
Interview with Eduardo Miranda about
Estimating and Planning Agile Projects
Eduardo Miranda, associate professor at the Master of Software Engineering program
at Carnegie Mellon University explains the need for planning in agile projects, and
describes various planning techniques that can be used with agile. He also looks on the
impact of agile on project management offices and on the role of project managers in
agile projects.

Agile Project
Estimation and
Planning

PAGE 4

eMag Issue 17 - August 2014

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN ENTERPRISE SOFTWARE DEVELOPMENT

USER STORY ESTIMATION TECHNIQUE P. 9

ESTIMATING ON AGILE PROJECTS: WHAT’S THE STORY, WHAT’S THE POINT? P. 13

THE PRIORITIZATION DIVIDE: WITH NUMBERS OR WITHOUT? P. 16

THE GUESSING GAME: ALTERNATIVES TO AGILE ESTIMATION P. 21

PLANNING AND CONTROLLING COMPLEX PROJECTS P. 31

Contents

Interview with Eduardo Miranda about
Estimating and Planning Agile Projects 	 Page 4
Eduardo Miranda, associate professor at the Master of Software Engineering program at Carnegie Mellon
University explains the need for planning in agile projects, and describes various planning techniques that
can be used with agile. He also looks on the impact of agile on project management offices and on the role of
project managers in agile projects.

User Story Estimation Techniques 	 Page 9
One of the great things about working as a consultant is the ability to try out many different ideas and
adapting your personal favorite process to include things that work. This article gives the details about user
story estimation techniques that Jay Fields has found effective.

Estimating on agile projects: what’s the story, what’s the point?	 Page 13
David Morris explores the topic of agile estimating: what it is, how we typically do it, why we should bother,
some of the alternatives, and provides some advice for new players.

The Prioritization Divide: With Numbers or Without? 	 Page 16
While there are many methods that use stories as a means for prioritizing development, there’s a basic
divide that asks whether it should be done with numbers or without. There are arguments on both sides, but
instead of examining these, people tend to fall into one side naturally. Once there, they can become quickly
entrenched in the belief that the other camp is foolishly mistaken.

The Guessing Game: Alternatives to Agile Estimation 	 Page 21
- Neil Killick proposes ways to reduce risk and uncertainty, calculate a product’s price, determine delivery
dates and roadmap, do Scrum and XP without using estimates.

Planning and Controlling Complex Projects 	 Page 31
Planning and budgeting large projects is often based on trying to predict how development will turn out.
Stories are estimated by the development team, but the budget for the whole project is independent from
those estimates. Especially for complex projects this leads most often to (unwanted) surprises. Insights from
beyond budgeting can help to increase flexibility, and focus on business value.

Page 3

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

A Letter from the Editor

Estimation is often considered to be a black art
practiced by magicians using strange rituals. It is
one of the most controversial of activities in Agile
projects – some maintain that even trying to estimate
agile development is futile at best and dangerous at
worst.

There are indeed times when estimating is
unnecessary and/or pointless. If the work is novel,
nothing like it has been attempted before, the skills
of the team (or who the team will be) are unknown or
the work just has to be done (either the value to be
derived from having the product is compelling or it is
a compliance or survival project) then estimating may
be a waste of time and effort.

The more common reality is that there is a need to
provide at some sort of estimate of the likely time
and cost needed to build the product. Business
decisions need to be made regarding which initiatives
to fund and the allocation of funds and people to
do the work. However there are lots of risks and
mistakes associated with estimation, and there are a
number of alternate approaches which can be used.

When putting together this ebook we selected
articles which present ways of coming up with
estimates as well as some that argue for alternate
approaches.

Ben Linders spoke to Eduardo Miranda about
estimating and planning approaches in agile
projects, why the traditional estimating and planning

approaches don’t work and ways to be predictable
using agile methods.

Jay Fields presents a number of different ways
to size and estimate user stories in agile projects,
presenting the pros and cons of a number of different
techniques.

David Morris discusses why estimating matters,
some of the advantages and disadvantages of
estimating, presents some approaches and examines
the #noestimates debate.

Alex Adamopoulos and Paul Dolman-Darrall address
the use or not of numbers for prioritization of
features or user stories.

In Neil Killick’s presentation at Agile Australia 2013
he proposed ways to reduce risk and uncertainty,
calculate a product’s price, determine delivery
dates and roadmap, do Scrum and XP without using
estimates.

Finally Jutta Eckstein argues for a different approach
based on beyond budgeting which is designed to
increase flexibility and maximise business value while
avoiding unwanted surprises.

We hope these articles will help you address your
estimating challenges and provide food for thought
with some ideas of different ways to approach the
topic.

Shane Hastie is the Chief Knowledge Engineer for Software Education (www.softed.

com) a training and consulting company working in Australia, New Zealand and

around the world. Since first using XP in 2000 Shane’s been passionate about helping

organisations and teams adopt Agile practices. Shane leads Software Education’s

Agile Practice, offering training, consulting, mentoring and support for organisations

and teams working to improve their project outcomes.In 2011 Shane was elected as a

Director of the Agile Alliance (www.agilealliance.org)

Page 4

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Interview with Eduardo Miranda
About Estimating and Planning
Agile Projects

The usage of agile planning practices – like product backlogs, planning games, and
stand-ups – impacts the planning of projects and portfolios in project-management
offices. In an interview with InfoQ, Eduardo Miranda, an associate teaching
professor in the Institute for Software Research at Carnegie Mellon University,
explained the need for planning in agile projects and described various planning
techniques that can be used with agile.

He also looked on the impact of agile on project-
management offices and on the role of project
managers in agile projects.

InfoQ: Eduardo, could you briefly introduce
yourself to the readers of InfoQ?

Eduardo: Thanks for this opportunity and the
interest in my work. I am a software professional
with over 20 years of experience in the development
and management of software and process-
improvement programs. I spent my last 10 years in
industry, working for Ericsson in Canada, and now I
am an associate professor in the Master of Software
Engineering program at Carnegie Mellon University.
I have published numerous articles on software
development, estimation and planning and a book on
project-management offices, Running the Successful
Hi-Tech Project Office, which was published by
Artech in 2003.

InfoQ: Newer methods in software development
like agile and lean are changing the way that

planning is done. Some people even question if
there is still a need for a plan. Are plans still useful?

Eduardo: Plans serve several purposes. First, they
help us think how we are going to approach the work
before we start it. Second, they communicate to
the stakeholders to expect the project outcomes so
they can plan their own activities. Third, they help
coordinate the work among team members.

Iteration and daily meetings fulfill this last function
but not the first two. So yes, plans are still useful. The
problem, I think, is many people confuse a plan with
an activity network or a task-precedence diagram,
which are just tiny fractions of the planning work.

InfoQ: Are there planning techniques that agile
teams can use in their planning games and stand-
ups. Could you name some, and explain how they
can help the teams?

Eduardo: There are many techniques that can be
used. Milestone planning is one of them. Milestone
planning is planning in terms of intermediate and

by Ben Linders

http://www.infoq.com/author/Ben-Linders

Page 5

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

end goals to be accomplished by the project. This
is the plan that could be used to communicate with
the project sponsor and other stakeholders. It will
specify when they should expect to receive some
functionality or provide information and resources
to the team. This plan is typically very stable, can
be built early on the project, and will make visible
the impact of changes. “Making visible the impact
of changes” doesn’t mean “not embracing change”,
it simply means that when you change something,
other parts will move, and you want to be sure
your customer understands the choices he or she is
making.

Another one is the paired-comparison technique for
estimation. The idea is the same as in the planning
poker to establish the relative size of user stories or
features. Unlike planning poker, paired comparisons
force you to compare one user story to several
others. This triangulation of estimates reduces the
possibility of getting the numbers wrong and is later
used to compute a consistency index and average
sizes. In several experiments I have performed in
industry and in the classroom, paired comparisons
provide more consistent estimation at the expense
of more questions. The planning-comparison method
is described in a number of articles, one by Martin
Shepperd and Michelle Cartwright – “Predicting
with Sparse Data”– and another by me: “Improving
Subjective Estimations Using Paired Comparisons”.

There is also a tool that implements the method
that can be downloaded: the Paired Comparison
Estimation Tool. In both articles, the idea of using
comparisons, which was first proposed by Thurstone
in 1927 to measure social values, is the same but the
underlying math is different. In any case, the math
part should be isolated from the estimators and is
only relevant to those wishing to develop a tool to
support the method.

InfoQ: I know milestone planning from projects
that didn’t work agile. When we adopted agile at
Ericsson, managing milestones as we had been
doing with iterative projects became difficult and
didn’t really help the agile teams. Can you give
examples of how to use milestones with agile,
product backlogs, and changing priorities that
impact scope?

Eduardo: As you know, I also worked for Ericsson.
The milestone plans we prepared there were task-

oriented and dates at which they were due calculated
using an activity network that started the first day of
the project. The milestones I am talking about here
are different. I will try to summarize the idea in five
sentences but for the interested reader I recommend
an article and a book, both written by Erling
Andersen. The article is “Warning: activity planning
is hazardous to your project’s health” and the book is
Goal Directed Project Management. The difference
between what Andersen proposes and what we
did at Ericsson is that milestones in his approach
correspond to things that are relevant to the sponsor
and the team; they are chosen to represent the state
of commitment between them. For example, let’s
say the sponsor needs to provide a special device
for the team to prototype a GUI on it – this will be a
milestone.

Following with the same example, let’s say the
sponsor needs to arrange a marketing campaign
around the new GUI. He will need to have a
demonstration – not the complete GUI - finished
before the end of the project so he can incorporate
some images in his campaign. These two dates
cannot be in total flux. The first one because the
team cannot complete the prototype until the device
is delivered by the sponsor; the second because
the people running the campaign have lead times
for contracting publicity spots, etc. In this example,
notice that the relationship between the first and the
second milestone is a finish-to-finish relation: it says
the prototype cannot be completed until the device
is delivered. It does not say we cannot start working
on the prototype until we receive the device. This is
a fundamental difference with what we used to do at
Ericsson.

Tasks are planned from the milestones backward.
So, for example, when you plan an iteration, the
prioritization will have to take in consideration this
global view of the project and not only the immediate
concerns. If you need to change the milestones, so be
it, but you need to be aware of how that could impact
other things down the road. The first milestone
is what I call a “soft milestone”, a milestone that
is under control of the team. If the delivery of the
device is delayed, it might have an impact on other
commitments the team has made or increase the
risk but the world will still be there the day after. The
second milestone is of a different nature; it is a hard
milestone. It is imposed externally by the advertising
agency running the campaign. If the images are not
submitted, the campaign might not be launched,

http://mse.isri.cmu.edu/software-engineering/documents/faculty-publications/miranda/pdf1.pdf
http://mse.isri.cmu.edu/software-engineering/documents/faculty-publications/miranda/pdf1.pdf
http://mse.isri.cmu.edu/software-engineering/documents/faculty-publications/miranda/Paired%20Comparison%20Estimation%20Tool.html
http://mse.isri.cmu.edu/software-engineering/documents/faculty-publications/miranda/Paired%20Comparison%20Estimation%20Tool.html
http://www.sciencedirect.com/science/article/pii/0263786395000569
http://www.sciencedirect.com/science/article/pii/0263786395000569

Page 6

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

and that bring us to the next point: time-boxing and
commitments.

InfoQ: Ok, let’s talk about time-boxing. Agile
teams use time-boxed sprints to prioritize
schedule over the deliverables. It helps teams to
deliver at regular intervals. Do you think that time-
boxing and sprinting are also effective ways to
plan the work into projects or releases?

