
Agile Test Automation Strategy
For Anyone and Everyone!

Gerard Meszaros
Agile2012ATAS@gerardm.com

1 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

For Anyone and Everyone!

Gerard Meszaros
Agile2012ATAS@gerardm.com

Embedded
Telecom

My Background

•Software developer

•Development manager

•Project Manager

•Software architect

•OOA/OOD Mentor

•Requirements (Use Case) Mentor

•XP/TDD Mentor

•Agile PM Mentor

•Test Automation Consultant & Trainer

•Lean/Agile Coach/Consultant

80’s

90’s

00’s

2 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Product & I.T.

I.T.

Gerard Meszaros
ATAS2012@gerardm.com

•Software developer

•Development manager

•Project Manager

•Software architect

•OOA/OOD Mentor

•Requirements (Use Case) Mentor

•XP/TDD Mentor

•Agile PM Mentor

•Test Automation Consultant & Trainer

•Lean/Agile Coach/Consultant

80’s

90’s

00’s

Agenda
• Motivation

– The Agile Test Problem
– The Fragile Test Problem

• Approaches to Test Automation
• Test Automation Strategy

Rough timings for Agile Test Automation Strategy

Time per slide: 1.4 # of Slide #

Topic Time
#

Slides Start End

3 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Topic Time
#

Slides Start End
Motivation 11.2 8 2 9
Exercise 1 - Automation Motivation 10 1 10 10
Intro to Automation 7 5 11 15
Exercise 2 - Why not Record & Playback? 10 1 16 16
Why Automated Tests are Fragile 8.4 6 17 22
How Agile Automation Changes Things 9.8 7 24 30
Intro to Example-Driven Development 7 5 32 36
Managing Scope vs Detail in Examples 15.4 11 38 48
How to specify workflows 8.4 6 50 55
Exercise 3 - Workflow Tests (Keyword-Driven) 15 1 56 56
Using Data-Driven Tests to specify business rules 8.4 6 55 60
Exercise 4 - Business Rules Test (Data-Driven) 15 1 61 61
How Tests Interact With the SUT 7 5 62 66
Test-Driven Architecture 5.6 4 67 70
Legacy Systems (if time permits) 19.6 14 71 84
The Role of Unit Tests 8.4 6 85 90
Test Automation Strategy 14 10 91 100

180.2 97

Product Owner Goal

• Goal: Maximize business value received

Features Money

Concept

M
inim

ize

M
axim

ize

4 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Features Money

Product Owner

M
inim

ize

M
axim

ize

Quality is Assumed; Not Managed

Why Quality Often Sucks

• Iron Triangle of Software Engineering:

Resources

Time
Quality

5 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

You can fix any three; the fourth is the outcome

Time

Functionality

• What about Quality?

Quality

In Agile, we
“Pin” quality

using
automated

tests

Why Quality Often Sucks

• Iron Triangle of Software Engineering:

Quality

Resources

Time

6 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

In Agile, we
“Pin” quality

using
automated

tests

You can fix any three; the fourth is the outcome

Functionality

Quality

• What about Quality?

Time

Speaking of Quality,
would you ...

... ask your doctor to reduce the cost
of the operation ...

... by skipping the sterile technique ?

7 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

... ask your doctor to reduce the cost
of the operation ...

... by skipping the sterile technique ?

Test Automation is like hand washing:
Improved results but an upfront cost.

Minimizing Cost of Product
Total cost includes:
• developing the software
• verifying the newly built functionality
• verifying old functionality still works
• fixing any bugs found
• Verifying noting was broken by fixes

8 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Total cost includes:
• developing the software
• verifying the newly built functionality
• verifying old functionality still works
• fixing any bugs found
• Verifying noting was broken by fixes

Agile Test Automation can reduce the
cost of all of these activities.

Incremental Development

Concept Version 1.0

Initial NF

9 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Type NF bugs: New Func. is wrong
• Type RB bugs: New bugs in old func.

(Regression Bugs)

Evolved
Concept

Version 1.x
Version 1.0

RB

NF

Exercise 1
• Time to test our little application

• Oh, new build, please retest!

• Another build, please retest!

10 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

The Agile Test Problem

Requirements
Development

Testing

11 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

The Agile Test Problem

Testing
Development

Requirements

Testing
Development

Requirements

12 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• As development increments reduce in
duration, testing needs to be reduced
accordingly

Testing

The Agile Test Problem

Testing
Development

Requirements

Testing
Development

Requirements

13 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

... and traditional approaches to testing no
longer work

Testing

Testing
Development

Requirements

Testing
Development

Requirements

Anatomy of an Automated Test

Our System

Other System

Other System

Interface Business
Logic Database

Test

Test Scenario Name

1. Do Something
2. Check Something

Clean Up

1&2 May be
repeated

Test
Setup

Preconditions
(State)

Adapter
Given...

Preconditions

14 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Business
Logic Database

Container Services

Other System

Test

Test Scenario Name

1. Do Something
2. Check Something

Clean Up

1&2 May be
repeated

Test
Teardown

When ...
Then

executiondefinition

• User executes tests manually; tool records as tests
• Tool replays tests later without user intervention

FixtureTest
Recorder

SUT

Inputs

Outputs

Test

(C)OTS Record&Playback

The tests are
are code/data
interpreted
by the test

runner.

15 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Test Result Repository

Test Script Repository

SUT

Test
Script 1

Test
Script 2

Test
Script n

Expected
OutputsInputs

InputsTest
Runner

Script n
Result

Test
Results

Expected
Outputs

The tests are
are code/data
interpreted
by the test

runner.

Exercise 2
• Record & Playback Test Automation

– Please record a test against the System Under Test
– Then, run the test to make sure it works

• New build has been delivered
– Please run the test against new build

16 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Record & Playback Test Automation
– Please record a test against the System Under Test
– Then, run the test to make sure it works

• New build has been delivered
– Please run the test against new build

Agenda
• Motivation

– The Agile Test Problem
– The Fragile Test Problem

• Changing the Role of Test Automation
• Approaches to Test Automation
• Test Automation Strategy

17 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Motivation
– The Agile Test Problem
– The Fragile Test Problem

• Changing the Role of Test Automation
• Approaches to Test Automation
• Test Automation Strategy

The Fragile Test Problem
What, when changed,
may break our tests
accidentally:

– Behavior Sensitivity
» Business logic

– Interface Sensitivity
» User or system

– Data Sensitivity
» Database contents

– Context Sensitivity
» Other system state

Our System

Other System

Other System

Interface Business
Logic Database

Test

18 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

What, when changed,
may break our tests
accidentally:

– Behavior Sensitivity
» Business logic

– Interface Sensitivity
» User or system

– Data Sensitivity
» Database contents

– Context Sensitivity
» Other system state

Business
Logic Database

Container Services

Other System

Test

In Agile, these are all changing all the time!

