© Siemens AG 2015

Highly Flexible Couplings ELPEX Series

AGP Azteca S. de R.L. de C.V. Av. Ejército Nacional 418 Colonia Polanco V Piso 3, Oficina 302, México D.F. Tel.: 5591318924 info@agpazteca.com www.agpazteca.com

12/2	Overview
12/2	Benefits
12/2	Application
12/2	Design
12/4	Configuration
12/5	Technical data
12/6 12/6	Types ENG/ENGS Selection and ordering data
12/7 12/7	Types EFG/EFGS Selection and ordering data
12/8 12/8	Spare and wear parts Selection and ordering data

12

General information

Overview

ELPEX couplings are highly torsionally flexible and free of torsional backlash. Because of their low torsional stiffness and damping capacity, ELPEX couplings are especially suitable for coupling machines with a very non uniform torque pattern. ELPEX couplings are also suitable for connecting machines with high shaft misalignment.

Standard ELPEX coupling types are designed as shaft-shaft connections or flange-shaft connections. Application-related types can be implemented on request.

Benefits

The ELPEX coupling is suitable for horizontal and vertical mounting positions or mounting at any required angle. The coupling parts can be arranged as required on the shafts to be connected.

The split flexible rings can be changed without having to move the coupled machines.

The flexible rings are mounted without backlash and give the coupling progressive torsional stiffness, i.e. torsional stiffness increases in proportion to coupling load.

The ELPEX coupling is especially suitable for reversing operation or operation with changing directions of load.

Application

The ELPEX coupling is available in 9 sizes with a nominal torque of between 1600 Nm and 90000 Nm. The coupling is suitable for ambient temperatures of between -40 $^\circ$ C and +80 $^\circ$ C.

The coupling is delivered preassembled. The flexible rings are completely assembled. On the type ENG, the coupling halves have to be bolted together after the hub has been mounted. On the type EFG, after mounting the coupling hub, only the outer flange has to be connected to the machine.

Outer flanges with different connection dimensions are available for the type EFG.

If the flexible rings are irreparably damaged or worn, the metal parts can rotate freely against one another, they are not in contact with one another.

The ELPEX coupling is frequently used for high-quality drives which have to guarantee very long service life in harsh operating conditions. Examples of applications are mill drives in the cement industry, marine main and secondary drives or drives on large excavators powered by an electric motor or diesel engine.

Design

Design and function

The ELPEX coupling's transmission characteristic is determined essentially by the flexible rings. The flexible rings are manufactured from a natural rubber mixture with a multiply fabric lining. The flexible rings are split so that they can be changed without having to move the coupled machines.

The flexible rings are fastened to the hub with a clamping ring and to the outer flange with a clamping ring, using pins and bolts.

On the type EFG, the outer flange is designed with connection dimensions for connection to e.g. a diesel engine flywheel. On ENG types, the outer flange is fitted to a second hub part, which then enables the shaft-shaft connection.

Materials:

		Type Cast iron	Steel							
Hub part 1		Grey cast iron EN-GJL-250	Steel							
Hub part 2		Steel	Steel							
Retaining ring, ou	ter ENG, ENGS	Grey cast iron EN-GJL-250	Steel							
Outer flange EFG	EFGS	Grey cast iron EN-GJL-250	Steel							
Flexible ring materials:										
Material/ description	Hardness	Identification	Ambient temperature							
Natural rubber	70 ShoreA	Size - 2	-40 °C +80 °C							

General information

Further application-specific coupling types are available. Dimension sheets for and information on these are available on request. The following versions have already been implemented a number of times:

- ELPEX coupling with brake drum, brake disk or flywheel mass
- ELPEX coupling with axial backlash limiter
- · ELPEX coupling with adapter
- ELPEX coupling in combination with a safety slip clutch
- ELPEX coupling for engaging/disengaging during standstill
- · ELPEX coupling as part of a coupling combination

Fail-safe device of ELPEX coupling

Types ENGS and EFGS are provided with a fail-safe device. In normal operation the torsion angle of the flexible rings is smaller than the gap between the cams. In normal operation there is no metal-metal contact.