Eduardo: Fixed-length iterations are good to help
the team keep the pace and receive timely and
regular sponsor feedback but dividing the total
available time in two or four-week chunks is not, by
itself, something I would value as a sponsor. Time
boxes without agreed outcomes and decisions made
two weeks in advance are at best an expression of
good will on the part of the team. If, as a sponsor, I
am counting on the software to launch a marketing
campaign, I need something more solid than “The
fourth iteration will be completed by the third week
of March.” I need to know what the team can
guarantee I will have by that week in terms of
functionality, level of service, support, etc.

InfoQ: Isn’t this conflicting with agile concepts
where the product owner and not the team takes
responsibility for the scope to be delivered? And
where the team only tries to deliver something in
one sprint and doesn’t even commit to delivery,
which is what the latest version of the scrum guide
of Beck and Schwaber states?

Eduardo: I do not subscribe to this concept. I think
we can do much better than discovering what needs
to be done in a project two weeks at a time. Sponsors
and teams need to have an idea of what they will be
doing and by when. Do they need to know if they will
be unit testing the XYZ class on April 21 at 9:30 a.m.?
Definitely not. Do they need to know that they will
receive the special device of the example the second
week of April if they are going to have the prototype
ready by the first week of March? Definitely yes.

The fact that you might not know when a given
task will be performed or if a particular feature of
a deliverable will be included or not does not mean
that you don’t know when the overall work leading
to a deliverable will have to be performed nor when
the deliverable is needed or expected. The owner can
take responsibility, but the team must bring to bear

its knowledge and experience to commit. That is the
difference between a professional and an amateur.

InfoQ: Some agile teams use MoSCoW to prioritize
their backlog. Product owners assume that a team
can finish the must-haves and probably also the
should-haves before the delivery deadline, but
they sometimes don’t know if it’s possible. Is there
something they can do to increase the certainty
about the scope that will be ready on the deadline?

Eduardo: I have proposed two methods I have
successfully applied in industry and academia based
on the ideas of incremental development and the
critical-chain project management developed by the
late Elyahu Goldratt. I called the first approach SPID
(statistically planned incremental deliveries, a bad
name looking back at it) and the second “buffered
MoSCoW rules”. The ideas behind both approaches
are the same, but the second requires only addition
and subtraction of man-hours versus the aggregation
of statistical distributions employed by the first.

The simplification is not free. It comes at the
expense of the claims we can make about the
likelihood of delivering a given functionality and
the overestimation of safety. Documentation for
both methods can be downloaded from my Web
page, Eduardo Miranda Publications.

InfoQ: Getting better insight into the certainty
when user stories will be finished sounds good. But
customers, marketing, and sales are used to fixed
deadlines with an agreed-upon scope. How can you
deal with that?

Eduardo: The buffered MoSCoW rules and the
SPID method that I described above can provide
the certainty required. The members of the team
estimate the uncertainty in terms of normal and
worst-case development effort for each feature or
user story and then ask the sponsor what things he
must absolutely have by the end of the time box.
Now…, you would only commit to those (must-have)
things you can do in the allowed time under the
worst-case scenario. That is how you guarantee
you can deliver what you say you will deliver. (Of
course, if the worst-case scenario is worse than you
imagined, then you might still not be able to deliver.)

http://mse.isri.cmu.edu/software-engineering/documents/faculty-publications/miranda/eduardo-miranda-publications.html

Page 7

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Once you have selected the things you can
accomplish under the worst-case scenario, you will
incorporate them into the plan using the normal-
case effort. This will effectively create a white space
within the time box you can fill now with should-
have features by repeating the procedure. If during
execution, worst comes to worst, you will push out
the should-haves and use the space left for the must-
have features. Because the total effort you have now
corresponds to the sum of the worst-case scenarios,
by definition you should be able to deliver on your
commitment.

InfoQ: Many organizations use project-
management offices (PMOs) to manage their
project portfolio. When they want to adopt agile,
how does this impact their PMO?

Eduardo: As you know, there are different types of
PMOs. Some are in charge of enforcing a standard
process, others are aggregators of information for
the executive levels, and others are involved in the
balancing of resources and the management of the
project portfolio. Given the space constraint of this
interview, I will concentrate in the last function:
managing the project portfolio.

One of the big challenges of managing a project
portfolio is to avoid the propagation of delays from
one project to the next through the links created by
using shared resources, i.e. the developers working
in one project are not available to work on other. To
do that, there are several things that can be done.
The first is to separate projects that are amenable to
time-boxing from those that are not and not using
resources allocated to projects of the second class
in those of the first class without considerable lead
time. The second is to use resource countdowns
and clear priority rules among projects to minimize
multitasking and to let shared resources know in
advance that they will be needed somewhere else
soon so they and their teams can get ready.

InfoQ: Does this also mean that the role of the
project manager will change when an organization
adopts agile?

Eduardo: Definitely. In many cases, project
managers, in the traditional sense of the word, are
no longer required. Take, for example, the role of
the project manager as pace keeper. In this role, the

project manager helped the teamIntervieweece of
work through a combination of organizational and
personal power-using tools and techniques such
as inspiration, status meetings, time-reporting,
recognition, rewards, warnings, and sanctions.
In agile projects, this monitoring and controlling
function is replaced by the peer pressure implicit
in the practice of daily meetings and is illustrated
by two of the three questions – what did you do
yesterday and what are you planning to do today? –
to be answered in a scrum meeting. Another example
would be the change of task allocation from a push
to a pull mechanism and the collective ownership of
backlog.

InfoQ: So project managers will not be planning
projects in detail, and following up on the activities
when they work with agile teams. How do they
manage scope, time, and money in agile projects?

Eduardo: As I said before, the traditional role of
the project manager as owner of the plan and task
expediter does not exist in most agile approaches.
In The Scrum Papers: Nut, Bolts, and Origins of
an Agile Framework (April 2, 2012), Sutherland
states that in a scrum project, the scope, cost,

ABOUT THE INTERVIEWEE
Dr. Eduardo Miranda is an associate

professor at the Master of Software

Engineering program at Carnegie

Mellon University. Before joining

Carnegie Mellon, Dr. Miranda worked

for Ericsson where he was instrumental

in implementing project-management

offices (PMOs) and improving project-

management and estimation practices.

His work is reflected in the book

Running the Successful Hi-Tech Project

Office, published by Artech House in

March 2003. Dr. Miranda is a certified

Project Management Professional and

a member of the PMI and the IEEE.

READ THIS ARTICLE
ONLINE ON InfoQ

http://jeffsutherland.com/ScrumPapers.pdf
http://jeffsutherland.com/ScrumPapers.pdf
http://www.infoq.com/articles/eduardo-miranda-estimating-planning-agile

Page 8

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

and completion date are “set during the project”,
i.e. projects using the agile approach only commit
to doing their best. According to the literature,
what gets done is decided at the beginning of each
iteration, with regards to time and money. There are
two approaches. One is when you run out of time and
money you are done – this would be the time-boxing
approach. In the other approach, you keep going on
until the sponsor says it is enough; this would be more
a time and material approach.

Page 9

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

User-Story Estimation Techniques

One of the great things about working as a consultant is the ability to try out many
different ideas and to adapt your personal favorite process to include things that
work. This article details user-story estimation techniques that I’ve found effective.

Powers of two
Originally, I estimated stories as 1, 2, 3, or 4, or as
small, medium, large, or extra-large. It was always
meant to be understood that a medium was twice
the size of a small and a large was twice the size
of a medium (and so on), but that never seemed
to translate well when it came to planning. Then
someone recommended that I try powers of two.
Suddenly we were speaking a language that the
business could understand. They knew that an 8 was
significantly bigger than a 1.

I believe the sizes 1, 2, 4, and 8 are also much more
appropriate. As stories get larger, they almost always
contain more unknowns and risk. Scaling by powers
of two emphasizes the risk associated with large
stories.

Use four values
I was once on a project that started with 1, 2, 4,
and 8 as their estimation values. After the first two
estimation sessions, fewer than 5% of the stories
were 1’s and about 30% of the stories were 2’s.
The project manager decided to get rid of the 1
value because it made his life easier. An interesting
thing happened at subsequent estimation meeting.
Suddenly only 5% of the stories were 2’s and many
more stories had become 4’s.

I don’t think that the developers consciously changed
their scale, but developers are conditioned to be
skeptical. Few developers are willing to say with
certainty that any given story will be as easy as the
scale allows. After witnessing this type of behavior
on a few different projects, I prefer a minimum of
four point values. I also prefer a maximum of four
point values. After all, it’s nothing more than an
estimate. If you try to give too much precision to an
estimate you’ll end up having to account for why you
missed the mark. The idea is to get a rough idea, not a
rigid plan to live off.

No averages or numbers not on the
scale
Four values allow you to roughly estimate without
spending unnecessary time focusing on precision.
Sometimes a story feels larger than a 2 but smaller
than a 4. The story should not be estimated as a
3. There’s really no reason to use a 3. The story
carries enough risk or unknowns that it is not a 2;
therefore, it’s very likely that it will actually be a 4.
Using an average or off-scale number can briefly
(and unnecessarily) confuse a team member or
stakeholder. Also, in the big picture of the project, the
occasional uncommon estimate isn’t likely to make
much of a difference. Keep it simple and stick to the
scale.

Vote independently

by Jay Fields

http://www.infoq.com/author/Jay-Fields

Page 10

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

It’s human nature to be influenced by other people. If
a technical leader says a story is a 2, it’s likely that the
rest of the team will follow his lead. For this reason,
I prefer an estimation process that lets each team
member vote independently. This can be done by
writing estimates that no one reveals until everyone
is ready.

Another option (that I prefer) is to give your
estimation rock-paper-scissors (RPS) style. In our
estimation meetings, we talk about a story until
we are ready to estimate, then we all “throw” our
estimations the same as you would “throw” rock,
paper, or scissors. What I mean by “throw our
estimation” is that if we think it’s a 1 we point one
finger. Likewise, a 2 is two fingers and 4 is four
fingers. If you need to throw an 8, you can use both
hands.

Take the largest estimate
Even when reminded, developers seem to have
a hard time estimating with a team in mind. If a
developer thinks they can do the story in one day,
they throw one finger. Unfortunately, that developer
may not be available to do the story, and then some
other team member is stuck working on a story
that they thought was a 2 or even a 4. I prefer to
always take the largest estimate thrown by any team
member. You may consider this to be sandbagging,
but in reality it’s likely that each team member has
identified different risks and the team member with
the largest estimate has probably correctly identified
that there is more risk than the other members have
thought of.

Taking the largest estimate has additional benefits.
If you must agree on a lower estimate then the
team member with the larger estimate will need to
discuss why they chose a larger value. This discussion
can be uncomfortable for developers who are less
senior on the team. They may not know how to do
something as quickly due to limited experience with
the language or tools. Their skill level often justifies
their concerns, and it would be unfortunate if they
felt uncomfortable giving their true estimate because
they were afraid to discuss why they felt it was
higher.

Any discussion of taking a higher or lower value may
lead to the entire team raising their value, or it may
lead to an inexperienced developer pressured into
uncomfortably lowering their estimate. Either way,

you’ll need to spend more time talking and you wont
have gained anything.

Finally, taking the largest estimate can help save time
in an estimation meeting. If any member of the team
believes the story is an 8, he can speak up at any time
while discussing the story and announce that he is
going to throw an 8. Unless someone else believes
that there is a large estimation gap among team
members, there’s no reason to continue talking about
the story since it will ultimately become an 8 anyway.

In the end, it’s consistency that matters. You always
know how many stories you expect to get done in an
iteration by tracking velocity. Velocity is defined as
the number of points you’ve completed over the life
of the project divided by the number of iterations.
Your velocity indicates how many value points your
team can expect to complete in an iteration. If your
estimates are bloated, your velocity will also be
bloated. Bloat has no effect on planning as long as the
estimates remain consistent through the iterations.