Our System

Other System

Other System

Interface Business
Logic Database

Interface Sensitivity
• Tests must interact with

the SUT through some
interface

• Any changes to interface
may cause tests to fail.
– User Interfaces:

» Renamed/deleted windows or
messages

» New/renamed/deleted fields
» New/renamed/deleted data values

in lists
– Machine-Machine Interfaces:

» Renamed/deleted functions in API
» Renamed/deleted messages
» New/changed/deleted function

parameters or message fields

Window

Field
Button

Title
Caption

Link

19 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Business
Logic Database

Container Services

Other System

• Tests must interact with
the SUT through some
interface

• Any changes to interface
may cause tests to fail.
– User Interfaces:

» Renamed/deleted windows or
messages

» New/renamed/deleted fields
» New/renamed/deleted data values

in lists
– Machine-Machine Interfaces:

» Renamed/deleted functions in API
» Renamed/deleted messages
» New/changed/deleted function

parameters or message fields

Window

ButtonLink
Data Grid

E.g.: Move tax field
to new popup window

Our System

Other System

Other System

Interface Business
Logic Database

Behavior Sensitivity
• Tests must verify the

behavior of the system.
– Behavior also involved in test

set up & tear down
• Any changes to business

logic may cause tests to
fail.
– New/renamed/deleted states
– New/changed/removed

business rules
– Changes to business

algorithms
– Additional data requirements

Object

State
Identity

Algorithm

20 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Business
Logic Database

Container Services

Other System

• Tests must verify the
behavior of the system.
– Behavior also involved in test

set up & tear down
• Any changes to business

logic may cause tests to
fail.
– New/renamed/deleted states
– New/changed/removed

business rules
– Changes to business

algorithms
– Additional data requirements

Object

Algorithm
Rule

E.g.: Change from
GST+PST to HST

Our System

Other System

Other System

Interface Business
Logic Database

Data Sensitivity
• All tests depend on

“test data” which are:
– Preconditions of test
– Often stored in databases
– May be in other systems

• Changing the contents
of the database may
cause tests to fail.
– Added/changed/deleted

records
– Changed Schema

Table

Row
Row

21 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Business
Logic Database

Container Services

Other System

• All tests depend on
“test data” which are:
– Preconditions of test
– Often stored in databases
– May be in other systems

• Changing the contents
of the database may
cause tests to fail.
– Added/changed/deleted

records
– Changed Schema

Row
Row
Row

E.g.: Change customer’s
billing terms

Our System

Other System

Other System

Interface Business
Logic Database

Context Sensitivity
• Tests may depend on inputs

from another system
– State stored outside the

application being tested
– Logic which may change

independently of our system

• Changing the state of the
context may cause tests to
fail.
– State of the container

» e.g. time/date
– State of related systems

» Availability, data contents

Customer X

22 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Business
Logic Database

Container Services

Other System

• Tests may depend on inputs
from another system
– State stored outside the

application being tested
– Logic which may change

independently of our system

• Changing the state of the
context may cause tests to
fail.
– State of the container

» e.g. time/date
– State of related systems

» Availability, data contents
Security System

User: X
Permissions: none

Container Services
TimeDate

E.g.: Run test in a
shorter/longer month

Agenda
• Motivation
• Changing the Role of Test Automation

– From Defect Detection to Defect Prevention
– Different Tests for Different Purposes

• Approaches to Test Automation
• Test Automation Strategy

23 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Motivation
• Changing the Role of Test Automation

– From Defect Detection to Defect Prevention
– Different Tests for Different Purposes

• Approaches to Test Automation
• Test Automation Strategy

The Role of Automation in Agile
• Provide a Safety Net for Change & Innovation

– Provide rapid feedback to reduce cost of fixing defects.
» On demand (Developer) and event driven (CI build)

– Rapid feedback enables experimentation
» Don’t have to choose between Quick and Safe

• Guide Development of the Product
– Provide executable examples of what “done” looks like

• Support Manual Testing
– Remove the repetitive drudgery so testers can focus on

high value activity by:
– Automating entire tests, or by
– automating the steps that can be automated.

24 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Provide a Safety Net for Change & Innovation
– Provide rapid feedback to reduce cost of fixing defects.

» On demand (Developer) and event driven (CI build)
– Rapid feedback enables experimentation

» Don’t have to choose between Quick and Safe

• Guide Development of the Product
– Provide executable examples of what “done” looks like

• Support Manual Testing
– Remove the repetitive drudgery so testers can focus on

high value activity by:
– Automating entire tests, or by
– automating the steps that can be automated.

How is Agile Test Automation Different?

• We automate the tests for a different reason
– Defect Prevention vs. Detection
– To communicate requirements
– To “Pin” the functionality once it’s built

• We automate the tests a different way
– Many different kinds of tests

» E.g. We don’t rely solely on GUI-based automation
– Using tools that support collaboration & communication

» in addition to confirmation

• We plan the automation based on ROI
– Goal isn’t: 100% automation
– Goal is: To maximize benefit while minimizing cost

25 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• We automate the tests for a different reason
– Defect Prevention vs. Detection
– To communicate requirements
– To “Pin” the functionality once it’s built

• We automate the tests a different way
– Many different kinds of tests

» E.g. We don’t rely solely on GUI-based automation
– Using tools that support collaboration & communication

» in addition to confirmation

• We plan the automation based on ROI
– Goal isn’t: 100% automation
– Goal is: To maximize benefit while minimizing cost

Traditional Role of Testing

Acceptance Tests
Regression Tests

Usability Tests
Exploratory Tests

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Report
Card

Critique Product

Functionality
Usability
Scalability
Response
Availability

B
C
A
B
C

Business
Facing

Technology
Facing

26 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Shigeo Shingo
Co-inventor of

Toyota Production System

Inspection
to find

defects is
Waste

Inspection
to prevent
defects is
essential

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Technology
Facing

Quadrants courtesy of Brian Marrick and Mary Poppendieck

Changing the Role of Testing

Acceptance Tests
Regression Tests

Usability Tests
Exploratory Tests

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Business
Facing

Technology
Facing

Critique Product Report
Card

Functionality
Usability
Scalability
Response
Availability

B
C
A
B
C

Define Product
Requirements

27 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Technology
Facing

Prevent
anticipatable
defects from

happening

Find non-
anticipatable

Defects, ASAP!

Software
Design

Quadrants courtesy of Brian Marrick and Mary Poppendieck

Changing the Role of Testing

Acceptance Tests
Regression Tests

Usability Tests
Exploratory Tests

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Business
Facing

Technology
Facing

Critique Product
Report
Card

Functionality
Usability
Scalability
Response
Availability

B
C
A
B
C

Define Product
Requirements

28 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Technology
Facing

Quadrants courtesy of Brian Marrick and Mary Poppendieck

Software
Design For effective prevention:

1. Tests must be available before
development

2. Developers must be able to run tests
before check-in

Reducing the Cost to Fix Defects
Cost to understand

and fix a defect goes
up with the time it

takes to discover it.

29 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Why?
• We can remember where we put the newly

inserted defect because
1. We know what code we were working on
2. The design of the code is still fresh in our minds

• We may have to change less code
– Because we wrote less code based on the defect

Continuous Acceptance Testing!

• Defines what “Done Looks Like”
– Several to many tests per User Story / Feature

• Tests executed as soon developer says “It’s
Ready”
– End-of-iteration: OK
– Mid-iteration : Better

30 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

30

Write StoryTest

Write StoryTest Build Code Test Code Test Story

Build Code Test Code Test Story

• Tests executed as soon developer says “It’s
Ready”
– End-of-iteration: OK
– Mid-iteration : Better

Re
ad

in
es

s
A
ss

es
sm

en
t

Continuous Readiness Assessment!

