backlog 54
Value 55
Knowledge, Uncertainty, and Risk 56
Releasability 57
Dependencies 58

Getting Ready for Sprint Planning 59
Choosing a Sprint Goal 59
Preparing Just Enough Items Just in Time 60
Decomposing Items 61
Ensuring Clarity, Testability, and Feasibility 63

Sizing Items 64
Story Points 64
Planning Poker 65

Dealing with Nonfunctional Requirements 68
Describing Nonfunctional Requirements 68
Managing Nonfunctional Requirements 69

Scaling the Product Backlog 70
Use One Product Backlog 70
Extend the Grooming Horizon 71
Provide Separate Backlog Views 71

Common Mistakes 71
Disguised Requirements Specification 71
Wish List for Santa 72

CONTENTS • • • xi

From the Library of Wow! eBook

ptg

Requirements Push 72
Grooming Neglect 73
Competing Backlogs 73

Reflection 74

4. Planning the Release 75
Time, Cost, and Functionality 76
Quality Is Frozen 78
Early and Frequent Releases 79
Quarterly Cycles 81
Velocity 82
The Release Burndown 83

The Release Burndown Chart 84
The Release Burndown Bar 86

The Release Plan 87
Forecasting Velocity 89
Creating the Release Plan 90

Release Planning on Large Projects 91
Common Baseline for Estimates 92
Look-Ahead Planning 92
Pipelining 93

Common Mistakes 94
No Release Burndown or Plan 94
Product Owner in the Passenger Seat 94
Big-Bang Release 95
Quality Compromises 95

Reflection 96

5. Collaborating in the Sprint Meetings 97
Sprint Planning 98
Definition of Done 99
Daily Scrum 100
Sprint Backlog and Sprint Burndown 101
Sprint Review 101

xi i • • • CONTENTS

From the Library of Wow! eBook

ptg

Sprint Retrospective 103
Sprint Meetings on Large Projects 104

Joint Sprint Planning 105
Scrum of Scrums 105
Joint Sprint Review 105
Joint Sprint Retrospective 106

Common Mistakes 107
The Bungee Product Owner 107
The Passive Product Owner 107
Unsustainable Pace 108
Smoke and Mirrors 109
Reporting Up the Sprint Burndown 109

Reflection 109

6. Transitioning into the Product Owner Role 111
Becoming a Great Product Owner 111

Know Yourself 112
Develop and Grow 113
Get a Coach 113
Ensure That You Have Sponsorship from

the Right Level 114
You’re Not Done Yet 114

Developing Great Product Owners 115
Recognize the Importance of the Role 115
Select the Right Product Owners 115
Empower and Support the Product Owners 116
Sustain the Application of the Product Owner Role 117

Reflection 118

References 119

Index 125

CONTENTS • • • xi i i

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

FOREWORD
BY JEFF SUTHERLAND

The product owner is a new role for most companies and needs this
book’s compelling and easily understandable presentation. When
the first product owner was selected, I was a vice president at Object
Technology, responsible for delivering the first product created by
Scrum. The new product would make or break the company, and I
had six months to deliver a development tool that would alter the
market. In addition to creating the product with a small, carefully
selected team, I had to organize the whole company around new
product delivery. With only a few months until product shipment,
it was clear that the right minimal feature set would determine suc-
cess or failure. I found that I did not have enough time to spend
talking with customers and watching competitors closely so that I
could precisely determine the right prioritized feature set up front
and break those features down into small product backlog items for
the team.

I had already delegated my engineering responsibilities to the
first ScrumMaster, John Scumniotales, but now I needed a product
owner. I had access to any resource in the company, so I selected
the best person from the product management team for the role I
had in mind: Don Roedner. As the first product owner, Don had to
own the vision for the product, the business plan and the revenue,

xv

From the Library of Wow! eBook

ptg

the road map and the release plan, and, most important, a carefully
groomed and precisely prioritized product backlog for the team.

Don lived with the team half of his time and was on the road
with customers the other half. His job was to deliver the right prod-
uct, while I worked with the entire company on product naming
and branding, marketing strategy and communications, and sales
planning and training while simultaneously sitting in the Scrum
meeting every day and being the primary impediment remover for
the team. Don had to assume a bigger role than product marketing
manager. All of a sudden he owned a new line of business. At the
same time he was plunged into the engineering team, helping to
explain and motivate the team on a daily basis. Being embedded in
the market and embedded in the team at the same time was a total
immersion experience.

A good product owner’s intensity of focus and responsibility for
success are clearly illustrated in this book but rarely seen in product
companies or on IT teams. We need a compelling picture of a great
product owner along with the specifics of how to execute the role,
and Roman Pichler has provided an outstanding guide.

Jeff Sutherland,
Cocreator of Scrum

xvi • • • FOREWORD BY JEFF SUTHERLAND

From the Library of Wow! eBook

ptg

FOREWORD
BY BRETT QUEENER

There is a great movement taking place today throughout the soft-
ware industry: the agile movement. Over the last two decades,
many customers, partners, and employees have become disen-
chanted with the way we develop enterprise technology solutions.
These solutions are often low in quality, take years to be brought to
market, and lack the innovation necessary to solve real business
problems.

At Salesforce.com, we aspire to be a different software com-
pany by focusing on customer and employee success. We knew that
using traditional methods to deliver software just wouldn’t work for
our vision of a different kind of company. We had to rethink the
model, throw out our assumptions, and find a better way. We asked
ourselves: Is there a way to deliver high-quality software on time,
every time? Is there a way to get value into our customers’ hands
early and often? Is there a way to innovate at scale as the company
grows? In fact, there is.

As the chief product owner at Salesforce.com, I needed a way
for my product managers to effectively connect the wants and needs
of our customers and the business directly to the development teams
in a highly dynamic and responsive way. Using Scrum allows us to
put the product managers firmly in charge of delivering customer

xvii

From the Library of Wow! eBook

ptg

value. It enables them to direct the team to build the most business-
critical features first and to get them into the hands of our customers
as soon as possible. It also provides them with the flexibility to
respond quickly to changing market conditions and competitive
pressures, or to deliver terrific new innovations emerging from our
development teams. In Agile Product Management with Scrum,
you’ll see how a product owner differs from a traditional product
manager having a greater level of responsibility for the success of the
product. The book clearly outlines and contrasts the different behav-
iors between the traditional and the agile role.

Many have attempted to explain the product owner role, but
none have been able to capture the essence of the role like Roman
Pichler. This book offers compelling agile product management
theories and practices that guide product owners, Scrum team
members, and executives in delivering innovations. Roman pro-
vides plenty of real-world examples from highly competitive innova-
tors like Salesforce.com along with simple explanations for building
and delivering the minimum functionality to deliver innovations.
He also outlines the common pitfalls and mistakes that many prod-
uct owners make.

In today’s dynamic and competitive environment, our cus-
tomers’ expectations and demands are greater than ever before. At
Salesforce.com, our agile approach has provided dramatic results
with our product owners delivering more innovation and value. If
you’re interested in similar success, this book is for you. The spot-on
tools, techniques, and advice are the perfect guide to deliver wild
success for your customers.

Brett Queener,
Senior Vice President, Products, Salesforce.com

xvi i i • • • FOREWORD BY BRETT QUEENER

From the Library of Wow! eBook

ptg

PREFACE

Many excellent books have been written on agile software develop-
ment and on product management. Yet to date, a comprehensive
description of how product management works in an agile context
does not exist. It is as if agilists have shied away from the subject,
and the product management experts are still scratching their heads
trying to figure out this brave new agile world. With more and more
companies adopting Scrum, the question of how product manage-
ment is practiced in a Scrum environment is becoming increas-
ingly urgent. This book attempts to provide an answer.

When I first came across agile practices in 1999, I was struck
by the close collaboration between business and technical people.
Until then, I had considered software development as something
techies would take an interest in but not businesspeople. When I
coached my first agile project in 2001, the biggest challenge was to
help the product mangers transition into the agile world. Since
then, product ownership has consistently been the major challenge
and success factor in the companies I’ve consulted—not only in
developing successful products but also in making Scrum stick. To
say it with the words of Chris Fry and Steve Greene (2007, 139),
who guided the agile transition at Salesforce.com:

xix

From the Library of Wow! eBook

ptg

Throughout our initial rollout we heard from many experts
that the Product Owner role was key to the success of our
agile transformation. Although we intuitively understood
this we didn’t truly understand the significant changes that
the Product Owners would experience in their roles.

W H Y A G I L E P R O D U C T M A N A G E M E N T I S
D I F F E R E N T

Scrum-based agile product management differs from old-school
product management approaches in a number of areas. Table P.1
provides a summary of the most important distinctions.1

TABLE P.1 Old-School versus New-School Product Management

Old School New School

Several roles, such as product One person—the product owner—is
marketer, product manager, and in charge of the product and leads
project manager, share the the project. Find out more about
responsibility for bringing the this new role in Chapter 1 and
product to life. Chapter 6.

Product managers are detached The product owner is a member of
from the development teams, the Scrum team and works closely
separated by process, department, with the ScrumMaster and team on
and facility boundaries. an ongoing basis. Find out more in

Chapter 1, Chapter 3, and Chapter 5.

Extensive market research, Minimum up-front work is
product planning, and business expended to create a vision that
analysis are carried out up front. describes what the product will

roughly look like and do, as
discussed in Chapter 2.

xx • • • PREFACE

1. Note that I use the Scrum role names stated in Schwaber (2009).

From the Library of Wow! eBook

ptg

TABLE P.1 Old-School versus New-School Product Management (Continued)

Old School New School

Up-front product discovery and Product discovery is an ongoing
definition: requirements are process; requirements emerge.
detailed and frozen early on. There is no definition phase and no

market or product requirements
specification. The product backlog
is dynamic, and its contents evolve
based on customer and user
feedback. Find out more in
Chapter 3.

Customer feedback is received Early and frequent releases together
late, in market testing and after with sprint review meetings generate
product launch. valuable customer and user

feedback that helps create a product
customers love, as discussed in
Chapter 4 and Chapter 5.

Agile methods including Scrum embrace an age-old truth:
They see change as the only constant. “If a company’s own research
does not make a product obsolete, another’s will,” wrote Theodore
Levitt famously in his article “Marketing Myopia,” published in
1960. And Christensen (1997) argues that disruptive innovation will
eventually occur in every industry. Only how soon and how fre-
quently it is going to happen remain uncertain. Companies not able
to adapt quickly will go out of business—even if their profits are
healthy today. Luckily, Scrum’s empirical nature makes it well
suited to deal with newness and innovation, to cope with complex
situations where flux and unpredictability are dominant forces. If
your business is characterized by change, you are likely to find a
powerful ally in Scrum.

PREFACE • • • xxi

From the Library of Wow! eBook

ptg

W H A T T H I S B O O K O F F E R S A N D W H O
S H O U L D R E A D I T

This book is for anyone interested in agile product management, par-
ticularly those readers working as product owners or transitioning into
the role. The book discusses the role of the product owner along with
essential product management practices. These include envisioning
the product, stocking and grooming the product backlog, planning
and tracking the release, leveraging the Scrum meetings, and transi-
tioning into the new role. This practical guide enables you to apply
agile product management techniques effectively in Scrum. It
focuses on products involving software—from a simple software
application to complex products like mobile phones.

Note that this book is not a product management primer. It is
not a Scrum primer, either. And it certainly is no product manage-
ment panacea. In fact, there are many product management aspects
this book does not cover. Instead, this book focuses on the product
management concepts and practices specific to Scrum.

The book assumes that you are familiar with Scrum and that
you have a working product management knowledge. A description
of Scrum can be found in Schwaber and Beedle (2002) and
Schwaber (2004).

My hope is that this book will help you create products that
customers love—products that are beneficial to their users and are
developed in a healthy, sustainable way.

xxi i • • • PREFACE

From the Library of Wow! eBook

ptg

ACKNOWLEDGMENTS

This book has been shaped by the contributions of many people. I’d
like to wholeheartedly thank everyone who reviewed chapters,
shared stories, or provided advice (in alphabetical order):

Lyssa Adkins, Geir Amsjø, Markus Andrezak, Gabrielle
Benefield, Robert Bogetti, Thomke Buhl, Marty Cagan, Sabine
Canditt, John Clifford, Alistair Cockburn, Mike Cohn, Jens
Coldeway, Kaustabh Debbarman, Pete Deemer, Chris Fry, Steve
Greene, Roland Hanbury, Kevlin Henney, Ben Hogan, Clinton
Keith, Andreas Klinger, Hans-Peter Korn, Jochen Krebs, Craig
Larman, Bill Li, Lowell Lindstrom, Catherine Louis, Rodrigo
Luna, Artem Marchenko, Jason Martinez, Ralph Miarka, Philip
Missler, Bent Myllerup, Jeff Patton, Tobias Pichler, Brett Queener,
Cesário Ramos, Dan Rawsthorne, Simon Roberts, Stefan Roock,
Rene Rosendahl, Johanna Rothman, Kenneth Rubin, Martin
Rusnak, Hans-Peter Samios, Bob Schatz, Andreas Schliep, Ken
Schwaber, Christa Schwanninger, Karl Scotland, Martin Shaw,
Lisa Shoop, James Siddle, Michele Sliger, Preston Smith, Dieter
Stefanowitz, Jeff Sutherland, Mads Troels Hansen, Bas Vodde,
Geoff Watts, Harvey Wheaton, Rüdiger Wolf, Elizabeth
Woodward, and Lv Yi.

I am particularly grateful to Mike Cohn. Mike’s patient shep-
herding, help, and ongoing feedback were invaluable in writing this

xxiii

From the Library of Wow! eBook

ptg

book. Thank you very much, Mike! Special thanks to Jeff
Sutherland and Brett Queener for writing such great forewords.
And thank you, Ken Schwaber, for teaching me Scrum.

I am forever grateful to my family. My wife, Melissa Pichler,
gave me the time and focus to write the book, and she discussed
ideas with me, reviewed the chapters, and helped with the cover
design. Thanks, honey! Thank you also to my son, Leo, and my
daughter, Yasmin, for tiptoeing around (or trying to) when Daddy
was writing his book. Special thanks to Leo, age five, for providing
honest feedback after reading a few sentences of the book: “Daddy,
it’s a bit weird.”

I would also like to thank Rebecca Traeger for her excellent
editorial work and the team at Pearson—Chris Guzikowski, Raina
Chrobak, Sheri Cain, Anna Popick, and Barbara Wood—for all
their help and hard work.

xxiv • • • ACKNOWLEDGMENTS

From the Library of Wow! eBook

ptg

ABOUT THE AUTHOR

Roman Pichler is a leading Scrum and agile product management
expert. He has a long track record in teaching and coaching product
owners and in helping companies apply effective product manage-
ment practices. In addition to this book, he is the bestselling author of
Scrum—Agiles Projektmanagement erfolgreich einsetzen (Scrum—
Applying Agile Project Management Successfully). Roman is a fre-
quent speaker at international conferences. As a Certified Scrum
Trainer, he led the Scrum Alliance effort to develop a curriculum for
the Certified Scrum Product Owner training. Find out more at
www.romanpichler.com.

xxv

From the Library of Wow! eBook

www.romanpichler.com

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

1
• • •

UNDERSTANDING THE PRODUCT
OWNER ROLE

I once worked on a new health-care product destined to replace its
predecessor. The new system was intended to provide more value
for the customers and leapfrog the competition. After over two years
of development, the new product was launched with great expecta-
tions—and bombed.

What went wrong? Somewhere between the idea and the
launch, the product vision was lost amid the many handoffs.
Product marketing performed the market research, wrote the prod-
uct concept, and passed the concept on to the product manager.
The product manager wrote the requirements specification and
handed it off to the project manager, who passed it on to the devel-
opment teams. There was no single person responsible for leading
the effort to create a winning product, and no shared vision of what
the product should look like and do. Everyone involved had a differ-
ent view, a different vision.

What’s the solution? Putting one person, called the product
owner, in charge of the product. This chapter explores the role of
the product owner. It explains the role’s authority and responsibility
as well as how the role should be applied.

1

From the Library of Wow! eBook

ptg

T H E P R O D U C T O W N E R R O L E

In the “Scrum Guide” (Schwaber 2009, 5), Ken Schwaber writes
about the product owner:

The Product Owner is the one and only person responsible
for managing the Product Backlog and ensuring the value
of the work the team performs. This person maintains the
Product Backlog and ensures that it is visible to everyone.

This definition sounds rather harmless until we consider its
implications. The product owner leads the development effort to
create a product that generates the desired benefits. This often
includes creating the product vision; grooming the product back-
log; planning the release; involving customers, users, and other
stakeholders; managing the budget; preparing the product launch;
attending the Scrum meetings; and collaborating with the team.
The product owner plays a crucial part not only in bringing new
products to life but also in managing the product lifecycle. Having
one person in charge across releases ensures continuity and
reduces handoffs, and it encourages long-term thinking. A survey at
SAP AG revealed more benefits: The employees working as prod-
uct owners felt more confident, more able to influence, more visi-
ble, better organized, and better motivated in the new role
(Schmidkonz 2008).

Being the product owner is no solo act. The product owner
is part of the Scrum team and closely collaborates with its other
members. While the ScrumMaster and team support the product
owner by jointly grooming the product backlog, the product
owner is responsible for making sure that the necessary work is
carried out.

It may be tempting to compare the role of the product owner
to traditional roles, such as product manager or project manager.
Any comparison fails to do it justice, though. The product owner is
a new, multifaceted role that unites the authority and responsibility
traditionally scattered across separate roles, including the customer

2 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

or sponsor, the product manager, and the project manager. Its spe-
cific shape is context-sensitive: It depends on the nature of the prod-
uct, the stage of the product lifecycle, and the size of the project,
among other factors. For example, the product owner responsible
for a new product consisting of software, hardware, and mechanics
will need different competencies than one who is leading the effort
to enhance a web application. Similarly, a product owner working
with a large Scrum project will require different skills than one col-
laborating with only one or two teams.

For commercial products, the product owner is typically a cus-
tomer representative, such as a product manager or marketer. An
actual customer tends to assume the role when the product is being
developed for a specific organization, for instance, an external
client who requires a new data warehouse solution or an internal
client (e.g., the marketing department) asking for a web site update.
I have worked with customers, users, business line managers, prod-
uct managers, project managers, business analysts, and architects
who filled the product owner role well in the given circumstances.
Even CEOs can play the product owner role. Take the example of
Ript, a visual planning tool that lets users cut and paste images and
text from one application to another. The software was the brain-
child of Gerry Laybourne, CEO of Oxygen Media, who subse-
quently took on the product owner role for the software’s first release
(Judy 2007).

D E S I R A B L E C H A R A C T E R I S T I C S O F A
P R O D U C T O W N E R

Choosing the right product owner is crucial for any Scrum project.
Successful product owners I have worked with share the characteris-
tics that follow. Since the product owner is a new role, individuals
often need time and support to transition into the role and to
acquire the necessary skills. A common challenge is finding
employees with the necessary breadth and depth of knowledge and

DESIRABLE CHARACTERIST ICS OF A PRODUCT OWNER • • • 3

From the Library of Wow! eBook

ptg

experience to do the job well. (I’ll discuss transitioning to the role
and developing product owners in Chapter 6.)

Vis ionar y and Doer

Writer Jonathan Swift observed, “Vision is the art of seeing things
invisible.” The product owner is a visionary who can envision the
final product and communicate the vision. The product owner is
also a doer who sees the vision through to completion. This
includes describing requirements, closely collaborating with the
team, accepting or rejecting work results, and steering the project by
tracking and forecasting its progress. As an entrepreneur, the prod-
uct owner facilitates creativity; encourages innovation; and is com-
fortable with change, ambiguity, debate, conflict, playfulness,
experimentation, and informed risk taking.

Leader and Team P layer

“Good business leaders create a vision, articulate the vision, pas-
sionately own the vision, and relentlessly drive it to completion,”
says Jack Welch, GE’s former chairman and CEO. The product
owner is just such a leader. As the individual responsible for the
product’s success, the product owner provides guidance and
direction for everyone involved in the development effort and
ensures that tough decisions are made. For instance, should the
launch date be postponed or should less functionality be deliv-
ered? At the same time, the product owner must be a team player
who relies on close collaboration with the other Scrum team
members, yet has no formal authority over them. We can think of
the product owner as primus inter pares, first among peers, regard-
ing the product.

The dual nature of the product owner as a leader and team
player is a hard line to toe. By no means should the product owner
dictate decisions, yet at the same time neither should the product
owner be indecisive or employ a laissez-faire management style.

4 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

Instead, the individual should act as a shepherd for the innovation
process, guiding the project and seeking team consensus in the deci-
sion-making process. Making decisions about the product collabo-
ratively ensures the team’s buy-in, leverages the team’s creativity and
knowledge, and results in better decisions. Working this way
requires facilitation and patience because team members often
have to disagree and argue first before a new solution can be synthe-
sized from the different ideas and perspectives. Kaner and his coau-
thors provide useful information on collaborative decision making
and related facilitation techniques (1996).

The Entrepreneurial Team

We sometimes focus on an individual as the amazing entrepre-
neur or the outstanding leader—think of Bill Gates, Steve Jobs,
and other celebrity leaders. In reality, very few innovations are a
stroke of genius attained by one person. And even if the product
owner is Mrs. or Mr. Innovation, the individual still needs a team
to bring the product to life. No entrepreneurial genius can make
all the right decisions. In fact, neuroscientific research reveals
that even the best-qualified person in the right job at the right
place can make wrong decisions—if that person decides alone.
Finkelstein and his coauthors attribute this to the way human cog-
nition works (2009). They recommend using at least one other
person as a sounding board. A team provides plenty of sparring
partners to test ideas and arrive at the right decision. Ed Catmull,
president of Pixar (2008, 68), says this:

... if you give a mediocre idea to a great team, they will either fix
it or throw it away and come up with something that works.

The wisdom of many is preferable to the brilliance of one.

Communicator and Negot ia tor

The product owner must be an effective communicator and negotia-
tor. The individual communicates with and aligns different parties,
including customers, users, development and engineering, market-
ing, sales, service, operations, and management. The product owner

DESIRABLE CHARACTERIST ICS OF A PRODUCT OWNER • • • 5

From the Library of Wow! eBook

ptg

is the voice of the customer, communicating customer needs and
requirements and bridging the gap between “the suits” and “the
techies.” Sometimes this means saying no and other times negotiat-
ing a compromise.

Empowered and Commit ted

The product owner must have enough authority and the right
level of management sponsorship to lead the development effort
and to align stakeholders. At mobile.de, Germany’s biggest online
auto marketplace, senior management selects product owners,
provides support, and acts as their escalation partner. This close
collaboration has allowed the management team to better under-
stand the progress of the individual projects and to kill unsuccess-
ful projects early.1

An empowered product owner is essential for leading the
effort to bring the product to life. The product owner must have the
proper decision-making authority—from finding the right team
members to deciding which functionality is delivered as part of the
release. The product owner must be someone who can be
entrusted with a budget and at the same time has the ability to cre-
ate a work environment that fosters creativity and innovation. The
product owner must be committed to the development effort. A
successful product owner is confident, enthusiastic, energetic, and
trustworthy.

Avai lab le and Qual i f ied

The product owner must be available and qualified to do a great
job. Being the product owner is usually a full-time job. It is impor-
tant to give product owners enough time to sustainably carry out
their responsibilities. If the individual is overworked, the project’s
progress suffers and the resulting product may be suboptimal.

6 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

1. Personal communication with Philip Missler, CTO at mobile.de, June 18, 2009.

From the Library of Wow! eBook

ptg

Being adequately qualified usually requires an intimate under-
standing of the customer and the market, being passionate about
the user experience, and the ability to communicate needs and
describe requirements, to manage a budget, to guide a develop-
ment project, and to be comfortable working with a cross-func-
tional, self-organizing team.

The Product Owner at PatientKeeper

Jeff Sutherland, cocreator of Scrum and former CTO of
PatientKeeper, Inc., a leading provider of integrated health-care
information systems, explains the required qualifications and
authority of product owners at the company:

[A product owner] must be a domain expert, preferably a practic-
ing physician a couple of days a week in one of the leading hos-
pitals in Boston … an engineering expert, preferably [having]
written some apps themselves. … an expert in user stories, use
cases, and software specifications in general and healthcare in
particular … really good with customers and sales people to elicit
requirements and recruit physician experts to test-drive prototypes
of new functionality … [and] own the business, the revenue, the
customer and sales relationship with respect to features, the physi-
cal creation of user stories and any additional specification of the
product including all analysis that is related to what the customer
wants. [Our product owners] have no help other than developers
and other members of the product owner team. The first couple of
hires we made couldn’t do this. Repeated training, coaching and
getting the right person in the job made it happen.2

W O R K I N G W I T H T H E T E A M

As mentioned earlier, the product owner is a member of the Scrum
team and relies on collaboration with the ScrumMaster and team.
The team itself is self-organizing, cross-functional, and small. It
should include all roles required to bring the product to life. All

WORKING WITH THE TEAM • • • 7

2. From a posting by Jeff Sutherland on the Yahoo! scrumtrainers list on October 2,
2008, and personal communication with Jeff Sutherland on December 16, 2008.

From the Library of Wow! eBook

ptg

members of the Scrum team must form a close and trusting rela-
tionship, a symbiosis, and work together as peers. There must be no
us and them. There can only be us.

To allow the Scrum team to flourish, minimize any changes to
it within and across releases. It takes some time for a group of indi-
viduals to become a true team—a tightly knit unit with members
who trust and support each other and who work together effectively.
Changing the team’s composition makes the team-building process
start all over again, and as a result, productivity and self-organization
suffer. Additionally, establish a long-term partnership between a
Scrum team and its product; every product should be developed by
one or more dedicated teams. This not only facilitates learning, but
it simplifies the allocation of people and resources.

Since the product owner, ScrumMaster, and team need to
closely collaborate on an ongoing basis, it is desirable to colocate all
Scrum team members. Take the example of mobile.de. Colocating
the product owners with the ScrumMaster and team increased pro-
ductivity and morale.3 If the product owner cannot be permanently
colocated with the team, have as many face-to-face meetings as possi-
ble. Remote product owners can benefit from partial colocation,
working on-site with the team for several days in each sprint. For
product owners working on the same site but not yet colocated with
their teams, I often suggest the one-hour rule: Product owners should
spend at least one hour per day with their teams in the team room.

The team room should be conducive to creative and collabo-
rative work. It should be an environment that facilitates communi-
cation and interaction, makes work enjoyable, and allows displaying
key artifacts as information radiators (the vision statement, high-pri-
ority product backlog items, a software architecture diagram, the
sprint backlog, and the release and sprint burndown). The best team
rooms balance teamwork with the need for privacy and working in
small groups by providing breakout rooms.