Large estimate gaps
When estimating, the entire team hardly ever agrees
on the size of a story. You know by know that I like
to handle the mismatch by always taking the larger
estimate. However, sometimes a large gap represents
a misunderstanding. For this reason, any time
there is a two-value gap in estimation, additional
conversation always occurs (e.g. a team member
throwing a 1 while another throws a 4 requires some
clarification). Discussing large gaps also ensures that
taking the largest estimate has less chance of being
abused.

Insufficient information
On occasion a story may need to leave the meeting
without an estimate. It’s better to ask for more
information than to give an estimate that you are
uncomfortable with. An estimate of 8 implies that it’s
a large story, but you expect it to take twice as long
as a 4. Don’t simply estimate ill-defined stories as 8’s,
because you will likely be expected to get it done in
the same amount of time as it takes to complete two
4 stories. The goal of an estimation meeting isn’t to
estimate all the stories, it’s to provide estimates on
the stories that offer sufficient information for an
informed decision.

Required involvement
No one enjoys estimation meetings (okay, no one I
know). In my past projects, the fastest reader would

Page 11

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

read the story aloud, the developers would ask the
domain experts questions, and then they would
estimate. When the developers weren’t quizzing the
domain experts, the domain experts usually did other
things on their laptops. At first glance, I thought this
was a good use of their time, but things got missed.
Later, I joined a project whose manager insisted that
we go around the room and make everyone read a
story when it was their turn. Suddenly, the domain
experts were engaged because they were worried
about looking silly when it was their turn to read.
The meetings became much more valuable due to
everyone’s involvement.

Pigs and chickens
In a ham-and-eggs restaurant, the pig is committed
but the chicken is simply involved.

I often hear that the business shouldn’t influence
developer estimates because developers are pigs and
the business is full of chickens. I think this is a bad
analogy. It’s more likely that a bad product will get
the business team fired than the technology team.
I’m sure the business feels just as committed as the
developers. However, it remains a conflict of interest
to let the business interfere with estimates.

It’s as simple as this: the business wants to know
what functionality they can get in the next iteration.
To know what to expect, they need estimates. Since
the business will not be writing the code, they cannot
contribute to proper estimates. The more they are
involved in the actual estimation, the less likely it is
that they will receive realistic estimates. The best
domain experts answer questions in meetings but
never assert in any way the level of effort it will take
to complete any given story.

Group size
Teams come in many different sizes. On smaller
teams of six or less, I suggest the entire team attend
the estimation session. The many points of view
are likely to solidify vision and positively contribute
to an estimate. However, I believe there is a point
of diminishing returns. Not everyone on a large
team needs to take part in estimating every story.
Additionally, an estimate produced by six people
should be just as accurate as one that comes from
15 people. If your team is larger than six people, I
suggest breaking into smaller groups for estimation.
In general, I like to get at least three people to
estimate any given story, but no more than six.

New stories
New stories come in two forms: new feature
requests and stories that split. I generally wait to
estimate new stories based on their priority. If a story
needs to be done in the next iteration, it generally
requires an immediate estimate but if a new story
isn’t going to be played for several iterations, it can
make sense to hold off until you have enough stories
to justify an estimation meeting.

I find estimates from estimation meetings to be more
reliable, since they come from an environment where
everyone is focused solely on estimation.

Stories resulting from a split provide an additional
complication: they likely already have an estimate. I
strongly suggest that the new stories be estimated
without considering any previous estimate. If a story
carried so much risk or uncertainty that it required
splitting, it’s not likely that its estimate was realistic –
ignore the original estimate.

No laptops
At least, do not permit developers to have laptops
during an estimation meeting. Print the story list
for everyone or project it on a screen, but don’t
ask the developers to read the story list from their
laptops. Laptops almost always find ways to distract
developers, thus taking away from the goal of the
meeting: getting valuable estimates.

Required participation
This suggestion is important. In theory, no developer
from outside the team should be attending
an estimation session. That means that every
developer that attends an estimation session will
potentially be tasked with working on a story that’s
being estimated. If a developer is not comfortable
estimating a story, then I’m not comfortable with
them working on the story. Of course, there are
exceptions. I generally give new team members one
week to come up to speed before I ask that they
participate in an estimation session. But, in general,
a developer who refuses to participate in estimation
should be a clue that there’s a bigger issue that needs
to be resolved.

Stale estimations
Teams change, projects change, and random events
occur. Whatever the reason, estimations can get
stale. Stale estimations don’t help anyone. The
development team feels pressure to deliver to
outdated estimates and the business expects stories

Page 12

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

to be completed according to projected velocity. It
doesn’t matter why estimates get stale, what matters
is that the estimates are no longer realistic and the
plan is no longer reliable. I’ve never been part of a
project where the estimates didn’t go stale within
12-24 weeks. It’s better to admit that an estimation
is stale than it is to plan with inaccurate information.
For this reason, I suggest revisiting any estimate that
was reached more than 12 weeks ago. The estimate
will hopefully still hold true, but giving the developers
an opportunity to speak up given new information is
nothing but helpful to the business.

Bribes
This is the easiest suggestion of all: bring high-
quality snacks to all estimation meetings. Sugar
has been scientifically linked to happiness, and
happiness leads to collaboration. It’s the simplest
and cheapest possible way to make an estimation
meeting something to look forward to. Keep in mind
though, that high quality is the key. If you bring the
same snacks that are already sitting in the team
room, it’s not very exciting. On my last project, I went
to the bakery for fresh-baked cookies every time I
remembered there was a meeting.

Credit
I’d like to give special thanks to Brent Cryder, Dennis
Byrne, Fred George, Joe Zenevitch, Mike Ward, and
Sean Doran for helping me evolve and solidify these
ideas. Just like every other list of people, mine surely
leaves out other contributors. Please forgive me for
leaving you off.

ABOUT THE AUTHOR
Jay Fields is a software developer and

consultant at ThoughtWorks. He has a

passion for discovering and maturing

innovative solutions. His most recent

work has been in the field of domain-

specific language, where he has

delivered applications that empowered

domain experts to write domain logic.

He is also interested in maturing

software design through developer-

testing and software-testing in general.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/agile-estimation-techniques

Page 13

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Estimating on Agile Projects: What’s
the Story? What’s the Point?

Introduction
Before you commission a painter to decorate your
home or a mechanic to fix your car, you get an
estimate from them, right? You need to know how
much it’s likely to cost and how long it might take. It’s
just common sense.

What does experience tell us, however? How close
are those original estimates to the final bill? It’s all
too likely that the painter will find loose plaster
that needs removing and that the wall needs
rendering and re-plastering. The mechanic is sure
to find additional work required to get your car
roadworthy again. In a 1951 cartoon for the New
Yorker magazine, Syd Hoff drew a mechanic saying to
his customer, “Of course that’s only an estimate; the
actual cost will be more.”

If the painter or mechanic tells us soon enough,
we can choose not to take on the extra work…
and yet, all too often, we feel we have to fix these
additional things. Who wants to live in a house
with a potentially damp wall or drive in a car with
potentially faulty steering?

How do we overcome this? A common reaction is
to insist on a full and final fixed-price estimate, or
“quote” as it’s commonly called, so the tradespeople
work harder and longer to get more accurate
estimates. Yet however hard they work, they still
cannot really predict the unexpected.

In the life of projects, this is just the
same
Traditionally, project managers tend to focus on
creating detailed estimates that can withstand
scrutiny from the finance team. Of course, this is
based on “known knowns” with some contingency
for the “known unknowns” – and as Donald Rumsfeld
is famously quoted, “There are also unknown
unknowns – there are things we do not know we
don’t know.” Like the tradespeople above, we can
never really predict the unexpected.

The more we invest in creating elaborate estimates,
however, the more problems we cause. Detailed
estimates can be seen as a binding quote, a target
that distracts from delivering value, and focusing
on delivering something – or even anything – to the
agreed date and cost.

by David Morris

http://www.estherderby.com/2012/03/estimating-is-often-helpful-estimates-are-often-not.html
http://www.estherderby.com/2012/03/estimating-is-often-helpful-estimates-are-often-not.html

Page 14

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

We beat ourselves up in post-implementation
reviews and tell ourselves to just try harder; Einstein,
however, defined insanity as “doing the same thing
over and over and expecting different results” so
there must be a better way.

Surely this isn’t true for agile projects? Don’t we just
start with a high-level scope and work it out as we go
along? Well, yes and no (or as they would say here in
New Zealand, “Yeah, nah”). While we don’t hamstring
ourselves by creating detailed estimates, it is still
vital that we get a feel for the size of the work we’re
considering, and here’s why…

Why we need estimates
Forget about estimates being used to build
beautifully crafted Gantt charts that force us to
focus on tasks and not outcomes. There are three
outcomes that need us to get a rough handle on how
big something is.

When we’re considering the justification for a
proposed project, we need to understand the likely
costs in advance, so that we can decide whether it is
worth the investment.

When we’re launching new or improved products
to market, we need some idea of roughly when
significant features might be ready for release, so we
can plan associated activities.

When we’re prioritising work, the product owner
needs to understand the cost, and the team needs to
understand the value, of each story (or backlog item).

It’s also interesting to note that estimating can be
a really healthy activity, so long as the whole team
collaborates on it together. It helps foster a buy-in
from the whole team and ensure that everyone gets a
common understanding of the scope and value to be
delivered.

However, the label of “estimates” can be distracting.

Use sizes rather than estimates
To avoid setting an expectation that we’re talking
about cost and time, when we estimate the
complexity of a story, some of us like to refer to this
as “sizing” rather than estimating. In the ’90s, when
I first used scrum and XP – before they were even
called agile practices – we sized stories using T-shirt
sizes (S, M, L, and XL).

Now, however, we use story points – a way of sizing
stories relative to each other – so we find what will
be the simplest story, size that as 1-point story, then
compare another story to that, if it’s more complex is
maybe a 3-point story.

To make things more interesting, we don’t use a
simple sequence like 1, 2, 3, 4, 5, etc. Instead, we use
a modified form of a Fibonacci sequence like 1, 2, 3, 5,
8, 13, etc. (as seen in The Da Vinci Code). This makes
the jump between numbers larger the higher we go
and drives us to choose which is smaller or larger.

While this is not an exact science, it is more than
good enough for the three outcomes mentioned
above, and as John Maynard Keynes said, “It is better
to be roughly right, than precisely wrong.” This
means, though, that we still need to translate story
points to rough time and rough cost.

Another practice central to agile projects is
establishing the definition of done, that is to have
a comprehensive understanding of everything
required to say that a story is done and releasable,
including items like user documentation, translation,
advertising, etc.

Provided we have a good definition of done, we can
then take a couple of sample stories and calculate
the effort required. From that we can get rough cost
estimates for an investment decision, rough timing
for release planning, and enough understanding to
assist in story prioritisation.

Some, however, still find estimating by story points
a distraction, and one response has been the debate
around #NoEstimates.

So what’s with the #NoEstimates
debate?
If you have been following any of the major
influencers on Twitter, you might have noticed some
getting involved in discussions with the hashtag of
#NoEstimates. While this sounds like a call to cease
estimating altogether, it is really a call to stop sizing
stories and instead just start developing.