If the flexible rings fail, cams transmit the torque from the inner part and outer part. These enable the coupling to be used in emergency mode for a short time. This option is frequently required e.g. in the case of marine drives.

Types ENG/ENGS

ELPEX coupling types

Туре

ENG

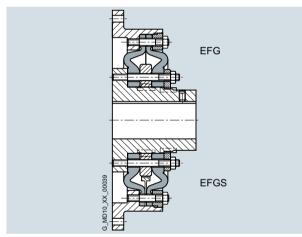
EFG

ENGS

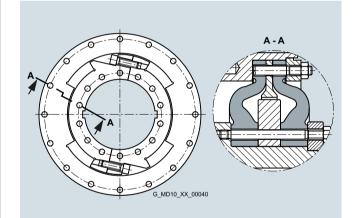
EFGS

Description

Coupling as shaft-shaft connection


as ENG with fail-safe device

as EFG with fail-safe device


Coupling as flange-shaft connection

ENG

ENGS

Types EFG/EFGS

Fail-safe device

General information

Configuration

The ELPEX coupling is especially suitable for rough operation. An application factor different from that in catalog section 3 is therefore sufficient for all applications. In the case of machines which excite torsional vibration, Siemens urgently recommends carrying out a torsional vibration calculation or measuring the coupling load occurring in the drive.

Coupling selection

Coupling load in continuous operation

The operating principles of the driving and driven machines are divided into categories and the application factor FB derived from these in accordance with DIN 3990-1.

Application factor FB	Torque characteristic of the driven machine									
Torque characteristic of the driving machine	uniform with moderate shock loads	non uniform	very rough							
Electric motors, hydraulic motors, gas and water turbines	1.0	1.3	1.4							
Internal combustion engines	1.3	1.4	1.6							

Examples of torgue characteristic in driven machines:

- uniform with moderate shock loads: generators, fans, blowers
 non uniform: reciprocating compressors, mixers, conveyor systems
- very rough: crushers, excavators, presses, mills

Temperatu	ire factor FT	Temperat	Temperature T_a on the coupling									
Coupling	Elastomer material	-40 °C to -30 °C	-30 °C to +50 °C	to 60 °C	to 70 °C	to 80 °C						
ELPEX	NR	1.1	1.0	1.25	1.40	1.60						

NR: Natural rubber mixture

Select size with: $T_{KN} \ge T_N \cdot FB \cdot FT$

Coupling load at maximum and overload conditions

The maximum torque is the highest load acting on the coupling in normal operation.

Maximum torques at a frequency of up to 25 times an hour are permitted and must be lower than the maximum coupling torque. Examples of maximum torque conditions are: Starting operations, stopping operations or usual operating conditions with maximum load.

$\textbf{\textit{T}}_{\textbf{Kmax}} \geq \textbf{\textit{T}}_{\textbf{max}} \cdot \textbf{FT}$

Overload torques are maximum loads which occur only in combination with special, infrequent operating conditions. Examples of overload torque conditions are: Motor short circuit, emergency stop or blocking because of component breakage. Overload torques at a frequency of once a month are permitted and must be lower than the maximum overload torque of the coupling. The overload condition may last only a short while, i.e. fractions of a second.

 $T_{\text{KOL}} \ge T_{\text{OL}} \cdot \text{FT}$

Coupling load due to dynamic torque load

Applying the frequency factor FF, the dynamic torque load must be lower than the coupling fatigue torque.