8 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

3. Personal communication with Philip Missler, CTO at mobile.de, on June 22, 2009.

From the Library of Wow! eBook

ptg

C O L L A B O R A T I N G W I T H T H E S C R U M M A S T E R

Just as a sports team requires a coach to play consistently at the high-
est level, so every Scrum team needs a ScrumMaster.4 The
ScrumMaster supports the product owner and team, protects the
team and the process, and intervenes appropriately when required
to ensure that the pace of work is sustainable, that the team stays
healthy and motivated, and that no technical debt is incurred.5

The product owner and ScrumMaster roles complement each
other: The product owner is primarily responsible for the “what”—
creating the right product. The ScrumMaster is primarily responsi-
ble for the “how”—using Scrum the right way. The two aspects are
depicted in Figure 1.1. Only when the right product is created with
the right process is enduring success achieved.

COLLABORATING WITH THE SCRUMMASTER • • • 9

4. Professional rugby teams, for instance, have several coaches, including an attack
coach, a forwards coach, a defense coach, a scrum coach, a kicking coach, and the
head coach.

5. Technical debt and sustainable pace are discussed in detail in Chapter 4 and
Chapter 5, respectively.

Right
thing

Wrong
thing

Quick but
unsustainable

wins

Enduring
success

Wrong way Right way

Fast failureSlow failure

FIGURE 1.1 Doing the right thing the right way

From the Library of Wow! eBook

ptg

Since the product owner and ScrumMaster roles are designed
to balance each other, playing both roles is overwhelming and
unsustainable. One individual should never be both ScrumMaster
and product owner.

W O R K I N G W I T H C U S T O M E R S , U S E R S , A N D
O T H E R S T A K E H O L D E R S

The customer, who is the person purchasing the product, and the
user, who is the individual using the product, determine the success
or failure of the product. Only if enough customers buy the product
and the users find it beneficial will the product be a success in the
marketplace. Notice that the customer and the user may not be the
same person. They may also not have the same needs. Take the
example of an electronic spreadsheet. The needs of its users might
include ease of use and high productivity. The company purchasing
the product, on the other hand, might be concerned about the total
cost of ownership and data security.

To create a winning product, the product owner, ScrumMaster,
and team must develop an intimate understanding of customer
and user needs, and how these needs can best be met. The best
way to do this is to involve customers and users early and continu-
ously in the development process. Asking customers to provide
feedback on prototypes, inviting customer representatives to sprint
review meetings, and releasing software early and frequently are
great ways to learn from customers. Teams should bear in mind
that the product is only a means to an end—to help the customer
and to generate the desired benefits for the company developing
it, not an end in itself. As Theodore Levitt famously put it, “People
don’t want a quarter-inch drill, they want a quarter-inch hole.” It is
only when we focus on the customer that we develop the best pos-
sible solution.

10 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

In addition to customers and users, product owners should
involve other stakeholders, such as representatives from marketing,
sales, and service, early and regularly by asking them to attend the
sprint review meetings. The meetings allow the representatives to
see the product grow, to interact with the Scrum team, and to share
questions, concerns, and ideas. Bryson (2004) provides an overview
of helpful techniques to identify and analyze stakeholders.

Product Marketers and Project Managers

Some companies distinguish between strategic and tactical prod-
uct management aspects and employ separate roles for each, a
product marketer and a (technical) product manager. Product
marketers tend to be outward-facing; their primary responsibility
is to understand the market, manage the product road map, and
look after the cumulative profits across releases. Product man-
agers tend to be inward-facing; their responsibilities consist of
detailed feature description, prioritization, and collaboration
with the development team. In Scrum, the product owner takes on
all of these responsibilities. For strategic product management
aspects, the product owner may receive support from a portfolio
manager, from a vice president, or even from the CEO, depend-
ing on the size of the company and the importance of the project.
For help with pricing and marketing communications, the product
owner may turn to a product marketer and senior salesperson.
For the tactical aspects, the product owner can count on the
ScrumMaster’s and team’s support. Uniting the two product man-
agement aspects achieves end-to-end authority and accountabil-
ity. We avoid handoffs, waiting, and delays as well as
miscommunication and defects.

You may have noticed that I have not mentioned the role of the
project manager on a Scrum team. There is a reason: Project
management responsibilities are no longer exercised by one per-
son. They are split across the members of the Scrum team instead.
The product owner, for instance, is responsible for managing the
release scope and date, managing the budget, communicating
progress, and managing the stakeholders. The team takes on the
task of identifying, estimating, and managing the tasks. The pro-
ject manager role is therefore redundant. This does not mean that

WORKING WITH CUSTOMERS, USERS, AND OTHER STAKEHOLDERS • • • 11

From the Library of Wow! eBook

ptg

the individuals working as project managers are no longer
needed. The opposite is true. Former project managers often
become great ScrumMasters. I have also seen project managers
successfully transition into the product owner role.

S C A L I N G T H E P R O D U C T O W N E R R O L E

Before I describe product ownership practices for large Scrum pro-
jects, here’s a general warning: Avoid large projects. Start small and
quickly develop a product with the minimum functionality, as dis-
cussed in Chapter 2. If you have to employ a large project, scale
slowly and grow the project organically by adding one team at a
time. Starting with too many people causes products to be overly
complex, making future product updates time-consuming and
expensive.6

The Chie f Produc t Owner

Large Scrum projects consist of many small teams. Each team
needs a product owner, but one product owner can look after only a
limited number of teams. How many teams a single product owner
can support without being overworked or neglecting some respon-
sibilities depends on a number of factors. These include the prod-
uct’s newness, its complexity, and the domain knowledge of the
teams. My experience suggests that a product owner usually cannot
look after more than two teams in a sustainable manner.
Consequently, when more than two teams are required, several
product owners have to collaborate. This seems to create a
dilemma: The product owner is one person, but we require several
product owners on a large Scrum project. The solution is to put

12 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

6. This insight is captured in Conway’s Law (Conway 1968). It states that the struc-
ture of the organization developing a product is likely to influence the architecture
of the product. If a project starts with three teams, for instance, chances are that the
architecture will consist of three major subsystems.

From the Library of Wow! eBook

ptg

one person in charge of creating and implementing the product
vision. In doing so, we introduce a hierarchy of collaborating prod-
uct owners with an overall or chief product owner at the top—simi-
lar to chefs in a restaurant working together with one cook as the
chef de cuisine, the head chef.7

The chief product owner guides the other product owners.
This individual ensures that needs and requirements are consis-
tently communicated to the various teams, and that the project-wide
progress is optimized. This includes facilitating collaborative deci-
sion making as well as having the final say if no consensus can be
reached. If the project grows organically by starting off with one
team, the very first product owner typically becomes the chief prod-
uct owner.

Produc t Owner Hierarch ies

Product owner hierarchies vary from a small team of product own-
ers with a chief product owner to a complex structure with several
levels of collaborating product owners. Let’s have a look at the two
options, starting with the simpler one.

The project organization depicted in Figure 1.2 consists of
three teams and three product owners. Each product owner looks
after one team. The product owners form a product owner team with
product owner B acting as the chief product owner. Even though
there is a chief product owner, the product owner hierarchy is flat.
Here is an example of how the project organization can be applied: A
client of mine employs a product owner team responsible for a web
portal and its applications. Four product owners and a chief product
owner collaborate closely. Each product owner looks after an indi-
vidual application. The chief product owner is in charge of the entire
product, comprising all applications and the portal.

SCALING THE PRODUCT OWNER ROLE • • • 13

7. The top-level product owner is not always called chief product owner. Schwaber
uses the term overall product owner (2007); Larman and Vodde call the chief prod-
uct owner simply product owner (2009).

From the Library of Wow! eBook

ptg

Figure 1.3 shows another option suitable for larger Scrum pro-
jects, which is based on Schwaber (2007, 70–73).

14 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

Product owner A Chief product owner
and product owner B

Product owner C

Product owner team

Team BTeam A Team C

FIGURE 1.2 Simple product owner hierarchy

Product owner
Games

Product owner
MP3 Player

Product owner
Chess

Product owner
Tetris

Chief product owner
Mobile Phone

Product owner
Photo and Video

Product owner
Organizer

Product owner
Entertainment

Product owner
Communications

FIGURE 1.3 Complex product owner hierarchy

From the Library of Wow! eBook

ptg

The project organization partially depicted in Figure 1.3 con-
sists of four layers and nine product owners.8 Each product owner
guides and assists lower-level colleagues. The top-level product
owner is the chief product owner in charge of the entire develop-
ment effort and is responsible for the product’s success. The product
owners now form a rather extensive hierarchy.

Note that a complex product owner hierarchy introduces a
certain specialization of the individual product owner jobs. The
chief product owner leads the overall development effort, coordinat-
ing with customers and other stakeholders. The lower-level product
owners are more focused on their features or subsystems and work
closely with the development teams. Schwaber (2007, 72) notes:

The Product Owner plans, composes, distributes, and
tracks work from his or her level down. ... The higher the
level is, the harder the Product Owner’s ... job is. The
responsibility of Product-level jobs usually requires some-
one with Vice President-level or Director-level title and
authority.

Choos ing the R ight Produc t Owners

Finding the right person to fill the product owner role is challeng-
ing enough when only one product owner is needed. How do we
choose the right product owners on large projects? Understanding
the different ways we can structure the teams on a large project
helps answer the question. There are two ways to organize teams
that are creating product increments: as feature teams or as compo-
nent teams (Pichler 2008, Larman and Vodde 2009). A feature team
implements a cohesive set of requirements, such as one or more

SCALING THE PRODUCT OWNER ROLE • • • 15

8. Schwaber (2007, 71) suggests that each product owner forms part of an
Integration Scrum Team with the ScrumMaster and team as additional members.
Each Integration Scrum Team supports its lower-level teams. In Figure 1.3, the
Scrum Integration Team “Games” would support the Scrum teams “Tetris” and
“Chess,” for instance.

From the Library of Wow! eBook

ptg

themes or features. The result is an executable vertical slice that
cuts across major parts of the software architecture. A component
team creates a component or subsystem.

Both team setups are orthogonal: Feature teams are orga-
nized around product backlog items, component teams around
the software architecture. Both have advantages and disadvan-
tages. Component teams, for instance, ensure architectural
integrity and reuse. Unfortunately, they often cannot consume
product backlog items expressed as user stories or use cases but
instead require detailed technical requirements. In addition, they
have to integrate their work results to create a product increment.
Both properties create overhead. Feature teams, on the other
hand, can usually work in parallel. They encounter fewer integra-
tion issues and can consume the requirements stated in the prod-
uct backlog. Ensuring architectural integrity and reuse can be a
challenge, though. As a rule of thumb, organizations should
employ feature teams whenever possible and use component
teams only if they must.

Since the product owner of a component team has to help
translate product backlog items into technical requirements, the
best individual to serve in that role is usually an architect or a senior
developer rather than a product manager. If a project consists of
three feature teams and one component team, for instance, it is
likely to require three product managers and one architect to fill the
product owner roles—assuming that one of the product owners is
the chief product owner.

C O M M O N M I S T A K E S

Applying the product owner role means entering new territory for
many organizations. And the path to effective product ownership is
littered with pitfalls and traps. This section will help you avoid some
of the most common mistakes.

16 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

The Underpowered Produc t Owner

A project with an underpowered product owner is much like a car
with an underpowered engine: The car runs, but it struggles when
the going gets tough. An underpowered product owner lacks
empowerment. There may be several causes: The product owner
does not have enough management attention; the sponsorship
comes from the wrong level or the wrong person; management does
not fully trust the product owner or finds it difficult to delegate deci-
sion-making authority. As a consequence, the product owner strug-
gles to do an effective job, for instance, to align the Scrum team,
stakeholders, and customers or to exclude requirements from the
release. A product owner of a new-product development project I
worked with, for instance, had to consult his boss, the head of the
line of business, for every major decision. Not surprisingly, this
caused delays and eroded the team’s confidence in the product
owner. Ensure that the product owner is fully empowered and
receives support and trust from the right person.

The Over worked Produc t Owner

Being overworked is not just unhealthy and unsustainable on a per-
sonal level; overworked product owners quickly become bottlenecks
and limit the project’s progress. Symptoms of an overworked prod-
uct owner include neglecting product backlog grooming, missing
sprint planning or review meetings, and not being available for
questions or giving answers only after a long delay. Overworked
product owners are at odds with the Agile Manifesto’s concept of
sustainable pace. “Agile processes promote sustainable develop-
ment. The sponsors, developers, and users should be able to main-
tain a constant pace indefinitely” (Beck et al. 2001).

There are two main causes of product owner overburden: not
enough time to perform the role and not enough support from the
team. Availability tends to be an issue when the product owner role
is just one of many jobs competing for time and attention or when

COMMON MISTAKES • • • 17

From the Library of Wow! eBook

ptg

the product owner looks after too many products or teams. Not
enough support from the team is rooted in a wrong understanding
of product ownership: Even though there is one product owner,
most of the product owner work is carried out collaboratively. The
team and ScrumMaster must support the product owner.

To avoid an overworked product owner, try the following:
First, free the individual from all other responsibilities. Start with
the assumption that being a product owner is a full-time job, and
that one product owner can look after only one product and one
team. Second, ensure that the team makes time in every sprint to
collaborate with the product owner. Scrum allocates up to 10% of
the team’s capacity in every sprint for supporting the product owner
(Schwaber 2007). Not only does collaboration spread the work
across many shoulders; it also leverages the team’s collective knowl-
edge and creativity.

The Par t ia l Produc t Owner

Some organizations split the product owner role and distribute its
duties across several people, for instance, by employing a product
manager and a “product owner.” The product manager takes care of
the product marketing and product management aspects, owns the
vision, is outward-facing, and keeps in touch with the market. The
“product owner” is inward-facing, drives the sprints, and works with
the team. In these cases, the so-called product owner is little more
than a product backlog item writer. This approach reinforces old
barriers, blurs responsibility and authority, and causes handoffs,
delays, and other waste.

Instead of splitting the product owner role, organizations
should face the challenge of applying the role properly. One person
should be in charge of the strategic and the tactical product manage-
ment aspects. This may well require organizational changes, includ-
ing adapting job roles and career paths and developing individuals to
take on a rich set of responsibilities, as discussed in Chapter 6.

18 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

The Dis tant Produc t Owner

A distant product owner works separately from the team. Distance
may evoke images of a globalized world with the product owner on
one continent and the team on another. But distance comes in
many forms and degrees. It starts with working on the same site in
different rooms, and it ends with product owner and team being sep-
arated across continents and time zones (Simons 2004). I have
found recurring issues with distant product owners, including mis-
trust, miscommunication, misalignment, and slow progress. There
is a reason: “The most efficient and effective method of conveying
information to and within a development team is face-to-face con-
versation” (Beck et al. 2001).

Avoid distant product owners by colocating all Scrum team
members. As mentioned earlier, mobile.de experienced a signifi-
cant productivity and morale increase after colocating its product
owner, ScrumMaster, and team. If colocation is not an option, the
product owner should spend as much time as possible in the same
room as the rest of the Scrum team. Remote product owners should
be on-site at least for the sprint planning, the review, and the retro-
spective meetings. Moving from a distant to a colocated product
owner often takes time. It may require hiring and training a local
product owner. In some cases, it may also require rethinking the
company’s product strategy, including where the company develops
its products.

The Proxy Produc t Owner

A proxy product owner is a person acting as a placeholder for the
actual product owner. I have found proxy product owners used to
compensate for overworked, partial, and distant product owners. At
a client of mine, the vice president of product management was
asked to take on the product owner role for a business-critical prod-
uct. Even though he was ideally suited for the job, he struggled to
spend enough time with the team. The business analyst on the

COMMON MISTAKES • • • 19

From the Library of Wow! eBook

ptg

team consequently stood in as a proxy product owner when the real
product owner could not be there. The proxy did most of the prod-
uct owner work without being empowered. The actual product
owner ultimately decided about product backlog prioritization,
release planning, and whether to accept or reject work results.
What followed was an increase in conflicts and miscommunica-
tion, a slowdown in decision making, and a decrease in productiv-
ity and morale.

Using a proxy product owner is an attempt to superficially treat
a systemic issue. Rather than employing a quick fix, organizations
should address the underlying issues. This might require freeing up
the product owner from other obligations; colocating the product
owner, ScrumMaster, and team; or even finding a new product
owner.

The Produc t Owner Commi t tee

A product owner committee is a group of product owners without
anyone in charge of the overall product. There is no one person
guiding the group, helping to create a common goal, and facilitat-
ing decision making. A product owner committee is in danger of
getting caught in endless meetings with conflicting interests and
politics—something also referred to as “death by committee.” No
real progress is achieved; people stop collaborating and start fighting
each other. Always ensure that there is one person in charge of the
product, an overall or chief product owner who guides the other
product owners and facilitates decision making, including product
backlog prioritization and release planning.

R E F L E C T I O N

The product owner role is a cornerstone of successfully applying
agile product management in Scrum. The days of the lonesome
product manager locked away in her room and racking her brain to

20 • • • CHAPTER 1 UNDERSTANDING THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

come up with perfect requirements are over. The product owner is a
member of the Scrum team and as such is committed to close and
ongoing collaboration. The following questions can help you apply
the product owner role successfully:

Who represents customers and users at your company?

Who identifies and describes customer needs and product func-
tionality?

Who leads the visioning activities, and who leads the activities
that bring the vision to life?

What roles do teamwork and collaborative decision making play?

What would it take to implement the product owner role, as
described in this chapter?

REFLECT ION • • • 21

From the Library of Wow! eBook

ptg

This page intentionally left blank

From the Library of Wow! eBook

ptg

2
• • •

ENVIS IONING THE PRODUCT

It wasn’t fun to have a telephone conference in the early 1990s.
Participants would often have to turn their heads away from the
table and shout into a microphone. When people talked simultane-
ously, their voices cut out, turning conversation into gibberish.
Polycom, a company that specializes in telepresence, video, voice,
and content-sharing solutions, recognized that its customers needed
telephone conferences that felt more like natural face-to-face con-
versations—without any distortion, echoes, or other interruptions.
So Polycom envisioned a product with the following attributes
(Lynn and Reilly 2002, 63):

• Superb audio quality—allowing more than one person at a
time to speak and still be understood

• Simple to use—no confusing buttons and cords
• First-class looks—belongs in an executive conference room

The resulting product was called SoundStation, which
launched in 1992. Its vision was an important stepping-stone toward
the product’s overwhelming success. This chapter discusses tech-
niques for envisioning a product. We’ll start with the content and
the qualities of an effective product vision.

23

From the Library of Wow! eBook

ptg

T H E P R O D U C T V I S I O N

“Would you tell me, please, which way I ought to go from here?”
Alice asks the Cheshire Cat in Lewis Carroll’s novel Alice’s
Adventures in Wonderland. “That depends a good deal on where
you want to get to,” said the Cat. “I don’t much care where –,” said
Alice. “Then it doesn’t matter which way you go,” said the Cat
(Carroll 1998, 56).

Being able to envision what a new product or the next product
version should look like and do is essential for getting there.
Envisioning the product results in the product vision—a sketch of
the future product.1 The vision acts the overarching goal, galvaniz-
ing and guiding people, and is the product’s reason for being. As in
the Polycom example, the vision selectively describes the product at
a coarse-grained level, capturing the product’s essence—the infor-
mation considered critical to develop and launch a winning prod-
uct. Demoing product increments to customers and users in the
sprint review meetings and releasing software early and frequently
validates and refines the vision. An effective vision should answer
the following questions:

• Who is going to buy the product? Who is the target cus-
tomer? Who is going to use the product? Who are its target
users?

• Which needs will the product address? What value does the
product add?

• Which product attributes are critical for meeting the needs
selected and therefore for the success of the product? What
will the product roughly look like and do? In which areas is
the product going to excel?

24 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

1. Even though the product vision is not part of the Scrum framework, it is men-
tioned by Schwaber and Beedle (2002, 34). Ken Schwaber also writes about the
vision in Agile Project Management with Scrum: “The vision describes why the pro-
ject is being undertaken and what the desired end state is” (2004, 68).

From the Library of Wow! eBook

ptg

• How does the product compare against existing products,
from both competitors and the same company? What are
the product’s unique selling points? What is its target price?

• How will the company make money from selling the prod-
uct? What are the sources of revenue and what is the busi-
ness model?

• Is the product feasible? Can the company develop and sell
the product?

If you plan to use a new product as a springboard for changing
your business model, this information should be reflected in the
product vision. Take Apple’s iPod and iTunes as an example. Apple
came to dominate the digital music market by creating a good prod-
uct, the iPod, and wrapping it in a great business model. The tight
integration of iPod and iTunes, the company’s online music store,
not only provided a convenient way to purchase music online, but it
locked in customers. This allowed Apple to change the rules of the
game—selling online music at comparatively cheap prices. The
company makes small margins on the music but large ones on the
MP3 players. An iPod vision would most certainly contain the
requirement of seamless integration with iTunes, and the iTunes
vision would refer to the business model and the additional revenue
made from selling iPods.

D E S I R A B L E Q U A L I T I E S O F T H E V I S I O N

The vision should communicate the essence of the future product
in a concise manner and describe a shared goal that provides direc-
tion but is broad enough to facilitate creativity.

Shared and Uni fy ing

Everyone involved in the development effort should buy into the
vision: Scrum team, management, customers, users, and other

DESIRABLE QUALIT IES OF THE VIS ION • • • 25

From the Library of Wow! eBook

ptg

stakeholders. As Peter Senge puts it: “A vision is truly shared when
you and I have a similar picture and are committed to one another
having it, not just to each of us, individually, having it” (2006, 192).
A shared vision creates alignment and galvanizes everyone involved
in the development effort. It facilitates effective teamwork and
enables team learning. “When people truly share a vision, they are
connected, bound together by a common aspiration” (Senge 2006,
192). If team members have private visions, the individuals end up
pulling in different directions rather than toward the common goal.
A great way to create a shared vision is to involve the Scrum team
and stakeholders in the visioning activities.

Broad and Engaging

The product vision should describe a broad and engaging goal: a
goal that guides the development efforts but leaves enough room for
creativity, a goal that engages and inspires people. Marissa Mayer,
vice president of search product and user experience at Google,
describes how Google leverages the vision:

We bring together a team of people who are really passion-
ate about [a] subject. I think it’s interesting: We still don’t
do very high-definition product specs. If you write a 70-
page document that says this is the product you’re sup-
posed to build, you actually push the creativity out with
[the] process. The engineer who says, you know what,
there’s a feature here that you forgot that I would really
like to add. You don’t want to push that creativity out of
the product. The consensus-driven approach where the
team works together to build a vision around what they’re
building and still leaves enough room for each member of
the team to participate creatively, is really inspiring and
yields us some of the best outcomes we’ve had.2

26 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

2. “Inside Google’s New-Product Process,” BusinessWeek.com, June 30, 2006,
www.businessweek.com/technology/content/jun2006/tc20060629_411177.htm.

From the Library of Wow! eBook

www.businessweek.com/technology/content/jun2006/tc20060629_411177.htm

ptg

Resist the temptation to provide too much detail or to over-
specify the product. More functionality is discovered and captured
in the product backlog as the project progresses.

Shor t and Sweet

When it comes to the product vision, less is more. The vision should
be brief and concise. It should contain only information critical to
the success of the product. The blockbuster products in Lynn and
Reilly’s ten-year study have no more than six product attributes, for
instance (2002). The product vision is not, therefore, a feature list,
nor should it provide unnecessary detail. Agile project management
expert Jim Highsmith explains, “Coming up with fifteen or twenty
product capabilities or features proves to be easy. Selecting the three
or four that would incent someone to buy the product is difficult”
(2009, 97). Product development expert Donald Reinertsen agrees:
“Most successful products have a clear and simple value proposi-
tion. Buyers typically make their choice between competing prod-
ucts on the basis of three or four key factors” (1997, 174–75).

The product vision is usually concise if it passes Moore’s eleva-
tor test. “Can you explain your product in the time it takes to ride up
in an elevator?” (2006, 152). If the answer is no, the vision is likely to
be too long or complex.

T H E M I N I M A L M A R K E T A B L E P R O D U C T

To create a vision, the Scrum team has to peek into the future and
state what it believes the future product will roughly look like and
do. For anyone not blessed with perfect foresight, predicting the
future correctly is notoriously difficult. After all, the only thing cer-
tain about the future is that it is uncertain. No market research tech-
nique can deliver forecasts that are 100% accurate. And making a
completely fail-safe investment is an illusion. Cooper, for instance,
states a failure rate of 25% to 45% for new products (2001, 10); some

THE MINIMAL MARKETABLE PRODUCT • • • 27

From the Library of Wow! eBook

ptg

studies reveal even higher odds of failure. Markets develop unex-
pectedly and customer reaction is hard to predict, as the following
story illustrates.3

When Expertcity released an interactive technical support sys-
tem in 1999, the company had high hopes. The market research
data indicated that the new product would be a big success.
Unfortunately, the product did not deliver what the company had
hoped for. Expertcity noticed, though, that users had started
employing one part of the product, a desktop-sharing utility, in a
novel, unanticipated way. Customers were using the feature to
administer computers in a remote location. The company took the
right action and quickly adapted the product, turning it into a tool
for remote administration. The modified product was called
GoToMyPC. It was so successful that Citrix decided to acquire
Expertcity for $225 million in 2003. GoToMyPC now forms part of
the Citrix Online suite. Expertcity’s original product vision may
have been wrong, but its ability to adapt enabled the company to
turn certain failure into unmitigated success.

As our ability to predict the future is limited, our best chance
of success is to envision the minimal marketable product, a product
with minimum functionality that meets the selected customer
needs.4 Take the iPhone, which launched in 2007. The phone’s
unrivaled user experience made its competitors blush; it set a new

28 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

3. The accuracy of predicting a market response is influenced by the market dynam-
ics and the degree of innovation of the product. For steady-state markets and prod-
ucts exhibiting continuous or incremental innovation, it may be possible to
anticipate the market response fairly well. For other markets and products it is diffi-
cult or even impossible—as in the case of disruptive innovation. Christensen (1997,
143) observes: “Markets that do not exist cannot be analyzed.”

4. The term minimal marketable product is a reference to Mark Denne and Jane
Cleland-Huang’s work. In their book Software by Numbers (2004) they coin the
term minimal marketable feature set to denote the smallest amount of functionality
creating value for a customer. The idea of delivering a small set of features quickly
and enhancing the product incrementally dates back to Tom Gilb’s evolutionary
delivery method (Gilb 1988).

From the Library of Wow! eBook

ptg

standard for smartphones. One of the secrets behind its success is
the narrow set of customer needs Apple selected. The company
avoided the trap of trying to please too many people at once, of try-
ing to copy all the features competitors offered. Instead, Apple took
a fresh look at what smartphones should look like and do and delib-
erately left out some functionality. The original iPhone shipped
without many features that were standard on existing phones: copy
and paste, the ability to send text messages to multiple recipients,
and a software development kit, for instance. These limitations,
though, did not hinder its success. Paring down the functionality
allowed Apple to develop and ship the product within a competitive
time frame and gave the company a significant lead over its com-
petitors. Building on the success of the first iPhone version, Apple
launched the 3G model in 2008, extending the capabilities of the
phone in terms of both hardware and software. It also entered a new
market segment by targeting business users.