This discussion arose, and has gained momentum,
because the experience of those working on large
projects has been that whether you size by story
points or just count the number of stories, the
tracking of throughput is about the same.

http://www.mountaingoatsoftware.com/blog/assigning-story-points-at-the-right-time-or-not-at-all
http://www.mountaingoatsoftware.com/blog/assigning-story-points-at-the-right-time-or-not-at-all
http://msdn.microsoft.com/en-us/library/hh273052/
http://msdn.microsoft.com/en-us/library/hh273052/
http://agile.dzone.com/articles/story-point
http://agile.dzone.com/articles/story-point
http://www.dzone.com/articles/definitions-done-practice
http://www.dzone.com/articles/definitions-done-practice
http://softwaredevelopmenttoday.blogspot.co.nz/2012/01/story-points-considered-harmful-or-why.html
http://softwaredevelopmenttoday.blogspot.co.nz/2012/01/story-points-considered-harmful-or-why.html

Page 15

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

While this might partly be down to the more
experienced delivery teams decomposing stories
to consistently smaller sizes on a just-in-time basis
– as this enables greater throughput of potentially
shippable increments – the reporting looks similar
even on projects still working with a range of very
small to moderately large stories in each iteration.

While this makes story prioritisation simpler and
enables the delivery team to get on with it quicker,
our poor product owners and sponsors still need to
know roughly how much it will cost and how long
it will take. The good news is that we can still do
this based on counting the number of stories, once
we have sufficient metrics to make this feasible.

For any new team starting out on your agile journey,
however, I would still strongly recommend you size
with story points until you’ve reached the experience
and maturity levels of these teams.

Conclusions
So to sum up and to mangle a famous quote from
General Dwight D. Eisenhower: “In preparing for
[projects] I have always found that [estimates] are
useless, but [estimating] is indispensable.” We still
need to do it, whatever we call it and whatever we’re
counting when we do it.

I am indebted to Esther Derby (estimates become
targets), Mike Cohn (estimates for release planning
and prioritisation), Ahmed Sidky (whole-team
estimation), Martin Fowler (story points), Ian
Mitchell (definition of done), Vasco Duarte (story
count vs. story points), Stephen Forte (metrics vs.
estimates), Neil Killick (experienced teams define
smaller stories), and many others for sharing their
thinking on this topic – and I have linked to their
respective articles in context above.

ABOUT THE AUTHOR
David Morris is an independent

business agility practitioner, coach,

and instructor, working through

his company Sophorum, delivering

business analysis, team leading,

coaching, and training services to

customers throughout New Zealand.

With nearly 30 years’ experience in

project delivery, he has worked in and

led teams and run his own business

across strategic, business, and technical

projects following structured, iterative,

and agile methodologies.

David is a qualified CBAP, ICAgile

Certified Practitioner, Certified

ScrumMaster, and an IT Certified

Professional. He runs study groups,

professional development workshops,

and boot camps; helps organise

events for Agile Auckland and IIBA

NZ; has spoken at conferences and

events in Europe and Australasia;

contributed to several books (including

Agile Extension to the BA Body of

Knowledge); and is an active blogger,

tweeter, and Wikipedia editor.

READ THIS ARTICLE
ONLINE ON InfoQ

http://neilkillick.com/2013/01/31/noestimates-part-1-doing-scrum-without-estimates/
http://www.stephenforte.net/Beyond+Agile+Estimation+Part+I+Measuring+Key+Data+Points.aspx
http://www.infoq.com/articles/agile-estimating-why-how

Page 16

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

The Prioritization Divide: With
Numbers or Without?

How do you prioritize when you start development? Do you assign each story a
dollar value based on expected revenue or savings? This may work when you’re
discussing a major feature, but when you drill down to moving a dialogue box to aid
user experience, how do you determine its value?

Or do you select stories according to “Must, Should,
Could, Won’t” and then assign them a relative value
with story points or labels? It’s not difficult to do, but
does it really select the most critical or highest value
out of all the stories that are crammed into “Must”?

There are many methods, but a basic divide runs
through the heart of prioritization: do you do it with
numbers or without? There are arguments for and
against both positions, but instead of examining
these, people tend to fall naturally into one camp
or the other. Once there, they can become quickly
entrenched in the belief that the other camp is
foolishly mistaken.

Those who criticise the numbers approach say
“Those number-crunchers spend so much time
finessing their estimates that they don’t get any
actual work done. By the time they’ve calculated a
cost of delay, they’re delayed already.”

Those who prefer numbers mock the alternative:
“High value/low effort? What kind of subjective, gut-
feel way is that to run a business? Why not just throw
the cards into the air and develop them in the order
you pick them up?”

Consider:

What’s your natural preference when prioritising?
How about for your team and colleagues?

What prioritisation methods have you used on
different projects? List the main advantages and
disadvantages as they appeared to you.

The most common model today
Although there are numerous prioritization models
in play, one of the most commonly mentioned
on discussion boards and in interviews involves
assigning relative points. Essentially, the team gets
together and assess the value of a whole bunch of
stories. The lowest-value story on the table becomes
the baseline, and other stories receive points relative
to that. Next, the technical guys give relative effort
points to the stories: the easiest story on the table
gets 1 point. Is the next story three times as hard?
Give it 3 points. Some teams use T-shirt sizes,
Fibonacci numbers, and planning poker, but these are
just frills.

The method makes it easy to create a relative
priority. Take the values, divide them by effort, and
voila – you have your order. As the team begins to

by Alex Adamopoulos and Paul Dolman-Darrall

http://www.infoq.com/author/Alex-Adamopoulos-and-Paul-Dolman~Darrall

Page 17

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

work, they establish a velocity. Meeting overheads
go down because team members can simply pick
from the pre-agreed list according to their velocity.
Every few weeks, the team can re-evaluate whether
the order is correct or if values and estimates have
changed based on the team’s performance.

Doesn’t this sound like the perfect combination? You
get a comparative figure but it’s nice and simple so
everyone can grasp and enjoy using it. Great!

But there are a couple of basic problems with relative
figures, both of which stem from the fact that they
are not based on real numbers.

My value of 10 points divided by 2 effort points gives
me 5. This is clearly better than a value of 3 points
divided by 3 points, which gives me 1. But nothing
in this relative term tells me that my values mean
anything. If a value of 10 equates to only $20, while
2 effort points equates to two days of a developer’s
time then the project is not going to make me any
money. In fact, I will go bust very fast.

Relative value hides a whole host of assumptions,
which are never laid out for us to examine. Is this
figure based on revenue? Does it take into account
urgency? Does it ignore risk? Because the label
hides the work that should go into deciding whether
something is valuable or not, it turns out to be just
as subjective a measure as saying “It’s all important,”
or “The customer is going to love this, I just know he
will.”

Observe:
If you have used this method, go back to a previous
project and find the original value and effort labels.
Now look for the real figures. On a very granular
level this can be difficult, but at a feature or epic
level, there are probably user figures and thus dollar
values assigned against a part of a product. Compare
these and look for any large variations – a feature
considered valuable but which turned out not to be
used, for example.

What assumptions lay behind the original value
assignation? Would it have been different if these
had been explicit or you had a real cost figure at the
beginning?

What lessons can you draw from the comparison?
What actions can you take to improve accuracy in the

future? Don’t forget actions you can take now – if a
feature is not being used, delete it!

The value of numbers
‘When benefits are not quantified at all, assume
there aren’t any,” advised Tom DeMarco and Timothy
Lister in their 2003 book, Waltzing with Bears:
Managing Risk on Software Projects.

That’s the numbers attitude in a sentence. If you’re
inputting a feature then it should have a proper
justification, and this justification needs to take
account of the different elements that make up a
label like “value”. It should take account of future and
present revenue, savings, urgency, risk, and learning.
How you express this figure, whether as a dollar
quantity, cost of delay, or cost/benefit ratio, is up to
you.

Sometimes the calculation is simple. Our new system
will automate data entry, so we will save the salaries
of the five data-entry clerks currently doing it
manually. Their salaries form the dollar value of our
system to the company.

You can usually make a good estimate even if you
have to make a few assumptions. Good design is
often referred to as “intangible”, but improvement
to user experience should be measurable. Do people
get to the registration page and then fail to complete
registration? Do we think that redesigning this page
will improve registration by 50%? How much is each
registration worth on average to the company? With
these questions we can assign a dollar value to a
redesign even if the change is quite granular (moving
a dialogue box or changing filters).

Look in these places to try and find what type of
value your product is delivering:

Increasing revenue
Savings (These might be direct or equivalent, i.e. if
we don’t have this feature it will cost us $X to do it
another way.)

Protecting revenue (i.e. Without this feature, we can
expect revenue to drop.)

Protecting against costs (i.e. Without this feature,
we will be exposed to certain costs.)

Page 18

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Why use numbers?
Numbers make the argument more objective.
Rather than arguing about whose idea is better or
more important, teams can use numbers to change
the conversation. It becomes clear that ideas are
competing against one another based on their value
to the organisation.

Numbers can speed decision-making. Once you
have an economic framework, you can express many
trade-offs as decision rules. For example, you might
decide that if the cost of delay is more than two times
greater than the cost of the resource required to
avoid that delay, the team should be empowered to
incur that cost. That might mean hiring more staff or
investing in automation. Power has been devolved to
the team but managers retain overall control because
they set the framework within which decisions are
made.

Numbers don’t need to be difficult. There’s no need
to strive for a spurious exactitude. The point is to
avoid big errors, not to sweat a decision between a
project with a $3,000 cost of delay and one with a
$3,100 cost of delay.

In general, where you can come up with a number, it
is worth trying to do so.

Act:
For a current project, pick the top three items and
try to work out a real value for them. Don’t forget to
consider four factors that make up value: financial
(revenue and savings); cost; learning; and risk.

Check the figures with business owners then file
them away. You will need to compare them with
reality once the product has launched.

If you can come up with the worth of the feature or
project to the business, then you can also calculate
a cost of delay. Are there any decision rules that this
might help you make? For example, might this justify
overtime or investment in automation? Try to get the
decision rule approved in advance so that you can act
swiftly if anything occurs to delay the product.

The problem with numbers
It seems simple: use numbers more often. But it’s not
quite that straightforward because there are a few,
very real disadvantages to using numbers of which
you should be wary.

Numbers feel like unassailable ground. That
spreadsheet of future earnings looks so convincing
and took you so long to set up (plus it has these nifty
little macros)…. People often fall in love with their
projections – so much so that they are reluctant to
take new information on board. Instead, they cling to
the spreadsheet like a drowning man and refuse to
adapt.

It’s easy to game the system. Most development
teams know what a project requires to win approval
at a phase gate. It does not take much to just tweak
the assumptions (increase conversion by 0.5%,
reduce costs by 5%) in order to help the project over
the hurdle.

All numbers are based on assumptions. Your figures
are only as good as your estimates and guesses – and
there may be serious flaws in your assumptions.

So what are the answers?
Transparency and review. You have to record
your assumptions and widely share them. You
thought that your system would save the salaries
of 10 people, but the HR manager has pointed out
some redundancy costs that you need to take into
account…. You need to review your assumptions as
you go, inputting real data as it arrives.

Test early, test often. The only way to gather real data
is to get feedback on your model. This doesn’t mean
just pushing out a prototype and seeing if people like
it. Instead, you need to test the assumptions on which
your business model is built. Many companies at the
moment assume they need to be on Facebook. They
rarely ask what it will do for them. Increase customer
involvement? Reach a new audience? Even more
rarely do they try to quantify these to see if the cost
of having a staff member permanently responding to
Facebook posts is justified.

Should you always use numbers?
There are only a couple of situations in which
numbers are not the most useful technique.
Unfortunately, these occasions tend to be common in
software development.

Innovation
When you’re launching a well-understood product
into a familiar, established market, you can have fairly
firm assumptions. If you’re about to set up a deli in
Manhattan, then your model is going to be pretty
much like every other sandwich shop’s. That doesn’t

Page 19

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

mean you’ll succeed (maybe you don’t make tasty
sandwiches), but it does mean you have a fairly good
idea of operating margin, daily sales, and likely costs.

In an entirely new market, your assumptions are so
uncertain as to be almost valueless. When Eric Ries
set up IMVU, the team had no idea how many people
would want a 3-D avatar. Customers themselves
didn’t know, which meant that focus groups and
surveys were utterly useless.

