
1

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-1

Agile Programming
eXtreme programming (and SCRUM)

D7025E
C

op
yr

ig
ht

 K
år

e
 S

yn
ne

s
 2

00
5-

20
12

XP-2

React to changing requirements!

• To date, most methodologies have treated software development
as a manufacturing process, with the software proceeding along
the requirements-analysis-design-code-test-maintain assembly
line.

• This approach has an important assumption - that the shape of the
finished product is known before the process begins.

• Most modern software projects cannot satisfy this assumption.
The customer is specifying something completely new, and needs
constant feedback to validate their choices.

• In turn, the programmers need to have a methodology that
welcomes changing requirements so that they can react to
feedback.

2

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-3

eXtreme Programming

• How do we deliver functionality to busineess
clients quickly?

• How do we keep up with near continous change?

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-4

Manifesto for Agile Software Development

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.”

http://agilemanifesto.org/

3

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-5

XP Principles

• Communication. An XP team thrives on shared understanding of the
problem and the software, and the most efficient and effective method of
achieving shared understanding is face-to-face communication. Anything
that obstructs efficient communication needs to be removed.

• Simplicity. Simplicity is the art of maximizing the amount of work not done.
Dee Hock, former CEO of Visa International, says "Simple, clear purpose
and principles give rise to complex, intelligent behavior. Complex rules and
regulations give rise to simple, stupid behavior".

• Courage. Successful software teams need to operate on the edge of chaos -
they need to go as fast as they possibly can without losing control. This
means that sometimes they fail. If people are scared to fail then they'll go too
slowly.

• Feedback. Often project teams and their customers don't realize they're in
trouble until a short time before delivery. XP teams get frequent feedback -
week to week by delivering working software, but also minute to minute
through testing tools and any other mechanism they can implement.

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-6

The 12 Practices

Coding-oriented practices

#1 Testing

#2 Coding standards

#3 Common metaphor

#4 Refactoring

Design-oriented practices

#5 Simple design

#6 Small releases

#7 Continuous integration

Social, Psychological, and

Organizational Practices

#8 The planning game

#9 Pair programming

#10 Collective ownership of code

#11 40-hour week

#12 On-site customer

Bonus Practices

• Small steps*

• Stand-up meetings*

• Continuous learning*

4

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-7

Coding-oriented Practice
#1: Testing

• Traditional:
programmer performance = kloc
tester performance = defects found
– No one interested in reducing defects before testing!

• eXtreme:
– Develop test before code and let tests drive the

development!

– Lifecycle:
Listen (requirements, interface), test, Code, test, Design
(Refactoring), test

– Automated tests! Instant feedback!

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-8

XP Activities
Testing

• All code must have unit/module tests.

• All code must pass all unit tests before it can
be released.

• When a bug is found tests must be created.

• Functional/acceptance tests are run often and
the score is published!

5

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-9

Coding-oriented Practice
#2: Coding and modeling standards

• Easy – most already do this

• Required for letting people work
on all code, with common
ownership of the code!

• Enables people to work together

• UML – modeling design

• Design Patterns, solution reuse

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-10

Coding-oriented Practice
#3: Common metaphor

• Overall coherent theme for business and
developers

• Common metaphor guides system development

• Metaphor = big architectural picture

• Stories = small and concrete features

6

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-11

Coding-oriented Practice
#4: Refactoring

• Not no design, but continous design!

• Reduce redundancy, eliminate unused
functionality, simplify design

• Removes fear of change and builds confidence

• Nothing is set in stone if people can see a way
to make it better and if it’s possible to do so

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-12

Design-oriented Practice
#5: Simple design

• “Do the simplest thing that could possibly work”

• “If you believe the future is uncertain, and that you
can cheaply change your mind, then putting in
functionality on speculation is crazy”
- Beck

• Do not add functionality before it is needed!

• Guesswork leads to developing things we do not
need!

• Refactor!!

7

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-13

Design-oriented Practice
#6: Small releases

• “Every release should be as small as possible, containing the
most valuable business requirements”
– Beck, XP

• “Evolutionary steps should be delivered on the principle of the
juiciest one next”
– Tom Gilb, Princiles of Software Engineering Management

• “Divide and Conquer!”
– Ceasar

• Releases relate to features

• Sense of accomplishment and satisfaction while enabling good
feedback

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-14

Design-oriented Practice
#7: Continuous integration

• Everyone needs to work with the latest version

• Avoids integration problems, by integrating often
– Daily builds … or … builds every couple of hours!
– The Microsoft process – several builds per day.

• Relies on rigorous testing and no integration
without tests passing 100%

• Small steps allows failing gracefully!