Contrast the iPhone success story with another Apple product:
the Apple Newton, first launched in 1993 after five years of develop-
ment. Remember those Apple ads that promised a PDA that could
do all sorts of wonderful things, including recognizing your hand-
writing? When it was finally shipped, the Newton proved to be too
bulky and heavy. Worse, its most important feature, the handwriting
recognition, did not work properly. The product underperformed
and was finally withdrawn from the market in 1998. In hindsight,
Apple was overly ambitious with its Newton plans. The company
launched a product that tried to do too much at once and failed.

Creating a minimal product provides us with a number of
advantages, as noted by Smith and Reinertsen (1997) and Denne and
Cleland-Huang (2004).5 The product is launched more quickly and
time to market is reduced; functionality is released in a more timely
manner. The product is developed at a lower cost and generates a

THE MINIMAL MARKETABLE PRODUCT • • • 29

5. Smith and Reinertsen (1997) call the technique of breaking innovation into
smaller, faster steps incremental innovation.

From the Library of Wow! eBook

ptg

higher return on investment. Payments are received earlier, improv-
ing the cash flow, and learning is accelerated. By reducing time to
market, we are able to listen and respond to the marketplace more fre-
quently, rather than trying to outguess it. Getting a minimal product
out quickly also improves risk mitigation. Less money is lost if the
product underperforms and has to be withdrawn from the market
early. This allows us to build the possibility of failure into our strategy,
an approach Google has embraced. Marissa Mayer of Google
explains: “We anticipate that we’re going to throw out a lot of prod-
ucts, but [people] will remember the ones that really matter and the
ones that have a lot of user potential.”6

As the future is uncertain, the vision should cover the next
product version. Even if Steve Jobs’s long-term dream was to domi-
nate the mobile phone market, it was certainly not the goal for the
first iPhone. Grand ambitions are best realized one step at a time.
“There is only one move that really counts: the next one” (Gilb
1988, 97). Once the vision is available, it is turned into a shippable
product by leveraging customer and user feedback; the feedback is
collected by demoing product increments in the sprint review meet-
ings and by releasing software early and frequently. Working this
way allows the Scrum team to find out quickly if the right product is
being developed. If not, the vision is ill conceived and has to be
adapted.

Note that the vision may be implemented by more than one
release. Take the example of the first version of Google Chrome.
Many nonpublic releases of the browser and a public beta in
September 2008 preceded the launch of version 1.0 in December
2008. A longer-term outlook on a product’s growth can be captured
in the form of a product road map, as I discuss later in this chapter.

30 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

6. “So Much Fanfare, So Few Hits,” BusinessWeek.com, July 10, 2006, www.busi-
nessweek.com/magazine/content/06_28/b3992051.htm. A similar attitude is por-
trayed by the motto “You have to kiss a lot of frogs to find a prince,” as Art Fry of 3M
famously observed. Note that a handsome prince pays for many frogs.

From the Library of Wow! eBook

www.businessweek.com/magazine/content/06_28/b3992051.htm
www.businessweek.com/magazine/content/06_28/b3992051.htm

ptg

S I M P L I C I T Y

Simplicity facilitates creating a product with the minimum func-
tionality that is easy to use. Don’t mistake simplicity for creating
simplistic products. As Leonardo da Vinci said, “Simplicity is the
ultimate sophistication.”

Ockham’s Razor

Using simplicity as a guiding principle follows a long-standing tradi-
tion. In the fourteenth century, Franciscan friar William of Ockham
allegedly postulated that given a choice between functionally equiv-
alent designs, the simplest design should be selected (Lidwell,
Holden, and Butler 2003, 142). This insight is known as Ockham’s
razor.

Simplicity is not only about the aesthetics of a product. It
means focusing on the product’s essence, building only what is
really needed, and being able to adjust and extend the product eas-
ily. A simple yet adequate product is easy to use—think of Apple’s
iPod. The click-wheel-based iPod with its buttons on the wheel is
simple and minimalist but offers all essential functions. As Beck and
Andres put it: “Projects that move towards simplicity improve both
the humanity and productivity of their software development”
(2005, 110).

Less I s More

Common sense seems to suggest that beating the competition
requires a superior product with more functionality. We tend to
equate having more features with being better and more desir-
able. Not so, says 37Signals (2006), a company that provides
award-winning, easy-to-use web-based applications. The com-
pany designs its products with simplicity in mind and focuses on
the product essentials.

SIMPLIC ITY • • • 31

From the Library of Wow! eBook

ptg

Do less than your competitors to beat them … Take what-
ever you think your product should be and cut it in half
… Start off with a lean, smart app and let it gain trac-
tion. Then you can start to add to the solid foundation
you’ve built.

Simplicity expert and MIT professor John Maeda agrees: “The
simplest way to achieve simplicity is through thoughtful reduction.
When in doubt, just remove” (2006, 1). And Steve Jobs is quoted as
saying, “Innovation is not about saying yes to everything. It’s about
saying no to all but the most crucial features.” The Manifesto for
Agile Software Development shares this insight, recognizing simplic-
ity as one of its 12 principles and calling it “the art of maximizing the
amount of work not done” (Beck et al. 2001). Whenever you have an
idea for a new feature or you discover a new requirement, ask your-
self if the new functionality is critical to the success of the product. If
not, discard the idea. This results in a product that is simple and
uncluttered, that offers only the features a customer or user needs.

Simple User In ter faces

A company that explicitly embraces simplicity as a central user expe-
rience principle is Google. “Google doesn’t set out to create feature-
rich products; our best designs include only the features that people
need to accomplish their goals. Ideally, even products that require
large feature sets and complex visual designs appear to be simple as
well as powerful. … Our hope is to evolve products in new directions
instead of just adding more features.”7 Designing simple user inter-
faces has paid off for Google, according to Lidwell, Holden, and
Butler: “While other Internet search services were racing to add
advertising services and ad hoc functions to their Web sites, Google
kept its design simple and efficient. The result is the best performing
and easiest to use search service on the Web” (2003, 143). And

32 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

7. “Ten principles that contribute to a Googley user experience,” www.google.com
/corporate/ux.html.

From the Library of Wow! eBook

www.google.com/corporate/ux.html
www.google.com/corporate/ux.html

ptg

Bernard Girard, author of The Google Way (2009, 34), argues that
simplicity has helped AdWords, Google’s advertising program, to be
so successful:

Like the intuitive Macintosh GUI that makes Apple prod-
ucts so friendly and easy to use, the design and user-friend-
liness of Google’s AdWords interface has helped make it a
winner. Any advertiser can easily understand how to place
an ad….

C U S T O M E R N E E D S A N D
P R O D U C T A T T R I B U T E S

Customer needs and product attributes are at the heart of the vision
and deserve close attention. Selecting the relevant customer needs
tells us which market or market segment we are going to address. By
focusing on the needs, we view the product as a means to an end—
serving the customer or user. Product attributes, on the other hand,
are the critical properties the product must have in order to meet
these needs. A touch screen, for instance, is a product attribute. The
underlying need for that attribute is likely to be ease of use. Attributes
can be of a functional or nonfunctional nature. Functional proper-
ties are specific product functions or features, such as being able to
make or receive calls. Nonfunctional attributes include perfor-
mance, robustness, style, design, and usability. Nonfunctional attrib-
utes can be an important differentiator—they can impact the user
experience as well as the extensibility and maintainability of the
product, which in turn influence the total cost of ownership and the
product’s life expectancy.

Attributes guide the team by constraining the solution
space—the set of all possible solutions. By stating customer needs
and detailing a minimum set of product attributes, we connect
needs to the technical solution, placing the customer at the center
of our development effort. Separating needs and attributes allows

CUSTOMER NEEDS AND PRODUCT ATTRIBUTES • • • 33

From the Library of Wow! eBook

ptg

us to investigate both why the product is required and also what the
product should look like and do. It makes it possible to explore dif-
ferent attributes to find out which one is best suited. A touch
screen, for example, is one way to provide ease of use. Other, possi-
bly cheaper, alternatives are a small number of large buttons or
voice control.

Once we have identified the product attributes, it’s often use-
ful to prioritize them; attributes serving several needs are impor-
tant and should be high priority. Prioritization is particularly
helpful when attributes conflict. Consider the following two
attributes: interoperability and serviceability. The ability to inter-
operate with different systems and devices usually requires a cer-
tain level of architectural complexity. Serviceability, on the other
hand, suggests employing a simple and extensible architecture.
The result is tension—the product owner, ScrumMaster, and
team have to creatively reconcile the irreconcilable and find the
best possible solution to satisfy the customer needs. Cockburn
(2005, 147) suggests using the following prioritization factors for
product attributes:

• Sacrifice others for this
• Try to keep
• Sacrifice these for others

To prioritize serviceability over interoperability, for example,
we would sacrifice other attributes for serviceability. At the same
time, we would try to keep interoperability.

A useful, simple, and cost-effective tool for capturing needs
and attributes is a set of paper cards. Cards support teamwork and
can be easily annotated and amended. We can group them, put
them up on the wall, and move them around. Once the visioning
work is done, we can glue the cards on flip-chart paper, hang them
up in the team room, and put a copy on the project’s wiki.

34 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

From the Library of Wow! eBook

ptg

T H E B I R T H O F T H E V I S I O N

The early days of every product are surrounded by myths and leg-
ends; there is no perfect formula to conceive ideas and evolve
them into a vision. This section discusses two approaches to devel-
oping the vision for a new product: pet projects and Scrum.
Whatever you do, keep the visioning work to a minimum and
quickly release a first product increment, or demo it to customers
and users. Listen to the responses to see if you are shooting for the
right goal. Then adapt. And refrain from putting too many con-
trols and procedures around the visioning work. Otherwise, inno-
vation and creativity are strangled; employees spend their time
filling out forms rather than innovating.

Using Pe t Pro jec t s

At companies like Google, developers are encouraged to spend
20% of their time on “pet projects.” These private research pro-
jects result in new ideas implemented as prototypes. The results
justify Google’s investment: Half of all products released by
Google in the last six months of 2005 started as pet projects
(Mayer 2006). The developers who came up with the original idea
continue to work on the project that brings the product to life, as
in the case of Google’s Chrome browser. Ben Goodger and Darin
Fisher, two of the engineers who came up with the original proto-
type, played an important role on the Chrome development pro-
ject (Levy 2008).8 Ken Schwaber (2007, 80) favors this approach
to developing new ideas:

I recommend you set aside a part of every employee’s time
to pursue activities that are outside their current Scrum
teams and that benefit the enterprise. I recommend an
allowance of 20 percent of their time. Let people coalesce

THE B IRTH OF THE VIS ION • • • 35

8. The Google browser project was led by product manager Brian Rakowski (Levy
2008).

From the Library of Wow! eBook

ptg

into interest groups where they work together. Some of this
can be spent working with peers in sustaining and enhanc-
ing functional expertise. Some of the work can be research-
ing and prototyping new ideas. The yellow sticky notes of
3M and Gmail at Google were developed in this way.

Using Scrum

If a larger effort is necessary to create the vision, use Scrum to do the
job. Ask the product owner, ScrumMaster, and team to carry out the
visioning activities, with the product owner leading the effort. At
first, the product backlog will contain visioning deliverables, such as
“Prototypes exploring user interface design options are available”
and “Customer interviews are carried out.” As the work progresses,
the product backlog will include the high-level attributes that
describe the future product, according to the product vision. Each
visioning sprint will create an increment that forms a step toward
the product vision and ultimately a shippable product. (If only one
visioning sprint is required, its output is the product vision.) Take
the example of Supermassive Games, a games development studio
based in the UK. The company uses visioning sprints to manage the
early development work, also called “preproduction.” The team cre-
ates sketches and prototypes to iterate toward a computer game’s
vision. The prototypes range from Lego models and concept art-
work to software.9

The Scrum team that performs the visioning should also carry
out the development work, with a few notable exceptions. In some
cases, the team may want to include specialists, such as a user expe-
rience designer or a service representative, as part of the team for the
visioning sprints. Once the vision is available, the specialist might
move off the team and become a stakeholder.

36 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

9. Personal communication with Harvey Wheaton, studio director at Supermassive
Games, on October 21, 2009, and November 2, 2009.

From the Library of Wow! eBook

ptg

T E C H N I Q U E S F O R C R E A T I N G T H E V I S I O N

This section offers an overview of techniques that are helpful in cre-
ating the product vision. It is not intended to be comprehensive, nor
does it attempt to describe the techniques in depth. Instead, this sec-
tion aims to equip you with enough information so you can judge
whether the techniques are applicable to your project. These
include prototypes and mock-ups; personas and scenarios; use cases
and user stories; sequences and storyboards; vision boxes and
reviews; and the Kano Model.

Proto types and Mock-ups

At the start of a new project, we often do not know what we don’t
know. Worse, our target customers and lead users sometimes don’t
know what they don’t know; they are not in a position to tell us cor-
rectly up front what the product must look like and do. Creating
the vision is therefore best understood as a discovery process, a
process of knowledge acquisition and learning that requires exper-
imentation. Experimentation examines the relationship between
cause and effect, manipulating the cause until the desired effect
has been achieved. It is as much about cultivating an open, inquis-
itive, and playful mind as it is about following a stringent process.
The key to effective experimentation is to generate the necessary
knowledge rapidly by implementing and testing prototypes and
mock-ups. These act as vehicles of knowledge creation and learn-
ing. They help us understand what the product should roughly
look like and do, what technology and architecture options are
viable, and if the idea is actually feasible. Prototypes are usually
throwaway artifacts that can be created quickly and inexpensively;
paper prototypes and sketches are sometimes sufficient to test an
idea. Executable prototypes exploring a specific issue are also
called spikes.

A telecommunications project I worked with, for example,
had to fulfill ambitious usability requirements. Market research

TECHNIQUES FOR CREATING THE VIS ION • • • 37

From the Library of Wow! eBook

ptg

had shown that the company’s products were perceived as less
user-friendly than the competition’s. So the team built a proto-
type, consisting of a device mock-up and a throwaway Flash imple-
mentation of critical user interface parts. Customers were invited
to test the prototype, and their feedback was incorporated in the
product design. The end result was a new product with a superior
user experience.

Plan, Do, Check, and Act

Organized experimentation follows a four-step process also
known as the Deming cycle. We first develop a hypothesis
(plan). We then validate the hypothesis (do) and review the
results (check). If the experiment was unsuccessful, we adapt the
hypothesis (if required) and carry out another round of experi-
mentation, either to refine the result or to try out a different
approach (act). Thomas Edison, the creator of the first commer-
cially successful electric light bulb, knew about the necessity of
trial and error, the need to fail in order to bring new products to
life. As he famously said,

If I find 10,000 ways something won’t work, I haven’t failed. I am
not discouraged, because every wrong attempt discarded is
another step forward.

Personas and Scenar ios

Personas help us select our target customers. Scenarios allow us to
understand how the product changes their lives (Cooper 1999). A
persona is a “hypothetical archetype” representing a target customer
or user. You can think of a persona as a specific instance of a use
case actor or a user role. Personas have names. Their descriptions
include information relevant to their use of the product: for
instance, their job roles, skills, or interests.

Once we have found the right personas, we can investigate
how the product we are about to develop will influence their lives.
To do this, we create scenarios that describe how the persona

38 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

From the Library of Wow! eBook

ptg

achieves a goal without and with the product. A formal way to create
these scenarios is to create two consumption maps: one of the activ-
ities necessary to realize a particular goal without the product, the
other of the activities that would be required in a future state, with
the product in use (Womack and Jones 2005). Using scenarios and
consumption maps allows us to establish the value proposition of
the product: Are the selected attributes necessary? Do they provide a
benefit for all personas? Can we identify more critical product
attributes?

Vis ion Box and Trade Journa l Rev iew

Two effective techniques for determining the product’s value-added
and selling points are a product’s vision box and a trade journal
review. A vision box is a mock-up of the package in which the prod-
uct might ship. To build a vision box, the Scrum team selects a
product name, a graphical representation of the product, and three
bullet points that would sell the product; the information is then
placed on the front of the box. More details can be added on the
back (Highsmith 2009, 96–97). To write the trade journal review,
the Scrum team members explore what they would like to read
about the product once it is launched (Cohn 2009, 232). The exer-
cise is quick and easy to apply. It can also be used to test if there is a
commonly understood and shared vision.

Kano Model

The Kano Model helps us select the right functionality to create
an attractive product (Kano 1984). It tells us how satisfied the cus-
tomer is likely to be when we implement a certain product
attribute. The model distinguishes between three types of func-
tions: basics, performance functions, and delighters. Let’s use a
mobile phone to understand how the Kano Model works. Basic
functions of a mobile phone include switching the phone on and

TECHNIQUES FOR CREATING THE VIS ION • • • 39

From the Library of Wow! eBook

ptg

off; making and receiving calls; and composing, sending, receiv-
ing, and reading text messages. These rudimentary functions are
necessary to sell a product but quickly cause customer satisfaction
to stagnate. For instance, adding another button to switch the
phone on and off would not add any value. Failing to provide a
basic function usually renders the product useless. Performance
functions lead to a linear increase in satisfaction. They follow the
principle “The more, the better.” For instance, the lighter the
phone is and the more quickly it starts up, the more satisfied cus-
tomers tend to be with it. Customers cannot get enough of perfor-
mance requirements. They are not sufficient, though, to
differentiate the product in the marketplace. Delighters, as the
name suggests, delight and excite customers. An attractive product
design and the ability to personalize the phone are examples of
delighters. Delighters can be related to latent and hidden cus-
tomer needs—needs customers were not aware of. They are those
product functions that provide a competitive advantage and a
unique selling proposition.

The challenge is to bundle basic, performance, and
delighter attributes in such a way that the desired benefits are max-
imized. Note that it is often useful to apply the Kano Model to the
product vision and the product backlog. Like the SoundStation
vision that began this chapter, visions usually focus on perfor-
mance attributes and delighters and are unlikely to state any
basics. These can be found in the product backlog. Note that the
Kano Model makes an interesting prediction: Over time,
delighters will eventually become performance functions and per-
formers will become basics. Eventually, products lose their com-
petitive advantages as the competition begins to provide similar
products. To stay ahead, companies have to regularly update the
product and deliver new delighters. This correlation is another
reason to quickly launch an initial product and to grow it using
regular updates.

40 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

From the Library of Wow! eBook

ptg

V I S I O N I N G A N D T H E P R O D U C T R O A D M A P

So far, this chapter has focused on envisioning a new product,
which is particularly challenging. As the product matures and incre-
mental updates are released, the visioning effort usually declines.
But the new product versions still need goals. A product road map
allows the Scrum team to capture the goals of upcoming product
versions; visioning now forms a part of creating and updating the
product road map.

A product road map is a planning artifact that shows how the
product is likely to evolve across product versions, facilitating a
dialogue between the Scrum team and the stakeholders. A road
map allows organizations to coordinate the development and
launch of related products, for instance, a product line or a prod-
uct portfolio. I recommend keeping product road maps simple
and focused on the essentials. A product road map should state
for each version the projected launch date, the target customers
and their needs, and the top three to five features. Don’t worry
about the details. These will emerge and be captured in the prod-
uct backlog. Be aware that a product road map can never replace
carefully inspecting the market response and adapting the prod-
uct accordingly. It simply states how we believe the product is
likely to evolve based on our current understanding of the mar-
ket. Product road maps are living documents; they evolve and
change.

Create a product road map once the product has been suc-
cessfully introduced into the marketplace. (Crafting a five-year
product road map before any release is deployed provides little
benefit; it paints a dream rather than anticipating reality.) When
you create a product road map, involve all the relevant people.
This will include the Scrum team and might also involve the per-
son in charge of the product portfolio, representatives from other
product development teams, and stakeholders. Make sure your
product road map covers a realistic planning horizon. Depending

VIS IONING AND THE PRODUCT ROAD MAP • • • 41

From the Library of Wow! eBook

ptg

on the market and the product’s lifecycle stage, focus on the next 6
to 12 months rather than predicting the next two to three years.

M I N I M A L P R O D U C T S A N D
P R O D U C T V A R I A N T S

As a product matures, it might address a growing number of cus-
tomer needs, for instance, by serving customers in different seg-
ments and different regions. Dealing with many diverse needs
makes it more difficult to create product updates with minimum
functionality; more and more features are required to support an
ever-growing number of customers and users. To solve the problem,
we take advantage of product variants. Each variant addresses a spe-
cific customer group and market segment. Take Microsoft’s popular
diagramming program Visio, for instance. The 2007 edition is avail-
able in two variants: Office Visio Standard 2007 and Office Visio
Professional 2007. Whereas the former acts as an “essential visual-
ization tool,” the professional version extends Visio Standard 2007
“to help IT and business users visualize, analyze, and communicate
complex information, systems, and processes.”10 The two variants
serve different market segments: home users and enterprise users
with limited diagramming needs, and professional users in need of
advanced diagramming functionality.

While product variants can be powerful allies, be aware that
too many variants lead to a bloated product portfolio, high support
cost, and overwhelmed consumers. Imagine if Microsoft offered
four Office Visio 2007 versions: Essentials, Standard, Professional,
and Deluxe. Consumers would be confused by too many choices
and find it difficult to make a purchase decision.11

42 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

10. See http://office.microsoft.com.

11. Note that Microsoft used to offer three Visio editions, Standard, Pro, and Tech,
in the late 1990s. Since then the company has streamlined its portfolio.

From the Library of Wow! eBook

http://office.microsoft.com

ptg

There is another potential drawback: Product variants carry
the danger of implementing functionality over and over again,
causing high development and maintenance costs. Creating a set
of assets shared by the variants addresses this issue. These assets
are also called a platform. Apple’s iPhone and iPod Touch employ
common components, for instance. As you recognize the need
for commonality, don’t fall into the trap of aspiring to build the
perfect mega platform. Start small. Grow the platform organically
as the need for product variants arises, and carefully guard the
platform’s functionality. This approach is likely to result in archi-
tecture refactoring, but it mitigates the danger of overengineering
the platform.

C O M M O N M I S T A K E S

Creating a product vision is a crucial step in taking a product to
launch. Watch out for these common visioning mistakes: no vision,
prophecy vision, analysis paralysis, we know best what is good for
our customers, and big is beautiful.

No Vis ion

An obvious but surprisingly common mistake is to start product
development without a product vision. This happens most often
when customers request individual features that are incorporated
into the product with no consideration of the connection between
them. The result is a product known as feature soup (DeMarco et al.
2008, 143–45). Avoid this antipattern by ensuring that a vision is
available that clearly states the customer, the selected customer
needs, and the critical attributes. This vision will then help deter-
mine which features should be implemented and will ensure that a
useful and valuable product is created.

COMMON MISTAKES • • • 43

From the Library of Wow! eBook

ptg

Prophecy Vis ion

Even though the vision paints a picture of the future product, the
envisioned future might never come true. Progressing the vision
into a product is an entrepreneurial act that carries the risk of fail-
ure. Remember how Expertcity’s product vision resulted in a prod-
uct that did not live up to expectations? Even with a vision, failure
can and does happen. As in the case of Expertcity, though, failure
can be a stepping-stone to success. After all, GoToMyPC was born
out of an unsuccessful first release. To minimize any potential loss
or damage from an inaccurate forecast, select a narrow set of cus-
tomer needs and quickly release a product increment. Then inspect
and adapt.

Analys i s Para lys i s

As mentioned earlier, don’t overdo the up-front market research
work and avoid getting caught in the analysis-paralysis trap—carry-
ing out more and more research work without making any real
progress. Overdoing market research not only wastes time and
money, it also carries the danger of never delivering an attractive
product in a timely manner. Understanding the market and caring
for customers are important; being purely customer-driven and not
having your own strong vision of what the product should look like
and do are unlikely to deliver success.

A common cause of analysis paralysis is being overly con-
cerned with making fail-safe investments. Companies exhibiting
this mind-set are often not tolerant of failure and have a “get it right
the first time” attitude. Management demands accurate forecasts of
the future product’s performance, including a precise quantification
of market share and profits, before a vision is approved. Analysis
paralysis is prevented by keeping the visioning work to a minimum,
getting the product out as fast as possible, and swiftly adapting it to
the actual market response.

44 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

From the Library of Wow! eBook

ptg

We Know Bes t What I s Good for Our Cus tomers

Some companies gravitate toward the other extreme and close
themselves off from the market. They rely solely on management’s
intuition or the technical brilliance of their developers. These com-
panies believe they know best what’s good for their customers. The
big risk, of course, is that the company invests time and money in
developing a product that nobody wants. The best way to prevent
innovating in an ivory tower is to incorporate customers and users
into the development process by inviting them to sprint review
meetings and by releasing software early and frequently.

Big I s Beaut i fu l

Creating products that launch with an abundance of functionality
can make great news stories, as Preston Smith and Donald
Reinertsen note (1998, 67):

We are all drawn to tales of heroic success in product
development. A development team steps up to the chal-
lenge of a seemingly impossible project and puts in super-
human efforts. … These projects are like the long
touchdown passes that drive the fans wild. They are much
more exciting than the running game that rolls down the
field 10 yards at a time.

Exciting as they may be, big-bang development efforts have a
dark side: They consume lots of time and money, and they exhibit a
high risk of failure. “Companies frequently make the mistake of trying
to pursue a perfect solution that gets everything right from day one.
The results are often over-engineered, expensive products that don’t
actually work very well” (Anthony et al. 2008, 125). A big-bang effort
also makes it very difficult to evolve the product based on customer
and user feedback, as so much functionality is predetermined.

Avoid this mistake by starting with a product that addresses a nar-
row set of customer needs and provides the minimum functionality

COMMON MISTAKES • • • 45

From the Library of Wow! eBook

ptg

required. Release early and frequently to incorporate customer and
user feedback. Launch the product quickly, inspect the market
response, and adapt the product accordingly.

R E F L E C T I O N

Make sure the Scrum team has a shared vision of the future prod-
uct. Keep the vision humble and focused on the upcoming product
version. Think big, but start small. Put the vision to the test by invit-
ing customers and users to sprint review meetings and by quickly
releasing a product increment. Then evolve your product based on
their feedback. The following questions will help you apply the
vision concepts discussed:

Do your products follow shared goals?

How are the goals derived and who creates them?

What would it take to create a vision with the qualities described
in this chapter?

How would such a vision improve your innovation process?