At such a point, it makes more sense to record your
hypotheses and then test them one by one, using
numbers or not. These need to include a business
element as well as a technical one. Ries, for example,
had assumed that users would not want to bother
setting up new contacts and that therefore the
software needed to integrate with existing platforms.
This turned out to be wrong. Testing that assumption
was more important than the fact that sales were
not as healthy as Ries had hoped, but it was the low
numbers that had alerted the team to the problem.

The team doesn’t own the numbers
Many commentators talk about the process
of estimation as waste: the more time that
estimation takes, the bigger the waste. There
are some circumstances in which this is true –
and unfortunately those circumstances are not
uncommon in IT.

Picture this: a project-management team spends
three months creating a list of requirements and
then assigns a numerical value to each. They hand the
list over to the development team and ask how long
the project would take. After due consideration, the
development team announces that they think a good
estimate would be two years. The project manager
flings her hands up in horror. “That’s way too long!
We need it in six months!”

In this example, the estimation process is a waste.
The team needed to establish the true constraint
up front: the six-month timeframe. This is not very
unusual, but it permits the team to usefully establish
the the fixed cost of delay and make decisions based
on that, whether they choose to reduce scope or
increase capacity.

Apply learning:
For a new project, think hard about which
prioritisation approach would be the most effective.
If you decide to go without numbers, ensure that you

have a suite of tests that will provide early feedback
on your assumptions. Write those assumptions down
and share then with the team. Keep them visible as
the work progresses and change them as you go. If
there are no changes, this is a sign that you could
have used numbers up front because you had firm
assumptions. Start assigning dollar or cost of delay
values and check your prioritisation – it’s a good,
rigorous discipline.

If you choose to use numbers then make your
assumptions explicit and have them visible
for review. Keep testing your figures and your
assumptions. A willingness-to-buy study can be as
simple as emailing all your contacts to describe the
product with a request to reply if they’re interested.
This is free to do, and although it’s almost certainly
an overestimation of interest (these are warm
contacts and they’re not being asked for credit-card
details), it’s better than a guess.

Conclusion: Love the figures of failure
Numbers help – except when they don’t. Oh, what a
helpful statement to take away from this! Let’s try
to boil it down to something you can use as a rule of
thumb: most teams should be translating their value
labels into real dollar figures more often than they
do. Why?

An estimated cost of delay, a revenue projection, or
a predicted cost saving may not be accurate. Indeed,
you might get them wildly wrong. But their clarity is
designed to help you focus your efforts on a visible,
explicit, and objective set of assumptions, which you
then test through early and frequent feedback.

If you believed that 10% people would buy your
product but a test reveals that only one in a hundred
agree to try it, you know that there is something very
wrong. You might conclude that the product is a bad
idea and kill it. You might learn something important
and pivot to take the product in a new direction. Or
you might decide that 99% of people just didn’t
understand your genius, so you will continue anyway
and raise the risk.

The numbers don’t tell you what to do. Their purpose
is to provide an objective check on your assumptions.
If you receive 10 emails saying people love your
product, it’s easy to feel that everything is going
well. Only when you compare that number (10 out
of 1,000) to your sales projections can you place the
good feedback in context.

Page 20

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Numbers help transparency, feedback, and
objective decision-making.

That’s why they might just help you avoid
the painful sight of a roomful of managers
looking around for someone to blame
when the game-changing project sinks like
the lead balloon you always feared it might
be.

ABOUT THE AUTHORS
Paul Dolman-Darrall is an IT director

known for developing people and

successfully leading large global teams

across various change programs for some

of the largest companies in the world. He

has contributed to strategy of government.

At Emergn, in his role of executive

vice-president, he has helped launch

Value, Flow, Quality (VFQ) education,

a work-based learning program to help

practitioners achieve immediate business

results through the application of skills in

practice. The program is designed to help

IT departments and business leaders who

rely on technology to put in place smarter,

more effective work practices to facilitate

change, generate significant return on

investment, and inspire innovation in

practice.

Alex Adamopoulos is an executive with

more than 25 years’ experience in global

services organizations. He has extensive

international experience with a deep

understanding of culture, work, and life

ethics especially in relation to establishing

alignment and crossing cultural barriers.

Over the years, Alex has brought know-

how and practical business experience to

companies that want to excel and compete

globally. With a focus on performance

measurement, business value, and bottom-

line profitability, Alex has successfully

applied working models and practices to

accelerate the solutions and strategies of

companies to drive results.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/Agile-Prioritization

Page 21

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

The Guessing Game:
Alternatives to Agile Estimation

At the Agile Australia conference in 2013, Neil Killick presented a talk in which
he proposes ways to reduce risk and uncertainty, calculate a product’s price,
determine delivery dates and roadmap, and do scrum and XP without using
estimates.

He set the scene with the need for some form of
predictability about software development.

With estimation, in software, which is what
essentially I am talking about today, the question we
typically try to answer is what am I going to get and
when. That is a perfectly legitimate question. If we
are investing some money in something, we all want
to know what we are going to get and have an idea
of when we are going to get it. So, this talk is not
about saying we do not need to answer this question
- we absolutely do - but it is about seeing that there
are other ways of answering this question, maybe
flipping the question around, and using alternatives
to actually fulfilling our expectations when it comes
to building software.

He went on to discuss the difference between
estimation and guessing.

The first thing I want to mention is, I guess, the
distinct difference between estimating and guessing.
When we make a guess, we are essentially using
gut feel. However, we do not have any knowledge
or empirical data about the guess we are making.
Whereas with an estimate, we are using some kind
of knowledge, whether it’s tested knowledge or real

data, to make a prediction. I want to really question
when we are estimating software-development
projects or products: are we making an estimate or
are we actually making a guess?

It is a very important distinction and it is something
we need to think about when we are putting together
business cases and having to estimate development
cost, or if we are a team that has been assigned the
projects. Are we making guesses or are we actually
using some kind of knowledge to base that on?

He mentioned the dangers inherent in estimating,
managing expectations, and treating estimates as
commitments.

Whether we like it or not, if we estimate a project
up front, we are setting an expectation level.
Everyone has an expectation about what they are
going to get at the end and this may vary between
stakeholders and customers. It is a dangerous game
to play because we want to make sure we make our
customers and stakeholders happy. If we are using
their expectations before we start, at the beginning
of the projects, how do we know we are going to
deliver on their expectations at the end?

Presentation summary by Shane Hastie

Page 22

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

So, we have to be very careful to make sure that we
are aligning what we are doing with the expectation
level. This is really something we need to be looking
at as we move along rather than basing it on what
we do up front.

Of course, if we are using an estimate as just an
estimate and saying, “Well, we know this is going to
change because it is an estimate,” that is fine, but I
do not see that application of estimates in software
development. I actually see a dysfunctional model
in which we are setting deadlines and promises
based on these estimates. So, these expectation levels
actually get set and make it really, really difficult to
change as we go along because we are now sort of
afraid we are going to alter the expectations of our
customers in a way they are not going to be happy
with.

He explained how estimates become self-fulfilling
prophecies.

Estimates are self-fulfilling prophecies. What I mean
by this is that say we estimate a software project will
take 12 months and six months in, we realize we
have made a big mistake and that it is going to take
us a lot longer, maybe even two years. What that
will do, given the culture of setting promises and
deadlines based on the estimate, is affect behavior.
We are going to modify our behavior based on the
estimate, rather than on trying to build the right
thing for our customer and deliver, to exceed the
expectations of our customers.

So, it is self-fulfilling because we will say, “Okay,
we are six months in. We are not going to hit 12
months. What are we going to do?” One thing we
could do is cut scope, or another is that we could
start cutting corners with our work. With this
kind of pressure, the closer we get to the deadlines,
which are these kind of arbitrary deadlines we have
imposed on ourselves, the more stressed we are going
to get and the more we are going to cut corners and
quality is going to suffer.

On the flip side, we could be six months in and
we go, “We are going to get this knocked off in a
month. We said this was going to take 12 months,
so we have a year’s budget allocated and we actually
don’t need that.” So now we change our behavior in
another way. We start saying, “Well, we still have
four months’ worth of money. Let’s build some more
stuff. Let’s start gold-plating what we have built and

build more features.” Essentially, there is a danger
that we are building stuff that is not going to be
used and that the customer does not want. We are
just building those things because we have set the
expectation that it was going to take a year and this
is what you are going to get in a year.

So now, we are altering our behavior and in neither
those scenarios is the 12-month estimate going to
come true because we have altered our behavior. The
project parameters have changed. We know that.
When we are building software, it is variable – it
is a creative pursuit. We know that the premise is
going to change, but what is also going to change
is our behavior based on our progress towards that
target.

Killick described a typical dysfunction he has seen
when teams take estimates as commitments.

Essentially, we come up with a good idea that we
think is going to be valuable for the business and we
present a business case. We then have to come up
with a cost and a value to this so that we can sell it
to the executives. So, we need to calculate our return
on the investment and show that it is something that
we should be doing. Now, at this point, we have to
come up with how big a team we are going to need,
what are we actually going to be building, and what
that team makeup is going to look like.

I really question at this point how much knowledge
we actually have to create an estimate. Are we, in
fact, making a complete guess and using our biases
to try to get the business case over the line and it
does not matter because once it gets approved it’s
someone else’s problem? It will get allocated to a
team, maybe months, even years later. I have seen
this process take two years going from a business
case to a team starting work.

So, the business case gets approved and prioritized
and eventually a team gets put together with a
budget to work within. Even though that decision
has already been made by the business, the team
now has to estimate what they are going to build
and how long it is going to take.

What happens if the estimate is too big? So, the team
has a year’s worth of budget, but comes back to say,
“Look, this is a two-year project.” Again, there are
things we can do here. We can say, “Let’s reduce the
scope, see what the real must-haves are and get rid

Page 23

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

of some of the nice-to-haves.” We might be able to
reduce scope enough that the team answers, “Yes,
that is all good. That will fit in a year,” and the
project gets approved. If that does not happen and
we end up in a situation where the estimate is way
too big and we can’t do anything about that, then we
can potentially ditch the whole thing.

This does not happen often, but I do see this happen
and both cases are quite dangerous. If we approve
a project based on a year’s worth of work, and we
estimate it and we think it is all good, there is a
lot of risk inherent in there. But also, and this is
worse, we might ditch doing something really, really
valuable for the company because we have clumped
together all this value into a year-long project and
we are making a really big decision – to go or no go
– based only on that clump.

I was asked once to run an estimation session where
this exact thing happened, where we went away,
estimated a bunch of requirements, and came back
and said, “Look, this is a year-long project,” and the
whole thing was canned because of that. I heard “It
is far too long, we are not going to be able to do this.
This is going to cost too much.” After the session, I
asked a couple of the product owners in the room,
“Would any of those requirements, if we just built
one of them now, provide good value to you?”

“Yes,” they said. “This thing we have prioritized
as number one. If we were to do this, it would be
immensely valuable. It would save us loads of time
and make our lives a whole lot easier.” That thing we
had estimated to take between one and two months’
worth of work but because we treated the project as
one big, fat clump of value, we ignored the whole
thing even though we could have generated lots of
value by just doing one or two things from that list.

He suggested that there is a need to change how we
look at value.

We need to start thinking about what we can do
now. What is the most valuable thing we can do?
We need to be really serious about that rather than
putting all those things together and making big
decisions based on the whole.

So, we have done the conventional thing and we
have prioritized our project and because we are
in uncertain world, we limited our options to two

or three things. We conclude that project A wins
because it has a higher ROI.