8

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-15

The Integration Station

Integrate

Develop
C

Develop
A

Develop
D

Develop
B

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-16

Social, Psychological and Organizational Practice
#8: The planning game

• Short, 3-4 week cycles,
frequent updates

• Splitting business and
technological priorities

• Stories defines feature
requirements, in card format

• Involves designers and
customers in choosing
features and estimating time

Schedule
Cost

Quality
Functionality

On time,
within budget and
meet requirements!

9

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-17

XP Activities
Planning

• User stories are written.
– Use Cases
– Storyboarding

• Release planning
creates the schedule.

• Make frequent small
releases.

• The Project Velocity is
measured.

• The project is divided
into iterations.

• Iteration planning starts
each iteration.

• Move people around.

• A stand-up meeting
starts each day.

• Fix XP when it breaks.

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-18

SCRUM Planning

10

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-19

”Failing gracefully”

• Experience is won through an equal amount of successes
and failures.

• One way to become truly successful is to know how to
”fail gracefully”!

• Start small and simple, then evolve in small steps!
– A failure does not mean that too much is lost. It’s small!

• Manage risks by:
– Identifying risks early, then weigh value against risk to

prioritize work.
– Doing the parts of the system with least value/risks ratio last!
– Starting with studying critical risks! (The hardest parts)

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-20

Social, Psychological and Organizational Practice
#9: Pair programming

• All code is written by 2
people at one machine

• One person tactical (writing
code and tests), the other
strategic (reviewing and
thinking)

• Time to isolate defect:
– 15 hours per defect testing
– 2-3 hours per defect using

inspection
– 15 minutes per defect before

inspection!
– Few minutes with pair

programming!!

• Pairs change often

• Quality is a big win

• People stay more focused and
‘on target’

• Inspection! Code reviews and
Walkthroughs.
– Collaborative interaction
– Speed learning, better

programming practices
– Uncover and prevent defects,

cost-efficiently

11

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-21

Who is right?
C

op
yr

ig
ht

 K
år

e
 S

yn
ne

s
 2

00
5-

20
12

XP-22

Code Review

• Weekly for a team of designers/developers

• Share information about the system
– Redundancy!

• Create a common view of the system!

• Documents the code design
– Diagrams in UML

• Find flaws, bugs, features and bottlenecks

• Classification!

12

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-23

Code Review Tasks

• Identify
– Relations

• Class diagrams
• Object diagrams
• Modules

– Mechanisms
• Sequence diagrams
• Activity diagrams
• Relation to use cases

– States
• State diagrams

– Exceptional conditions
• Exception handling
• Pre/post-conditions

– Flaws, Features, Bugs and
Bottle-necks

• Increment
– Comments / Clean code
– Meeting requirements
– Reconsider

• Interface
• Operations
• Relations
• Implementation

– Metrics
• Coupling
• Cohesion
• Sufficiency
• Completeness
• Primitiveness

– New additions, how!?
• Classification

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-24

Social, Psychological and Organizational Practice
#10: Collective ownership of code

• Any pair can change anything

• Relies critically on rigorous testing

• Enables refactoring, rapid modification, and increased
quality

• Eliminates dependency on one person

• No one to blame! Everyones responsibility!
– Building a responsible team! (Team programming)

13

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-25

Social, Psychological and Organizational Practice
#11: 40-hour week

• “Don’t burn out the troops!”

• Overtime = time you do not want to be at work!

• Volunteered commitment!
– People want to come to work!

– Anticipate each day with great relish?

– Commitment arises from a sense of purpose!

• People needs to have fun, feel appreciated and get a
feeling of accomplishment!

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-26

Sociology and Psychology

• Need open, honest communication among programmers
and between programmers and customers

• People can get more done when there are others working
on the same thing keeping them on task

• Project management involves coaching, not genius

• Programmers need to have fun! Stimulation/Motivation

• True collaboration is hard – not often taught in school
and certainly not rewarded in business.
Sometimes really smart people have trouble with XP…

14

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-27

Social, Psychological and Organizational Practice
#12: On-site customer

• The oldest cry in software development –
user involvement!

• Feedback is very important!
– Save resources

– Meet requirements

– Feel accomplishment and satisfaction

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-28

XP Activities
Coding

• The customer is always
available.

• Code must be written to
agreed standards.

• Code the unit test first.

• All production code is
pair programmed.

• Only one pair integrates
code at a time.

• Integrate often.

• Use collective code
ownership.

• Leave optimization till
last.