Dynamic torque load

$$T_{KW} \ge T_W \cdot FT \cdot FF \cdot \frac{0.6}{FB - 1.0}$$

Frequency of the dynamic torque load $f_{\rm err} \leq 10$ Hz frequency factor FF = 1.0

Frequency of the dynamic torque load $f_{\rm err}$ > 10 Hz frequency factor FF = $\sqrt{(f_{\rm err} / 10 \text{ Hz})}$

Checking the maximum speed:

The following must apply to all load situations: $n_{\text{Kmax}} \ge n_{\text{max}}$

Checking permitted shaft misalignment and restorative forces

For all load situations the actual shaft misalignment must be less than the permitted shaft misalignment.

Checking bore diameter, mounting geometry and coupling design

The check must be made on the basis of the dimension tables. On request, couplings with adapted geometry can be provided.

Checking shaft-hub connection

Please refer to catalog section 3 for instructions.

Checking temperature and chemically aggressive environment

The permitted coupling temperature is specified in the Temperature Factor FT table. In the case of chemically aggressive environments, please consult the manufacturer.

General information

Technical data

Power ratings

	3									
Size	Rated torque	Maximum torque	Overload torque	Fatigue torque	Dynamic torsional stiffness for 100 % capacity utilization	Stiffness		Permitted shaft misalignment at speed <i>n</i> = 1500 rpm		
						Axial	Radial	Axial	Radial	Angle
	T _{KN}	T _{Kmax}	T _{KOL}	T _{KW}	C_{Tdyn}	Ca	C _r	ΔKa	ΔK _r	ΔK_w
	Nm	Nm	Nm	Nm	kNm/rad	N/mm	N/mm	mm	mm	Degree
270	1600	4800	6400	640	22.0	660	770	2.2	2.2	0.2
320	2800	8400	11200	1120	38.0	780	910	2.6	2.6	0.2
375	4500	13500	18000	1800	63.0	970	1130	3	3	0.2
430	7100	21300	28400	2840	97.0	1160	1350	3.4	3.4	0.2
500	11200	33600	44800	4480	155	1410	1630	3.8	3.8	0.2
590	18000	54000	72000	7200	240	1710	1990	4.2	4.2	0.2
690	28000	84000	112000	11200	365	2060	2390	4.6	4.6	0.2
840	45000	135000	180000	18000	685	2570	2990	5	5	0.2
970	90000	270000	360000	36000	1100	3020	3510	5.5	5.5	0.2

The damping coefficient is $\Psi = 1.1$

Torsional stiffness

The dynamic torsional stiffness is load-dependent and increases in proportion to capacity utilization. The values specified in the selection table apply to a capacity utilization of 100 %. The following table shows the correction factors for different rated loads.

 $C_{\text{Tdyn}} = C_{\text{Tdyn 100 \%}} \cdot \text{FKC}$

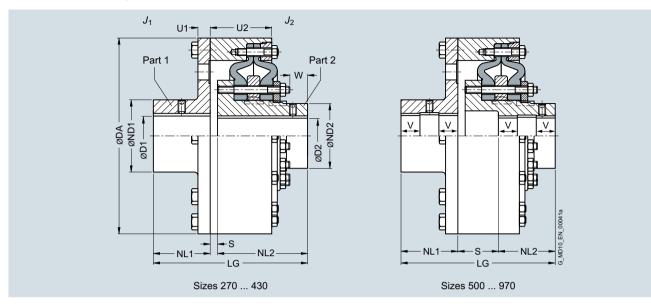
	Capacity utilization T_N / T_{KN}										
	20 %	50 %	60 %	70 %	80 %	100 %	200 %				
Correction factor FKC	0.3	0.56	0.65	0.74	0.82	1	1.9				

Torsional stiffness also depends on the ambient temperature and the frequency and amplitude of the torsional vibration excitation. More precise torsional stiffness and damping parameters on request.

With elastic couplings the manufacturing process of the rubber elements and their aging primarily influence the rigidity value $C_{\rm Tdyn}.$ For this reason calculation must be made with a tolerance for the dynamic rigidity of \pm 20 %. The specified damping coefficient Ψ is a minimum value with the result that the damping performance of the coupling corresponds at least to the specified value.