The thing is, that is all very well, but how do we
know that we are building the right thing here?
We have kind of confined ourselves to project A
versus project B, but there is a whole bunch of other
options that we have not considered. Why is it that
we can do only project A or project B, or even more
pertinently, why can’t we do both? Why do we have
to look at these as big, monolithic projects? Why
can’t we look at smaller pieces of value that we can
do concurrently?

He introduced the assumption life cycle, which is a
way of looking at projects, comparing it to the project
life cycle.

Big, up-front project thinking is essentially a
lot of assumptions. According to the traditional
assumption life cycle, we have business
requirements, functional requirements, and they
turn into development and then delivery. Actually,
these business requirements that we come up with
are all assumptions. We do not actually know these
things are valid at all. We say, “Well, these are our
business requirements. Let’s decide how we will
deliver those and get some functional requirements
around those”. These are just hypotheses. Again,
we have not yet validated that what we are doing
is a good idea. Then, in the development phase, is
when we experiment. You are going to see a lot of
similarities with sort of lean startup ideas, but at a
broader scale, across larger projects. Then, finally,
we validate these experiments. Are they valid or not?
Are the things that seem to be true actually true or
not?

Page 24

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Killick then looked at the impact of duration of
the assumption cycle, and how long projects are
inherently high-risk activities.

If we do this thing in short cycles, say, of a month,
there is not much problem with investing too much
cost. But, if we are looking at projects that take years
or even six months, that is a lot of money and a lot
of time to be investing and in that time, so many
things are going to change: the market; the way we
do things; requirements are going to merge; and
things are going to take longer than we thought to
build. All of these factors are going to happen and
we have not validated our assumptions. Of course,
when we get to the end of the project and deliver on
time, we celebrate the success of that then realize
that we built something that no one wants and that
is actually not going to deliver any value for us.

So, essentially, we are making really big bets and we
are putting a lot of eggs in one basket, and this is
an extremely risky approach. We don’t do that with
our cash in other situations. If we are investing in
property or the stock market, we make small bets.
We diversify our risk.

He then tackled the different aspects of project risk:

The other thing that is going on here is that when
we start a project, we identify what the risks are – I
call these the “known unknowns”. So, essentially,
we know there are things that might go wrong in
the projects and we call those things out and those
are risks. But then there is also a bunch of things
called “unknown unknowns”, which are things
that will just happen, and we can’t possibly predict
them or cater for them. And actually – let’s call
this “emergent value” – this emergent value can be
positive or negative. So, as we go along, things are
going to happen in the market or even in our own
project that are actually going to make us go, “Uh,
this is going to cost us more than we thought,” or
“Actually, this has so much more potential value
than we initially thought.” These things happen as
we go along. We cannot predict these things at the
beginning, but we tend to ignore them. We only call
out the risks and the sort of issues we know about.
We don’t call out the fact that there is going to be
emergent value.

Another aspect is how large projects result in missed
opportunities.

If we commit to one project and we sort of dismiss
project B and any other manner of things, we could
actually be missing out in opportunities. We could
get invested into this project and, even three or four
weeks in, some really cool opportunity comes along,
but because we have put all our eggs in one basket
and basically committed all these people and all this
time to this one big thing, it makes it really difficult
to be agile and to respond and be pro-active in the
market. We are kind of going, “Yeah. This is what we
need to do as a business and we are committing to
this for six months, a year, two years.”

Having identified the problems and risks associated
with the current estimation approach and typical
project duration, Killick presented alternate ways to
approach the topic by using real constraints.

Is there a better way of doing things? The way I like
to see this is that when we are estimating software
projects, what we are essentially doing is putting
arbitrary boundaries around what we are doing –
arbitrary constraints. Now, arbitrary constraints
are not good for the reasons that I have discussed.
They create dysfunctional behavior. What is good
in software are real constraints – and not just in
software but in other walks of life as well.

When we have a real constraint to work with, it
forces us to be creative. Imagine if you normally
spend $100 a week feeding your family and, for
some reason, you only have $20. You are not going
to say, “Well, I don’t feed my family then.” You
are going to say, “I need to come up with a way of
feeding my family for $20.” We start getting creative
about this and coming up with ideas and better
ways of doing things.

So, rather than saying, “What am I going to get and
when?” and trying to narrow this thing down and
estimate it, let’s look at it from another angle and
say, “This is my budget. This is how much I want to
spend. Can we do this for this amount of money?
Can I get the software equivalent of a Ferrari for
$500 or $1,000?” Having a budget creates a real
constraint. It is something that we can work with.
We have to get creative about it because we have no
other option.

I love the scene in Apollo 13 where the guys have
to build an air filter with bits and pieces from the
ship and they have to find a way of making this fit
into this with only this. Making a square peg fit in a

Page 25

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

round hole. That constraint brought out an amazing
creativity in a short period of time.

If we can use real constraints in building software,
then we can bring out the creativity in the people we
have. We hire excellent engineers and designers and
UX people. All of these people are really skilled and
it is their craft, their profession. Then we kind of give
them the requirements, we give them the solution,
and we tell them what to do and put them in a
box. We don’t give them that freedom of creativity
to actually come up with the right answers. So real
constraints are really good.

He then explained how iterations are useful when
working within constraints.

Once we have that real constraint, we can forget
about the end goal for now. Let’s start building and
learn what we can do without money. Now, if I have
$500,000 to spend, the last thing I am going to do
is to try and think up $500,000 worth of stuff to do.
What I will do is to think about my problem, what I
am trying to solve, and then create mini-constraints
to enable me to experiment and learn and then see
what is actually possible.

So, let us see what we can build for $50k. Let’s go
away for a month, rather than thinking about the
12-month picture. Let’s go away for a month and
not just increment over a product backlog. I am
not talking here about coming up with a product
backlog and doing 1/12th of it. I am talking about
coming up with an actual solution for what we are
building or for what we are going to do. So, I want to
solve my problem in a month.

Now, that does not mean I am going to solve it
in as high-quality a way as I would have if I took
12 months, but I might end up with a Holden1 of
software after a month and I might look at that and
go, “Actually, thinking about it, this Holden does
everything I need it to do. It fulfills the need I had
and the thought I had and I am going away to drive
my Holden and have a lot of fun with it.”

Or I might go, “I still want to head towards the
Ferrari route and what I can do now is iterate on
quality.” So, I can now say “Let’s go away and spend
another month and take this idea to the next level,

1	 Holden is a make of car popular in Australia:

http://www.holden.com.au/

where we might chop away at the Holden. We might
say that was a terrible idea, but we have learned a
lot from doing that. So, let’s start again.”

So, we are properly iterating, we are holistically
looking at our problem and solving it in iterations,
not just incrementing a product backlog.

He discussed the difference between this approach
and the everything-up-front commitment approach
commonly used in organizations.

So, we are essentially drip-funding. Compare this
to the business case of earlier. In this case, we are
presenting a business case; we are approving it as
viable options. We are saying “This has potential
value,” and we think it has more potential value
than other things, so we want to go ahead with it.
We prioritize that initiative and then we assign a
team, and if we have fixed teams that are ready to
go and take on this work, we are going to get a better
result out of that.

But, essentially, we go away and we do these
two-week or four-week – whatever they are –
experiments, iterations. We then ask, “Is this
initiative valuable enough?” If it is, we continue
funding it or we might even go, “You know what?
This is bigger than we actually thought this was
going to be, guys. Let’s scale this up. Let’s hire
more teams and put more into this because this is
potentially more valuable than we thought it was
going to be.” Or we may say, “This is a dud, not as
valuable as something else that has come up, so we
are going to pitch this and we are going to switch
you guys onto this new initiative.”

He explained that the way many supposedly
agile organizations work is not iterative but just
incrementing over a product backlog.

This is putting the “iterate” into iterations. It’s really
the key message to get across. When I see agile
teams, they are working with product backlogs and
many, many of them are hamstrung by the product
backlog that was basically derived up front. They are
essentially just incrementing through these and, in
some cases, even have divided the product backlog
into iterations, so they know what they are going to
be doing four or five iterations down the track.

http://www.holden.com.au/

Page 26

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Well, that is not iterating. That is just incrementing
and we are not looking holistically at building up
quality.

We need to get frequent delivery and feedback loops.
We need to be able to enable that kind of behavior
so that we can keep on course, adjusting and making
sure we are doing the right thing.

By breaking work down into small chunks we are
able to reduce risk and allow companies to respond
to emerging opportunities.

So, small bets, experiments, small iterations of
things, diversify our risks as I mentioned earlier.
They keep our options open and actually let us cover
multiple options at the same time, which is really
powerful. We no longer have to say, “Oh, these
two things look great, but we can only do one of
them.” Well, no. We can do both. We can do small
experiments on both and see which one takes off –
or maybe both of them will take off.

He emphasized that good people and stable teams
are key to effectiveness.

Now, a key to being able to work like this is that
we need to hire really good people. We need to hire
the A team, or lots of A teams, and we need to fix
these teams as well. Another thing we do when we
tear down projects and we recreate them is tearing
down all this culture and expertise that has built up
in a team that you cannot recreate quickly. It takes
months to build a new team and a team’s dynamic.
Putting together new people, you are not going to
get the same results so we keep teams together. A
team can just work on the next new valuable thing,
whereas in a project mindset, we tear it down, come
up with this new thing, and then bring together a
new team. If we have cross-function teams, we can
keep these teams together and they can work on
anything.

Providing an infrastructure that enables continuous
delivery is also important to enabling this way of
working.

The other thing we need to do is to enable
continuous delivery. Even if we are not going to be
continuously delivering into production (that is kind
of a business call), we do need to enable it. So we
need an infrastructure that allows teams to rapidly

deliver software because that is the only way that we
can get real feedback, really valuable feedback, on it.

So, even just getting it into a demo environment –
somewhere where people can play with it and we
can look at the product holistically and see where we
want to take it next – is absolutely crucial as well,if
you want to be able to work in this way. If you
can’t deliver software rapidly in these kinds of small
chunks, then you can’t work in this way.

This approach results in more predictability in costs,
which allows a value-based focus.

By having fixed teams and working in these small
time-box chunks, what we are doing is fixing our
cost. We know how much our teams cost to run
over a week or a month, so we can start focusing on
value. We can start comparing things by the money
they are going to bring in or the value they are going
to bring to our organization or our customer. So, we
can sort of review the return on investment monthly
or bimonthly or whatever it might be and we can
stop funding if the value diminishes.

So, the really key thing is kind of taking cost
out of the equation by knowing how much your
development costs. Then you can actually start
having conversations about the value.

You always need to be thinking fresh about “When
we go to spend another month’s worth of cash,
is the value we are going to generate going to be
worthwhile for us?”

Obviously, working in this way enables us to
respond to change – so, again, a key Agile Manifesto
principle. A lot of this really just sounds like agile,
right? It is in some way just reframing our Agile
Manifesto and saying, “Well, this is what we actually
should be doing rather than incrementing and what
have you.”

So, we need to be able to respond to change. Even
better than that, we need to able to be pro-active.
We need to beat our competitors to the market with
ideas. Again, we can only do this if we work in this
agile way. We need to be actually able to really,
really quickly change our course and adapt and be
pro-active. Drip funding in this way enables the
agility. We don’t know what is the final thing that
we are going to build over months and years, so let’s
keep on giving our teams constraints, allowing them

Page 27

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

to be creative around those constraints and to come
up with ideas that we will validate or invalidate.
Keep on doing that and we will get much more
effective results.

Killick contends that working in this way makes
teams more predictable.

It will ironically give us predictability because
software is such an unknown domain that is so
unpredictable. Because software is so unpredictable,
what we are going to do is to place arbitrary
constraints around that and try to create false
certainty of the future. We say what we are going to
do in a six-month or 12-month project because it
gives us a false sense of security that we know what
is happening. But, actually, that does not give us
predictability, as we all know. We go off schedule
and things change, expectations change. So, that
predictability is not really there; it is just an illusion.