15

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-29

Conclusions

• Attracted to elegance

• The 12 Practices make sense on their own, and
are synergistic when used collectively

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-30

Non-Extreme versus Extreme Programming

• Limited customer contact

• Central up-front design

• Build for the future too

• Complex implementation

• Tasks assigned

• Developers in isolation

• Infrequent integration

• Limited communication

• Customer on team

• Open evolving design

• Evolve; just in time

• Radical simplicity

• Tasks self-chosen

• Pair programming

• Continuous integration

• Continual communication

16

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-31

Do not use eXtreme Programming, If...

• You’re using a process and
developers and customers are
happy with it!

• Your requirements are truly
fixed

• You cannot keep the cost of
change low in your
environment

• Known bad spots:

– “Dilbertesque” companies

– More than about 20
programmers (unless
teams)

– Commitment to existing
code to maintain existing
applications

– Long time required for
feedback

– Programmers separated in
space

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-32

Teams that adopt XP
frequently find they are delivering

vastly higher quality software faster
than they could before.

17

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-33

More on eXtreme Programming

• Cutter White Paper (good intro!):
http://www.cutter.com/freestuff/ead0002.pdf

• ”XP Explained – Embrace Change”,
Beck 2000

• The XP series by Addison&Wesley

• http://www.extremeprogramming.org/

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-34

More on SCRUM

• Jeff Sutherland’s site
http://www.jeffsutherland.org/scrum/

• “Scrum and XP from the Trenches”,
by Henrik Kniberg (Free to download!)
http://www.infoq.com/minibooks/scrum-xp-from-the-
trenches

• “Agile Software Development with Scrum”,
by Ken Schwaber and Mike Beedle

• http://www.controlchaos.com/

18

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-35

unicorn@ltu.se

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-36

Conclusions

• The name of the game is agility

• Traditional methodologies were developed to
build software for low levels of change and
reasonably predictable desired outcomes.

• But, the business world is no longer very
predictable, and software requirements change
at extremely high rates.

19

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-37

Four Critical Ideas

• Most of the practices from XP is not new,
they are as old as programming!

• However, the conceptual foundation and how
the practices are melded together is greatly enhancing
older practices!

• The Cost of Change
• ReFactoring
• Collaboration
• Simplicity

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-38

Cost of Change

” XP keeps the cost of change low, so that it's not much more expensive to
implement a feature later than it is to implement it now, and then leverages

this cost-of-change environment to produce software faster. ”

20

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-39

The Cost of Delay in
Fixing Requirements Errors

0

50

100

150

200

Cost to fix

Reqts. definition
Design
Coding
Unit testing
Post-delivery

Data: Boehm & Papaccio (1988)
IEEE Trans. Software Eng.

Nominal
unit cost 20-fold increase

during development

200-fold increase
after delivery

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-40

eXtreme Programming Values

 Open, honest
communication

 Rapid feedback at all
levels

 Quality Work

 Assume Simplicity

 Incremental Change

 Small initial investment

 Embrace Change

 Travel light

 Teach learning

 Courage - play to win

 Local adaptation

21

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-41

eXtreme Philosophy

• Must have extremely rapid system development

• Must have extreme customer involvement

• Must be extreme in avoiding defects

• Must not be afraid to change code – in the extreme, one can
“embrace change”

• Must have extreme involvement of coders – everyone owns all
the code

• Must be extremely respectful of people and their personal,
social, and psychological needs

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-42

eXtreme Programming

What is XP?

 A software development process aligned with “developer

nature”

 It sounds very constraining, but it’s not!

 Targeted at dynamic projects developed with small co-located

teams

 Based on social & collaborative values as well as technical

practices

 Minimal! (At least concerning anything other than code and

test cases…)

22

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-43

Customer focus
C

op
yr

ig
ht

 K
år

e
 S

yn
ne

s
 2

00
5-

20
12

XP-44

Design of Software Systems = Control Chaos

23

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-45

The Ultimate Aim = Simplicity!

KISS – Keep It Simple, Stupid!

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-46

SCRUM

The story:

• Agile programming methodology
– Light-weight
– Rapid

• Jeff Sutherland and Ken Schwaber, 1995
– Ideas from ’lean development’ in Smalltalk

• ”A simple framework for project management on
complex projects”

• ”Extremely simple, but exceptionally hard”

24

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-47

eXtreme Programming

The story:

• Chrysler Comprehensive Compensation system,
payrolls
– OO/Smalltalk project
– Started in the mid-1990s, stuck in 1997
– Piloted eXtreme Programming practices and was

ready within time and budget during the spring 1999

• ”The Three Extremoes”
– Beck, Cunningham and Jeffries

C
op

yr
ig

ht
 K

år
e

 S
yn

ne
s

 2
00

5-
20

12

XP-48

Don Wells' feedback loop