Permitted shaft misalignment

The permitted shaft misalignment depends on the operating speed. As the speed increases, lower shaft misalignment values are permitted. The following table shows the correction factors for different speeds.


The maximum speed for the respective coupling size must be noted!

$\Delta K_{perm} = \Delta K_{1500} \cdot FKV$

	Speed in rpm									
	500	1000	1500	3000						
Correction factor FKV	1.6	1.25	1.0	0.7						

Types ENG/ENGS

Selection and ordering data

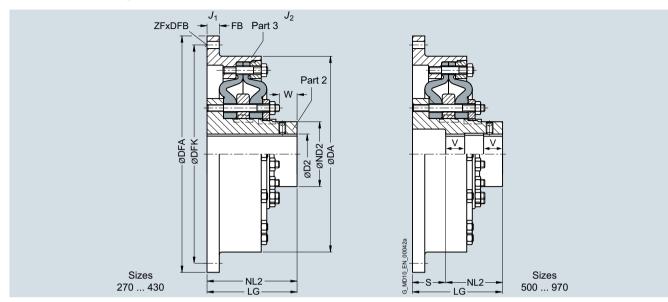
	Rated torque	Max. speed n _{Kmax}	I	Dime Keyw DIN 6		s in mi	m											Mass mome inertia	ent of	Article No. with order codes for bore diameter and tolerances	Weight
	T _{KN}		Steel	D1		D2		DA	ND1	ND2	NL1	NL2	S	U1	U2	LG	W	J ₁	J_2	(article number without "-Z") - selection in catalog part 3	т
	Nime	iron																1	kgm ²		l.e.
	Nm 1600	rpm 3000			max. 80	45	70	270	128	04	80	155	10	14	86	245	42		•	2LC0200-3A	kg 20
-	2800	2500			100	40 55	85	320		94 115	100	180	6		97.5	245				2LC0200-3A	
	4500	2500				55 65	105	320 375	184	143	120		-	18	97.5		-	1.0	0.082		
	7100	1900				65 75	105	430		143	140	205	10 8	22	126	383	-	2.0	0.21	2LC0200-5A -0AA0 2LC0200-6A -0AA0	
		1600			150	90	120	430 500		202	140	160	0	22	139.7			2.0	0.85	2LC0200-8A -0AA0	
		1360			140	100		500 590		202	190	190	130	25 28	162.7	-		3.9 8.2	1.7	2LC0200-7A - OAA0	
590	10000	1300	2000	140	140	100	170	590	288	230	190	190	130	20	102.7	510		0.2 8.4	- 1.7	2LC0200-8A -0AA0	
600	20000	1000	1050			110	200	690		070	000	000	140	20	175.0	500			0.7	2LC0200-8A -0AA0	
690	28000	1200	0001		140	. 110	200	690	-	278	220	220	140	32	175.6	560	102	16.3	3.7		
				140 180	180 210				288 336									16.8 16.9	-	2LC0201-0A -0AA0 2LC0201-0A -0AA0	
040	45000	1000	1050			140	240	0.40		240	000	000	125	40	231	685	105		11		
840	45000	1000	1350		180 220	140	240	840	288 352	340	280	280	125	42	231	660	105	49 50	- ' '	2LC0201-1A -0AA0 2LC0201-1A -0AA0	
070	90000	050	1100	180	220	160	280	970		390	250	350	167	70	200	867	137		26	2LC0201-1A -0AA0	
970	90000	650	1180	200	200	100	200	970	320 384	390	350	350	107	70	290	007	137	104	_ 20	2LC0201-2A	
				200	240				448									110	-	2LC0201-2A	
				240	320	•			512	•								115	-	2LC0201-2A -0AA0	
Tuno		• ENG		zou st iron	320				512									115		2LC0201-2A	1410
Туре		• ENG																		1	
		• ENG	S cas	st iron																G	
		• ENG	S stee	el																M	
ØD1:		• With	out fin	ished	bore -	- With	out or	der co	des											1	
		 With 	out fin	ished	bore f	rom si	ize 59	0 for 2	2nd dia	amete	r rang	e D1 -	- With	out o	rder co	des				2	
		 With 	out fin	ished	bore f	rom si	ize 69	0 for 3	Brd dia	meter	range	e D1 –	Witho	out or	der co	des				3	
		• With	out fin	ished	bore f	or size	e 970 i	for 4th	n diam	eter ra	ange [D1 – V	Vithout	t orde	er code	es				4	
		• With	finishe	ed bo	re – W	ith orc	ler co	des fo	r diam	neter a	ind to	eranc	e (arti	cle n	umber	witho	ut "-Z	")		9	
ØD2:			out fin																	1	
		• With	finishe	ed bo	re – W	ith orc	ler co	des fo	r diam	neter a	and to	eranc	e (arti	cle n	umber	witho	ut "-Z	.")		9	
	nub dia												Orc								