46 • • • CHAPTER 2 ENVIS IONING THE PRODUCT

From the Library of Wow! eBook

ptg

3
• • •

WORKING WITH THE PRODUCT
BACKLOG

Few artifacts in Scrum are as popular as the product backlog. And
there is a reason: The product backlog is beautifully simple—a pri-
oritized list of the outstanding work necessary to bring the product
to life. Its items can include the exploration of customer needs or
various technical options, a description of both functional and non-
functional requirements, the work necessary to launch the product,
and other items as well, such as setting up the environment or reme-
diating defects. The product backlog supersedes traditional require-
ments artifacts, such as market and product requirements
specifications. The product owner is responsible for managing the
product backlog; the ScrumMaster, team, and stakeholders con-
tribute to it. Together, they discover the product’s functionality.

This chapter discusses the product backlog along with tech-
niques for effectively grooming it. In addition, we look at some of
the more complicated product backlog applications, including how
to handle nonfunctional requirements and how to scale a product
backlog for large projects.

47

From the Library of Wow! eBook

ptg

T H E D E E P Q U A L I T I E S O F T H E
P R O D U C T B A C K L O G

The product backlog has four qualities: It is detailed appropriately,
estimated, emergent, and prioritized, making it DEEP.1 Let’s look
at these qualities in more detail.

Deta i led Appropr ia te ly

The product backlog items are detailed appropriately, as illus-
trated in Figure 3.1. Higher-priority items are described in more
detail than lower-priority ones. “The lower the priority, the less
detail, until you can barely make out the backlog item,” write
Schwaber and Beedle (2002, 33). Following this guideline keeps
the backlog concise and ensures that the items likely to be imple-
mented in the next sprint are workable. As a consequence,
requirements are discovered, decomposed, and refined through-
out the entire project.

48 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

Medium-grained items,
i.e., larger user stories

Coarse-grained items,
i.e., epics

Fine-grained, detailed items ready
for consumption in the next iteration,
i.e., small user stories

High Product backlog

Low

Pr
io

rit
y

FIGURE 3.1 Product backlog prioritization determines the level of detail

1. I owe the acronym DEEP to Mike Cohn.

From the Library of Wow! eBook

ptg

Es t imated

The product backlog items are estimated. The estimates are coarse-
grained and often expressed in story points or ideal days. Knowing the
size of the items helps prioritize them and plan the release. (Detailed
task-level estimations are created in the sprint planning meeting; tasks
and their estimates are captured in the sprint backlog.)

Emergent

The product backlog has an organic quality. It evolves, and its con-
tents change frequently. New items are discovered and added to the
backlog based on customer and user feedback. Existing items are
modified, reprioritized, refined, or removed on an ongoing basis.

Pr ior i t i zed

All items in the product backlog are prioritized. The most impor-
tant and highest-priority items are implemented first. They can be
found at the top of the product backlog, as illustrated in Figure 3.1.
Once an item is done, it is removed from the product backlog.

G R O O M I N G T H E P R O D U C T B A C K L O G

Like a garden growing wild when left unattended for too long, the
product backlog becomes unwieldy when it’s neglected. The back-
log needs regular attention and care; it needs to be carefully man-
aged, or groomed. Grooming the product backlog is an ongoing
process that comprises the steps listed below. Note that these are not
necessarily carried out in the order stated:

• New items are discovered and described, and existing ones
are changed or removed as appropriate.

• The product backlog is prioritized. The most important
items are now found at the top.

GROOMING THE PRODUCT BACKLOG • • • 49

From the Library of Wow! eBook

ptg

• The high-priority items are prepared for the upcoming
sprint planning meeting; they are decomposed and refined.

• The team sizes product backlog items. Adding new items to
the product backlog, changing existing ones, and correcting
estimates make sizing necessary.

Although the product owner is responsible for making sure
that the product backlog is in good shape, grooming is a collabora-
tive process. Items are discovered and described, prioritized, decom-
posed, and refined by the entire Scrum team—Scrum allocates up
to 10% of the team’s availability for grooming activities (Schwaber
2007); stakeholders are involved as appropriate. Requirements are
no longer handed off to the team; the team members coauthor
them. The product owner, ScrumMaster, and team engage in face-
to-face conversations rather than communicating via documents.

Grooming the product backlog collaboratively is fun and
effective. It creates a dialogue within the Scrum team and between
the team and the stakeholders. It removes the divide between “the
business” and “the techies” and eliminates wasteful handoffs. It
increases the clarity of the requirements, leverages the Scrum
team’s collective knowledge and creativity, and creates buy-in and
joint ownership.

Some teams like to do a bit of grooming after their Daily
Scrum. Others prefer weekly grooming sessions or a longer
grooming workshop toward the end of the sprint. Grooming activ-
ities also take place in the sprint review meeting when the Scrum
team and the stakeholders discuss the way forward; new backlog
items are identified and old ones are removed. Make sure you
establish a grooming process so that the activities are carried out
reliably, for instance, by starting with weekly grooming work-
shops. A well-groomed backlog is a prerequisite for a successful
sprint planning meeting.

There is a great tool to support product backlog grooming: paper
cards. They are cheap and easy to use. They facilitate collaboration;

50 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

everyone can grab a card and write down an idea. They can also be
grouped on the table or wall to check for consistency and complete-
ness. Cards and electronic product backlog tools, such as spread-
sheets, complement each other: Print out existing requirements on
paper cards prior to a grooming workshop, and transfer the informa-
tion on the cards back into the electronic tool afterward.

Let’s now look closer at the four steps in the grooming process,
beginning with discovering and describing product backlog items.

D I S C O V E R I N G A N D D E S C R I B I N G I T E M S

Discovering and describing product backlog items is an ongoing
process. If you are used to creating comprehensive and detailed
requirements specifications up front, recognize that Scrum encour-
ages a fundamentally different approach. Requirements are no
longer frozen early on but instead are discovered and detailed
throughout the entire project. As our understanding of customer
needs and how they can best be met improves, existing require-
ments are likely to change or become redundant, and new require-
ments will emerge. Product discovery is therefore not limited to the
early development stages but covers the entire project in Scrum.
Many product managers transitioning into the product owner role
find it challenging not to write down all requirements and not to
detail them straightaway—even if they could.

Discover ing I tems

Discovering product backlog items starts with stocking the product
backlog. This is best done as a collaborative effort where the Scrum
team and, as appropriate, stakeholders brainstorm the items neces-
sary to bring the product to life, using the product idea, the product
vision, or the product road map as a starting point. When stocking
the product backlog, avoid the mistake of trying to think of every

DISCOVERING AND DESCRIB ING ITEMS • • • 51

From the Library of Wow! eBook

ptg

possible item. Whenever you work on the backlog, focus on the
minimum functionality necessary to bring the product to life and
strive for simplicity, as discussed in Chapter 2. As the project pro-
gresses, more ideas will emerge and the backlog will grow based on
customer and user feedback. Starting with an overly long and com-
plex product backlog makes it difficult to create focus and to priori-
tize items. Use the product idea or vision to guide your efforts.
Focus only on what is critical and do not worry about the rest for
now. Resist the temptation to add too much detail too quickly. Items
are detailed progressively according to their priority. Low-priority
items are large and coarse-grained. They stay like this until their pri-
ority changes (either because they are reprioritized or because
higher-priority items have been consumed). Nonfunctional require-
ments that represent product-wide properties are the exception to
this rule. These should be detailed early on, as I will explain later in
this chapter.

Once the initial product backlog is in place, there are many
opportunities to discover new items. These emerge in grooming
workshops when the Scrum team prioritizes and decomposes prod-
uct backlog items, they arise in the sprint review meetings when
stakeholders give feedback, and they originate from customer and
user comments on released product increments.

Whenever a requirement is entered into the backlog, ensure
that the related customer need is properly understood. Ask why a
requirement is necessary and how it benefits the customer. Do
not make the mistake of blindly copying requirements into the
product backlog, as this creates an inconsistent and unmanage-
able wish list. Treat existing requirements as suspicious and con-
sider them as a liability, not an asset. A requirement simply
describes product functionality that was thought to be necessary
at some point in time. As markets and technologies change and as
the Scrum team gains more knowledge about how customer
needs can best be met, requirements also change or become
obsolete.

52 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

Descr ib ing I tems

Scrum does not mandate how product backlog items are described,
but I prefer to work with user stories (Cohn 2004). As its name sug-
gests, a user story tells a story about a customer or user employing
the product. It contains a name, a brief narrative, and acceptance
criteria, conditions that must hold true for the story to be complete.
A story can be coarse-grained or detailed; coarse-grained stories are
called epics. It’s comparatively easy to write, decompose, and refine
user stories. Of course, you are free to use any other technique to
describe your requirements. And if you do use stories, you should
not feel obligated to describe every single product backlog item as a
user story. For instance, usability requirements are often best cap-
tured with prototypes or sketches.

Working with a product backlog does not mean that the
Scrum team cannot create other helpful artifacts, including a sum-
mary of the various user roles, user story sequences to model work-
flows, diagrams to illustrate business rules, spreadsheets to capture
complex calculations, user interface sketches, storyboards, user
interface navigation diagrams, and user interface prototypes. These
artifacts do not replace the product backlog but instead should elab-
orate and explain its content. And keep things simple. Only use arti-
facts that help the Scrum team move closer to a shippable product.

Struc tur ing the Back log

Product backlogs often benefit from grouping related items into
themes. Themes act as placeholders for product functionality; they
structure the backlog, aid prioritization, and make it easier to access
information. Sample themes for a mobile phone are email, calen-
dar, voice communication, and organizer, for instance. As a rule of
thumb, each theme should contain between two and five coarse-
grained requirements to start with. This tends to provide enough
information to understand what it will take to bring the product to
life without overspecifying the backlog contents. Themes create a

DISCOVERING AND DESCRIB ING ITEMS • • • 53

From the Library of Wow! eBook

ptg

hierarchy in the product backlog, which now contains groups in
addition to individual items. Additionally, it can be useful to further
distinguish between coarse-grained requirements, like epics, and
detailed items, like stories, resulting in a product backlog as partially
illustrated in Table 3.1.

TABLE 3.1 Sample Product Backlog

Theme Coarse-Grained Item Detailed Item Effort

Email Create email As an enterprise user, 1
I want to be able to state
the email subject.

The themes in Table 3.1 contain coarse-grained items. Over
time, these are decomposed into more detailed items. As the team
estimates items, their size is recorded. Note that you can employ the
structure in Table 3.1 independently of your product backlog tool,
for instance, by appropriately arranging paper cards on a pin board,
whiteboard, or the office wall.

P R I O R I T I Z I N G T H E P R O D U C T B A C K L O G

I’ll never forget the day when I suggested to the product manager of
a new health-care product to prioritize the use case pile in front of
her. She looked at me, her eyes widening, and replied, “I can’t.
They are all high-priority.”

Prioritization requires deciding how important an item is. If
everything is high-priority, everything is equally important. This
means in effect that nothing is a priority, so there is only a slim
chance of delivering what the customer really needs. It’s the prod-
uct owner’s responsibility to ensure that the product backlog is prior-
itized. Like the other grooming activities, prioritization is best

54 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

carried out by the entire Scrum team. This leverages the team’s col-
lective knowledge and generates buy-in.

Prioritization directs the team’s work by focusing the team on
the most important items. It also freezes the backlog contents pro-
gressively. As mentioned before, items are detailed according to
their priority. This builds flexibility into the process and allows
delaying decisions about the lower-priority items, buying the Scrum
team more time to evaluate options, gather feedback from cus-
tomers, and acquire more knowledge. This ultimately results in bet-
ter decisions and a better product.2

Since individual product backlog items can be very small and
therefore difficult to prioritize, it’s useful to prioritize themes first.
We then prioritize the items within and, if necessary, across themes.
The remainder of this section explores the following factors in prior-
itizing the product backlog: value; knowledge, uncertainty, and risk;
releasability; and dependencies.

Value

Value is a common prioritization factor. We certainly want to
deliver the most valuable items first. But what makes a product
backlog item valuable? My answer is simple. An item is valuable if it
is necessary for bringing the product to life. If that’s not the case, the
item is irrelevant; it is excluded from the current release or product
version. The Scrum team either de-prioritizes the item and places it
right at the bottom of the product backlog or better, discards it alto-
gether. The latter keeps the product backlog concise and the Scrum
team focused. If the item is important for a future version, it will
reemerge.

Before including an item in the release, decide if the product
could still achieve the desired benefits without that item. This helps

PRIORIT IZ ING THE PRODUCT BACKLOG • • • 55

2. Delaying decisions until they have to be made is also referred to as the last respon-
sible moment (Poppendieck 2003).

From the Library of Wow! eBook

ptg

create a simple product, a product that implements the minimum
functionality, as discussed in Chapter 2. Apple, for instance,
shipped the first- and second-generation iPhone lacking a copy-and-
paste functionality without damaging the product’s success. If the
item is indeed required, explore whether there is an alternative that
achieves the same benefit but requires less effort or time or reduces
unit cost. Even though this sounds like a no-brainer, teams can be
constrained by hidden assumptions and do not always evaluate all
relevant options.

Don’t just scrutinize new requirements. Reexamine existing
ones as well. Superior alternatives often arise after the Scrum team
has learned more about customer needs and the solution being
developed. Simplify, prune, and strive for order—like a gardener
pulling out the weeds and trimming the shrubs.

When in doubt, exclude a requirement from the release and
ship quickly without it—just as Google did when the company
developed the first release of Google News, an application that
aggregates news from around the world. The development team
could not agree whether to filter the news by date or by location.
So Google decided to release the new product without either fea-
ture. Shortly after the product’s launch, requests for new features
started to come in. Three hundred people requested filtering by
date, while only three wanted to filter by location—a clear indica-
tion of which functionality should take priority. If Google had
released the product with both features, the release would have
consumed more time and money and it would have been harder
to get feedback on which feature was more important. By putting
out an intentionally insufficient product, Google quickly discov-
ered what to do next.

Knowledge, Uncer ta in ty, and R isk

“Risk is an essential characteristic of product innovation. Every
decision regarding a project—whether made explicitly or implicitly—

56 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

has risk associated with it,” write Smith and Merritt (2002, 4).
Risk is therefore an intrinsic part of software development; no
product can come to life risk-free. Correlated with risk is uncer-
tainty. The more uncertainty there is, the riskier the project is.
Uncertainty, in turn, is caused by a lack of knowledge. The less
we know about what to develop and how to do it, the more uncer-
tainty is present. Knowledge, uncertainty, and risk are therefore
interlinked.

Because risk and uncertainty influence product success,
uncertain and risky items should be high-priority. This accelerates
the generation of new knowledge, drives out uncertainty, and
reduces risk. If the Scrum team, for instance, is unsure about some
aspects of the user interface design, the relevant design options
should be explored and tested by gathering feedback from cus-
tomers and users. If the team does not know whether a third-party
database access layer should be used, requirements triggering data-
base transactions should be implemented early so that the different
options can be evaluated. Note that risk can also hide in the infra-
structure and environment, including a build process not yet set up
or the Scrum team not being colocated.

Tackling uncertain, risky items early creates a risk-driven
approach that may enforce early failure. Failing early allows the
Scrum team to change course while there is still the opportunity, for
instance, to modify the architecture and technology selection, or to
adjust the team composition. A risk-driven, fail-early approach can
be difficult to accept for individuals and organizations used to tradi-
tional processes, where problems and impediments surface late in
the game and are often perceived as bad news rather than an oppor-
tunity to learn and improve.

Releasabi l i ty

Releasing early and frequently is a great way to let the software
evolve into a product that customers love, as discussed in Chapter 4.

PRIORIT IZ ING THE PRODUCT BACKLOG • • • 57

From the Library of Wow! eBook

ptg

It’s also an effective way to mitigate risks. If the Scrum team is
uncertain about if and how a feature should be implemented, early
releases can answer this question, as in the case of Google News dis-
cussed earlier.

Being able to release product increments early and frequently
should therefore influence the product backlog prioritization. Each
release should provide functionality that is useful to customers and
users and that generates the desired feedback. Note that it’s usually
not necessary to fully implement a theme; a partial implementation
is often sufficient for early releases.

Dependenc ies

Whether we like it or not, dependencies in the product backlog are a
fact. Functional requirements, for instance, often depend on other
functional and even nonfunctional requirements. And if several
teams work together, dependencies between them can influence the
prioritization, as further discussed in Chapter 4. Dependencies
restrict the freedom to prioritize the product backlog and influence
the effort estimates; the item on which others depend has to be
implemented first. You should therefore try to resolve dependencies
whenever possible.

Combining several dependent items into one larger one and
splitting the items differently are two common techniques for deal-
ing with dependent user stories (Cohn 2004, 17). Let’s look at two
sample stories: “As a user I want to write a text message” and “As a
user I want to write an email message.” They are dependent because
both stories require a text-processing capability. If we implement the
text message story first, the effort of the email message story is
reduced, and vice versa. The first option is to combine them into a
larger story. This is not appealing because it would result in a big
compound story. The second option is to slice the requirements dif-
ferently. If the common functionality is extracted into a separate
story—“As a user, I want to enter text”—the two original stories are

58 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

no longer dependent on each other. As such, their estimates are no
longer influenced by the order in which they are worked on.

G E T T I N G R E A D Y F O R S P R I N T P L A N N I N G

Prior to each sprint planning meeting, the product backlog items
that are likely to be worked on in the next sprint have to be pre-
pared. We begin the preparation work by choosing a sprint goal.

Choos ing a Spr in t Goal

The sprint goal summarizes the desired outcome of the sprint. It
should move the Scrum team a step closer toward the launch of a
successful product. The product owner on a project I worked with
selected the following goal for the first sprint: “Tall trees have deep
roots.” The goal nicely described the purpose of the sprint: laying the
foundation for the remainder of the project. A good sprint goal is
broad but realistic. It should leave some room for the team to maneu-
ver and still be valid if the team does not commit to all the top prod-
uct backlog items. As with all grooming activities, the team should
participate in formulating the goal. This ensures clarity and buy-in.

Sprint goals are beneficial for several reasons:

• They create alignment among the product owner,
ScrumMaster, and team: Everyone is working toward a
common goal.

• They minimize variation by limiting the type of require-
ments worked on in a given sprint, for instance, by choosing
items from the same theme. This facilitates close teamwork
and can help increase velocity.

• They make it easier to communicate to stakeholders what
the team is working on.

Note that choosing a sprint goal can lead to adjustments of the
product backlog’s prioritization, including promoting and demoting

GETT ING READY FOR SPRINT PLANNING • • • 59

From the Library of Wow! eBook

ptg

items to and from the top. You might have to make a trade-off
between choosing a cohesive sprint goal and getting items worked
on quickly. Once the goal has been set, all relevant items should be
found at the top of the product backlog.

Prepar ing Jus t Enough I tems Jus t in T ime

Once a sprint goal is chosen, we prepare just enough items for the
upcoming sprint, just in time.3 (I discuss large projects that require
looking ahead farther later in this chapter.) The grooming activities
in the first sprint focus on the items for the second sprint, and those
in the second sprint on the items for the third, and so on. This
approach has a number of benefits: It minimizes the amount of time
and money spent on describing product backlog items, and it keeps
the inventory of detailed items low—providing more information
than required is wasteful. By detailing only the items that are likely
to be chosen for the upcoming sprint, we allow the product backlog
to evolve.

Getting the items ready for the sprint planning meeting
requires decomposing larger product backlog items until they are
small enough to fit into a sprint and refining the items so that they
are clear, feasible, and testable. Figure 3.2 illustrates this process.
Note that decomposing items can take several sprints, as I will dis-
cuss shortly.

How many items should be prepared depends on the team’s
velocity and the desired granularity of the items. The higher the
team’s velocity, the more items have to be prepared. It is helpful to
groom a few extra items to give the team some flexibility. They also
come in handy when the team’s sprint progress is faster than antici-
pated. I find it beneficial to work with small requirements that can
be “done” within a few days, independent of the sprint length. This

60 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

3. The terms just enough and just in time were first used in Cohn (2008) to discuss
grooming activities.

From the Library of Wow! eBook

ptg

improves the team’s progress tracking within the sprint and there-
fore its self-organization: A team’s progress is based not only on its
remaining tasks but also on how much newly implemented func-
tionality has been tested and documented. Small requirements also
minimize the amount of work in progress and the risk of partially
done and defective work at the end of the sprint. In addition, small
items facilitate realistic commitments. Large ones can contain so
many tasks that the team might fail to identify them all.

Decompos ing I tems

Decomposing product backlog items means making them smaller
and smaller until they fit into a sprint. This process, also known as
progressive requirements decomposition (Reinertsen 1997), might
last more than one sprint. You might have to start decomposing a
product backlog item a few sprints in advance before it can be
implemented, particularly if the item is large and complex. This
allows gathering the necessary feedback from customers, users, and
other stakeholders before detailing the item. Let’s look at how user
stories can be decomposed progressively.

GETT ING READY FOR SPRINT PLANNING • • • 61

Large

Small

Size

Level of detailsLow High

Clear, testable,
and feasable

items

Small,
unrefined

items

Large,
unrefined

items

FIGURE 3.2 Decomposing and refining product backlog items

From the Library of Wow! eBook

ptgAs illustrated in Figure 3.3, the Scrum team originally placed
the epic “Compose email” in the product backlog. As it is too big
and vague to be delivered in a sprint, the epic is broken down into
several coarse-grained user stories. The story “State recipient” is
then further decomposed into two fine-grained user stories. These
are now small enough to fit in a sprint. The epic is an example of a
compound story, a user story that has more than one goal (Cohn
2004, 24–25). To decompose such a story, we introduce a separate
story for each goal. “Compose email” is therefore broken into
“State subject,” “State recipient,” and “Set importance.”

There are other user stories that need to be decomposed,
including complex stories and stories with monster criteria. A com-
plex user story is a story that is too big to be delivered in one sprint
because of its inherent uncertainty or because it covers too much
functionality (Cohn 2004, 25–26). If it is too uncertain, we intro-
duce one or more items into the product backlog that explore that
uncertainty and generate the relevant knowledge: for instance,
“Investigate JavaServer Faces as the user interface technology.” If

62 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

FIGURE 3.3 Decomposing user stories

From the Library of Wow! eBook

ptg

the story describes too much functionality, we split it into several
stories to allow incremental delivery of the functionality. This tech-
nique is also called slicing the cake (Cohn 2004, 76). A story that
says, for instance, “Validate the user” could be decomposed into
“Validate the user name” and “Validate the password.”

Stories sometimes look fine until we consider the acceptance cri-
teria. If there are too many—more than about ten—or if requirements
hide in the criteria, we need to rework and decompose the story. Here
is an example: “As a user, I want to delete a text message.” The accep-
tance criteria state, “I can select any text message. I can remove the
message text. I can save the modified message.” Not only is the second
condition redundant, but the other two introduce new requirements
rather than specifying acceptance criteria. This story should be split
into three: a story about deleting text messages, a story about editing
text messages, and another story about saving the modified messages.

Ensur ing C lar i ty, Tes tab i l i ty, and Feas ib i l i ty

Once an item is small enough, we must ensure that it is clear,
testable, and feasible.4 A requirement is clear if all Scrum team
members have a common understanding of its semantics.
Collaboratively describing requirements and expressing backlog
items in a simple and concise form facilitate clarity. An item is
testable if there is an effective way to determine whether the
requirement is satisfied within the sprint in which it is imple-
mented. Stories must have acceptance criteria now to ensure that
each story is testable. An item is feasible if it can be completed in
one sprint, according to the team’s definition of done. (The defini-
tion of done is discussed in Chapter 5.) To ensure feasibility we

GETT ING READY FOR SPRINT PLANNING • • • 63

4. Bill Wake has suggested that stories should be independent, negotiable, valuable,
estimatable, small, and testable, also referred to as the INVEST criteria (Wake
2003). Dependencies and value are discussed in the prioritization section; estima-
tion is also covered in this chapter. Negotiability refers to the ability to adjust a user
story. A story is a promise for a conversation, as Ron Jeffries has said, and not a hard-
and-fast requirement.

From the Library of Wow! eBook

ptg

consider dependencies on other items, including functional and
nonfunctional requirements. If a story is constrained by a user
interface requirement, for instance, it must be clear what the
resulting product increment should look like. If that is not the case,
the team should explore the user interface requirement before the
story is implemented. If exploring the item requires a large effort,
the exploration should be tackled in a separate sprint, for instance,
by implementing a throwaway prototype to investigate the user
interface design.

S I Z I N G I T E M S

Estimating product backlog items allows us to understand their
rough size and the likely effort necessary to provide them. That’s
helpful for two reasons: It facilitates prioritization, and it allows us to
track and forecast the project’s progress. Note that there are two dis-
tinct estimates in Scrum: coarse-grained estimates in the product
backlog indicating the rough size of an item, and fine-grained esti-
mates in the sprint backlog communicating the size of a task, usually
stated in hours. This section discusses sizing the items in the product
backlog. Product backlog items are estimated when new items are
discovered or existing ones are modified, and when the team’s under-
standing of an item’s size changes. We consequently need a measure
that is quick and easy to use. My favorite one is story points.5

Stor y Po in ts

Story points are coarse-grained, relative measures of raw effort and
size.6 An item worth one story point is half the size of an item worth
two points. An item sized as three points requires as much effort as

64 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

5. See Cohn (2005) for a more detailed and comprehensive discussion of estimation
techniques.

6. Time is captured separately from effort by velocity as discussed in Chapter 4.

From the Library of Wow! eBook

ptg

an item with one point and an item with two points added together.
Relative measures take advantage of the fact that size itself is rela-
tive; the semantics of big and small depend on our reference point.
My computer mouse is small compared to my laptop but big com-
pared to the memory stick next to it. A commonly used range of
story points is listed in Table 3.2.

TABLE 3.2 A Popular Story Point Range

Story Point T-shirt Size

0 Freebie, item has already been implemented

1 XS Extra small

2 S Small

3 M Medium

5 L Large

8 XL Extra-large

13 XXL Double extra-large

20 XXXL Huge

The nonlinear sequence in Table 3.2 speeds up the team’s
decision-making process. It prevents lengthy discussions about the
“right value” that can arise when linear sequences are used. The
team can extend the range shown in Table 3.2, adding 40 and 100
as larger values, as long as the relative estimates are correct.
Whatever the range it chooses, the team should feel comfortable
with the sequence and stick to it. Because story points are relative
and arbitrary, they cannot be compared across teams unless the
teams have agreed on a common range with common semantics.

Planning Poker

Story points alone are great but are not enough. We need a tech-
nique to enable effective team-based estimation. Planning Poker is

SIZ ING ITEMS • • • 65

From the Library of Wow! eBook

ptg

such a technique (Cohn 2005, 56–59). In Planning Poker, every
team member is given a deck of cards that contains all of the agreed-
upon story point values. If we were using the range in Table 3.2, for
instance, the deck would include eight cards, each displaying one of
the story points in the range. Once all cards have been dealt to the
participants, the estimation starts.

If this is the first time the team has sized backlog items, the
team will need to determine what the values in the range mean to
them. To do this, many teams choose a product backlog item that
they can all agree is small and use it as the first one they estimate.
Alternatively, the team can select the smallest, the largest, and a
medium-sized item and estimate them in turn. If, on the other
hand, the team is familiar with the range, they typically start with
the highest-priority item and work their way down.