Whereas, actually delivering things constantly
is predictability. We can work on features when
actually asked for rather than putting them on a
product backlog where they might never be seen
again. I work with somebody who used to call the
backlog the “place where requirements go to die”. He
knew that he would never get anything if we said,
“It is going on the product backlog.” If you want
a feature and you want a little bit of value, you
actually get it only if we work in this way.

Similarly, we want to be able to deliver these things
to our customers as soon as they are built. We do
not want to build this thing and then have to go
through a full, three-month release cycle before the
customer will see it. We need to get it in front of
them as quickly as possible. That is predictability.
If you are working with your supply and you know
that you are going to be delivering features every
week… – you can’t any more predictable than that.

He acknowledged that there is still a need to agree
on price and other terms with customers.

Touching on working with customers, another key
Agile Manifesto principle – “customer collaboration
over contract negotiation” – gets completely ignored
in agile teams I see. We still start off with these
horrible, fixed-price, rigid contracts that do not
allow us to be agile at all. We should actually choose
trust over paranoia.

This traditional idea of contracts is all about things
that are going to go wrong and we need to cover
ourselves and it becomes detailed – all these detailed
clauses about what if this happens, what if that
happens. And it is all based in paranoia.

If we look at it from another point of view and
actually build trusting relationships with our
customer and say, “You know what? We actually
want to build things that are going to delight you
and we need you to have that flexibility to change
your mind. We want you to change your mind
because that is actually going to allow us to build
the thing you want now, not the thing you wanted
six months ago.”

So, we need be able to welcome and embrace change.
If we start with a fixed, rigid contract, we cannot
actually welcome change. It is kind of like “Oh,
what if we do this brilliant new idea?” “Oh, we can’t
really because we are releasing in a month and the
customer is expecting another thing.” Well, you know
what? The customer has employed us as a supplier
of software because we know what we are doing. We
actually deliver software. They want our expertise.
They do not want to just say to us, “Do this.” They
actually want us to come back and say “Maybe you
should do this, because this is going to give you a
better result.”

He recommends taking an iterative pricing approach
when agreeing on payment terms.

Iterative pricing allows the customers to cut the
cord early if they are happy with what they have,
or in situations in which, for some reason, they are
not happy with the progress of the relationship or
how we are working. Essentially, just give them that
iterative pricing.

This is possible even if you are working in a
traditional environment with traditional contracts. I
did some work for Vic Roads a few years ago and we
had a very traditional contract – fixed price, fixed
requirements – but the actual day-to-day working
relationship we had was very different and because
we had actually delivered a successful project to
them before, trust had built up. So, we said to them
we wanted to deliver in an iterative way and they
saw the benefit of doing that because they were able
to change things as they went along. We need to tell
our customers that this is beneficial to them; it is
not just our going off and being agile on a whim.

Page 28

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

We want to do this because we want to deliver good
outcomes for our customers.

There are times when we can provide clarity on
pricing, when we can truly estimate with confidence.

I mentioned before that we are often experts in what
we do and we want customers to understand that.
So, if we are lucky enough, we can work in a domain
where we are building things that we do a lot.
Because we are a web-design company, for example,
we can present customers with expectations of what
they are going to get and when by virtue of the fact
that we do these things all the time. If I design Web
sites for a living, I know how long it takes me to
design a Web site of a particular level of quality.

In this kind of simple, basic, standard example, the
more you pay, the more quality you are going to
get – quality sort of in a subjective manner, because
actually the real quality comes in what actually
delights you when you start playing with this thing
in front of you. But what it does allow us to do is
to satisfy that need for an up-front expectation. We
know how long it is going to take because we build
these things all the time. We know it takes, say,
two weeks to build this particular type of Web site
with our fixed teams so we can price things without
having to worry about estimating everything up
front. We can say to the customer, “You know what?
We are going to build this together and we are going
to build something awesome and you can change
your mind and we will change our mind and we
will end up with something of the same ilk as some
of the other things we have done for this amount of
money.”

Killick then asked how we deliver features without
estimating.

This is down at the team level. If we work with fixed
teams that work together in a domain they know
about because they’ve built up all this knowledge
together, we can start slicing features and keep on
slicing them until we are satisfied we have reached a
particular level of simplicity.

So, rather than the concept of taking an epic story
and breaking it up into, say, three or four stories,
and then estimating each of those stories until
they are all happily small – small by our estimate
definition – what we can do is to come up with a
heuristic. For example, each story should have one

acceptance test and only one acceptance test. What
that allows us to do is to slice features into stories
and to stop when we hit that heuristic condition
rather than stopping when we think we have small
things.

That is one example of heuristic and there are
obviously many other ways that you could do it.
This one in particular I found very effective to create
stories that end up on average taking only three or
four days at most. Now, it does not matter that you
are going to get outliers. You are always going to
get things taking longer than other things – that is
going to happen. But what you care about is that,
on average, you get a certain number of things done
in a week and so you can use that information. It
is empirical information with which to price your
features.

He presented an example of a backlog and story wall.

This is something I do quite regularly to product
owners. You have the team board on the right –
that is, ready, in progress, and done. Then on the
left hand side is kind of the product backlog area.
Here we are using throughput and we are counting
stories rather than using story points, because we
sliced these things so we know they are roughly the
same size. We do not need to drill down with any
individual stories.

On average, we get, say, five things done in a week.
We can start looking back and saying, “Well, you
know what? Things of the sort like displacing a
queue are going to take at least two weeks. Things
a bit further down are going to be at least three
weeks.”

This information is really powerful because if
a product owner says, “This thing was down at

Page 29

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

number 18 in a queue. How long is this going to
take?”, we can answer with “It depends. Do you
want to do it now, or do you want to leave it where
it is in the queue? Because that is actually going to
change the answer.” If we leave it where it is now, all
you can answer is “Well, it is going to be a few weeks
before you can get that thing. If you really care about
this and you want it earlier, I strongly advise you to
move it up the backlog.”

Let’s say we are releasing in three weeks’ time and
we have too many stories to get done, based on our
throughput, when we want to start driving decisions
by that. Again, we are using constraints to make
decisions rather than just go, “Oh, that means our
release date is going to be pushed out.” Let’s have
that conversation with our product owner and say,
“If you really want this thing, you need to move it
up the list if you want it in this release. Otherwise,
it is going to be the next release.” Now, of course,
if we are not working in big releases as with the
approach I talked about earlier, it does not matter so
much because we are constantly delivering anyway.
But if you are not at that point yet and you are still
working with, say, three-week or monthly releases,
you need to be able to do this and make decisions
based on these constraints.

So, we can essentially derive the cost from
throughput and by doing that we can have models
like price per feature because we know how much
our features cost on average. That is good enough to
price our features with.

He summed up the importance of enabling a culture
of honesty:

Why is this all so important? This is really the crux
of it. All the other stuff is just mechanics and getting
rid of story points or what have you, but in order to
build effective software, we need to build in a culture
of honesty.

The problem with estimates isn’t so much the
concept of estimates themselves – because they
are fine if we know that they are estimates – but
that the way we treat them in software is not like
an estimate. They drive deadlines and they drive
promises and because of this, we get all kinds of
problems. Steve mentioned yesterday about gaming
the system and he mentioned how story points might
be gamed. I quite agree with him there: they can be
gamed. If you measure people by story points, they

will game the system and you will get nice release
burn-up charts that make it look like everything
is going great. In reality, people are constrained in
working with fear rather than creativity.

Give people the freedom to be creative and remove
the stress from the environment, Killick suggests.

We need to give our developers and our designers
the freedom of creativity to be able to actually
make good choices, build the right thing for their
customers. If we do not give them that, then we are
always going to be making decisions based on the
estimate that we made up front rather than on what
is the most valuable thing for the customer that we
should do next.

And the other point I want to finish on is that I
have actually seen all these extreme sides of people
working in these kinds of stressful conditions. I
worked with a guy who went through a divorce
because he is basically held to a promise that he’d
made year ago and spent too much time at work,
which led to the divorce. I have seen people have
heart problems caused by the stress of being in a
working environment that does not allow them to
be creative and not worry about constraints that are
sort of binding them.

So, even down to the level of every time someone
works late and they’re not at home with their family,
they are not going to their kids’ soccer match – these
are really, really important things. It is not trivial.
We laugh and joke about estimates, but there are
some real, serious issues going on in this kind of
culture and I personally do not want to work in that
kind of culture. This is why I talk about this stuff.

He finished with:

Page 30

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

On time. On budget. Those are not measures of
success. We need to get rid of them because there is
nothing successful about delivering on time and on
budget. The success comes in delivering what are our
customer wants and delighting them and ourselves,
as practitioners, as well. That is where we get our
motivation and delight.

ABOUT THE SPEAKER
Neil Killick is an independent coach and

consultant with over 17 years of experience

delivering software in various capacities. He

is a Certified Scrum Master (CSM), Certified

Scrum Product Owner (CSPO) and Certified

Scrum Professional/Practitioner (CSP). He has

spoken at Swinburne University of Technology,

Melbourne agile BA and scrum groups, the

Limited WIP Society, and the LAST Conference.

WATCH THIS PRESENTATION
ONLINE ON InfoQ

http://www.infoq.com/presentations/agile-estimation

Page 31

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Planning and Controlling
Complex Projects

Working on large and complex agile projects for more than 10 years, I’ve seen
planning and budgeting typically based on trying to predict how development will
turn out. Very often, the development team estimates the stories but the budget
for the whole project is independent from those estimates. Especially for complex
projects, this leads most often to (unwanted) surprises.

Learning about Daniel Kahneman’s and the Beyond
Budgeting folks’ work helped me a great deal in
better understanding how planning, estimating, and
budgeting relate and why the traditional approaches
don’t work.

Of course, you all know how this works in the
small scale, how you plan and steer a project by
iterations. But how do you decide in favor or against
a project, how do you define the budget for starting
a large project, and how do you know how your
tiny iterations (across many feature teams) fit into
the long-term project goal? Please note, I’m talking
about projects with 50-300 developers that take, for
example, three to five years to finish, or comparable
large-product (line) development.

Prediction is not possible
Daniel Kahneman, a psychologist and winner of
the Nobel prize in economics, has concluded that
most everything is based on coincidence. One of the
examples he uses refers to history: chances stood
50:50 that the zygote that became Adolf Hitler
would have been female. Who knows how this would
have changed the world? In this way, predicting
complex events is not possible.

Kahneman also collected work from colleagues
to verify his point. For example, Philip Tetlock, a
psychologist at the University of Pennsylvania,
collected more than 80,000 political and economic
predictions of people who make a living predicting
the future – real experts! Their predictions were
worse than applying a normal curve of distribution to
the situations. Yet, when proved wrong, hardly any of
these experts acknowledged that their predictions
were wrong. Almost all came up with excuses or
reasons why they believe they were actually right but
with incorrect timing – without indicating what kind
of timing would have been right.

In another study, Terry Odean, a finance professor
at the University of California, Berkeley, analyzed
approximately 10,000 discount brokerage accounts
that participated in 163,000 trades. Discount
brokerage firms do not advise investors on trades;
they simply execute the trades investors ask for.
In this analysis, Odean found that stocks these
investors sold performed on average 3.2% better
than the ones they bought. (The interesting aspect
of brokerage is that for every trade, there must be
someone who believes that it will be better to sell the
stock and someone else who believes buying it would

by Jutta Eckstein

http://www.infoq.com/author/Jutta-Eckstein

Page 32

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

be better. Traders on both sides of a sale are typically
regarded as experts in the field.)

When Kahneman worked for the Israel Defense
Force, he created a test that he used with his
group to evaluate candidates for officer. You can
imagine that kind of test – in addition to interviews,
candidates had to solve tough live problems in which
they had to build something to get a team over
another thing. In the test, it became apparent who is
taking the lead, who is opposing, who is a good team
player, and so on.