to the diameter of the finished bore. Where bore diameters overlap, the component with the smaller hub diameter is always selected.

Weights and mass moments of inertia apply to cast iron version with maximum bore.

From size 500, the bores D1 and D2 are each provided with a recess of D = +1 mm halfway along the hub. V \approx 1/3 NL

ELPEX coupling ENG, size 690, cast iron version, bore \emptyset D1 = 180H7 mm with keyway to DIN 6885 and set screw, the hub diameter ND1 = 288 mm is thus assigned; bore \emptyset D2 200H7 mm, with keyway to DIN 6885 and set screw, the hub diameter ND2 = 278 mm is thus assigned.


Article No.: 2LC0201-0AF99-0AA0 L2B+M2D

© Siemens AG 2015

FLENDER Standard Couplings Highly Flexible Couplings – ELPEX Series

Types EFG/EFGS

Selection and ordering data

Size	Rated torque	Max. s n _{Kmax} Type		Keyw	Keyway Elange connection mo						Mass mome of iner		Article No. with order codes for bore diameter and tolerances (article number	Weight						
	$T_{\rm KN}$	Cast iron	Steel	D2		DA	ND2	NL2	S	LG	W	DFA	DFK	FB	ZF	DFB	J_1	J_2	without "-Z") – selection in catalog part 3	т
	Nm	rpm	rpm	min.	max.												kgm ²	kgm ²		kg
270	1600	3000	4250	45	70	270	94	155	-	155	42	466.7 _{q7} ¹⁾	438.2 ¹⁾	12	8	13	0.47	0.037	2LC0200-3A 🔳 2 🔳 -0AA0	27
												325 _{i6}	300	-	8	14	0.16	-	2LC0200-3A 🔳 1 🔳 -0AA0	19
320	2800	2500	3600	55	85	320	115	180	-	180	48	517.5 _{q7} 1)	489 ¹⁾	14	8	13	0.87	0.082	2LC0200-4A 🔳 2 🔳 -0AA0	42
												392 _{i6}	360		8	18	0.39		2LC0200-4A 🔳 1 🔳 -0AA0	33.5
375	4500	2100	3100	65	105	375	143	205	-	205	62	571.5 _{q7} 1)	542.9 ¹⁾	16	6	17	1.5	0.21	2LC0200-5A 2 -0AA0	65
												448 _{i6}	415		8	18	0.78		2LC0200-5A 🔳 1 🔳 -0AA0	53
430	7100	1900	2650	75	120	430	165	235	-	235	68	673.1 _{g7} ¹⁾	641.4 ¹⁾	20	12	17	3.4	0.37	2LC0200-6A 2 -0AA0	100
												515 _{i6}	475		8	22	1.5		2LC0200-6A 1 -0AA0	78
500	11200	1600	2300	90	150	500	202	160	100	260	80	673.1 _{g7} ¹⁾		20	12	17	4.0	0.85	2LC0200-7A 2 -0AA0	150
												585 _{j6}	545			22	2.7		2LC0200-7A I I -0AA0	
590	18000	1350	2000	100	170	590	230	190	120	310	95	733.4 _{q7} 1)		24	12		7.0	1.7	2LC0200-8A 2 -0AA0	
												692 _{i6}	645			26	6.0		2LC0200-8A I I -0AA0	
690	28000	1200	1650	110	200	690	278	220	130	350	102	890 _{g7} 1)	850 ¹⁾	24	32		15	3.7	2LC0201-0A 2 -0AA0	
												800 _{j6}	750			26	11		2LC0201-0A 1 -0AA0	
840	45000	1000	1350	140	240	840	340	280	115	395	105	1105 _{g7} 1)	1060 ¹⁾	30	32		46	11	2LC0201-1A 2 -0AA0	
												960 _{i6}	908			30	32		2LC0201-1A 1 -0AA0	
970	90000	850	1180	160	280	970	390	350	155	505	137	1385 _{g7} 1)	1320 ¹⁾	35	-	31	130	26	2LC0201-2A 2 -0AA0	
												1112 _{i6}	1051		16	35	76		2LC0201-2A I -0AA0	920
Туре		• EFG		t iron															В	
		• EFG																	J	
		• EFG	S cas	t iron															С	