• Defines what “Done Looks Like”
– Several to many tests per User Story / Feature

• Executed by developers during development
– To make sure all cases are implemented
– To make sure it works before showing to business

• Tests executed as soon developer says “It’s
Ready”
– End-of-iteration: OK
– Mid-iteration : Better

31 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

31

Write StoryTest

Write StoryTest Build Code Test Code Test Story

Build Code Test Code Test Story

• Tests executed as soon developer says “It’s
Ready”
– End-of-iteration: OK
– Mid-iteration : Better

Prevention: - Building the Right Product

What the customer thought they wanted

What the customer actually asked for

What the customer realized they actually needed

What development thought the customer asked for

What development actually built

What testing thought the customer asked for

What testing actually tested for

32 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

What the customer thought they wanted

What the customer actually asked for

What the customer realized they actually needed

What development thought the customer asked for

What development actually built

What testing thought the customer asked for

What testing actually tested for

Building the Right Product

• How do we eliminate
the waste caused by
building the wrong
product?
– Missed requirements?
– Misunderstood

requirements?
– Unneeded functionality?

33 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• How do we eliminate
the waste caused by
building the wrong
product?
– Missed requirements?
– Misunderstood

requirements?
– Unneeded functionality?

Building the Right Product

• How do we eliminate
the waste caused by
building the wrong
product?
– Missed requirements?
– Misunderstood

requirements?

34 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• How do we eliminate
the waste caused by
building the wrong
product?
– Missed requirements?
– Misunderstood

requirements?

Example-Driven Development

• A.K.A.
– Acceptance Test Driven Development
– Behaviour-Driven Development
– Executable Specification
– StoryTest-Driven Development

• Concrete examples flesh out requirements

• Testers flush out missed scenarios...
...before development starts

35 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• A.K.A.
– Acceptance Test Driven Development
– Behaviour-Driven Development
– Executable Specification
– StoryTest-Driven Development

• Concrete examples flesh out requirements

• Testers flush out missed scenarios...
...before development starts

Life Cycle of an Example / Test

User
Goal

Feature

Story
Scenarios

Story
Examples

Executable
Examples

Formalization
Automation

Make Concrete
By Adding Data

Define
Acceptance

Criteria

36 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Feature

Story
Title

Story
Narrative

Executable
Examples

Satisfied
Examples

Product
Development

Define
Acceptance

Criteria

Agenda
• Motivation
• Changing the Role of Test Automation

– From Defect Detection to Defect Prevention
– Different Tests for Different Purposes

• Approaches to Test Automation
• Test Automation Strategy

37 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Motivation
• Changing the Role of Test Automation

– From Defect Detection to Defect Prevention
– Different Tests for Different Purposes

• Approaches to Test Automation
• Test Automation Strategy

Test Automation Pyramid

Component
Tests

System
Tests

Exploratory Tests
• Large numbers of very

small unit tests
– Ensures integrity of code

• Smaller number of
functional tests for major
components
– Verify integration of units

• Even fewer tests for the
entire application &
workflow
– Ensure application(s) support

users’ requirements
• Tools to support effective

exploratory testing
38 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Unit Tests

Component
Tests

Pyramid originally proposed by Mike Cohn

• Large numbers of very
small unit tests
– Ensures integrity of code

• Smaller number of
functional tests for major
components
– Verify integration of units

• Even fewer tests for the
entire application &
workflow
– Ensure application(s) support

users’ requirements
• Tools to support effective

exploratory testing

Workflow

Behavior Specification at Right Level
• Specify broad scope at minimum detail

– E.g. Use least detail when specifying workflow
• Specify most detailed req’ts at narrowest scope

– E.g. Don’t use workflow when specifying business rules

D
et

ai
l

H
ig
h

Lo

w

Too much detail
Unmaintainable

39 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Unit Tests

Component
Tests

System
Tests

Workflow

Transactions Make examples /
tests easy to

understand and
easy to write

Broad Narrow
Scope

D
et

ai
l

H
ig
h

Lo

w

Business
Rules

Too vague

Too much detail
Unmaintainable

Unit
Tests

Mega Bank Requirements
• Notify user of transactions against their

accounts.
• User can configure threshold amount for

notification based on any/all of account,
transaction type or region, charge category

• Notification can be sent via e-mail, voice-mail
or SMS/IM

• User can suspend notifications indefinitely or
for a defined period of time.

Example:

40 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Notify user of transactions against their
accounts.

• User can configure threshold amount for
notification based on any/all of account,
transaction type or region, charge category

• Notification can be sent via e-mail, voice-mail
or SMS/IM

• User can suspend notifications indefinitely or
for a defined period of time.

Mega Bank Use CasesExample:

Configure Notification
Threshold

Suspend Notification
Account
Holder

41 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Resume Notification
Account
Holder

Process Transaction

Transaction
Settlement

Specifying Notification WorkflowExample:

Use Case:
Manage

Notification
Thresholds

Use Case:
Process

Transaction

Use Case:
Process

Transaction

42 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Broad Scope; Minimum Detail;
No mention of User Interface!

Check output
of Use Case:

Process
Transaction

Alternate form of Workflow Test:
Given Bobma has account 1003592877
And BobMa sets notification threshold to

$10,000 for all transactions
When the bank processes debit for 15,000 to

account 1003592877
And the bank processes debit for 9,000 to

account 1003592877
And the bank processes debit for 11,000 to

account 1003592877
Then bobma receives notification for debit

15,000 to account 1003592877
And bobma receives notification for debit 11,000

to account 1003592877
43 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Given Bobma has account 1003592877
And BobMa sets notification threshold to

$10,000 for all transactions
When the bank processes debit for 15,000 to

account 1003592877
And the bank processes debit for 9,000 to

account 1003592877
And the bank processes debit for 11,000 to

account 1003592877
Then bobma receives notification for debit

15,000 to account 1003592877
And bobma receives notification for debit 11,000

to account 1003592877

Specifying Suspension Workflow
Use Case:

Manage
Notification
Thresholds
Use Case:

Process
Transaction
Use Case:
Suspend

Notification

Example:

44 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Use Case:
Suspend

Notification

Use Case:
View

Notifications

Use Case:
Resume

Notification

GUI for Manage Notifications Tx
• User Interface

implies specific
functionality:
– List of accounts
– Ability to make

changes to
notifications

– List of active
notifications

• This functionality
can be tested
independently of UI

Example:

45 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• User Interface
implies specific
functionality:
– List of accounts
– Ability to make

changes to
notifications

– List of active
notifications

• This functionality
can be tested
independently of UI

Single Transaction Test
Use Case:

Manage
Notifications

Data to be shown on
Manage Accounts Tab

Example:

Data to be shown on
Manage Accounts Tab

46 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Side effect of Adding
A Notification

Data to be shown
on Manage

Notifications TabMedium Detail; Medium Scope
Still no mention of User Interface!

Data to be shown
on Manage

Notifications Tab

Business Rule Specs

Configuration Process Transaction
Threshold per Charge Type

Example:

47 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

High Detail; Narrow Scope
Completely ignores UI!

Changing Level of Abstraction/Detail
• Need to Reduce Detail or Reduce Scope

D
et

ai
l

H
ig
h

Lo

w

Workflow

Too vague
(Rarely Happens!)

48 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Broad Narrow
Scope

D
et

ai
l

H
ig
h

Lo

w

Business
Rules

Workflow

Transactions

Too much detail
Unmaintainable

Agenda
• Motivation
• Changing the Role of Test Automation
• Approaches to Test Automation

– Test Preparation Approach
– Test Definition Language
– Test Execution Interface

• Test Automation Strategy

49 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Motivation
• Changing the Role of Test Automation
• Approaches to Test Automation

– Test Preparation Approach
– Test Definition Language
– Test Execution Interface

• Test Automation Strategy

Why is Automation Approach
Important?