Before the team estimates, the product owner explains the
item to the team members, who then briefly discuss the steps to
deliver the item according to the definition of done. After the dis-
cussion, each team member sizes the item privately, without mak-
ing any assumptions about who might implement the item, as that’s
not decided until the relevant Daily Scrum. Each team member
chooses the card with the right estimate and puts it facedown on
the table. After everyone has played a card, the cards are all turned
over at the same time. If the estimates differ, the two team mem-
bers whose estimates are farthest apart briefly explain their reason-
ing. The team then plays another round. All cards are returned to
the decks, and team members again choose the card that best
matches their estimate, which may or may not have changed after
the first round. This cycle continues until the estimates converge.
The decision-making rule is consensus; all team members should
be comfortable with the estimate. As soon as the team has esti-
mated more than two items, the new estimates should be com-
pared against existing ones to ensure that the relative size is correct,
for instance, by grouping items with the same size.

66 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

Estimating Nonfunctional Requirements

Nonfunctional requirements that apply to all functional require-
ments, such as performance or user experience requirements, are
usually not estimated separately. Instead, they are included in the
team’s definition of done. If, however, dedicated work is required
to implement a nonfunctional requirement, such as exploring differ-
ent user interface design options or carrying out architecture refac-
toring, the relevant items should be placed in the product backlog
and sized by the team. Including nonfunctional requirements in the
definition of done does not mean they come for free. The opposite
is true; the definition of done influences the team’s estimates.

To achieve reasonably accurate estimates, three things are
required: The team must roughly know what it takes to deliver an
item, its members must be able to determine dependencies on other
items, and a definition of done must be available. If the team is not in
a position to estimate the item, it should add a new item to the back-
log that will generate the relevant knowledge, for instance, “Create a
prototype or mock-up to explore user interface design options.”

Only team members who create product increments should
be allowed to estimate the product backlog items. The product
owner and ScrumMaster should not estimate, nor should they influ-
ence the estimates (unless they are performers on the team or the
team asks for advice). The product owner must, however, be present
at the meeting. Many product backlog items will be sketchy, and the
product owner will need to explain and clarify them.

Fast-Track Estimation

If the team is too pressed for time to use Planning Poker, consider
using the following estimation technique. Divide one wall of the
meeting room into several sections, each labeled with a different
number in the story point range. Print the product backlog items on
paper cards and place them on a table. Have each team member
take one card, decide on an estimate, and then place the card on
the section of the wall that corresponds to its story size, making sure

SIZ ING ITEMS • • • 67

From the Library of Wow! eBook

ptg

that the item corresponds to the size of the other items in the same
group. If anyone spots a card that does not fit, he or she should
immediately move it to the right group. This process generates esti-
mates for many backlog items very quickly, with minimal effort. Its
main drawback is that the team does not have a conversation
about the size of the items. The quality of the estimates, therefore,
tends to be lower compared to the Planning Poker results.

D E A L I N G W I T H N O N F U N C T I O N A L
R E Q U I R E M E N T S

Nonfunctional requirements—also called operational requirements,
qualities of the system, and constraints—are software development’s
ugly ducklings. They are often neglected even though they describe
important properties, such as performance, robustness, scalability,
usability, as well as technical and compliance requirements (for
instance, supporting a protocol or the ability to gain certification).
They influence user interface design, architecture, and technology
choices, impacting the total cost of ownership and the product’s life
expectancy. This section explores describing and managing non-
functional requirements in Scrum.

Descr ib ing Nonfunc t iona l Requi rements

Nonfunctional requirements can be expressed as constraints
(Newkirk and Martin 2001, 16–18). We could, for instance, describe
a performance requirement as shown in Figure 3.4.

68 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

FIGURE 3.4 Nonfunctional requirement formulated as a constraint

From the Library of Wow! eBook

ptg

User experience requirements are often best captured as
sketches, storyboards, user interface navigation diagrams, and proto-
types. My experience suggests that teams prefer these artifacts to
user interface guidelines in textual form.

Managing Nonfunc t iona l Requi rements

When managing nonfunctional requirements, it’s helpful to distin-
guish between global and local requirements. The former relate to
all functional requirements and usually form a small group. An
example is the performance constraint shown in Figure 3.4. Global
nonfunctional requirements should be detailed early on—when
creating the vision or when stocking the product backlog.
Discovering and refining them too late can cause wrong choices
and negatively impact product success. Global nonfunctional
requirements can be captured in a separate area of the product
backlog, as illustrated in Table 3.3.

TABLE 3.3 Sample Product Backlog with Nonfunctional Requirements

Functional Requirements

Theme Coarse-Grained Detailed Effort
Requirement Requirement

Email Create email As an enterprise 1 The product
user, I want to be must answer
able to state the any request in
email subject. less than one

second.

It is often useful to incorporate global nonfunctional require-
ments in the definition of done. As a consequence, every product
increment has to fulfill these requirements.

In contrast to their global siblings, local nonfunctional
requirements apply only to a specific functional requirement, for

DEALING WITH NONFUNCTIONAL REQUIREMENTS • • • 69

Nonfunctional
Requirements

From the Library of Wow! eBook

ptg

instance, a specific performance requirement for retrieving infor-
mation. If the nonfunctional requirement is expressed as a con-
straint, we can simply attach the constraint to the story, as suggested
by Newkirk and Martin (2001) and Cohn (2004). This can be done
by annotating the story with the constraint.

S C A L I N G T H E P R O D U C T B A C K L O G

Large projects bring new challenges. One of them is how to scale
the product backlog. To succeed, employ one product backlog,
extend the grooming horizon, and consider providing team-specific
views into the backlog.

Use One Produc t Back log

Whenever you work on a large Scrum project, ensure that there is
one product backlog that contains the work necessary to bring the
product to life. Avoid team- or component-specific backlogs that
translate product requirements into subsystem or component
requirements. They create significant overhead, as their contents
have to be derived from the product backlog; they also have to be
groomed and kept in sync. Try to feed all teams directly from the
product backlog and prefer feature teams to component teams, as
discussed in Chapter 1. Darin Fisher, one of the engineers on the
Chrome browser project, describes what Google did to keep its large
project working from one product backlog: “When it came to
requirements, a lot of the process involved brainstorming meetings
with the team and we talked about features. We also had an open
mail list internally at Google where people said what would be
cool…. We tried to keep the features very focused and minimal.
Then we shared the list with the whole team, and people would self-
select for what they wanted to work on.”7

70 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

7. Interview with Darin Fisher by Colleen Frye on SearchSoftwareQuality.com on
October 1, 2008.

From the Library of Wow! eBook

ptg

Extend the Grooming Hor izon

Product backlog items are still decomposed and refined just in time
on large Scrum projects. But the grooming horizon changes. Rather
than focusing on the subsequent sprint, large projects look ahead to
the next two to three sprints when preparing the product backlog, as
discussed in Chapter 4. Consequently, there is a bigger inventory of
detailed product backlog items on a large Scrum project than on a
small one.

Prov ide Separate Back log Views

Large agile projects with many feature teams can benefit from using
separate views into the product backlog (Cohn 2009, 330–31). Each
view shows a subset of the product backlog. If a feature team works
on the theme “organizer” in the next few sprints, for instance, the
team’s view into the backlog consists of the corresponding backlog
subset. Views can prevent conflicts between several product owners
and teams all working on the same product backlog.

C O M M O N M I S T A K E S

Although the product backlog is a beautifully simple tool, it can be
difficult to use it well. Watch out for the following common mis-
takes: a requirements spec dressed up as a backlog, a wish list for
Santa, pushing requirements onto the team, neglecting product
backlog grooming, and feeding a team with several backlogs.

Disguised Requi rements Spec i f i ca t ion

A requirements specification dressed up as a product backlog is like
the devil in disguise: It looks neat, pretty, and perfect. It is tempting
because it appeals to our old desire to know all the requirements up
front. But it has a hidden dark side. A product backlog that is too
detailed and too comprehensive does not support the emergence of

COMMON MISTAKES • • • 71

From the Library of Wow! eBook

ptg

requirements. It does not view requirements as fluid and transient
but rather as fixed and definite; it freezes all decisions about how
customer needs can be satisfied at an early point in time.

A requirements specification disguised as a product backlog is
likely to be a symptom of an unhealthy relationship between the
product owner and the team. If you encounter such a backlog, see if
a product vision is available. If it is, derive a new product backlog
from the vision and discard the disguised requirements spec. If no
product vision exists, stop and carry out the necessary visioning
work. You can, of course, choose to plod along, wrestle with the
backlog, extract themes, rewrite items as user stories, and struggle to
prioritize the backlog. But this is unlikely to maximize your chances
of launching a winning product.

Wish L i s t for Santa

A product backlog that resembles a child’s wish list for Santa con-
tains anything and everything we have thought of that we might
ever need. This backlog is no longer a queue of outstanding work; it
is instead a requirements database. A wish list for a backlog is not
only notoriously difficult to prioritize; it also limits the product’s
ability to evolve based on customer and user feedback, as too much
functionality has already been identified. Use the product idea or
vision to determine which items are critical for developing and
launching a successful product. Discard the rest.

Requi rements Push

Sometimes, the product owner writes the backlog items alone and
then hands them off to the team in the sprint planning meeting.
This approach reinforces the old them-and-us divide: the product
owner here, the team over there. It wastes the team’s knowledge,
experience, and creativity and makes sprint planning more difficult.
Make sure the product owner always involves fellow Scrum team

72 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

members in the grooming work. Set up one or more grooming
workshops per sprint, invite the rest of the Scrum team, and remind
the team to allocate time for the grooming work in every sprint.
Always remember the Agile Manifesto’s collaboration mantra:
“Business people and developers must work together daily through-
out the project” (Beck et. al. 2001).

Grooming Neglec t

Most sprint planning meetings I have attended were fun. The ones
that weren’t involved a poorly groomed product backlog. When the
backlog isn’t groomed prior to the meeting, the product owner and
team often try to carry out impromptu grooming activities, which
consume valuable planning time and result in poor requirements
and weak commitments. Plus, everyone is exhausted by the end of
the meeting. Recognize that if the product backlog is not properly
groomed, the next sprint should not start. It should be postponed
until the backlog has been prepared.

Compet ing Back logs

A client of mine once had five product owners working with one
team. Because each product owner wanted to get as much work
done as quickly as possible, the team was asked to work on all five
backlogs in every sprint. This gave the product owners a certain
comfort level; they knew their requirements were being worked on.
It also left them very dissatisfied; it took ages to get anything done.
Working on multiple products concurrently may look good.
Everyone is busy. Everything is being worked on. But nothing pro-
gresses quickly. Instead, this team never has a cohesive sprint goal
and wastes valuable time with task switching.

If your team has to work on several product backlogs, make
sure every sprint focuses on only one product. Even better, ask the
team to work on just one product for a few sprints so they can release

COMMON MISTAKES • • • 73

From the Library of Wow! eBook

ptg

a new product version quickly. Then move on to the next product.
This approach requires prioritizing the products and establishing a
portfolio management process. My client’s issue ultimately resided
with the company’s CEO, who wanted everything done by yesterday
and found it difficult to set priorities to guide the product owners.

R E F L E C T I O N

Believe in your creativity and allow the product backlog content to
emerge. Keep your backlog simple and concise. Focus on the items
that are essential for bringing the product to life. Be courageous and
weed out items. The following questions will help you apply the
concepts described in this chapter:

How are requirements discovered and described in your work-
place?

Does your product backlog exhibit the DEEP characteristics?

How is your product backlog groomed?

What would it take to discover and describe requirements collab-
oratively in every sprint?

How do you deal with nonfunctional requirements? When and
how are they captured?

74 • • • CHAPTER 3 WORKING WITH THE PRODUCT BACKLOG

From the Library of Wow! eBook

ptg

4
• • •

PLANNING THE RELEASE

“Planning … is a quest for value,” writes Mike Cohn (Cohn 2005, 5),
and release planning supports the development and launch of a
successful product. It facilitates a dialogue between the Scrum
team and the stakeholders, and it answers the question of which
functionality the project is likely to deliver by when. Release plan-
ning takes place throughout the project, as the team listens and
responds to customer and user feedback. Shifting from document-
driven planning and reporting to conversation and dialogue allows
the Scrum team to use simple planning techniques, which makes
planning itself simpler and more transparent. Even though release
planning is a collaborative effort, the product owner is responsible
for ensuring that the necessary decisions are made.

This chapter discusses essential release planning concepts and
techniques. For a more comprehensive and detailed discussion,
refer to Agile Estimating and Planning (Cohn 2005).

75

From the Library of Wow! eBook

ptg

T I M E , C O S T , A N D F U N C T I O N A L I T Y

Release planning starts with making a decision about which project
lever—time, cost, or functionality—cannot be compromised to
launch a successful product. Is adherence to the launch date
mandatory? Is the development budget fixed? Or do all product
requirements in the product backlog have to be delivered? Fixing
time, budget, and functionality is not possible; at least one of the
three levers has to act as a release valve. Here is my recommenda-
tion: Fix time and flex functionality.

Fixing functionality is a bad idea. Even with a product vision
in place, the product’s exact properties, its functionality and fea-
tures, are not all known up front but are instead discovered based on
customer and user feedback. Requirements emerge and the product
backlog evolves as the Scrum team learns more about customer
needs and how to meet them. Trying to fix functionality severely
damages the team’s ability to adapt the product to the customer’s
response. It is likely to result in a poor product—and not a product
that customers love.

Identifying the launch date is facilitated by the product
vision. The vision allows us to determine the window of opportu-
nity, the time frame in which the product must be launched to
achieve the desired benefits. Fixing the window of opportunity
protects time as the scarcest resource. If the date is missed, the
opportunity is gone, and launching the product no longer makes
sense. Note that choosing a launch date based on the work in the
product backlog is difficult, as it forces the team to freeze require-
ments and often results in a poor estimate. In fact, an estimated
launch date based on requirements may be off by as much as 60 to
160%; a project expected to take 20 weeks could take anywhere
from 12 to 32 weeks (Cohn 2005, 4). This well-known correlation
is called the Cone of Uncertainty.1 Identifying the window of

76 • • • CHAPTER 4 PLANNING THE RELEASE

1. The Cone of Uncertainty was first recognized by Barry Boehm.

From the Library of Wow! eBook

ptg

opportunity rather than trying to estimate a probable launch date
avoids these issues.

Fixing the date provides the opportunity to create a steady
innovation cadence. This is achieved by choosing the same timebox
for all releases. Sound crazy? Well, that’s what Salesforce.com, a
leading provider of on-demand customer relationship management
services, did—with quite some success. After years of rapid growth,
Salesforce.com found itself in a difficult situation in 2006. Its ability
to release new products had decreased to only one per year, and pro-
ductivity had sharply declined. In an effort to turn around its for-
tunes, the company introduced Scrum. Chris Fry, vice president of
platform development at Salesforce.com, explains:2

The decision to go agile at Salesforce.com grew out of a
desire to create shorter more predictable releases. We had
gone a year without a major release and wanted to get
onto a more predictable release schedule that would
deliver value at a consistent rate to our customers.

Since introducing Scrum, Salesforce.com has followed a
strict innovation cadence. “The entire organization has moved
from a 12-month cycle to a four-month rhythm, delivering three
major releases per year all on schedule. This includes all product
software development, technical operations, and internal IT sys-
tems,” states Steve Greene, vice president of program manage-
ment and agile development at Salesforce.com.3 The results are
stunning. Salesforce.com experienced an amazing 97% increase
in the number of features delivered by establishing short, steady
release cycles. At the same time, the company managed to reduce
its lead time for new functionality by 61%. Estimating and plan-
ning have also become more effective and accurate. It’s now eas-
ier for Salesforce.com’s customers to plan for the next release. At

T IME, COST, AND FUNCTIONALITY • • • 77

2. Interview with Chris Fry, www.agilethinkers.com/chris_fry_salesforcecom_qa/.

3. Personal communication with Steve Greene on April 16, 2009.

From the Library of Wow! eBook

www.agilethinkers.com/chris_fry_salesforcecom_qa/

ptg

the same time, the development teams are happier, too (Greene
and Fry 2008).

Fixing the date and using stable Scrum teams make determin-
ing a budget straightforward—assuming that labor is the decisive
cost factor. If you have to scale your project, accurately forecasting
the budget is more difficult, particularly for new-product develop-
ment projects. If the budget is in danger of getting overrun, the
product owner has to make a choice: Either ship with less function-
ality, or increase cost by asking more people to join the project—as
long as there is enough time for the new project members to
increase productivity. Apple, for instance, decided to increase cost
and added more people to its first iPhone project in order to stick to
the release date. But beware of Brooks’s Law: “Adding manpower to
a late software project makes it later” (Brooks 1995, 25).

What about Fixed-Price Contracts?

If you have a choice, avoid projects with fixed price and fixed
scope. If that’s not possible, try the following: Split a fixed-price
contract into two parts and carry out two consecutive projects.
The first project creates the product vision and partly implements
the vision using two to three sprints. At the end of the project, the
product backlog has evolved based on customer feedback. This
enables you to create a realistic release plan and to come up
with a realistic budget estimate for the second project, which con-
tinues to bring the product to life. Recognize that Scrum is a dis-
ruptive process innovation. As with any disruptive innovation,
your existing clients and customers may not be willing to
embrace the innovation; in their minds, they already have a solu-
tion that seems to work.

Q U A L I T Y I S F R O Z E N

As we’ve seen, the product’s functionality evolves. Its fidelity can
also increase during the project: The look and feel and the overall
user experience might improve. But the software quality is frozen in

78 • • • CHAPTER 4 PLANNING THE RELEASE

From the Library of Wow! eBook

ptg

Scrum. The quality criteria are captured in the definition of done.
This definition usually requires that a (potentially) shippable prod-
uct increment be available at the end of each sprint: executable soft-
ware that has been tested and documented and that could be
released. Quality assurance and control measures form an integral
part of the sprints—instead of being carried out at the end of the
project as an afterthought.

It is crucial to ensure that sprints do deliver increments with
the right quality. The product owner should not encourage the team
to make compromises to the software quality and should never
accept work results that do not fulfill the done criteria. Quality com-
promises result in defective product increments, making it impossi-
ble to clearly see the progress and to release early and frequently. To
make things worse, compromising quality has negative long-term
effects. It creates technical debt, software that is difficult to extend
and maintain (Cunningham 1992). It can damage the brand and
leave customers dissatisfied. Compromising software quality means
trading in short-term gains for longer-term growth. You would cheat
yourself of a better, brighter future.

E A R L Y A N D F R E Q U E N T R E L E A S E S

“Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software,” states the Manifesto for Agile
Software Development, and recommends, “Deliver working software
frequently, from a couple of weeks to a couple of months, with a pref-
erence to the shorter timescale” (Beck et al. 2001). Releasing product
increments to target customers early and frequently—instead of deliv-
ering the finished product in one go—provides invaluable feedback.4

EARLY AND FREQUENT RELEASES • • • 79

4. Early and frequent releases are an old idea; they date back at least to Tom Gilb’s
evolutionary delivery method (Gilb 1988). Extreme programming also promotes fre-
quent releases called short releases in Beck (2000) and incremental deployment in
Beck and Andres (2005).

From the Library of Wow! eBook

ptg

It lets the product evolve based on the customer response. It saves the
Scrum team from implementing the wrong features and from creat-
ing a product with too much or too little functionality. This helps
develop a product that is just right.

Frequent releases are so powerful because customers and
users can employ the product in its target environment rather
than just viewing a demo in the sprint review meeting. What’s
more, releasing early and often allows the Scrum team to reach
out to a larger group of people, reducing the risk of selecting the
wrong target customers. Releasing software early provides
another advantage: It quickly reveals an ill-conceived vision, pro-
viding the opportunity to revise the vision or to cancel the project
at an early stage.

The team developing the Google Chrome browser, for
instance, first thought it could leave out the bookmark bar alto-
gether. But user feedback showed that some people love to navi-
gate by clicking on the bookmark bar. So the team came up with
a new solution: If the user has previously configured the bar in
Internet Explorer or Firefox, Chrome will import the setup.
Otherwise, users won’t have a bookmark bar unless they choose
to. Without releasing early versions of the browser, the team
might not have discovered the bookmark bar’s importance and
would have ended up shipping a suboptimal product. In fact, fre-
quent releases form a building block of Google’s innovation capa-
bility, as Bernard Girard, author of The Google Way, observes: “By
bringing products to market rapidly, whether they’re ready or not,
Google derives maximum benefit from its efforts and short-cir-
cuits potential competition … Google’s strategy of releasing early
and often is also a brilliant and inventive marketing strategy: It
dissuades potential competitors, raises the cost of entry to the
market, and keeps users in Google’s sphere of influence” (Girard
2009, 86).

As with all things, there is no free lunch. Frequent releases
do have a price: The software must be of high quality, and the

80 • • • CHAPTER 4 PLANNING THE RELEASE

From the Library of Wow! eBook

ptg

product must be easy to obtain and install. It’s perfectly OK to
have some features that are implemented only partially in early
product increments. It is also acceptable to release functionality
that provides only limited benefits to a customer or user. But the
software quality, as defined in the definition of done, must be
right with all product increments. This allows the team to quickly
adapt the product in future sprints, and it prevents bugs that dam-
age the product’s reputation. Agile development practices such as
test-driven development and test automation, refactoring, and
continuous integration facilitate the creation of shippable prod-
uct increments. Teams will need time to learn these useful prac-
tices, and applying them might require infrastructure and
environment changes.

If it’s not easy to obtain and install new product versions, cus-
tomers will reject or ignore updates. Although this can be challeng-
ing to achieve, “any large project can be broken down into a series
of smaller and earlier deliverables. Don’t give up, even if you have
to change the technical solution to make it happen. Keep your eyes
on the results, not the technologies” (Gilb 1988, 336).

Q U A R T E R L Y C Y C L E S

There is no rule in Scrum that mandates how long a project can
last. But it is common for agile projects to take no longer than three
to six months. If you need more than three or four months to bring
the product to life, you should use quarterly cycles, releasing at
least one version of working, tested, and documented software each
quarter (see Beck and Andres 2005, 47–48). Google took advantage
of quarterly cycles during the two years it needed to develop the
first version of its Chrome browser. Darin Fisher describes the
process: “We oriented things around quarters, so the living docu-
ment [the product backlog] was revised each quarter; say this quar-
ter we’re focusing on this subset, etc. It was helpful to drive the

QUARTERLY CYCLES • • • 81

From the Library of Wow! eBook

ptg

product forward, and to make sure the product very early on was
usable by anybody at Google so we’d have continuous feedback.”5

Another company that systematically employs quarterly releases is
PatientKeeper, Inc., a provider of health-care products. The com-
pany launches a new product version every three months
(Sutherland 2005). Bearing in mind that PatientKeeper’s products
are safety-critical, need FDA approval, and are deployed into het-
erogeneous hospital environments, this is a major achievement
that equips the company with a significant competitive advantage.
It is no coincidence that PatientKeeper has established itself as a
leader in health-care mobile applications, keeping even much
larger competitors at bay.

V E L O C I T Y

Velocity is an indicator of how much work the team can do in a
sprint; it allows us to track and forecast the project’s progress.
More precisely, velocity is the sum of the effort for the work
results accepted by the product owner in a sprint. Let’s look at an
example. In the sprint planning meeting, a team commits to
deliver six stories with a total effort of 12 story points. Now at the
end of the sprint, the product owner carefully inspects the incre-
ment and discovers that all requirements have been delivered
according to the definition of done but one: A minor part of the
documentation of story D has not been completed. Because D is
not complete, its story points do not count toward the team veloc-
ity, as depicted in Table 4.1. The sum of the story points for the
accepted backlog items is 10. The team’s velocity for this sprint is,
therefore, 10 points.

82 • • • CHAPTER 4 PLANNING THE RELEASE

5. Interview with Darin Fisher by Colleen Frye on SearchSoftwareQuality.com on
October 1, 2008.

From the Library of Wow! eBook

ptg

TABLE 4.1 Determining Velocity

Product Backlog Item Story Points Review Result

A 1 Accepted

B 3 Accepted

C 1 Accepted

D 2 Rejected

E 2 Accepted

F 3 Accepted

As illustrated in the example, velocity is best determined by
observing the team’s ability to turn product backlog items into prod-
uct increments. “Working software is the primary measure of
progress,” as the Manifesto for Agile Software Development puts it
(Beck et al. 2001). Note that velocity can vary, as a number of fac-
tors, including team-building dynamics, impediments, and avail-
ability, influence it. If several team members take time off, for
instance, the velocity is likely to drop. And on new teams or on new-
product development projects the velocity can take two to three
sprints to stabilize (Cohn 2005, 179).

Velocity is specific to a team and, generally speaking, cannot
be compared across teams—unless the teams use story points with
the same meaning. Knowing that team one developing product A
has a velocity of 40 and team two developing product B has a veloc-
ity of 20 does not mean that team one is more productive. Team one
might have lower estimates than team two.

T H E R E L E A S E B U R N D O W N

The release burndown is the bread-and-butter artifact for tracking
and forecasting the project progress in Scrum. It comes in two fla-
vors: as a burndown chart and a burndown bar. Let’s look at the
release burndown chart first.

THE RELEASE BURNDOWN • • • 83

From the Library of Wow! eBook

ptg

The Re lease Burndown Char t

The release burndown chart allows us to track and forecast project
progress (Schwaber and Beedle 2002, 83–88). Based on the velocity
of the past sprints, the release burndown anticipates the future so
that the Scrum team can adapt the product and project as needed.6

It is based on the following two factors: the remaining effort in the
product backlog, and time. The chart is best created and updated in
the sprint review meeting, when the sprint outcome is known.

Creating the release burndown is simple. First, we draw a
coordinate system and choose the number of sprints as the unit on
the x-axis. On the y-axis, we write the story points (or any other effort
measure you use). The first data point is the estimated effort of the
entire product backlog before any development has taken place. To
arrive at our next data point, we determine the remaining effort in
the product backlog at the end of the first sprint. Then we draw a
line through the two points. This line is called the burndown. It
shows the rate at which the effort in the product backlog is con-
sumed. If we extend the burndown line to the x-axis, we can forecast
when the project is likely to finish—assuming effort and velocity
stay stable. Let’s have a look at a sample burndown chart, shown in
Figure 4.1.

The release burndown chart in Figure 4.1 shows two lines.
The solid line is the actual burndown. It documents the progress
to date and the effort remaining. We can see at a glance that the
project has experienced a rather slow start. This might be caused
by impediments and risks materializing, team-building dynamics,
or technology issues. In the third sprint, the remaining effort even
increased. This may have been caused by the team reestimating
backlog items or discovering new requirements necessary to fulfill

84 • • • CHAPTER 4 PLANNING THE RELEASE

6. Beck and Fowler (2000) refer to this property as yesterday’s weather. Note that a
rough forecast is acceptable since the progress is inspected every few weeks in the
sprint review meeting, providing a new opportunity to update the release burndown
and adapt the forecast.