Kahneman and his group developed much confidence
in assessing the candidates’ qualifications based
on observing them during this test,. However, the
feedback they received from the commander every
few months was that their evaluation was only a tiny
bit better than a blind guess. Despite that, neither
Kahneman nor his colleagues changed their approach
or conclusions based on observations. It remained
obvious to them that an applicant taking the lead in
the test would be a good candidate for officer. They
were just too convinced about their impression that
changing the conclusions seemed to be impossible.

So what can we learn from those studies? There are
two important lessons to be learned:

First, predictions will always be error-prone, just
because the world – or any complex event – is not
predictable.

Second, high subjective confidence (as experts often
show whether recommending soldiers for an officer
career or estimating a project) is no sign of accuracy.
It is only a sign that the expert has a coherent story.
High confidence (sometimes called “intuition”)
can only be trusted if you are acting in a stable
environment.

There is also a third lesson in Kahneman’s research
that is the foundation of iterative development:
unlike long-term trends, we can predict short-term
ones with fair accuracy as long as they are based on
previous behaviors, patterns, and achievements.

Beyond Budgeting to the rescue
Beyond Budgeting is a development driven by CFOs
from different companies. They were unhappy
with the effect budgeting had on the success of the
respective company. The typical experiences – and
you might be able to relate to those – are twofold:

Imagine somebody asks for a specific budget for
a project that then turns out to cost less than
predicted. Fearing that future budgets will be
restricted based on the current one, the project
team spends its surplus, although not for the original
intended purposes. This isn’t really contributing to
the company’s success.

Now imagine that someone asks for a specific budget,
but market changes mean the project comes to need
twice the expected budget. Because the team did not
ask for the newly required funds ahead of time and
therefore it’s not possible for them and the company
to act according to the market needs. And again the
company’s success suffers from the original strict
budgeting.

Based on these experiences, the Beyond Budgeting
people developed different principles and
recommendations. They don’t necessarily mean
to get rid of budgets but to make them more
flexible. For example, to overcome inflexible annual
negotiations on the budget, the recommendation is
to use a rolling budget, which means to verify every
month where the money is best spent. An alternative
to the rolling budget is event-based budgeting
that allows a budget to be reconsidered whenever
changes occur.

One of the most important insights of Beyond
Budgeting is to differentiate between target and
forecast. The rationale is that every goal should be
ambitious whereas the forecast (or estimate) is a
way to close the gap to the goal. Now if both target
and forecast are forced into one number, either the
target isn’t ambitious enough or the estimate is a
deception.

Applying Beyond Budgeting
The help to decide in favor or against a project or
product, a senior developer or even a team works
to estimate the required effort and therefore cost.
The problem is that at that point in time, not much is
known about the project and therefore the estimates
are not really solid. Sometimes sales comes up with
an estimate without consulting development and
upon which the decision is made. (And, of course,
no matter who comes up with this first estimate,
the development team is always assured that this
number will not be taken seriously and can be
adjusted once we know more….)

http://bbrt.org/

Page 33

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Given the findings of both Kahneman and Beyond
Budgeting, this approach isn’t helpful. First of
all, it ignores Beyond Budgeting’s differentiation
between target and forecast. Second, in contrary
to Kahneman’s insights, the approach assumes
that complex projects can be predicted. Third, it
runs counter to Beyond Budgeting’s advice against
approving the budget up front.

What we need instead is first to clarify the overall
goal. In order to not rely just on one group of experts
(remember Kahneman’s findings), I recommend
performing this clarification in a diverse group.
Depending on the project, this group should be
composed of representatives of the customer,
marketing, sales, and product management, and
should be supported with scientific methods in
order to find out the real needs of the market, as the
principles of lean startup suggest. The outcome of
this clarification is not an estimate but the definition
of the business value that the company (or the
customer) expects to achieve with the project.
Looking at the business value shifts the mindset from
what it will cost to what we will gain.

The business value can be defined through discussion
using a Delphi session or, as I have done in the past
as well, by using a variation of planning poker. For
the latter, instead of using estimate numbers to drive
the discussion, the group members use numbers
referring to the business value.

Instead of asking how long a project will take, the
same diverse group has to find out how much they
are willing to spend (based on the business value
they previously came up with). Naturally, this group
will struggle (at first) to come up with a number for
the investment just as developers do when coming
up with their estimate. Yet, the business has to
decide where it wants to spend money. From the
development point of view, everything can be made
in a highly sophisticated and expensive way (which
typically is in line with the working ethics, speaking
for example of clean code) – but at the same time
things can also be implemented at low cost (which
could lead to unmaintainable code). The business
has to decide how much the business value is worth
(which can result in asking for a cheap solution).

This does not mean that at this point there is no
responsibility left for the developers in terms of
planning; their task is to ensure business understands
what impact a cheap (or expensive) solution might

have. Consequently, estimation is not in the focus
at that point. It is the decision on the business value
and the investment the company wants to make that
has to drive the development. Again, these drivers
are created by the business and not by development.
Some teams do the opposite, asking development
not to estimate on the story level only but also on
the epic level (by estimating for example in T-shirt
sizes) or on the project level. Estimating on a more
coarse-grained level is not a problem per se, as long
as the estimate is used to understand the content
better. Yet, trying to answer how much the project,
epic, or story costs (or how long it takes) focuses on
the wrong question. Again, the appropriate question
to ask is how much is this worth and how much are
we willing to invest in it.

This way, both the business value and the investment
define a framework for steering the development. At
best, both should be broken down to the story level,
and if not, then at least to the epic level. We have
had success planning on at least three levels. The
highest level is the overall project plan (often called
the roadmap). The next level is the release plan, with
a release lasting three months at most. Thus, before
starting a release, the epics for this release will be
defined in terms of business value and investment. At
the lowest level, the level of iterations, we define the
business value and investment for the stories before
the classic iteration planning (i.e. sprint planning one
and two).

Depending on the lengths of the release (and on
the complexity of the project), we sometimes need
what Mike Cohn once called a “rolling lookahead
plan”. With this, we look into the business value and
investment of the stories not only for the upcoming
iteration but also for the next two or even three
iterations.

Planning on these different levels allows the business
to define the business value and investment first at
a coarse-grained level and then iteratively making
it more fine-grained. Defining it on a fine-grained
level right away is for large projects on the one
hand impossible and one the other hand not useful
because it is very likely that the business value (and
the reasons for the investment) will change over
time.

Applying this approach at the different levels ensures
that development is always driven by business
value and investment and not by estimation. I

Page 34

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

still recommend conducting a session of planning
poker for estimating the stories as a development
team to spread knowledge about the stories
within the team but not to drive development. The
resulting estimates are only important for driving
the conversation, especially when team members
at first disagree over the numbers. Discussion of
their different assumptions will create a shared
understanding of the story. This way, the estimation
is still helpful for the team but it will not drive the
planning.

The prioritization and the definition what is in and
what is out of scope of development is based on
what the story is worth in terms of business value
and investment (and not in terms of how long it
will take or of how many story points it costs). The
business value together with investment provides
a guideline for the prioritization and for the
development. If a specific story has been assigned a
low investment and doesn’t provide a high business
value, the priority of the story has to be questioned
(independent of the story points estimated for it).
Furthermore, it should be obvious that for such a
story the development team should look for the
cheapest solution and if there is none then the story
has to be exchanged for one that provides a higher
business value (and/or the company should decide to
increase investment).

As well, the business value and the investment
have to be verified regularly, similarly to the rolling
or event-based budget. At least after every other
iteration, look at what has been learned from the
stakeholders (e.g. what kind of changes will provide a
competitive advantage), from the market (e.g. where
do we need to invest in order to create more business
value), and from development (e.g. what advantage
does a specific technology provide). Then analyze
how the lessons influence the business value and the
investment on the different levels. It is helpful to first
take a look at what this means for the release plan –
often it affects only this level, so there is no need to
take it to the overall project level. Yet, at some times
this process has such an impact that the changes
will influence the roadmap. Certainly, when defining
the business value and investment for the upcoming
iteration (and, if applicable, for the rolling look-ahead
plan, i.e. for the next two or three iterations) the new
lessons learned should be taken into account.

In general, if the customer’s competitive advantage
is really our focal point then the business has to

be driven by the business value. Thus far in agile
development, we have been talking about the
business value but we just considered the priorities
(often additionally under consideration of the
estimates). Only in combination with the investment
does this ensure that we always maximize the value
in the customer’s interest.

Conclusion
Recent findings in research together with the
insights from Beyond Budgeting prove what many
of us have experienced: accurate forecasts aren’t
possible because the world is not predictable. An
expert prediction with high confidence just means
that the expert has a coherent story, not that the
accuracy of the prediction is high. Instead of relying
on an expert, ask a diverse group of people.

To avoid the trap of mixing estimation and
planning, define a business value and come up
with an investment you are willing to put into this
undertaking and use these values for planning. These
values help you to decide for or against starting a
project and help you to come up with a roadmap for
the project (or product) and a release plan. Especially
on the project and on the epic level will the business
value and the defined investment drive development.

Short-term predictions are possible, so measure the
velocity and take this into account when planning
the next iteration. The feedback of the iteration and
of the stakeholders helps to improve the handling of
both the business value and the investment. On the
one hand, the business value and investment steer
the iteration, and on the other hand, the feedback
of the iteration helps improve the business value
and the investment. In other words, the roadmap
influences the release plan, which influences the
iteration and vice versa – the result of the iteration
feeds back into the release plan and in turn into the
roadmap. The business value and the investment are
treated as a rolling budget that that you regularly
revisit to consider all lessons learned.

Page 35

Agile Project Estimation and Planning / eMag Issue 17 - August 2014

CONTENTS

Further reading
Daniel Kahneman (2011). Thinking, Fast and Slow.
Penguin Books

Bjarte Bogsnes (2008). Implementing Beyond
Budgeting. John Wiley & Sons

Beyond Budgeting Roundtable (Homepage of Beyond
Budgeting):

Mike Cohn (2005). Agile Estimating and Planning.
Prentice Hall

ABOUT THE AUTHOR
Jutta Eckstein is an independent

coach, consultant, and trainer from

Braunschweig, Germany. Her know-

how in agile processes is based on over

15 years’ experience in project and

product development. Her focus is

on enabling agile development on the

organizational level. She has helped

many teams and organizations all

over the world to make the transition

to an agile approach. She has a

unique experience in applying agile

processes within medium-sized to large

distributed mission-critical projects.

This is also the topic of her books, Agile

Software Development in the Large

and Agile Software Development with

Distributed Teams. She is a member of

the Agile Alliance and a member of the

program committee of many different

European and American conferences

in the area of agile development, object

orientation, and patterns.

READ THIS ARTICLE
ONLINE ON InfoQ

http://bbrt.org/
http://bbrt.org/
http://www.amazon.de/gp/product/B00E5KJSMM/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1638&creative=6742&creativeASIN=B00E5KJSMM&linkCode=as2&tag=juttaeckstein-21
http://www.amazon.de/gp/product/B00E5KJSMM/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1638&creative=6742&creativeASIN=B00E5KJSMM&linkCode=as2&tag=juttaeckstein-21
http://www.amazon.de/gp/product/B00DY3KQIG/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1638&creative=6742&creativeASIN=B00DY3KQIG&linkCode=as2&tag=juttaeckstein-21
http://www.amazon.de/gp/product/B00DY3KQIG/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1638&creative=6742&creativeASIN=B00DY3KQIG&linkCode=as2&tag=juttaeckstein-21
http://www.infoq.com/articles/planning-controlling-complex-projects-beyond-budgetting

	_GoBack
	_GoBack