• Common Failure Mode:
–Choose tools, then try to make them work
–Wrong tools can prevent achieving goals

• Better Approach:
–Choose automation approach to achieve goals
–Then, select tools to support it

50 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Common Failure Mode:
–Choose tools, then try to make them work
–Wrong tools can prevent achieving goals

• Better Approach:
–Choose automation approach to achieve goals
–Then, select tools to support it

Common Approaches to Test
Automation

Test
Preparation

Test
Language

Test
Interface

Test Data

Recorded Code Raw UI Global, Static
Refactored Keyword Adapter Per Run
Hand-written Data API Per Test

H
ow Set U

p?

51 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Hand-written Data API Per Test

Our System

Interface Business
Logic Database

Container Services

Test Scenario Name

Clean Up

API
AdapterVia

Raw UI

H
ow Set U

p?

Fixture
(state)

Preconditions

1. Do Something
2. Check Something

(C)OTS Record&Playback

Test
Preparation

Test
Language

Test
Interface

Test Data

Recorded Code Raw UI # Global, Static
Refactored Keyword* Adapter Per Run
Hand-written Data API Per Test

52 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Hand-written Data API Per Test

Notes:
* Keywords, if used, tend to be very low level:

•GotoWindowNamed: name
•SelectFieldNamed: name
•EnterText: text
•(Not the same as true Keyword-Driven testing)

Most COTS Tools operate at UI or HTTP
interface; many open-source tools do so as well

Poor OK Good
Example Driven X

Le
ga

cy

Workflow X
System X
Business Rules X
Component X
Unit X

N
ew

Workflow X
System X
Component X
Business Rules X
Unit X

executiondefinition

• The tests are expressed in domain-specific vocabulary.
• The tests are read & executed by a test interpreter written

by techies.

Keyword-Driven Tests

Prepared like Hand-
Coded Tests but
with a much more
limited vocabulary.

Keyword

53 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Prepared like Hand-
Coded Tests but
with a much more
limited vocabulary.

Keyword

Keyword-Driven Tests

Test
Preparation

Test
Language

Test
Interface

Test Data

Recorded Code Raw UI * Global, Static
Refactored Keyword Adapter Per Run
Hand-written Data API Per Test

54 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Hand-written Data API Per Test

Notes:
• While the Keyword Interpreter may go

against the Raw UI, it is better to delegate
to an adapter if no API is available.

Poor OK Good
Example Driven X

Le
ga

cy

Workflow X
System X
Business Rules X
Component X
Unit X

N
ew

Workflow X
System X
Component X
Business Rules x
Unit x

Scenario Invoice Generation
-New Customer

Given: Logged in as Clerk
And: Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccount NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

SUT

Sample Keyword-Driven Test
(e.g. Cucumber, JBehave, or Fit)

Component
Under Test

Results
Document
Result
of step

Cucumber Scenario
Runner

CreateCustomer Interpreter

55 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Scenario Invoice Generation
-New Customer

Given: Logged in as Clerk
And: Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccount NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

Result
of step

Result
of step

Cucumber Library

AddPurchase Interpreter

• Test script defined using keywords
• Keyword Interpreter invokes underlying code
• Can go direct to API or via an Adapter

Exercise 3 – Keyword-Driven Test
• Provide examples for the following workflow (Min. detail)

Place
Order

Authorise
Order

Over
$1000

Yes No

Call Handler Supervisor Fullfillment

56 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Authorise
Order

Fulfill
Order

Author
-ized?

Revise
Order

YesNo

Note: Can assume an input queue exists for each role if that helps checking.

executiondefinition

• The tests are expressed as tabular data by users.
• The tests are read & executed by a test interpreter written

by techies.

Data-Driven Tests

Runs the same test
script many times;
once per set of data.

57 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Runs the same test
script many times;
once per set of data.

Data-Driven Test

Test
Preparation

Test
Language

Test
Interface

Test Data

Recorded * Code * Raw UI Global,Static#
Refactored Keyword Adapter Per Run
Hand-written Data API Per Test

58 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Hand-written Data API Per Test
Notes:
* The underlying script may be either hand-written

or recorded and parameterized. But the data
scenarios (input values and expected outputs)
are almost always prepared by hand.

The inputs/outputs are per test (per row) but
there may be global or per-run data used as
reference data by the underlying script.

Poor OK Good
Example Driven X

Le
ga

cy

Workflow X
System X
Business Rules X
Component X
Unit X

N
ew

Workflow X
System X
Component x
Business Rules x
Unit x

Sample Data-Driven Test in FIT
PayrolFixtures.WeeklyCompensation
Standard
Hours

Holiday
Hours

Hourly
Wage

Pay()

40 0 10 $400
40 0 20 $800
41 0 20 $830
40 1 20 $840

SUT
Component
Under Test

Results
Document
Marked up

Table

Fit Test
Runner

Table
Interpreter

59 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Same script is run for each row of table
• Avoids duplication of test script.
• Compact summary of input values & results
• Sometimes called “Business Unit Test” or “Business Rule Test”

41 1 20 $870

---Inputs--- Outputs

Marked up
Table

Fit
Library

Table
Interpreter

Sample Data-Driven Test in FIT
PayrolFixtures.WeeklyCompensation
Standard
Hours

Holiday
Hours

Hourly
Wage

Pay()

40 0 10 $400
40 0 20 $800
41 0 20 $830
40 1 20 $840 expected

$800 actual

SUT
Component
Under Test

Results
Document
Marked up

Table

Fit Test
Runner

Table
Interpreter

60 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Same script is run for each row of table
• Avoids duplication of test script.
• Compact summary of input values & results
• Sometimes called “Business Unit Test” or “Business Rule Test”

$840 expected
$800 actual

41 1 20 $870 expected
$830 actual

---Inputs--- Outputs

Marked up
Table

Fit
Library

Table
Interpreter

Exercise – Business Unit Test
• Rewrite the tests for the Invoice Total logic

using a Data-Driven Business Unit Test that
talks directly to the component that calculates
the total.

• Focus on single-item invoices.
– E.g. Each row describes the total expected for one line

item.
• Suggested test cases are in the Testers’

Package
• You may use the template provided by “Test

Automation” or you may invent your own.

61 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Rewrite the tests for the Invoice Total logic
using a Data-Driven Business Unit Test that
talks directly to the component that calculates
the total.

• Focus on single-item invoices.
– E.g. Each row describes the total expected for one line

item.
• Suggested test cases are in the Testers’

Package
• You may use the template provided by “Test

Automation” or you may invent your own.

Agenda
• Motivation
• Changing the Role of Test Automation
• Approaches to Test Automation

– Test Preparation Approach
– Test Definition Language
– Test Execution Interface

• Test Automation Strategy

62 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Motivation
• Changing the Role of Test Automation
• Approaches to Test Automation

– Test Preparation Approach
– Test Definition Language
– Test Execution Interface

• Test Automation Strategy

What Does It Take...?
• to be able to write tests like this?

• We need some technical skills to implement
the “fixtures” or “interpretters” of our testing
language, and either

• the right programming interfaces in the
system, or

• we need to do extensive wrappering to
simulate them

63 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• to be able to write tests like this?