From the Library of Wow! eBook

ptg

the vision. The fourth sprint saw a steep burndown; the project pro-
gressed fast. If we now reflect on the past sprints, we can create a
burndown trend, depicted as a dashed line in Figure 4.1. The burn-
down trend forecasts the progress in the next sprints. It shows that, if
the work in the product backlog and the rate of progress stay con-
stant, the project will not be complete within ten sprints—the pro-
ject is off track. Equipped with this knowledge, the Scrum team can
investigate the causes. Is the progress too slow, or is there too much
work? Once the team is clear on the cause, it can take the right
action. Assuming the date is fixed, the team might reduce function-
ality or request that a specialist be added to the team, for instance.

The burndown chart must be used in “brain-on” mode, as
my colleague Stefan Roock puts it. It’s a simple tool that is
designed to stimulate conversation and facilitate investigation.
Choose the time window carefully, and decide whether to take
into account all sprints or just a subset. Know whether or not any
sprints show anomalies that might distort the forecast—for
instance, team members falling sick, a server crash halting devel-
opment, or the team making exceptional progress—and adjust the
trend line accordingly.

By the way, my favorite tool for creating, updating, and storing
the burndown chart is a sheet of flip-chart paper, as it facilitates dia-
logue and collaboration. And it avoids the illusion of accuracy that
electronic reports can portray. Whatever the tool, it’s a good idea to

THE RELEASE BURNDOWN • • • 85

1 2 3 4 5 6 7 8 9 10

200

150

100

50

Story points

Sprints

FIGURE 4.1 Release burndown chart

From the Library of Wow! eBook

ptg

display the chart in the team room and bring it along to the sprint
review meeting.

The Re lease Burndown Bar

A more sophisticated version of the release burndown chart is the
release burndown bar (Cohn 2005, 221–24). The release burndown
bar has all the properties of the release burndown chart but differen-
tiates between reestimating items and burning effort on the one
hand, and adding and removing product backlog items on the other.
If the team makes progress or reduces its estimates, the top of the bar
moves down. If the team increases its estimates, the top of the bar
moves up. If new items are added to the backlog, the bottom moves
down; if items are taken out of the backlog or are replaced with
lower-effort ones, the bottom moves up. Figure 4.2 shows a sample
release burndown bar.

The release burndown bar in Figure 4.2 paints the same pic-
ture as the sample burndown chart in Figure 4.1. The difference is
that we now better understand what happened in sprints three and
four. The top of the bars moving down tells us that the team made
progress in both sprints. The fact that the bottom of the bar moved
down in sprint three tells us that new items were added to the
backlog. In sprint four, the bottom moved up, indicating that
items were removed from the backlog. Note that the very first bar

86 • • • CHAPTER 4 PLANNING THE RELEASE

1 2 3 4 5 6 7 8 9 10

200

150

100

50

0

–50

Story points

Sprints

FIGURE 4.2 Release burndown bar

From the Library of Wow! eBook

ptg

states the amount of work prior to the first sprint. There are two
dashed trend lines in Figure 4.2, a lower and an upper one. The
upper one represents the burndown trend and is created in the
same way as in the release burndown chart. The lower signals the
current zero line.

T H E R E L E A S E P L A N

“Plans are nothing; planning is everything,” observed Dwight D.
Eisenhower. This insight is particularly applicable to the release
plan. Although teams are not required to have a release plan in
Scrum, they certainly have to plan the release. Many Scrum teams
find it sufficient to use a release burndown and to group product
backlog items into subsets to indicate which functionality will be
delivered in which release.7 But large Scrum projects, or those that
need to coordinate with other projects, partners, or suppliers, will
probably want to use a formal plan.

The release plan is like a rough map that guides us to our
destination. It forecasts how the product is likely to come to life
and when software will be released. A release plan is an advanced
version of the release burndown—a burndown on steroids, so to
speak. It provides more information than a burndown but is also
more complex. The plan is based on four factors: the product
backlog items, the remaining effort in the backlog, the velocity,
and time. The release plan is by no means fixed. It changes as the
product backlog evolves and our understanding of effort and
velocity improves. As with the release burndown, the release plan
is best created and updated collaboratively in the sprint review
meeting.

To get the most out of the plan, I like to show the functional-
ity each release will provide in terms of themes or epics. Showing

THE RELEASE PLAN • • • 87

7. These subsets are also called release backlogs (Schwaber and Beedle 2002,
71–72).

From the Library of Wow! eBook

ptg

stories in the release plan tends to introduce too much detail.
(The exception to this rule is on large projects, as I explain later in
this chapter.) It’s also useful to provide whatever information is
necessary to coordinate with others, and to state known changes
influencing the velocity, such as a change in the team composi-
tion or the project organization. Table 4.2 illustrates a sample
release plan.

TABLE 4.2 Sample Release Plan

Sprint 1 2 3 4 5 6 7 8

Velocity N/A 12–32 18–28 21–28 11–18 16–23 21–28 21–28
forecast

Actual 20 25 28
velocity

Depend- Imaging
encies library

Releases Alpha: Holidays Beta: V1.0
Calls, Con-
basic ference
text calls,
messages picture

messages

Current
sprint

In the example in Table 4.2, the project is currently in the
fourth sprint and expects to be able to deliver version 1.0 after four
more sprints. Each sprint is two weeks long. An alpha version
implementing two themes is released to selected customers after
the fourth sprint. A beta version providing two more themes is
shipped after the sixth sprint. Although these releases are called
alpha and beta, they are product increments that fulfill the defini-
tion of done. Version 1.0 is shipped after eight sprints, or four
months. The project expects a supply in the third sprint. The

88 • • • CHAPTER 4 PLANNING THE RELEASE

From the Library of Wow! eBook

ptg

release plan documents the actual velocity and provides a forecast
for the remaining sprints.

Forecas t ing Ve loc i ty

To forecast the velocity, we take the following steps: If a new product
is being developed, if the team has never worked together, or if its
composition has changed significantly, we observe the velocity by
carrying out at least one sprint, but preferably two or three sprints.
As mentioned before, it can take several sprints for the velocity to
stabilize. We can then use the range of observed velocities to fore-
cast the velocity for the remaining sprints. In the release plan in
Table 4.2, this would result in a velocity range of 20 to 28 points for
the fourth sprint onward with 24 points as the average (mean).

Alternatively, we can use Table 4.3 to anticipate the future
velocity (Cohn 2005, 180), as the Scrum team did in the release
plan in Table 4.2.

TABLE 4.3 Multipliers for Velocity Based on Number of Sprints Complete*

Sprints Completed Low Multiplier High Multiplier

1 0.6 1.60

2 0.8 1.25

3 0.85 1.15

4 or more 0.9 1.10

*From Agile Estimating and Planning by Mike Cohn. Reprinted by permission.

Using the average (mean) velocity of the first three sprints in
Table 4.2, we multiply 24 by the appropriate low and high multiplier
in Table 4.3. This results in a velocity range of 21 to 28 points.

As soon as the team has run five or more sprints, we can cre-
ate a high-confidence forecast (Cohn 2009, 297–300). Say we are
at the end of sprint eight in Table 4.2, and we now want to forecast

THE RELEASE PLAN • • • 89

From the Library of Wow! eBook

ptg

the team’s velocity in the next release. The velocities of the com-
pleted sprints are as follows: 20, 25, 28, 26, 16, 20, 26, 26. We now
discard any data from sprints that show anomalies, such as half the
team falling ill or the integration server being down for several days,
if applicable. We then sort the list in ascending order, which results
in the following sequence: 16, 20, 20, 25, 26, 26, 26, 28. We can now
use Table 4.4 to determine the future velocity with 90% confidence.

TABLE 4.4 Use the nth Lowest and the nth Highest Observation of a Sorted
List of Velocities to Find a 90% Confidence Interval*

Number of Velocity Observations nth Velocity Observation

5 1

8 2

11 3

13 4

16 5

18 6

21 7

23 8

26 9

*From Succeeding with Agile: Software Development Using Scrum by Mike Cohn. Reprinted
by permission.

Because we have run eight sprints, we pick the second velocity
observation from the beginning and the end of the sequence. This gives
us a velocity range of 20 to 26 with an average (mean) velocity of 23. We
can be 90% confident that the actual velocity will be within this range.

Creat ing the Re lease P lan

Once we have forecasted the velocity, we divide the remaining
effort in the product backlog by the mean velocity or velocity range,

90 • • • CHAPTER 4 PLANNING THE RELEASE

From the Library of Wow! eBook

ptg

giving us a provisional number of the remaining sprints required.
We then map the identified number of sprints onto the calendar
and consider the factors that are likely to influence the velocity and
that are not accounted for in the velocity forecast. These can
include holidays, vacations, training and development, sickness sta-
tistics, and planned changes to the project organization, such as
modifying the team composition. We adjust the forecasted velocity
of each sprint accordingly.

Let’s look at the release plan in Table 4.2 again. It states an
actual velocity for the first three sprints of 20, 25, and 28. The
average (mean) velocity per sprint, then, is 24 points. The Scrum
team has forecasted a velocity of 21 to 28 points for the fourth,
seventh, and eighth sprints using the multipliers in Table 4.3.
The release plan also anticipates a velocity drop in sprints five
and six, when several team members will take time off and then
return to work.

If the work in the product backlog cannot be delivered within
the window of opportunity, assuming it is the launch date that is
fixed, we can either reduce the functionality or increase the budget
to add people (for instance, a specialist) to the team.

My favorite tool for capturing the release plan is a whiteboard
placed in the team room. Some are even equipped with little
wheels, making it possible to roll the whole board into a different
room. The release plan can, of course, be kept in an electronic tool
such as a spreadsheet. Whatever tool is used, though, the plan
should create transparency and facilitate dialogue between the
Scrum team and stakeholders.

R E L E A S E P L A N N I N G O N L A R G E P R O J E C T S

Release planning on large projects requires additional practices. These
include establishing a common baseline for estimates, performing
look-ahead planning, and, if unavoidable, pipelining the work.

RELEASE PLANNING ON LARGE PROJECTS • • • 91

From the Library of Wow! eBook

ptg

Common Base l ine for Es t imates

When several teams are estimating items in one product backlog,
the teams need to agree on a common baseline for their estimates,
the range of story points, and the semantics of each number.
Otherwise, understanding how much effort is contained in the
product backlog will be very difficult. If the project grows organi-
cally, common estimates usually emerge. The first team creates the
original figures, and these guide the teams that join the project later
on. If the project has to employ several teams right from the start,
representatives from each of the different teams should hold a joint
effort estimation workshop, to agree on a common range with com-
mon semantics.

Look-Ahead P lanning

Helping each team to succeed while optimizing the progress of the
entire project requires some extra work. The first thing we have to
do is to look ahead two to three sprints to understand which product
backlog items are likely to be worked on (Cohn 2005, 206; Pichler
2008, 146). This requires decomposing and refining product back-
log items earlier; more detailed items can now be found at the top of
the product backlog.

The next step is to identify any dependencies between the
teams by asking the following questions: Do they have to work on
the same feature or component? Does any team act as the sup-
plier of another team? If so, is it feasible to supply the feature or
component and use it in the same sprint? To eliminate problem-
atic dependencies, we may have to change the product backlog
prioritization. For instance, instead of having two teams working
on the same subsystem in the next sprint, we may consider post-
poning some of the requirements to a later sprint and bringing
forward other items, thereby adjusting the product backlog priori-
tization. After resolving any problematic dependencies, we con-
sider the workload generated for each team. Is a team likely to be

92 • • • CHAPTER 4 PLANNING THE RELEASE

From the Library of Wow! eBook

ptg

overworked in the next sprint? Is a team likely to be underuti-
lized? If either is true, we may again go back and change the prod-
uct backlog prioritization.

We may have to carry out the steps several times to achieve
an optimal balance between the needs of the individual teams
and those of the overall project. Once that’s done, we add the sto-
ries to the next two to three sprints in the release plan. Notice that
this exercise does not impact the team’s empowerment.
Anticipating requirements does not mean that the teams will
actually commit to them. The consequence of all this is more
work. Unfortunately, there is no alternative. Not looking ahead is
like running through the woods in the dark without a flashlight or
headlamp. Chances are that we will bump against trees and hurt
ourselves.

Pipe l in ing

Pipelining is a last resort. You should employ this technique only if
all other options have failed. Pipelining separates what belongs
together. It spreads the delivery of one product backlog item across
multiple sprints (Larman 2004, 251–53). Here is how it works: Say
we employ two teams, team A and team B. Team A has to supply a
component to team B, and team B has to build on it. As part of our
look-ahead planning, we discover that it is not feasible to perform
both pieces of work in the same sprint. We also find it difficult to
reduce the amount of work by decomposing the requirements fur-
ther. As a last resort, we pipeline the work. We ask team A to imple-
ment the component in the next sprint and team B to extend it in
the subsequent one.

This sounds fine, but it presents us with a problem: How much
is done once team A has finished its work? And how can we ensure
that the component will be working as expected when team B starts
to extend it? Since partially done work never earns any points, team
A’s work is not reflected in the release burndown, making it more

RELEASE PLANNING ON LARGE PROJECTS • • • 93

From the Library of Wow! eBook

ptg

difficult to clearly see the progress. To make things worse, feeding
buffers may have to be used to ensure that team A is indeed able to
supply the component when required (Cohn 2005, 208). A feeding
buffer provides a contingency in case team A faces more work to
create the component than expected. Using feature teams rather
than component teams whenever possible will reduce the need for
pipelining.

C O M M O N M I S T A K E S

Avoid the following mistakes when carrying out release planning on
a Scrum project: not employing a release burndown or a release
plan; a passive product owner who is not engaged in the release
planning process; big-bang releases, delivering lots of functionality
in one go; and compromising quality.

No Re lease Burndown or P lan

I have seen organizations that were used to creating a detailed pro-
ject plan up front go to the other extreme and not carry out any
release planning at all. Thinking only from sprint to sprint is dan-
gerous—and an easy trap to fall into. Doing so makes it difficult to
assess the project’s progress and adapt the product and project in
the right way. Always have a release burndown or release plan in
place. Put it up in the team room and on the project’s wiki so it’s
visible to everyone.

Produc t Owner in the Passenger Seat

The product owner should be actively involved in the release plan-
ning activities and not delegate them to the ScrumMaster or the
team. Release planning is as much a collaborative exercise as prod-
uct backlog grooming. As such, it requires the full participation of
the product owner. In fact, the product owner should drive the

94 • • • CHAPTER 4 PLANNING THE RELEASE

From the Library of Wow! eBook

ptg

release planning activities. As the person first and foremost responsi-
ble for the success of the product, it is in the best interest of the
product owner to guide the project proactively.

Big-Bang Re lease

If there is one piece of advice you take away from this chapter, do
everything you can to release software early and frequently. Avoid
a big-bang release—shipping the product only after all the func-
tionality has been implemented. This makes it difficult, if not
impossible, to incorporate feedback from customers and users and
reduces the likelihood of creating a product people love. And
there is another drawback. A big-bang release means that the team
deploys the software for the first time when it’s time to launch.
This often puts stress on the team members and can result in a
missed launch date.

Qual i ty Compromises

The product owner might be tempted to release more functionality
by sacrificing quality. After all, it could have been a common way of
achieving faster progress in the past. Cut a few corners here and
there, do a little less testing, and delay creating some documenta-
tion. The problem is that compromising quality leaves teams with a
product that is more difficult and expensive to maintain and extend.
Yes, the team gets more done now. But it will get less done in a few
months’ time. Cutting quality also makes it difficult for the team to
take pride in its work. It undermines craftsmanship and good engi-
neering practices. Teams must have a definition of done in place
that states the criteria product increments must fulfill, and the prod-
uct owner must apply the criteria at each sprint review; no partially
done or defective work can be accepted. Simplify release planning
by timeboxing your projects and establish a steady innovation
cadence.

COMMON MISTAKES • • • 95

From the Library of Wow! eBook

ptg

R E F L E C T I O N

Why wait for the official product launch to see how the market
responds? Release early and often, but with high quality. Learn from
early customer and user feedback and incorporate it into the soft-
ware. Get it out. Then get it right.

What would be the consequences of fixing time and quality and
flexing functionality?

What would be the benefits to releasing early and frequently?
And what would it take to do it?

What would it take to organize your projects in quarterly cycles?

What’s the velocity of your team?

Do you employ a release burndown or plan? Who creates and
updates it?

96 • • • CHAPTER 4 PLANNING THE RELEASE

From the Library of Wow! eBook

ptg

5
• • •

COLLABORATING IN THE SPRINT
MEET INGS

It’s a myth that artists just wait to be struck by ingenious ideas and
then effortlessly turn them into amazing masterpieces. The truth is
that innovation requires dedication, hard work, and discipline. Take
the renowned American painter and photographer Chuck Close.
His trademark technique is to paint from photographs, dividing his
canvas into tiny squares and filling each with little squiggles that are
analogous to pixels. Viewers see the individual shapes up close, but
as they back away, the image gels into a portrait. Close explains how
he works (Oberkirch 2008):

My paintings are built incrementally, one unit at a time,
in a way that’s not all that different than the way, say, a
writer would work…. One of the nice things [about] work-
ing incrementally is that I don’t have to reinvent the wheel
every single day. Today I did what I did. You can pick it up
and put it down. I don’t have to wait for inspiration. There
are no good days or bad days. Every day essentially builds
positively on what I did the day before.

Luckily, Scrum provides the means to work incrementally, to
bring the product to life step by step, each sprint building on the

97

From the Library of Wow! eBook

ptg

results of the previous ones. Sprints are structured by meetings. The
sprint planning meeting starts the sprint, the Daily Scrum provides
a steady rhythm throughout the iteration, and the sprint review and
retrospective close the cycle. The meetings are a valuable opportu-
nity to interact and connect, to share and collaborate. Gerry
Laybourne, product owner of Ript, a visual planning software,
agrees (Judy 2007):

In the year it took us to build [Ript], I only missed one of
our every other week meetings. I didn’t miss these meet-
ing[s] for the best reason: they were truly fun because I
learned so much.

This chapter is specifically for product owners. I want to talk
directly to you about your involvement in the Scrum meetings and
provide tips for collaborating with the team effectively.

S P R I N T P L A N N I N G

The sprint planning meeting allows the team to plan its work and
commit to a sprint goal, thereby laying the foundation for its self-
organization. As the product owner, your responsibility is to make
sure the product backlog is well groomed—its items prioritized and
its high-priority items detailed—prior to the sprint planning meet-
ing. You will also be expected to attend the sprint planning meeting
in order to clarify requirements and answer questions.

Your role during sprint planning is to help the team under-
stand what must be done. The team figures out how much can be
done and how to do it. You are not authorized to tell the team how
much work should be pulled into the sprint or to identify tasks on
behalf of the team. These are solely the team’s responsibility. And
the team should commit to only as much work as it can realisti-
cally deliver. Limiting the amount of work per sprint to the team’s
capacity and capability creates a sustainable pace: “The sponsors,
developers, and users should be able to maintain a constant pace

98 • • • CHAPTER 5 COLLABORATING IN THE SPRINT MEET INGS

From the Library of Wow! eBook

ptg

indefinitely” (Beck et al. 2001). There is little benefit in trying to
achieve an overly ambitious goal in one sprint only to be
exhausted in the next one. Scrum favors a smooth, steady flow of
work from the product backlog into the sprints. Reliability is more
valuable than false ambition; it is the prerequisite for making real-
istic forecasts. And too much pressure kills playfulness and ham-
pers creativity.

Be aware that a commitment is not a guarantee. It can take a
new team two to three sprints to learn how to make commitments
it can meet. Plus, software development is full of unknowns;
uncertainty and risk go hand in hand with innovation. As
Murphy’s Law states, “Everything that can possibly go wrong will
go wrong.” Risks can materialize; problems might not always get
resolved quickly. Failing to reach the sprint goal happens—but it
should be an exception. If it does happen, use the sprint retro-
spective to uncover the root cause and to identify improvement
measures.

D E F I N I T I O N O F D O N E

How does the team know that work is done? And how can you, as
the product owner, decide whether an item has been successfully
completed? The solution is to agree on the definition of done—a
description of the criteria every increment must fulfill. The done
criteria typically require that product backlog items be transformed
into working software that is thoroughly tested and adequately doc-
umented. Requirements are consequently implemented, tested,
and documented in the same sprint. The exception to this is vision-
ing sprints, where the goal is not to build shippable software but to
generate relevant knowledge so that a product vision is available.
Those sprints have their own unique definition of done.

Prior to the first sprint, you should meet with the ScrumMaster
and team to create a definition of done that includes the properties

DEFINIT ION OF DONE • • • 99

From the Library of Wow! eBook

ptg

every increment must fulfill. Some projects I have worked with have
included specific targets in their definitions of done—for instance,
the unit test coverage required. Once you all agree on the definition,
it should be written down and kept visible throughout the project.

D A I L Y S C R U M

The Daily Scrum allows the team to manage its work and to uncover
impediments on a daily basis. As the product owner, you should
attend the meeting whenever possible. It’s a great opportunity to
understand the progress being made and to see if the team needs
help (for instance, you might need to answer questions, review work
results, or help remove impediments). You can also share informa-
tion and update the team on what you have been working on and are
planning to do next. Your work often provides valuable information
about the activities at the release level and the project periphery.

When attending the Daily Scrum, be careful not to interfere
with the team’s self-organization. Do not identify or assign tasks, and
do not make any comments on the progress achieved by individu-
als—out loud or through body language. If you are concerned about
the progress, share your view in a constructive manner, perhaps by
asking questions.1 If you are worried about meeting the sprint goal,
for instance, you can say, “I noticed that the sprint burndown shows
a lot of work left to do. Is that something of concern to you?” By ask-
ing questions, you raise the team’s awareness but leave it up to the
team to act.

Impediments

Untreated problems proliferate like mushrooms in the dark. That’s
why Scrum puts an emphasis on impediments management—rec-
ognizing and treating problems that impede progress and harm

100 • • • CHAPTER 5 COLLABORATING IN THE SPRINT MEET INGS

1. Asking questions to communicate information is also referred to as the Socratic
method. It dates back to the ancient Greek philosopher Socrates, who famously used
questions to teach philosophy.

From the Library of Wow! eBook

ptg

the project. Team members raise impediments in the Daily Scrum,
and the ScrumMaster ensures that they are resolved as quickly as
possible. Even though dealing with problems can seem to slow
down the project, it avoids bigger issues and bigger delays later
on. “Problems are treasures,” writes lean management expert
Pascal Dennis. “They provide an opportunity to learn and
improve” (2006, 19).

S P R I N T B A C K L O G A N D S P R I N T B U R N D O W N

The sprint backlog comprises all activities necessary to reach the
sprint goal. The team creates the sprint backlog in the sprint plan-
ning meeting and updates it on a regular basis, at least once per day.
During these updates, the team might add new activities or remove
redundant ones; the team also records the effort left for each task. I
prefer to work with a task board that is placed in the team room, vis-
ible to everyone. The sprint burndown chart allows the team to
understand its progress and the likelihood of meeting the sprint
goal. The team can then adapt its work accordingly.

The sprint backlog and sprint burndown primarily serve the
team, as they facilitate self-organization. The artifacts can certainly
help you, as the product owner, determine whether the team is
likely to deliver on its commitment, but neither is intended as a
reporting mechanism to stakeholders. If stakeholders, such as cus-
tomers and management, are interested in the progress within the
sprint, they are welcome to attend the Daily Scrum as silent
observers and the sprint review meetings as active participants.

S P R I N T R E V I E W

The sprint review meeting facilitates developing a successful product. It
gives the Scrum team a chance to collaborate with the stakeholders, an
opportunity to investigate the product’s actual development to date and
decide on a way forward—rather than assuming that everything is going
according to plan. The stakeholders can include representatives from

SPRINT REVIEW • • • 101

From the Library of Wow! eBook

ptg

marketing, sales, and service, as well as customers and users. I vividly
remember a conversation with a customer of Primavera Systems, Inc.,
a provider of project, program, and portfolio management software
solutions, who attended the company’s sprint reviews. He found the
meetings extremely valuable, loved the transparency, and appreciated
the opportunity to influence the development of the product. Note
that the prep work for the meeting should be kept to a minimum. The
meeting should be low-key, and not a show. Teams should refrain
from giving a formal presentation and avoid using slides. The purpose
of the meeting is not to impress or to create excitement but to provide
transparency, and to inspect and adapt the product.

As the product owner, your job is to kick off the meeting by com-
paring the product increment to the sprint goal, the actual to the tar-
get, in order to determine the progress. Make sure you thoroughly
review the product increment and accept or reject each product back-
log item to which the team has committed. The best way to do this is
to grab the keyboard and run a few tests. Don’t forget: Accept only
product backlog items that comply with the definition of done and, if
user stories are used, fulfill the acceptance criteria. Never accept
unfinished or defective items. These earn zero points and are put
back into the product backlog. Note that carrying an inventory of par-
tially done work clouds progress and leads to anomalies in the release
burndown chart.

Always give a clear and constructive message to the team when
you provide feedback. Honor the team’s effort and goodwill. Be
honest and straight. If you are pleased with what has been achieved,
praise the team. If you are disappointed, say so. While giving feed-
back, remember that delivering the sprint goal is a team effort. As
such, always address the entire team, rather than singling out indi-
viduals. Show respect to your fellow Scrum team members, be
aware of your intentions and actions, and ask yourself how you can
help the team move forward.2

102 • • • CHAPTER 5 COLLABORATING IN THE SPRINT MEET INGS

2. Respect is so important in Scrum that it forms one of its five values (Schwaber and
Beedle 2002, 147–54). The other four are commitment, focus, openness, and courage.

From the Library of Wow! eBook

ptg

Once the progress has been determined, ask the stakeholders
for feedback on the product increment. Do they like what they
see? How does the product have to be adapted to make it a suc-
cess? Is the vision still valid? Is functionality missing or is there too
much functionality? Is a feature implemented incorrectly? Should
the look and feel be adjusted? If so, why? It is not unusual to dis-
cover new requirements now or to find out that product backlog
items have become redundant. Note that the stakeholder feedback
allows you and the team to see the increment through their eyes,
mitigating the danger of groupthink. To receive great feedback,
manage stakeholder expectations. Explain that an early product
increment might bear only a slight resemblance to the final prod-
uct, that new ideas and requirements should support the vision,
and that stakeholders might have to wait one or two sprints before
these new ideas can be implemented, depending on the priority
and the grooming effort.

Just-in-Time Reviews

As the product owner, you don’t have to wait until the sprint
review meeting to provide feedback on work results. It’s often
helpful to carry out just-in-time reviews as the results emerge in the
sprint. This gives the team an opportunity during the sprint to
adjust the results, if necessary. Just-in-time reviews work best
when the product backlog items pulled into the sprint are small
enough that the team can complete them within a few days.

S P R I N T R E T R O S P E C T I V E

Sprint retrospectives allow the Scrum team to inspect how the
work is carried out, to identify problems and their causes, and to
discover improvement measures that will make the work more
enjoyable and effective. There is a German proverb that nicely
summarizes the central idea of retrospectives: Selbsterkenntnis ist

SPRINT RETROSPECT IVE • • • 103

From the Library of Wow! eBook

ptg

der erste Schritt zur Besserung, which means “Reflection is the first
step toward improvement.”

As the product owner, participate in the sprint retrospective on
a regular basis. Attending the meeting allows you to contribute
improvement measures and to strengthen the relationship with the
rest of the Scrum team. I remember one particular sprint retrospec-
tive at one of my clients. The sprint review meeting revealed a mis-
match in expectations between the product owner and the team. As
a consequence, the product owner rejected most of the deliverables.
The team members were upset, believing they had done a good job,
and the product owner felt let down by the team. We used the subse-
quent sprint retrospective to clear the air and to analyze what had
happened, digging down to the root cause. By constructively dis-
cussing the situation, the Scrum team managed to identify two
important improvement measures: The product owner would try to
spend more time with the team, and the team members would help
the product owner groom the product backlog. Without the product
owner’s presence at the retrospective, the team would have strug-
gled to identify the right measures.

Making sustained improvements requires team members to
recognize that even the best teams can get better, to focus on what’s
holding back the team most, and to unearth the underlying causes.
All improvement measures have to be actionable and should usu-
ally be implemented in the next sprint. If bigger improvements,
such as purchasing and installing a new build server, are needed,
they are added to the product backlog.

S P R I N T M E E T I N G S O N L A R G E P R O J E C T S

Although large projects follow the Scrum meeting schedule, the
meetings have to be adapted. This section discusses the necessary
adjustments.

104 • • • CHAPTER 5 COLLABORATING IN THE SPRINT MEET INGS

From the Library of Wow! eBook

ptg

Jo in t Spr in t P lanning

Conducting a sprint planning meeting with multiple teams requires
additional prep work. This includes extending the grooming hori-
zon and carrying out look-ahead planning as described in Chapter 3
and Chapter 4. I have found that large projects often benefit from
the teams—or at least team representatives—coming together at the
start of the sprint planning meeting to discuss and understand the
overarching sprint goal to which all teams contribute. Once the
teams have conducted their individual sprint planning activities, it
is useful for the teams to reconvene again to learn what the entire
project plans to achieve in the sprint.

Scrum of Scrums

The Scrum of Scrums meeting allows multiple teams to coordinate
on a daily basis throughout the sprint. Team representatives meet
following their teams’ Daily Scrums to discuss the status quo, the
work planned, and any dependencies between the teams
(Schwaber 2007, 72). Note that this meeting is tactical in nature. It
cannot compensate for a lack of sprint prep work, such as look-
ahead planning.

Jo in t Spr in t Rev iew

Having an effective sprint review meeting with one or two teams
plus customers, management, and other stakeholders is challeng-
ing enough. With five, ten, or more teams, it’s even more difficult
to ensure a common understanding of the progress and to decide
on the way forward. Primavera found a great way to manage its
sprint review meetings, which often involved as many as 15
teams. Bob Schatz, former vice president of development at
Primavera, explains: “Our sprint reviews could best be described
as being like science fairs at school. Each team set up a station
where they demonstrated what they worked on. The end users,

SPRINT MEET INGS ON LARGE PROJECTS • • • 105

From the Library of Wow! eBook

ptg

stakeholders, and a few others from our company formed small
teams. Each reviewer team started at a different station. We ran
15-minute iterations moving reviewer teams from station to sta-
tion. It was an environment of high-energy, excitement, and fun”
(Schatz 2009).3 Getting the teams and stakeholders together in
one room is a great way to allow everyone to interact and to share.
If that’s not possible in the company’s buildings, consider using
an alternative location, such as a conference venue, at least for
every other review meeting.

Jo in t Spr in t Re t rospec t ive

Teams still benefit from having their own sprint retrospectives and
from implementing their own improvement measures on a large
Scrum project. But that’s not enough. For optimal results, the
teams should identify common improvement measures and share
their mutual insights. Joint sprint retrospectives allow the teams to
do this. An efficient way to hold a joint retrospective is involving
team representatives. This fosters cross-team pollination, but it
does not leverage the creativity and knowledge of all project mem-
bers. The alternative is a joint retrospective with all teams. Such a
retrospective is costly—it can take half a day or longer—but it uses
the teams’ collective wisdom and allows all team members to inter-
act, thereby strengthening inter-team relationships. A great way to
manage a joint retrospective is to use Open Space Technology
(Owen 1997), where the project members self-organize around
problem areas and identify improvement measures. Note that the
two options can be happily combined. An organization might
choose, for instance, to have meetings of team representatives as
the default and also to employ a joint retrospective with all teams
present after every third sprint.

106 • • • CHAPTER 5 COLLABORATING IN THE SPRINT MEET INGS

3. Note that the product owners helped present the work results to the reviewers.

From the Library of Wow! eBook

ptg

C O M M O N M I S T A K E S

As the product owner, you can foster a close and trustful collabora-
tion with the ScrumMaster and team by avoiding these common
mistakes: bungee product owner, passive product owner, unsus-
tainable pace, smoke and mirrors, and reporting up the sprint
burndown.

The Bungee Produc t Owner

A bungee product owner appears at sprint planning, vanishes, and
then reemerges at the sprint review meeting. A bungee product
owner has limited or no collaboration with the team during the
sprint; even reaching the individual via telephone or email can be
difficult. Sometimes the ScrumMaster or a team member fills the
void and acts as a proxy product owner, which allows the team to
move forward but fails to resolve the underlying causes of the prob-
lem. As the product owner, you are vital to the success of the prod-
uct. As such, your product owner responsibilities must be your
number-one priority. You should spend enough time on-site with
the team, making yourself available to answer questions, review
work, or remove impediments.

The Pass ive Produc t Owner

The team room was crowded. The product owner, ScrumMaster,
team, users, and a few line managers were watching a computer
screen. The tester in front of the computer was doing his best to
explain the functionality he was demoing. The product owner
looked rather uncomfortable, his body ever so slowly edging away
from the screen. Every now and then he would nod and say, “OK.”
After ten minutes, the demo was over. The ScrumMaster looked at
the product owner and asked, “Are you happy with what you have
seen?” The product owner nodded once more and said, “Good
job.” He then stood up and left the room. The other Scrum team

COMMON MISTAKES • • • 107

From the Library of Wow! eBook

ptg

members looked at each other in silence. “Time to start the retro,”
said the ScrumMaster.

I wish I had fabricated this little story. I wish even more that I
had witnessed it only once. Unfortunately, I have seen product
owners acting as passive bystanders in sprint review meetings many
times. But the meeting is not a show for you to go and watch. Its
objective is to figure out together what needs to be done to maxi-
mize the chances of creating a successful product. As a product
owner, you must actively contribute to the meeting to ensure the
product is evolving in the right way.

Unsus ta inable Pace

“There is no break between sprints. The new sprint starts on the
next business day,” I explain. An attendee raises her hand and asks,
“But how does the team recover?” “They don’t,” I answer. I look into
bleak faces; some people shake their heads. I continue: “You have to
make sure that the team is empowered to take on the right amount
of work—only as many product backlog items as they can realisti-
cally transform into a product increment, without getting worn out,
without being overworked.”

Developing a product is like running a marathon. If you want
to finish, you have to choose a steady pace. Many product owners
make the mistake of pressuring the team to take on more work. This
may achieve a short-term velocity increase but is not sustainable. In
fact, it is counterproductive. Sprints turn into mini death marches;
people will burn out quickly, fall ill, or leave. As the product owner,
you must respect the team’s empowerment—no matter what the
release burndown looks like. If the progress is too slow, get everyone
together to search for a creative, healthy solution rather than bully-
ing people into working longer hours.

108 • • • CHAPTER 5 COLLABORATING IN THE SPRINT MEET INGS

From the Library of Wow! eBook

ptg

Smoke and Mir rors

One of my favorite childhood memories is visiting the local fun fair,
with its rides and shows. One attraction impressed me particularly: a
maze with walls made out of mirrors projecting strange images and
creating deceiving illusions. A sprint review meeting where colorful
slides are shown or where the team presents results not correspond-
ing to the definition of done is its own maze. We can’t see things for
what they are; we are lost in an illusion. It’s all about the show—
smoke and mirrors. To create transparency, encourage teams to
keep sprint review meetings real—no matter who is in the room.
(Teams are allowed to demo only work results that they believe cor-
respond to the definition of done.)

Repor t ing Up the Spr in t Burndown

Some companies use the sprint burndown as a project report in sta-
tus meetings or as a document for senior management. Both are a
misuse of the artifact. Its primary purpose is to help the team inspect
its progress on a daily basis and adapt its work accordingly. It is not a
status report. Using the sprint burndown as a reporting tool turns it
into a control mechanism. Requests from management for regular
views into the sprint burndown are a telltale sign of a lack of trust. As
the product owner, you can help resolve the situation by inviting
stakeholders to the sprint review meetings and the Daily Scrums.
And use only the release burndown or the release plan to communi-
cate progress. (If the underlying problem is that more inspect and
adapt opportunities are needed, the team should consider shortening
the sprint length.)

R E F L E C T I O N

As the product owner, you guide and influence the team. Your
behavior matters. A lot. Frequently reflect on your intentions and

REFLECT ION • • • 109

From the Library of Wow! eBook

ptg

actions. Be a team player. Be open and supportive. At the same
time, be firm and don’t shy away from providing difficult feedback
in the sprint meetings. The following questions will help you reflect
on your behavior:

How can you support the team in the sprint planning meeting
without violating the team’s self-organization?

How can you effectively contribute to the Daily Scrum?

How can you closely collaborate with the team to provide early
feedback on work results?

How can you make your sprint review meetings even more effec-
tive and fun?

Do you attend the sprint retrospectives? If not, what would it
take to attend them? What would be the benefits?

110 • • • CHAPTER 5 COLLABORATING IN THE SPRINT MEET INGS

From the Library of Wow! eBook

ptg

6
• • •

TRANSIT IONING INTO THE PRODUCT
OWNER ROLE

When I met Paul, a first-time product owner, he asked me, “What
do I really have to do and how much time will it require?” Paul
explained that he wanted to double-check his day-to-day responsi-
bilities. He was especially worried about the time commitment he
had to make and the support he would get from his boss. Paul is not
unique. Many new product owners are not clear about their respon-
sibilities and are unsure how to best transition into their new role.
Being a first-time product owner can be challenging, and it often
requires personal and organizational changes. These changes can
be difficult, even painful at times. This chapter speaks directly to
readers transitioning into the role and to managers guiding a Scrum
adoption. You can find a more comprehensive description of Scrum
transition practices in Schwaber (2007) and Cohn (2009).

B E C O M I N G A G R E A T P R O D U C T O W N E R

Becoming a great product owner takes time and requires dedica-
tion. This section helps readers transition into and get better at play-
ing the role.

111

From the Library of Wow! eBook

ptg

Know Yourse l f

The first step to becoming a great product owner is to understand
who you are and how you hope to develop professionally. Reflect on
your skills and abilities and compare them to the responsibilities of
the product owner; identify the aspects of the role you are likely to
find difficult and that you may struggle with.

As I mentioned in Chapter 1, the product owner role is multi-
faceted. It’s difficult—perhaps impossible—to find new product
owners who have every necessary skill. You can therefore expect to
find gaps in your own knowledge and skills. John, for instance, has a
lot of expertise in interacting with customers and creating product
road maps but lacks the skills to write good user stories and to create a
release plan. Jane, on the other hand, has plenty of experience in
writing requirements and is familiar with release planning but lacks
visioning skills. Both will need to emphasize their strengths and
shore up their weaknesses. Lyssa Adkins, author of Coaching Agile
Teams, gives the advice shown in Table 6.1 to new product owners.1

TABLE 6.1 Product Owner Dos and Don’ts

Do Don’t

Say what needs to get done. Say how to do it or how much it will take.

Challenge the team. Bully the team.

Get interested in building a Focus on the short-term deliveries only.
high-performance team.

Practice business-value-driven Stick to the original scope and approach
thinking. “no matter what.”

Protect the team from Worry the team with changes that might
outside noise. happen, until they become real.

Incorporate change between Allow change to creep into sprints.
sprints.

112 • • • CHAPTER 6 TRANSIT IONING INTO THE PRODUCT OWNER ROLE

1. Personal communication with Lyssa Adkins, June 29, 2009.

From the Library of Wow! eBook

ptg

Deve lop and Grow

Understanding where your greatest development potential lies
allows you to select the right training measures. Product-owners-to-
be usually benefit from attending a Scrum product owner training
course to quickly acquire the relevant knowledge. But it’s not all
about information. As a new product owner, embrace the agile work
ethos and start to live the Scrum values: Be committed to the prod-
uct and the team, focus on the product owner job, be open and
encourage transparency, show respect to the people with whom you
interact, and have the courage to do the right thing and to act in the
right way (Schwaber and Beedle 2002, 147–54). Be a team player,
and trust your fellow Scrum team members.

Give yourself time to grow into the role. It’s unrealistic to
expect to do a perfect job right from the start; making mistakes is
often part of the learning process. Be patient but never complacent.
Once you have started working as a product owner, you will be able
to see your strengths and weaknesses more clearly. Use the sprint
retrospective to receive feedback from the ScrumMaster and team
on your own performance and adapt accordingly.

Get a Coach

In addition to attending a training course and reading books on
Scrum, first-time product owners greatly benefit from coaching. A
coach acts like a mirror, allowing new product owners to see the
impact of their words and actions more clearly. Take Paul, the prod-
uct owner from the beginning of the chapter. When I started coach-
ing Paul, he was not used to working closely with development
teams. He felt particularly uncomfortable in the sprint review meet-
ings and would either provide rather harsh feedback or be unnatu-
rally quiet. Paul was not aware of this behavior until I pointed it out
to him. After I brought the issue to Paul’s attention, we explored
how he could help make the review meetings more effective and

BECOMING A GREAT PRODUCT OWNER • • • 113

From the Library of Wow! eBook

ptg

enjoyable for everyone. One particularly helpful tenet for Paul was
to be tough on the problem but easy on the people. After our discus-
sion, Paul started to tackle issues in a constructive way and to openly
recognize the goodwill and effort of the team.

Another coaching form that works very well is an apprentice-
ship model. Take the example of one of my clients. Sarah, the head
of a business unit, took on the product owner role for the first release
of a new product. She quickly realized that she would not have
enough time to be a product owner in the long term. Shortly after
the start of the project, Sarah involved one of her staff members,
Tom, as an assistant. This gave Tom time to learn the ropes. Once
the first release had been deployed successfully, Sarah was able to
smoothly pass on the product owner role to Tom.

Ensure That You Have Sponsorsh ip f rom the R ight Leve l

To work effectively as a product owner, you rely on management’s
continued trust and support. Depending on the organization and
situation, the right level of management might be the vice presi-
dent of product management, the head of the business unit, the
leadership team, or the CEO. To get the necessary management
attention and support, you might have to educate management
about the importance of your role and the extent of its authority
and responsibility. Without sponsorship from the right level, you
are likely to lack authority and, as a consequence, will struggle to
do a good job.

You’re Not Done Ye t

After a few months working in your new role and with the initial
hurdles cleared, you are likely to feel more settled. Getting to that
stage is great, but don’t stop there. Continue to grow and develop by
regularly reflecting on your work. Listen to feedback from your fel-
low Scrum team members, and work on the remaining gaps in
knowledge or skills. A great way to improve is to join a product

114 • • • CHAPTER 6 TRANSIT IONING INTO THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

owner community, where you can connect with other product own-
ers, exchange ideas and experiences, share insights, and identify
best practices, for instance, from regular product owner workshops.2

D E V E L O P I N G G R E A T P R O D U C T O W N E R S

While each individual product owner needs to assume responsibil-
ity for doing a great job, there are a number of things managers guid-
ing a Scrum adoption can do to create an environment that
encourages product owners to flourish. This section describes what
you, as a leader or manager, should do to ensure that this happens.

Recognize the Impor tance of the Ro le

Senior managers must recognize the authority and responsibility of
the product owner role and the likely impact it is going to have on
the organization. Doing so is not only crucial for making agile prod-
uct management work, but it is also a critical success factor for any
Scrum adoption. Ken Schwaber agrees (2007, 85):

Until recently, I viewed this relationship [between product
management and development] as one of many changes
in a Scrum adoption. I now view it as the most critical
change, the lynchpin of the adoption. If this change is suc-
cessful, the use of Scrum will persist and benefits will
increase. If the change isn’t successful, the use of Scrum in
your enterprise might well unravel.

Se lec t the R ight Produc t Owners

Product owners must be selected with care. As a manager, you must
take into account not only the desirable characteristics of a product
owner (as described in Chapter 1) but also other factors including

DEVELOPING GREAT PRODUCT OWNERS • • • 115

2. Cohn (2009, 70–79) discusses improvement communities to foster the adoption
of Scrum in more detail.

From the Library of Wow! eBook

ptg

the product, the domain, and the project size. The best product
owner for one product might therefore be less suitable for another
one. Additionally, each company has to find its own way to staff the
product owner role. At Salesforce.com, for instance, the product
managers work as product owners and belong to the same depart-
ment. At mobile.de the product owner role is staffed with members
from the business units; each business unit looks after a set of prod-
ucts or product features.3 As with anything in Scrum, the proof is in
the pudding. Once an organization has run a number of Scrum pro-
jects, a common approach to staffing the product owner role usually
starts to emerge.

Empower and Suppor t the Produc t Owners

First-time product owners need time, trust, and support to grow into
their new role. Chances are that a new product owner will make
mistakes, ranging from not involving stakeholders to interrupting
the sprint; it’s often part and parcel of the learning process. As a
senior manager, you can help flatten the learning curve by provid-
ing the right training and coaching measures. “Early immersion
and training of the product owners in agile principles, product back-
log creation, user story design and estimation and planning is key to
the success of any agile team. Also, beyond initial training, continu-
ous product owner coaching throughout the rollout is necessary to
ingrain the new process into the culture,” write Fry and Greene
about their experience at Salesforce.com. They also advise compa-
nies to “get professional help. External coaches have done it before
and will see the roadblocks coming before you do. They can also
help you learn from other organizations that have gone through
similar transitions” (2007, 139).

116 • • • CHAPTER 6 TRANSIT IONING INTO THE PRODUCT OWNER ROLE

3. Personal communication with Brett Queener, senior vice president, products, at
Salesforce.com, on June 9, 2009, and with Philip Missler, CTO at mobile.de, on
June 18, 2009.

From the Library of Wow! eBook

ptg

Besides giving product owners adequate training, you can help
by empowering the product owners and by ensuring that product
owners have enough time to do their job well. A product owner who
is not empowered to decide if a feature will be delivered as part of
the release, for example, quickly loses credibility among the Scrum
team members and the stakeholders. Be aware that working as a
product owner is usually a full-time job. The project will suffer if the
individual playing the role is overworked. Freeing product owners
from their other obligations gives them the ability to pay full atten-
tion to their projects.

Sus ta in the Appl i ca t ion o f the Produc t Owner Ro le

Sustaining product ownership requires developing the necessary
organizational capabilities to grow and to develop product owners.
This goes beyond injecting initial knowledge into the organization.
It includes creating a comprehensive development program and
establishing a product owner community. A great way to create such
a development program is to base it on the product owners’ collec-
tive wisdom and to actively involve product owners in its creation,
for instance, by holding regular product owner workshops to iden-
tify best practices and improvement measures.

Sometimes organizational changes are necessary to fully estab-
lish the product owner role. Take the example of CSG Systems, a
customer interaction management company that provides software-
based solutions. Mauricio Zamora, executive director at CSG,
explains the company’s approach (Leffingwell 2009):

We first educated everyone on the differences between the
traditional Product Management, agile Product Owner
and Architect roles. We then had to convince management
that the Product Owner role required dedicated focus. The
visibility agile provides made the increasingly obvious
gaps in Product Ownership easier to see and address.
Finally, we had to revisit and revise organizational titles

DEVELOPING GREAT PRODUCT OWNERS • • • 117

From the Library of Wow! eBook

ptg

and compensation because the new Product Owner role
didn’t map well into our existing organization.

Additional changes include creating new career paths and
adjusting existing ones, modifying employee selection criteria, cre-
ating new development programs, and, for some companies, intro-
ducing new organizational structures.

R E F L E C T I O N

Applying the product owner role effectively is not only the corner-
stone of making agile product management work. It is also a learn-
ing process for the individuals playing the role and for the
organization. The following questions will help those transitioning
to the product owner role:

What are the aspects of the role you are likely to find difficult?

How can you acquire the necessary knowledge to be off to a good
start?

Who can help you develop and grow as a product owner?

Are there other product owners in your company you can con-
nect with?

Senior managers play a vital role in choosing and developing
product owners and also in championing the Scrum adoption.
Leaders, therefore, should explore the following questions to estab-
lish the product owner role in their organizations:

How is the product owner role likely to impact the organization?

What are the things that matter most for successful product
owners?

How can you help product owners do a great job?

How can the company sustain the effective application of the
product owner role?

118 • • • CHAPTER 6 TRANSIT IONING INTO THE PRODUCT OWNER ROLE

From the Library of Wow! eBook

ptg

REFERENCES

37Signals. 2006. Getting Real: The Smarter, Faster, Easier Way to
Build a Successful Web Application. https://gettingreal.
37signals.com/.

Anthony, Scott D., Mark W. Johnson, Joseph V. Sinfield, and
Elizabeth J Altman. 2008. The Innovator’s Guide to Growth:
Putting Disruptive Innovations to Work. Harvard Business
School Press.

Beck, Kent. 2000. Extreme Programming Explained: Embrace
Change. Addison-Wesley.

Beck, Kent, and Cynthia Andres. 2005. Extreme Programming
Explained: Embrace Change, 2nd edition. Addison-Wesley.

Beck, Kent, and Martin Fowler. 2000. Planning Extreme
Programming. Addison-Wesley.

Beck, Kent, et al. 2001. The Manifesto for Agile Software
Development. http://agilemanifesto.org/ and http://agilemani-
festo.org/principles.html.

Brooks, Frederick P. 1995. The Mythical Man-Month: Essays on
Software Engineering, 2nd edition. Addison-Wesley.

Bryson, John M. 2004. “What to Do When Stakeholders Matter:
Stakeholder Identification and Analysis Techniques.” Public
Management Review 6, no. 1, 21–53.

119

From the Library of Wow! eBook

https://gettingreal.37signals.com/
https://gettingreal.37signals.com/
http://agilemanifesto.org/
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

ptg

Carroll, Lewis. 1998. Alice’s Adventures in Wonderland and
Through the Looking-Glass. Penguin Classics. (Carroll’s
Alice’s Adventures in Wonderland was first published in 1865.)

Catmull, Ed. 2008. “How Pixar Fosters Collective Creativity.”
Harvard Business Review, September, 64–72.

Christensen, Clayton M. 1997. The Innovator’s Dilemma: When
Technologies Cause Great Firms to Fail. Harvard Business
School Press.

Cockburn, Alistair. 2005. Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison-Wesley.

Cohn, Mike. 2004. User Stories Applied: For Agile Software
Development. Addison-Wesley.

————. 2005. Agile Estimating and Planning. Prentice Hall.

————. 2008. “Writing the Product Backlog Just Enough and Just
in Time.” Scrum Alliance Weekly Column, February 12.
www.scrumalliance.org/articles/87-writing-the-product-back-
log-just-enough-and-just-in-time.

————. 2009. Succeeding with Agile: Software Development Using
Scrum. Addison-Wesley.

Conway, Melvin E. 1968. “How Do Committees Invent?”
Datamation, April, 28–31.

Cooper, Alan. 1999. The Inmates Are Running the Asylum: Why
High-Tech Products Drive Us Crazy and How to Restore
Sanity. Sams Publishing.

Cooper, Robert G. 2001. Winning at New Products: Accelerating
the Process from Idea to Launch, 3rd edition. Perseus.

Cunningham, Ward. 1992. “The WyCash Portfolio Management
System.” OOPSLA 1992 Experience Report.
http://c2.com/doc/oopsla92.html.

DeMarco, Tom, Peter Hruschka, Tim Lister, Suzanne Robertson,
James Robertson, and Steve McMenamin. 2008. Adrenaline

120 • • • REFERENCES

From the Library of Wow! eBook

www.scrumalliance.org/articles/87-writing-the-product-back-log-just-enough-and-just-in-time
www.scrumalliance.org/articles/87-writing-the-product-back-log-just-enough-and-just-in-time
http://c2.com/doc/oopsla92.html

ptg

Junkies and Template Zombies: Understanding Patterns of
Project Behavior. Dorset House.

Denne, Mark, and Jane Cleland-Huang. 2004. Software by
Numbers: Low-Risk, High-Return Development. Sun
Microsystems Press.

Dennis, Pascal. 2006. Getting the Right Things Done: A Leader’s
Guide to Planning and Execution. Lean Enterprise Institute.

Finkelstein, Sydney, Andrew Campbell, and Jo Whitehead. 2009.
Think Again: Why Good Leaders Make Bad Decisions and
How to Keep It from Happening to You. Harvard Business
School Press.

Fry, Chris, and Steve Greene. 2007. “Large Scale Agile
Transformation in an On-Demand World.” Paper presented at
AGILE 2007, August 13–17, IEEE, 136–42.

Gilb, Tom. 1988. Principles of Software Engineering Management.
Addison-Wesley.

Girard, Bernard. 2009. The Google Way: How One Company Is
Revolutionizing Management as We Know It. No Starch Press.

Greene, Steve, and Chris Fry. 2008. “Year of Living Dangerously:
How Salesforce.com Delivered Extraordinary Results through
a ‘Big-Bang’ Enterprise Agile Revolution.” Presentation at the
Scrum Gathering, Chicago, April.

Highsmith, Jim. 2009. Agile Project Management: Creating
Innovative Products, 2nd edition. Addison-Wesley.

Judy, Ken H. 2007. “CEO and Team: Collective Product
Ownership at Oxygen Media.” Presentation at the Scrum
Gathering, London, November.

Kaner, Sam, Lenny Lind, Catherine Toldi, Sarah Fisk, and Duane
Berger. 1996. Facilitator’s Guide to Participatory Decision-
Making. New Society Publishers.

REFERENCES • • • 121

From the Library of Wow! eBook

ptg

Kano, Noriaki. 1984. “Attractive Quality and Must-Be Quality.”
Journal of the Japanese Society for Quality Control, April,
39–48.