• We need some technical skills to implement
the “fixtures” or “interpretters” of our testing
language, and either

• the right programming interfaces in the
system, or

• we need to do extensive wrappering to
simulate them

Keeping Tests Simple: Testing via API

Core
Business

Logic

Test Invoice Generation
-New Customer

Logged in as Clerk
Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccount NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

What we want to write:

API

Intention-based
Keywords SUT

64 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• API’s need to be designed in
– Design for Testability

• Requires collaboration with Dev’t
– Agile fosters collaboration through co-located teams

Core
Business

Logic

User
Interface

Test Invoice Generation
-New Customer

Logged in as Clerk
Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccount NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

When There’s No API Available

Core
Business

Logic

Test Invoice Generation
-New Customer

Logged in as Clerk
Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccoun NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

Test Invoice Generation
-New Customer

Goto Login creen
Enter “Clerk” in UserName field
Enter “Pw123Secret” in Password field
Enter …..

Goto Cust Screen
Click “New Customer”
Enter “Acme” in Name field
Enter “123 Main St.” in Addr field
Enter …..
GotoScreen(“Account”)
Find customer “Acme”
Click “Add Account”
Enter “Credit” in Type field
Enter …..

Without a test API we have to write:

Intention
Obscuring

Code
 No API

SUT

65 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Large gap between:
– what we want to write & what can be executed
– Many tests to adjust when UI changes High Maintenance Cost

Core
Business

Logic

Test Invoice Generation
-New Customer

Logged in as Clerk
Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccoun NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

User
Interface

Test Invoice Generation
-New Customer

Goto Login creen
Enter “Clerk” in UserName field
Enter “Pw123Secret” in Password field
Enter …..

Goto Cust Screen
Click “New Customer”
Enter “Acme” in Name field
Enter “123 Main St.” in Addr field
Enter …..
GotoScreen(“Account”)
Find customer “Acme”
Click “Add Account”
Enter “Credit” in Type field
Enter …..

Code
Duplication

Keeping Tests Simple: Testing via Adapters

Core
Business

Logic

Test Invoice Generation
-New Customer

Logged in as Clerk
Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccoun NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

 No API

What we want to write:
Code in
Adapter

Intention-based
Keywords SUT

66 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011
Adapter

• Adapters can be tacked on
– Single place to adjust when UI changes
– But may be complex and error prone

Core
Business

Logic

Test Invoice Generation
-New Customer

Logged in as Clerk
Item1, Item2 exist

1. CreateCustomer “Acme”
2. CreateAccoun NewCust
3. AddPurchase Item1
4. AddPurchase Item2
5. GenerateInvoice NewAcct
6. ….

User
Interface

Test - After Architecture

System Under Test

• Must test through User Interface

Should we
Notify?

Configure
Notification
Threshold

Notification
Rules

Configuration
User

Interface
Workflow

Test

67 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Should we
Notify?Process

Transaction
Transaction

Interface

Notification
Log

Do
Notification.

System Under Test

Test-Driven Architecture
• Need to provide API’s to invoke functionality

directly

Should we
Notify?

Configure
Notification
Threshold

Notification
Rules

Configuration
User

Interface
Workflow

Test

68 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Should we
Notify?

Do
Notification.

Process
Transaction

Notification
Log

Transaction
Interface

Test-Driven Architecture

Should we
Notify?

Configure
Notification
Threshold

Notification
Rules

Configuration
User

Interface

Configuration
TX Test

69 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Should we
Notify?

Do
Notification.

Process
Transaction

Notification
Log

Transaction
Interface

Test-Driven Architecture
• With the right architecture, automating these

tests is trivial

Should we
Notify?

Configure
Notification
Threshold

Notification
Rules

Configuration
User

Interface
Notification
Rule Test

70 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Should we
Notify?

Do
Notification.

Process
Transaction

Notification
Log

Transaction
Interface

Notification
Rule Test

Notification
Method Test

What About Legacy Systems?
• How can we get automated regression tests in

place quickly?

71 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Sample Recorded Test
@@ Login()
Browser("Inf").Page("Inf").WebButton("Login").Click
@@ GoToPage(“MaintainTaxonomy”)
Browser("Inf").Page("Inf_2").Check CheckPoint("Inf_2")
Browser("Inf").Page("Inf_2").Link("TAXONOMY LINKING").Click
Browser("Inf").Page("Inf_3").Check CheckPoint("Inf_3")
Browser("Inf").Page("Inf_3").Link("MAINTAIN TAXONOMY").Click
Browser("Inf").Page("Inf_4").Check CheckPoint("Inf_4")
@@ AddTerm("A","Top Level", "Top Level Definition")
Browser("Inf").Page("Inf_4").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf").Check CheckPoint("Inf_5")
Browser("Inf_2").Page("Inf").WebEdit("childCodeSuffix").Set "A"
Browser("Inf_2").Page("Inf").WebEdit("taxonomyDto.descript").Set "Top Level"
Browser("Inf_2").Page("Inf").WebEdit("taxonomyDto.definiti").Set "Top Level Definition"
Browser("Inf_2").Page("Inf").WebButton("Save").Click
wait 4
Browser("Inf").Page("Inf_5").Check CheckPoint("Inf_5_2")
@@ SelectTerm("[A]-Top Level")
Browser("Inf").Page("Inf_5").WebList("selectedTaxonomyCode").Select "[A]-Top Level“
@@ AddTerm("B","Second Top Level", "Second Top Level Definition")
Browser("Inf").Page("Inf_5").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf_2").Check CheckPoint("Inf_2_2")

infofile_;_Inform_Alberta_21.inf_;_hightlight id_;

Manually Added

Manually Added

Manually Added Comment

72 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

@@ Login()
Browser("Inf").Page("Inf").WebButton("Login").Click
@@ GoToPage(“MaintainTaxonomy”)
Browser("Inf").Page("Inf_2").Check CheckPoint("Inf_2")
Browser("Inf").Page("Inf_2").Link("TAXONOMY LINKING").Click
Browser("Inf").Page("Inf_3").Check CheckPoint("Inf_3")
Browser("Inf").Page("Inf_3").Link("MAINTAIN TAXONOMY").Click
Browser("Inf").Page("Inf_4").Check CheckPoint("Inf_4")
@@ AddTerm("A","Top Level", "Top Level Definition")
Browser("Inf").Page("Inf_4").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf").Check CheckPoint("Inf_5")
Browser("Inf_2").Page("Inf").WebEdit("childCodeSuffix").Set "A"
Browser("Inf_2").Page("Inf").WebEdit("taxonomyDto.descript").Set "Top Level"
Browser("Inf_2").Page("Inf").WebEdit("taxonomyDto.definiti").Set "Top Level Definition"
Browser("Inf_2").Page("Inf").WebButton("Save").Click
wait 4
Browser("Inf").Page("Inf_5").Check CheckPoint("Inf_5_2")
@@ SelectTerm("[A]-Top Level")
Browser("Inf").Page("Inf_5").WebList("selectedTaxonomyCode").Select "[A]-Top Level“
@@ AddTerm("B","Second Top Level", "Second Top Level Definition")
Browser("Inf").Page("Inf_5").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf_2").Check CheckPoint("Inf_2_2")

infofile_;_Inform_Alberta_21.inf_;_hightlight id_;

Manually Added

Manually Added

Manually Added

Manually Added

Refactored Recorded Test
Login()

GoToPage(“MaintainTaxonomy”)

AddTerm("A","Top Level", "Top Level Definition")

SelectTerm("[A]-Top Level“)

73 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Login()

GoToPage(“MaintainTaxonomy”)

AddTerm("A","Top Level", "Top Level Definition")

SelectTerm("[A]-Top Level“)

Refactored Recorded Test

AddChildToCurrentTerm(“A.1”, “Definition of 1st Child Term of A”)

AddChildToCurrentTerm(“A.2, “Definition of 2nd Child Term of A”)

Login()

GoToPage(“MaintainTaxonomy”)

AddTerm("A","Top Level", "Top Level Definition")

SelectTerm("[A]-Top Level“)

74 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

AddChildToCurrentTerm(“A.1”, “Definition of 1st Child Term of A”)

AddChildToCurrentTerm(“A.2, “Definition of 2nd Child Term of A”)

Now we hand-write additional tests using
the resulting adapter (library)

Record, Refactor, Playback
• Use Test Recording as a way to capture tests
• Remove duplication by replacing with calls to

domain-specific Test Utility Methods
– using Extract Method refactorings

• Make Test Utility Methods reusable
– Replace Hard-Coded Literal Values with

variables/parameters
• Effectively turns recorded tests into

programmed or keyword-driven test scripts
– But, still through UI Adapter & original tool choice

75 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Use Test Recording as a way to capture tests
• Remove duplication by replacing with calls to

domain-specific Test Utility Methods
– using Extract Method refactorings

• Make Test Utility Methods reusable
– Replace Hard-Coded Literal Values with

variables/parameters
• Effectively turns recorded tests into

programmed or keyword-driven test scripts
– But, still through UI Adapter & original tool choice

Most appropriate with legacy systems
Especially with many interfaces

Record, Refactor, Playback

Test
Preparation

Test
Language

Test
Interface

Test Data

Recorded Code Raw UI Global, Static
Refactored Keyword Adapter # Per Run
Hand-written Data API Per Test

76 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Hand-written Data API Per Test

Notes:
The result of refactoring is an adapter

between the test script and the SUT’s UI.

Poor OK Good
Example Driven X

Le
ga

cy

Workflow X
System X
Business Rules X
Component X
Unit X

N
ew

Workflow X
System X
Component X
Business Rules X
Unit X

definition

Built-In Record&Playback
• User executes tests manually; SUT records as tests
• Tool replays tests later without user intervention

The tests are
data

interpreted
by the test

runner.

SUT
Test

Runner

Test
Recorder

77 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Test Result Repository

Script n
Result

The tests are
data

interpreted
by the test

runner.

Test Script Repository
Test

Script 1
Test

Script 2
Test

Script n

execution

Test
Runner

Inputs

Expected
Outputs

Inputs

Expected
Outputs

Actual
Results

Built-in Record&Playback

Test
Preparation

Test
Language

Test
Interface

Test Data

Recorded Code Raw UI Global, Static
Refactored Keyword Adapter Per Run
Hand-written Data API Per Test

78 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Hand-written Data API Per Test

Notes:
• Needs to be implemented within SUT
• Can sometimes be retrofitted to legacy systems

Most appropriate with legacy systems
when playing “automation catch-up”

Poor OK Good
Example Driven X

Le
ga

cy

Workflow X
System X
Business Rules X
Component X
Unit X

N
ew

Workflow x
System x
Component x
Business Rules x
Unit x

Sample Built-in R&PB Test Recording
2. Supply Create

79 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Prev. Rec. User Input

Previously
recorded

choices

Raw XML for “Designation” Field

<field name="designation" type="selection">
<used-value>DIRECTIONAL</used-value>
<expected>

<value>DIRECTIONAL</value>
<value>WORK</value>
<value>PSGR</value>
<value>PLOW</value>
<value>PLOW WORK</value>
<value>ENG</value>

</expected>
<actual>

<value status="ok">DIRECTIONAL</value>
<value status="ok">WORK</value>
<value status="ok">ENG</value>
<value status="ok">PSGR</value>
<value status="surplus">MIXED</value>
<value status="ok">PLOW</value>
<value status="ok">PLOW WORK</value>

</actual>
</field>

Recording

80 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Actual choices
plus

test results

<field name="designation" type="selection">
<used-value>DIRECTIONAL</used-value>
<expected>

<value>DIRECTIONAL</value>
<value>WORK</value>
<value>PSGR</value>
<value>PLOW</value>
<value>PLOW WORK</value>
<value>ENG</value>

</expected>
<actual>

<value status="ok">DIRECTIONAL</value>
<value status="ok">WORK</value>
<value status="ok">ENG</value>
<value status="ok">PSGR</value>
<value status="surplus">MIXED</value>
<value status="ok">PLOW</value>
<value status="ok">PLOW WORK</value>

</actual>
</field>

Recording
Playback

Sample R&PB Test Hooks
if (playback_is_on()) {
choice = get_choice_for_playback(dialog_id,choices_list);

} else {
choice = display_dialog(choices_list, row,col, title, key);

}

if (recording_is_on()) {
record_choice(dialog_id, choice_list,choice, key);

}

81 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

if (playback_is_on()) {
choice = get_choice_for_playback(dialog_id,choices_list);

} else {
choice = display_dialog(choices_list, row,col, title, key);

}

if (recording_is_on()) {
record_choice(dialog_id, choice_list,choice, key);

}

Sample R&PB Test Hooks
if (playback_is_on()) {
choice = get_choice_for_playback(dialog_id,choices_list);

} else {
choice = display_dialog(choices_list, row,col, title, key);

}

if (recording_is_on()) {
record_choice(dialog_id, choice_list,choice, key);

}

82 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

if (playback_is_on()) {
choice = get_choice_for_playback(dialog_id,choices_list);

} else {
choice = display_dialog(choices_list, row,col, title, key);

}

if (recording_is_on()) {
record_choice(dialog_id, choice_list,choice, key);

}

Sample R&PB Test Hooks
if (playback_is_on()) {
choice = get_choice_for_playback(dialog_id,choices_list);

} else {
choice = display_dialog(choices_list, row,col, title, key);

}

if (recording_is_on()) {
record_choice(dialog_id, choice_list,choice, key);

}

83 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

if (playback_is_on()) {
choice = get_choice_for_playback(dialog_id,choices_list);

} else {
choice = display_dialog(choices_list, row,col, title, key);

}

if (recording_is_on()) {
record_choice(dialog_id, choice_list,choice, key);

}

Hand-Coded Tests
Test
Preparation

Test
Language

Test
Interface

Test Data

Recorded Code Raw UI Global, Static
Refactored Keyword Adapter Per Run
Hand-written Data API Per Test

84 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Notes:
• Hand-written code requires software

development skills and test automation skills.
• API preferred but can script browser-based

(UI) tests.
• Code can be primitive or abstract therefore...

• Developers need training on writing clear
tests!

Poor OK Good
Example Driven X

Le
ga

cy

Workflow X
System X
Business Rules X
Component X
Unit X

N
ew

Workflow X
System X
Component X
Business Rules X
Unit X

Changing the Role of Testing

Acceptance Tests
Regression Tests

Usability Tests
Exploratory Tests

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Business
Facing

Technology
Facing

Critique Product
Report
Card

Functionality
Usability
Scalability
Response
Availability

B
C
A
B
C

Define Product
Requirements

85 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Unit Tests
Component Tests

Property Tests
(Response Time,

Security, Scalability)

Technology
Facing

Thanks to Brian Marrick and Mary Poppendieck

Software
Design For effective prevention:

1. Tests must be available before
development

2. Developers must be able to run tests
before check-in

Insert
Defect

Determine
Fix

Identify
/ Debug

Run Unit
Tests

Preventing Coding Defects
(Building the Product Right)

Write
Req’ts

Review
Req’ts

Update
Req’ts

Sign Off
on Req’ts

Design
SoftwareDetection!