Larman, Craig. 2004. Agile and Iterative Development: A
Manager’s Guide. Addison-Wesley.

Larman, Craig, and Bas Vodde. 2009. Scaling Lean and Agile
Development: Thinking and Organizational Tools for Large-
Scale Scrum. Addison-Wesley.

Leffingwell, Dean. 2009. “The Product Owner in the Agile
Enterprise.” Agile Journal, April 6.

Levitt, Theodore. 1960. “Marketing Myopia.” Harvard Business
Review 38, no. 4, 45–56.

Levy, Steven. 2008. “Inside Chrome: The Secret Project to Crush
IE and Remake the Web.” Wired, no. 16 (October).
www.wired.com/techbiz/it/magazine/16-10/mf_chrome.

Lidwell, William, Kritina Holden, and Jill Butler. 2003. Universal
Principles of Design. Rockport Publishers.

Lynn, Gary S., and Richard R. Reilly. 2002. Blockbusters: The Five
Keys to Developing Great New Products. HarperCollins.

Maeda, John. 2006. The Laws of Simplicity. MIT Press.

Mayer, Marissa. 2006. “Nine Lessons Learned about Creativity at
Google.” Presentation at Stanford University, May.

Moore, Geoffrey A. 2006. Crossing the Chasm. Marketing and
Selling Disruptive Products to Mainstream Customers, revised
edition. Collins Business Essentials.

Newkirk, James, and Robert C. Martin. 2001. Extreme
Programming in Practice. Addison-Wesley.

Oberkirch, Brian. 2008. “Working in Close.” 34 Folders,
November. www.43folders.com/2008/01/11/working-close.

122 • • • REFERENCES

From the Library of Wow! eBook

www.wired.com/techbiz/it/magazine/16-10/mf_chrome
www.43folders.com/2008/01/11/working-close

ptg

Owen, Harrison. 1997. Open Space Technology: A User’s Guide,
2nd edition. Berrett-Koehler Publishers.

Pichler, Roman. 2008. Scrum—Agiles Projektmanagement erfolg -
reich einsetzen. dpunkt.verlag.

Poppendieck, Mary and Tom. 2003. Lean Software Development:
An Agile Toolkit for Software Development Managers.
Addison-Wesley.

Reinertsen, Donald G. 1997. Managing the Design Factory: A
Product Developer’s Toolkit. Free Press.

Schmidkonz, Christian. 2008. “Product Owner at SAP—A New
Job Title Developed.” Presentation at ObjektForum,
Stuttgart, September.

Schatz, Bob. 2009. “The Sprint Review: Mastering the Art of
Feedback.” www.scrumalliance.org/articles/124-the-sprint-
review-mastering-the-art-of-feedback.

Schwaber, Ken. 2004. Agile Project Management with Scrum.
Microsoft Press.

————. 2007. The Enterprise and Scrum. Microsoft Press.

————. 2009. “Scrum Guide.” Scrum Alliance, May.

Schwaber, Ken, and Mike Beedle. 2002. Agile Software
Development with SCRUM. Prentice Hall.

Senge, Peter M. 2006. The Fifth Discipline: The Art and Practice of
the Learning Organization, revised and updated edition.
Random House.

Simons, Matthew. 2004. “Distributed Agile Development and the
Death of Distance.” Cutter Consortium Executive Report,
Sourcing and Vendor Relationships 5, no. 4.

Smith, Preston G., and Guy M. Merritt. 2002. Proactive Risk
Management: Controlling Uncertainty in Product
Development. Productivity Press.

REFERENCES • • • 123

From the Library of Wow! eBook

www.scrumalliance.org/articles/124-the-sprint-review-mastering-the-art-of-feedback
www.scrumalliance.org/articles/124-the-sprint-review-mastering-the-art-of-feedback

ptg

Smith, Preston G., and Donald G. Reinertsen. 1998. Developing
Products in Half the Time: New Rules, New Tools. John Wiley
and Sons.

Sutherland, Jeff. 2005. “Future of Scrum: Parallel Pipelining of
Sprints in Complex Projects.” Proceedings of the Agile
Development Conference, 90–102.

Wake, Bill. 2003. “INVEST in Good Stories, and SMART Tasks.”
www.xp123.com/xplor/xp0308/index.shtml. August.

Womack, James P., and Daniel T. Jones. 2005. Lean Solutions:
How Companies and Customers Can Create Value and
Wealth Together. Simon and Schuster.

124 • • • REFERENCES

From the Library of Wow! eBook

www.xp123.com/xplor/xp0308/index.shtml

ptg

37Signals, 31
3M, 30, 36

A

Acceptance criteria. See User stories
Adkins, Lyssa, 112
AdWords, 33
Agile development practices, 81
Alpha release, 88
Analysis paralysis, 44
Andres, Cynthia, 31-32, 79, 81
Anthony, Scott D., 45
Apple

iPhone, 28–29, 43, 56, 78
iPod, 25, 31, 43
iTunes, 25

Attention and care in product backlogs,
49–51, 71, 73

Attributes in product vision, 33–34
Authority for product owners, 6
Availability of product owners, 6–7

B

Backlog
product. See Product backlog
sprint, 101

Baselines for estimates, 92
Basic functions, 39–40. See also Kano

Model

Beck, Kent, 17, 19, 31-32, 73, 79, 81,
83, 84, 98-99

Beedle, Mike, 24, 48, 84, 87, 102, 113
Beta release, 88
Big-bang release, 45, 95
Boehm, Barry, 76
Brainstorming, 51, 70
Broad goals, 26, 59
Brooks’s Law, 78
Bryson, John M., 11
Buffers, feeding, 94
Bungee product owners, 107
Burndowns

release, 83–87, 94
sprint, 101, 109

Business
analyst, 3, 19
model, 25
rules, 53

Butler, Jill, 31–32

C

Carroll, Lewis, 24
Cash flow, 30
Catmull, Ed, 5
Change

estimates, 64, 66
infrastructure and environment, 81
markets, xxi, 25, 52

125

INDEX

From the Library of Wow! eBook

ptg

Change (Continued)
organizations, 18, 111, 115, 117-118
product backlog, 49, 51-52, 71, 92-93
product roadmap, 41
release plan, 87
teams, 8, 49
velocity, 88, 91

Chief product owners, 12–13
Christensen, Clayton M., 28
Chrome browser, 8, 30, 35, 70, 81-82
Citrix, 28
Clarity in product backlog items,

63–64
Cleland-Huang, Jane, 28
Close, Chuck, 97
Coaching Agile Teams (Adkins), 112
Coarse-grained estimates, 64
Coarse-grained stories, 53
Cockburn, Alistair, 34
Cohn, Mike, 39, 48, 53, 58, 60, 62-63,

64, 66, 70-71, 86, 89-90, 92, 94,
111, 115

Collaboration
with customers and users, 10–12
product owner and ScrumMaster,

9-10
product owner and team, 7–10
with stakeholders, 10-11

Collocation, 8, 19
Commitment

product owner, 6, 111
Scrum value, 102
team, 98-99

Committees of product owners, 20
Communicators, product owners as,

5–6
Competing product backlogs, 73–74
Competitive advantage, 31-32, 40, 82
Complex user stories, 62
Complexity, 12-13, 27, 32, 35, 53, 87
Component teams, 16
Compound user stories, 62

Concise visions, 27
Cone of Uncertainty, 76
Constraints

nonfunctional requirements as, 68
Consumption maps, 39
Contracts, fixed-price, 78
Conway’s Law, 12
Cooper, Alan, 27, 38
Costs, 29, 42-43, 76–78
Creativity, 4-6, 18, 25-26, 35, 50, 72,

74, 99, 106
Cross-functional team, 7
CSG Systems, 117
Cunningham, Ward, 79
Customers

in development process, 45
feedback. See Feedback
product owner interaction with,

10–12
in product vision, 33–34
response, 35, 76, 80
in sprint review meeting, 102

D

da Vinci, Leonardo, 31
Daily Scrums, 100, 105
Death by committee, 20
Decision-making process, 5, 66
Decomposing product backlog items,

61–63
DEEP qualities, 48–49
Definition of Done, 99–100
Delighters, See Kano Model
Delivery date in release planning,

76–78
DeMarco, Tom, 43
Deming cycle, 38
Denne, Mark, 28
Dennis, Pascal, 101
Dependencies

getting the product backlog ready for
sprint planning, 64

126 • • • INDEX

From the Library of Wow! eBook

ptg

look-ahead planning, 92
as prioritization factor, 58–59

Dependent user stories, 58
Describing product backlog items, 53
Detailed user stories, 53
Discovering product backlog items,

51–52
Disguised requirements specifications,

71–72
Disruptive innovation, xxi, 28, 78
Distant product owners, 19
Doers, product owners as, 4
Done. See Definition of Done

E

Early and frequent releases, 79–81
Edison, Thomas, 38
Eisenhower, Dwight D., 87
Emergent requirements, 49
Empirical management. See Inspect

and adapt
Employee morale, 8, 19-20, 78
Empowered product owners, 6
Engaging goals, 26
Entrepreneurship, 4, 5, 44
Envisioning products. See Product

vision
Epic stories, 53, 62
Estimates

baselines for, 92
as DEEP quality, 49
product backlog items, 64–68

Experimentation, 37
Expertcity, 28, 44
Extreme Programming, 79

F

Fail early, 57
Failure tolerance, 44
Fast-track estimation, 67–68
Feasibility

in product backlog items, 63–64

in product vision, 25
Feature soup, 43
Feature teams, 16
Feedback

from customers and users, 10, 30, 38,
45-46, 49, 51-52, 57-58, 61, 73,
75-76, 78-79, 96

on product increments, 35, 52, 79,
103

product owner to team, 102
on prototypes and mock-ups, 10, 38
in the sprint review meeting, 111
stakeholder, 11, 103

Feeding buffers, 94
Fidelity, 78
Fine-grained estimates, 64
Finkelstein, Sydney, 5
Fisher, Darin, 35, 70, 81–82
Fixed-price contracts, 78
Forecast

budget, 78
market, 27, 44
project progress, 4, 64, 82-85, 87, 99
velocity, 89-91

Fowler, Martin, 84
Frequent releases, 79–81
Fry, Art, 30
Fry, Chris, 77–78, 116
Frye, Colleen, 70, 82
Functionality in release planning,

76–78
Functions, basic and performance. See

Kano Model

G

Games development, 36
Gilb, Tom, 28, 30, 79, 81
Girard, Bernard, 33, 80
Goals

product, 26
sprint, 59–60

Goodger, Ben, 35

INDEX • • • 127

From the Library of Wow! eBook

ptg

Google, 81
Chrome browser, 30, 35, 70, 80–82
development at, 35
simplicity of, 32–33
visioning at, 26

Google News, 56, 58
Google Way, The (Girard), 33, 80
GoToMyPC product, 28, 44
Greene, Steve, 77–78, 116
Grooming product backlogs, 49–51,

71, 73
Growth, 30, 77, 79

H

Hierarchies
product backlog, 54
product owner, 13–15

Highsmith, Jim, 27, 39
Holden, Kritina, 31–32

I

Idea generation, 35-36
Impediments management, 100–101
Incremental deployment, 79
Incremental innovation, 29
Innovation, xxi, 4-6, 28-29, 32, 56, 78,

80, 97, 99
Innovation cadence, 77
Inspect and adapt

product, 28, 35, 44, 46, 76, 81, 102
as the product owner, 113
project, 84, 94,
teamwork and process, 101, 103

Integration Scrum Teams, 15
INVEST criteria, 63
Investment decision, 27, 35, 44
iPhone, 43

early success, 28–29
release date, 78
value, 56

iPod, 25, 31, 43
iTunes, 25

J

Jeffries, Ron, 63
Jobs, Steve, 30, 32
Joint sprint meetings

planning, 105
retrospective, 106
reviews, 105–106

Jones, Daniel T., 39
Just-in-time reviews, 103

K

Kaner, Sam, 5
Kano, Noriaki, 39
Kano Model, 39–40

basic functions, 40
delighters, 41
performers, 41

Knowledge
acquisition, creation and generation.

See Learning
lack of, 57, 112, 114
as prioritization factor, 56–57
team’s collective knowledge, 5, 12,

50, 52

L

Large projects
product backlog grooming, 70-71
product owners, 12–16
release planning, 91–94
sprint planning, 104–106

Larman, Craig, 13, 93
Last responsible moment, 55
Launch. See Product launch
Laybourne, Gerry, 3, 98
Leaders, product owners as, 4
Learning, 8, 10, 26, 30, 37, 55-57, 62,

67, 76, 81, 98-99, 101, 105, 113-
114, 116, 118

Leffingwell, Dean, 117–118
Lego, 36
Levitt, Theodore, 10

128 • • • INDEX

From the Library of Wow! eBook

ptg

Levy, Steven, 35
Lidwell, William, 31–32
Life expectancy of the product, 33, 68,
Look-ahead planning, 92–93
Lynn, Gary S., 23, 27

M

Maeda, John, 32
Maintenance, 43
Management, 4-6, 17, 25, 44-45, 101,

105, 109, 114, 117
Market, xv, xvii, 7, 11, 18, 25, 28-29,

30, 33, 41, 45, 47, 52, 80, 96
Market requirements specification,

47
Market response, 28, 41, 44, 46
Market research, xv, 1, 28, 37, 44
Market segment, 29, 33, 42
Market share, 44
Marketing, 3, 11, 102
Marketing strategy, 80
Martin, Robert C., 68–70
Mayer, Marissa, 26, 30, 35
Meetings, sprint. See Sprint meetings
Merritt, Guy M., 57
Microsoft, 42
Minimal marketable feature set, 28
Minimal marketable products, 27–30,

42–43
Missler, Philip, 6, 8, 116
Mistakes

product backlogs, 71–74
product owners, 16–20
release planning, 94–95
sprint planning, 107–109
vision, 42–43

mobile.de, 6, 8, 116
Mock-ups, 37–38
Moore’s elevator test, 27
Morale. See Employee morale
Multipliers for velocity, 89–90
Murphy’s Law, 99

N

Needs in product vision, 33–34
Negotiators, product owners as,

5–6
New-product development, 17, 78
Newkirk, James, 68–70
Newton product, 29
Nonfunctional requirements

in product backlog, 67–70
in product vision, 34

O

Oberkirch, Brian, 97
Ockham’s razor, 31
Office Visio 2007 versions, 42
Open Space, 106
Operational requirements, 68–70
Organizational change, 18, 111, 117
Overall product owner. See Chief

product owner
Overworked product owners, 17–18
Owen, Harrison, 106

P

Partial product owners, 18
Passive product owners, 107–108
PatientKeeper, Inc., 7, 82
Personas, 38–39
Pet projects, 35–36
Pichler, Roman, 15, 92
Pipelining, 93–94
Platform. See Product platform
Plan, Do, Check, and Act cycle, 38
Planning

product. See Product vision
releases. See Release planning
sprint. See Sprint meetings

Planning Poker technique, 65–68
Points. See Story points
Polycom, 23
Poppendieck, Mary and Tom, 55
Portfolio management, 74

INDEX • • • 129

From the Library of Wow! eBook

ptg

Preproduction work, 36
Primavera Systems, Inc., 102, 105
Prioritization

as DEEP quality, 49–50
product backlog items, 54–59
in product vision, 34

Prioritization factors
dependencies, 58-59
knowledge, uncertainty, and risk,

56-57
releasability, 57-58
value, 55-56

Product backlog, 47
describing items, 53
discovering items, 51–52
estimating, 64-68
grooming, 49–51, 71, 73
mistakes, 71–74
nonfunctional requirements, 67–70
preparing for sprint planning, 59-64
prioritizing, 54–59
qualities, 48–49
scaling, 70–71
sizing items, 64–68
structuring, 53–54

Product backlog items
clear, 63
decomposing, 61-62
feasible, 63
refining, 63-64
testable, 63
user stories as. See User stories

Product definition. See Product
backlog

Product discovery, xv, 51
Product idea, 35-36, 52
Product increment, 16, 35, 44, 64, 69,

102-03, 108
Product launch, xxi, 1-2, 23-24, 29-30,

39, 41, 43, 45-47, 56, 59, 72, 75-76,
82, 95-96

Product lifecycle, 2-3, 42

Product line, 41
Product managers, xx, 1-3, 11, 16, 18,

20, 35, 54
Product marketers, 11–12
Product owner, 1

bungee, 107
characteristics, 3–7
choosing, 15–16, 115–116
coaching, 113–114, 116–117
committees, 20
community, 114-15, 117
customer and user interaction, 10–12
description, 2–3
desirable characteristics, 3-7
developing, 115–118
distant, 19
empowering and supporting, 116–117
large projects, 12–16
mistakes, 16–20
overworked, 17–18
partial, 18
passive, 107–108
proxy, 19–20
release planning, 94–95
Scrum team collaboration, 7–10
sustaining, 117–118
team, 7, 13-14
training, 113–114, 116–117
underpowered, 17

Product planning. See Product vision
Product platform, 43
Product portfolio, 41-42
Product requirements specification, 47
Product road maps, 41–42
Product variants, 42-43
Product versions, 24, 30, 46, 55, 74, 82
Product vision

creating, 24, 38–40
customer needs and product

attributes, 33–34
developing, 35–36
mistakes, 43–46

130 • • • INDEX

From the Library of Wow! eBook

ptg

qualities, 25–27
simplicity, 31–33

Productivity, 8, 10, 19, 31, 78
Profits, xxi, 11, 44
Progressive requirements

decomposition, 61
Project managers, 11–12
Prophecy visions, 44
Prototypes, 37–38
Proxy product owners, 19–20
Purchase decision, 27, 42

Q

Qualified product owners, 6–7
Quality

release planning, 78–79
sprint review meeting, 95

Quarterly cycles, 81–82
Queener, Brett, 116

R

Rakowski, Brian, 35
Reilly, Richard R., 23, 27
Reinertsen, Donald G., 27, 29, 45–46,

61
Releasability as prioritization factor,

57–58
Release backlogs, 87
Release burndown bars, 86–87
Release burndown charts, 84–86
Release planning, 75

burndown, 83–87, 94
early and frequent releases, 79–81
large projects, 91–94
mistakes, 94–95
plan, 87–91
quality, 78–79
quarterly cycles, 81–82
time, cost, and functionality, 76–78
velocity, 82–83

Reliability in sprint planning, 99
Reporting, 75, 101, 107, 109

Requirements
emergence. See DEEP qualities
nonfunctional, 67–70
product backlog items, 51–52, 71–73

Requirements specification. See Market
or product requirements
specification

Respect, importance of, 102
Return on investment, 30
Revenue, xv, 7, 25
Revenue sources, 25
Ript product, 3, 98
Risk as prioritization factor, 56–57
Risk-driven, 57
Road maps, product, 41–42
Roock, Stefan, 85

S

Sales, 5, 7, 11, 102
Salesforce.com, 77–78, 116
Sample release plan, 88
Scaling product backlogs, 70–71
Scenarios, 38–39
Schatz, Bob, 105–106
Schmidkonz, Christian, 2
Schwaber, Ken
Scrum in vision development, 36
Scrum of Scrums meeting, 105
ScrumMasters, collaboration with,

9–10
Segmentation. See Market segment
Self-organization, 8, 61, 100-01, 110
Senge, Peter, 26
Service, 5, 11, 36, 102
Shared visions, 25–26
Short and sweet visions, 27
Short releases, 79
Simons, Matthew, 19
Simplicity, 31–33
Sizing product backlog items, 64–68
Sketches, 24, 36-37, 53, 69
Slicing the cake technique, 63

INDEX • • • 131

From the Library of Wow! eBook

ptg

Smith, Preston G., 29, 45–46, 57
Smoke and mirrors, 109
Socratic method, 100
Software architecture, 8, 12, 16, 34, 37,

57, 68
Software by Numbers (Denne and

Cleland-Huang), 28
SoundStation, 23
Specialization of the product owner

job, 15
Spikes, 37
Sponsorship for product owners, 114
Sprint backlog, 101
Sprint burndown, 101, 109
Sprint goal

choosing, 59-60
commitment, 98

Sprint meetings, 59–64, 97–98
Daily Scrum, 100–101
large projects, 104–106
mistakes, 107–109
product owner role in, 98–99
sprint planning, 98-99
sprint retrospectives, 103–104, 106
sprint review meetings, 101–103,

105
Stable teams, 8, 78
Stakeholder

dialogue between Scrum team and
stakeholders, 41, 50, 75, 91

expectations, 103
interaction, 10–12
in sprint review meetings, 101-03

Stories. See User stories
Story points, 49, 64-66, 82-86, 92
Storyboard, 37, 53, 69
Structured product backlogs, 53–54
Supermassive Games, 36
Suppliers, 87, 92
Sustainable pace, 108
Sutherland, Jeff, 7, 82
Swift, Jonathan, 4

T

Target price, 25
Tasks, 49, 61, 64, 98, 100-101
Team composition, 8, 57, 89, 91,
Team of product owners. See Product

owner team
Team players, product owners as, 4
Team room, 8
Teamwork, 8, 21, 26, 34, 59
Testability in product backlog items,

63–64
Themes for product backlogs, 53–54
Time in release planning, 76–78
Time to market, 29-30
Tools

product backlog, 50-51
product vision, 34
release burndown chart, 85
release plan, 91

Total cost of ownership, 10, 33, 68
Trade journal reviews, 39
Training for product owners, 113–114,

116–117
Transparency, 91, 102, 109, 113

U

Uncertainty
as prioritization factor, 56–57
in product backlog items, 62
in release planning, 76-77
in sprint planning, 99

Underpowered product owners, 17
Unifying visions, 25–26
Unique selling points, 25, 40
Unit cost, 56
Unsustainable pace, 108
User experience, 7, 26, 28, 32-33, 38,

67, 69, 78
User interface design, 36, 57, 64, 67-68
User interfaces, 32
User stories

acceptance criteria, 53, 63, 102

132 • • • INDEX

From the Library of Wow! eBook

ptg

complex, 62
compound, 62
decomposing, 53, 62-63
dependent, 58
monster criteria, 62-63
product backlog items, 53, 62–65

User
feedback. See Feedback
participating in the development

process, 45
product owner interaction with,

10–12
in sprint review meetings, 102

V

Value as prioritization factor, 55–56
Value-added, 24, 39
Value proposition, 27, 39,
Variants, product. See product variants
Velocity

forecasting, 89–90
getting the product backlog ready for

sprint planning, 60

release planning, 82–83
Views for product backlogs, 71
Visio program, 42
Vision, See Product vision
Vision box, 39
Visionaries, product owners as, 4
Vodde, Bas, 13

W

Wake, Bill, 63
Welch, Jack, 4
Wheaton, Harvey, 36
Whiteboards, 54, 91
William of Ockham, 31
Wish lists, 72
Womack, James P., 39

Y

Yesterday’s weather, 84

Z

Zamora, Mauricio, 117

INDEX • • • 133

From the Library of Wow! eBook

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	1. Understanding the Product Owner Role
	The Product Owner Role
	Desirable Characteristics of a Product Owner
	Visionary and Doer
	Leader and Team Player
	Communicator and Negotiator
	Empowered and Committed
	Available and Qualified

	Working with the Team
	Collaborating with the ScrumMaster
	Working with Customers, Users, and Other Stakeholders
	Scaling the Product Owner Role
	The Chief Product Owner
	Product Owner Hierarchies
	Choosing the Right Product Owners

	Common Mistakes
	The Underpowered Product Owner
	The Overworked Product Owner
	The Partial Product Owner
	The Distant Product Owner
	The Proxy Product Owner
	The Product Owner Committee

	Reflection

	2. Envisioning the Product
	The Product Vision
	Desirable Qualities of the Vision
	Shared and Unifying
	Broad and Engaging
	Short and Sweet

	The Minimal Marketable Product
	Simplicity
	Ockham’s Razor
	Less Is More
	Simple User Interfaces

	Customer Needs and Product Attributes
	The Birth of the Vision
	Using Pet Projects
	Using Scrum

	Techniques for Creating the Vision
	Prototypes and Mock-ups
	Personas and Scenarios
	Vision Box and Trade Journal Review
	Kano Model

	Visioning and the Product Road Map
	Minimal Products and Product Variants
	Common Mistakes
	No Vision
	Prophecy Vision
	Analysis Paralysis
	We Know Best What Is Good for Our Customers
	Big Is Beautiful

	Reflection

	3. Working with the Product Backlog
	The DEEP Qualities of the Product Backlog
	Detailed Appropriately
	Estimated
	Emergent
	Prioritized

	Grooming the Product Backlog
	Discovering and Describing Items
	Discovering Items
	Describing Items
	Structuring the Backlog

	Prioritizing the Product Backlog
	Value
	Knowledge, Uncertainty, and Risk
	Releasability
	Dependencies

	Getting Ready for Sprint Planning
	Choosing a Sprint Goal
	Preparing Just Enough Items Just in Time
	Decomposing Items
	Ensuring Clarity, Testability, and Feasibility

	Sizing Items
	Story Points
	Planning Poker

	Dealing with Nonfunctional Requirements
	Describing Nonfunctional Requirements
	Managing Nonfunctional Requirements

	Scaling the Product Backlog
	Use One Product Backlog
	Extend the Grooming Horizon
	Provide Separate Backlog Views

	Common Mistakes
	Disguised Requirements Specification
	Wish List for Santa
	Requirements Push
	Grooming Neglect
	Competing Backlogs

	Reflection

	4. Planning the Release
	Time, Cost, and Functionality
	Quality Is Frozen
	Early and Frequent Releases
	Quarterly Cycles
	Velocity
	The Release Burndown
	The Release Burndown Chart
	The Release Burndown Bar

	The Release Plan
	Forecasting Velocity
	Creating the Release Plan

	Release Planning on Large Projects
	Common Baseline for Estimates
	Look-Ahead Planning
	Pipelining

	Common Mistakes
	No Release Burndown or Plan
	Product Owner in the Passenger Seat
	Big-Bang Release
	Quality Compromises

	Reflection

	5. Collaborating in the Sprint Meetings
	Sprint Planning
	Definition of Done
	Daily Scrum
	Sprint Backlog and Sprint Burndown
	Sprint Review
	Sprint Retrospective
	Sprint Meetings on Large Projects
	Joint Sprint Planning
	Scrum of Scrums
	Joint Sprint Review
	Joint Sprint Retrospective

	Common Mistakes
	The Bungee Product Owner
	The Passive Product Owner
	Unsustainable Pace
	Smoke and Mirrors
	Reporting Up the Sprint Burndown

	Reflection

	6. Transitioning into the Product Owner Role
	Becoming a Great Product Owner
	Know Yourself
	Develop and Grow
	Get a Coach
	Ensure That You Have Sponsorship from the Right Level
	You’re Not Done Yet

	Developing Great Product Owners
	Recognize the Importance of the Role
	Select the Right Product Owners
	Empower and Support the Product Owners
	Sustain the Application of the Product Owner Role

	Reflection

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