Write
Code

Unit Test
Code

Rework!Rework!

86 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Insert
Defect

Determine
Fix

Identify
/ Debug

Run Unit
Tests

Test
Application

Deploy
to QA

Deploy
System

Write
Code

Unit Test
Code

Preventing Coding Defects
(Building the Product Right)

Write
Req’ts

Review
Req’ts

Update
Req’ts

Sign Off
on Req’ts

Write Unit
Tests

Run Unit
Tests

Design
Software

Write
Code

Prevention!

Determine
Fix

Identify
/ Debug

87 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Write Unit
Tests

Run Unit
Tests

Test
Application

Deploy
to QA

Deploy
System

Write
Code

Determine
Fix

Identify
/ Debug

Preventing Coding Defects
(Building the Product Right)

Write
Req’ts

Review
Req’ts

Update
Req’ts

Sign Off
on Req’ts

Write Unit
Tests

Run Unit
Tests

Design
Software

Write
Code

(Unit) Test-Driven
Development

88 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Write Unit
Tests

Run Unit
Tests

Test
Application

Deploy
to QA

Deploy
System

Write
Code

(Unit) Test-Driven
Development

Prevents bugs
crawling back in

Prevent defects in
new code

Hand-Coded Test – w/ Primitive Obsession
public void testAddItemQuantity_severalQuantity () {

// Setup Fixture
final int QUANTITY = 5;
Address billingAddress = new Address("1222 1st St SW", "Calgary",

"Alberta", "T2N 2V2", "Canada");
Address shippingAddress = new Address("1333 1st St SW", "Calgary",

"Alberta", "T2N 2V2", "Canada");
Customer customer = new Customer(99, "John", "Doe", new

BigDecimal("30"), billingAddress, shippingAddress);
Product product = new Product(88, "SomeWidget", new

BigDecimal("19.99"));
Invoice invoice = new Invoice(customer);
// Exercise SUT
invoice.addItemQuantity(product, QUANTITY);
// Verify Outcome
List lineItems = invoice.getLineItems();
if (lineItems.size() == 1) {
LineItem actualLineItem = (LineItem)lineItems.get(0);
assertEquals(invoice, actualLineItem.getInvoice());
assertEquals(product, actualLineItem.getProduct());
assertEquals(quantity, actualLineItem.getQuantity());
assertEquals(new BigDecimal("30"),

actualLineItem.getPercentDiscount());
assertEquals(new BigDecimal("19.99"),

actualLineItem.getUnitPrice());
assertEquals(new BigDecimal(“69.96"),

actualLineItem.getExtendedPrice());
} else {
assertTrue(“Invoice should have exactly one line item“, false);

}
}

89 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

public void testAddItemQuantity_severalQuantity () {
// Setup Fixture
final int QUANTITY = 5;
Address billingAddress = new Address("1222 1st St SW", "Calgary",

"Alberta", "T2N 2V2", "Canada");
Address shippingAddress = new Address("1333 1st St SW", "Calgary",

"Alberta", "T2N 2V2", "Canada");
Customer customer = new Customer(99, "John", "Doe", new

BigDecimal("30"), billingAddress, shippingAddress);
Product product = new Product(88, "SomeWidget", new

BigDecimal("19.99"));
Invoice invoice = new Invoice(customer);
// Exercise SUT
invoice.addItemQuantity(product, QUANTITY);
// Verify Outcome
List lineItems = invoice.getLineItems();
if (lineItems.size() == 1) {
LineItem actualLineItem = (LineItem)lineItems.get(0);
assertEquals(invoice, actualLineItem.getInvoice());
assertEquals(product, actualLineItem.getProduct());
assertEquals(quantity, actualLineItem.getQuantity());
assertEquals(new BigDecimal("30"),

actualLineItem.getPercentDiscount());
assertEquals(new BigDecimal("19.99"),

actualLineItem.getUnitPrice());
assertEquals(new BigDecimal(“69.96"),

actualLineItem.getExtendedPrice());
} else {
assertTrue(“Invoice should have exactly one line item“, false);

}
}

Hand-Coded Test – Appropriately Abstracted
public void testAddItemQuantity_severalQuantity () {

// Fixture set up:
final int QUANTITY = 5 ;
Product product = createAnonymousProduct();
Invoice invoice = createAnonymousInvoice();
// Exercise SUT
invoice.addItemQuantity(product, QUANTITY);
// Verify
LineItem expectedLineItem = newLineItem(invoice,product, QUANTITY, product.getPrice()*QUANTITY);
assertExactlyOneLineItem(invoice, expectedLineItem);

}

90 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

public void testAddItemQuantity_severalQuantity () {
// Fixture set up:
final int QUANTITY = 5 ;
Product product = createAnonymousProduct();
Invoice invoice = createAnonymousInvoice();
// Exercise SUT
invoice.addItemQuantity(product, QUANTITY);
// Verify
LineItem expectedLineItem = newLineItem(invoice,product, QUANTITY, product.getPrice()*QUANTITY);
assertExactlyOneLineItem(invoice, expectedLineItem);

}
Developers need training on effective unit testing!

Agenda
• Motivation
• Changing the Role of Test Automation
• Approaches to Test Automation
• Test Automation Strategy

– Selecting the right Approach(es)
– Maximizing Automation ROI

91 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Motivation
• Changing the Role of Test Automation
• Approaches to Test Automation
• Test Automation Strategy

– Selecting the right Approach(es)
– Maximizing Automation ROI

So What’s the Point?

Why is the approach to test automation
significant?

Because test automation is hard work

And the approach effects the nature of the
benefits of the automation.

92 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Why is the approach to test automation
significant?

Because test automation is hard work

And the approach effects the nature of the
benefits of the automation.

How Effective is our Automation?
• Are the tests fully automated?

– Can they run unattended?
– Are they fully self-checking?

• Are the tests low maintenance?
– How often do we need to adjust them?
– How many tests are affected by a change in the SUT?

• Do the tests describe the requirements
clearly?
– Can everyone understand them?
– Could we (re)build the system from them?

• Can anyone run them?
– Can developers run them before checking in code?

93 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Are the tests fully automated?
– Can they run unattended?
– Are they fully self-checking?

• Are the tests low maintenance?
– How often do we need to adjust them?
– How many tests are affected by a change in the SUT?

• Do the tests describe the requirements
clearly?
– Can everyone understand them?
– Could we (re)build the system from them?

• Can anyone run them?
– Can developers run them before checking in code?

For Success, Focus on Intent
• Choose the approach first, then pick tools

– Tools must support the approach chosen
• Write the tests using the best language for

expressing the requirement being validated.
– Not necesarily the language provided by the System

Under Test’s interface
– May require different approaches for different tests

• Close any gap using an adapter if necessary

94 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Choose the approach first, then pick tools
– Tools must support the approach chosen

• Write the tests using the best language for
expressing the requirement being validated.
– Not necesarily the language provided by the System

Under Test’s interface
– May require different approaches for different tests

• Close any gap using an adapter if necessary

Which Automation Approach?
Depends heavily on Context
• Legacy Systems:

– Stabilize with Recorded Tests while you refactor to
enable Component testing.

– Only do hand-written unit tests for new components.
• Greenfield Development:

– Keyword-Driven workflow and system tests.
– Data-Driven tests for business rules
– TDD via hand-written Unit Tests

95 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Depends heavily on Context
• Legacy Systems:

– Stabilize with Recorded Tests while you refactor to
enable Component testing.

– Only do hand-written unit tests for new components.
• Greenfield Development:

– Keyword-Driven workflow and system tests.
– Data-Driven tests for business rules
– TDD via hand-written Unit Tests

Which Automation Approach?
• Recorded tests:

– implies a “Test After” approach; won’t help define the
requirements

– Typically results in tests with Primitive Obsession
 Fragile Tests with high test maintenance cost

– Best for: Playing “Catch-up” on Legacy Systems
• Hand-Written Tests:

– Amenable for use in Example-Driven Development
» But must use Domain-Specific terminology to be effective

– Can be written in code or keywords depending on who’s
preparing the tests

– Best for: Workflow tests (Keyword) and unit tests (code)

96 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Recorded tests:
– implies a “Test After” approach; won’t help define the

requirements
– Typically results in tests with Primitive Obsession
 Fragile Tests with high test maintenance cost

– Best for: Playing “Catch-up” on Legacy Systems
• Hand-Written Tests:

– Amenable for use in Example-Driven Development
» But must use Domain-Specific terminology to be effective

– Can be written in code or keywords depending on who’s
preparing the tests

– Best for: Workflow tests (Keyword) and unit tests (code)

Which Automation Approach?
• Keyword-Driven Tests:

– Good separation between business and technical work
involved in automating tests.

– Easy to prepare before development.
– Best for expressing workflow or system tests.

• Data-Driven Tests:
– Best for repeating same test script with many

combinations of inputs
– Best for: Verifying Business Rules & Algorithms

» (A form of Component Testing)

97 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Keyword-Driven Tests:
– Good separation between business and technical work

involved in automating tests.
– Easy to prepare before development.
– Best for expressing workflow or system tests.

• Data-Driven Tests:
– Best for repeating same test script with many

combinations of inputs
– Best for: Verifying Business Rules & Algorithms

» (A form of Component Testing)

Maximizing Test Automation ROI
• Need to Treat Automation as an Investment
• Need to Prioritize / Triage Which Tests to

Automate
• At least 3 Approaches to Choose From:

– Traditional QA-Based “Test After” Automation
– Collaborative Critical Path Automation
– Collaborative Selective Automation

98 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Need to Treat Automation as an Investment
• Need to Prioritize / Triage Which Tests to

Automate
• At least 3 Approaches to Choose From:

– Traditional QA-Based “Test After” Automation
– Collaborative Critical Path Automation
– Collaborative Selective Automation

Automation After Dev Complete
A.K.A. Traditional Approach to Automation

Summary:
– Done by QA/SV Department (i.e. Testers)
– After Product is Built
– Typically done using (C)OTS Record & Playback tools

Issues:
• Too Late for Defect Prevention

– Tests aren’t available to development team
• Too Late to Ensure Easy Automation

– System not Designed for Testability
• Tools Create Fragile Tests

– Unreadable due to Primitive Obsession and too much
duplication

99 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

A.K.A. Traditional Approach to Automation
Summary:

– Done by QA/SV Department (i.e. Testers)
– After Product is Built
– Typically done using (C)OTS Record & Playback tools

Issues:
• Too Late for Defect Prevention

– Tests aren’t available to development team
• Too Late to Ensure Easy Automation

– System not Designed for Testability
• Tools Create Fragile Tests

– Unreadable due to Primitive Obsession and too much
duplication

Collaborative Automation on Critical Path
A.K.A. Dogmatic (A)TDD Approach

Summary:
–Goal: 100 % automation
–Automate Tests Before Building Functionality

» Test automation task for each User Story
Issues:
• Some Tests are MUCH Harder to Automate
• May Increase Costs and Delay Benefits of

Functionality
• May Cause EDD to be Abandoned

100 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

A.K.A. Dogmatic (A)TDD Approach
Summary:

–Goal: 100 % automation
–Automate Tests Before Building Functionality

» Test automation task for each User Story
Issues:
• Some Tests are MUCH Harder to Automate
• May Increase Costs and Delay Benefits of

Functionality
• May Cause EDD to be Abandoned

Collaborative Automation based on ROI
A.K.A. Pragmatic Approach

Summary:
–Goal: Just Enough Automation
–Apply Agile Principles to Implementation of

Automation
Issues:
– Won’t Have Complete Test Coverage
– Can Lead to Automation Being Dropped in

Favour of More Functionality
– Requires a Disciplined Product Owner, or,
– A Fixed Budget for the Automation

101 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

A.K.A. Pragmatic Approach
Summary:

–Goal: Just Enough Automation
–Apply Agile Principles to Implementation of

Automation
Issues:
– Won’t Have Complete Test Coverage
– Can Lead to Automation Being Dropped in

Favour of More Functionality
– Requires a Disciplined Product Owner, or,
– A Fixed Budget for the Automation

• Apply the 80/20 rule

• Define the tests first
• Automation is

optional

What if Automation is Really Hard?

User
Goal

Story
Scenarios

Story
Example

Executable
Example

Formalization
Automation

Make Concrete
Add Data

Define
Acceptance

Criteria

102 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Apply the 80/20 rule

• Define the tests first
• Automation is

optional
Feature

Story
Title

Story
Narrative

Satisfied
Example

Executable
Example

Product
Development

Define
Acceptance

Criteria

Significant Value in Providing
Examples / Tests Before Development

Closing Thoughts
• Are you automating to find defects or prevent

them?
• Are your automated tests good examples?

– Why not? What would you need to change?
• Are your tests low maintenance?

– Why not? What causes them to break?
– What could you change to make them break less often?
– to reduce the impact of breakage?

• Can anyone run the tests at any time?
– Can the developers run the tests on-demand before

they check their code in?
– What would you have to change to make that possible?

103 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• Are you automating to find defects or prevent
them?

• Are your automated tests good examples?
– Why not? What would you need to change?

• Are your tests low maintenance?
– Why not? What causes them to break?
– What could you change to make them break less often?
– to reduce the impact of breakage?

• Can anyone run the tests at any time?
– Can the developers run the tests on-demand before

they check their code in?
– What would you have to change to make that possible?

Thank You!
Gerard Meszaros

Agile2011ATAS@gerardm.com
http://www.xunitpatterns.com

Slides:
http://Agile2011ATAS.xunitpatterns.com

Call me when you:
• Want to transition to Agile or Lean
• Want to do Agile or Lean better
• Want to teach developers how to test
• Need help with test automation strategy
• Want to improve your test automation

Jolt Productivity Award
winner - Technical Books

Coming Soon:

104 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

Gerard Meszaros
Agile2011ATAS@gerardm.com

http://www.xunitpatterns.com

Slides:
http://Agile2011ATAS.xunitpatterns.com

Call me when you:
• Want to transition to Agile or Lean
• Want to do Agile or Lean better
• Want to teach developers how to test
• Need help with test automation strategy
• Want to improve your test automation

Jolt Productivity Award
winner - Technical Books

Coming Soon:

References
• For Success, Build Record/Playback into Your

Application - StarEast 2008 Class

– http://strategy.testAutomationPatterns.com

105 Copyright 2011 Gerard MeszarosMuch Ado About Agile 2011

• For Success, Build Record/Playback into Your
Application - StarEast 2008 Class

– http://strategy.testAutomationPatterns.com