EFGS steel

ØD2: • Without finished bore – Without order codes

• With finished bore – With order codes for diameter and tolerance (article number without "-Z")

The hub diameter of the component part is assigned according to the diameter of the finished bore. Where bore diameters overlap, the component with the smaller hub diameter is always selected.

Weights and mass moments of inertia apply to cast iron version with maximum bore.

From size 500, the bores D1 and D2 are each provided with a recess of D = +1 mm halfway along the hub. V \approx 1/3 NL

Notice: The application factor FB in the coupling selection section must be noted.

Ordering example:

ELPEX EFG coupling, size 430, steel version, bore ØD1 = 100H7 mm with keyway to DIN 6885 and set screw, flange to SAE J620d size 21 with DFA = 673.5g7 mm.

Coupling balanced G6.3 in accordance with the half parallel key standard.

Article No.: 2LC0200-6AJ29-0AA0-Z M1N+W02

 The top line of the flange connection dimensions in accordance with the SAE J620d or DIN 6288 standards.

κ

1

9

Spare and wear parts

Selection and ordering data

Flexible rings

The flexible rings are wear parts. The service life depends on the operating conditions.

Size	Article No.	Weight	Types EFG, ENG	Types EFGS, ENGS
	Flexible rings for a coupling	kg	Flexible ring screw connection set of pins and bolts	Flexible ring screw connection set of pins and bolts
270	2LC0200-3XV00-0AA0	1.6	2LC0200-3XU00-0AA0	2LC0200-3XW00-0AA0
320	2LC0200-4XV00-0AA0	2.6	2LC0200-4XU00-0AA0	2LC0200-4XW00-0AA0
375	2LC0200-5XV00-0AA0	4.4	2LC0200-5XU00-0AA0	2LC0200-5XW00-0AA0
430	2LC0200-6XV00-0AA0	6.8	2LC0200-6XU00-0AA0	2LC0200-6XW00-0AA0
500	2LC0200-7XV00-0AA0	9.4	2LC0200-7XU00-0AA0	2LC0200-7XW00-0AA0
590	2LC0200-8XV00-0AA0	18	2LC0200-8XU00-0AA0	2LC0200-8XW00-0AA0
690	2LC0201-0XV00-0AA0	36	2LC0201-0XU00-0AA0	2LC0201-0XW00-0AA0
840	2LC0201-1XV00-0AA0	68	2LC0201-1XU00-0AA0	2LC0201-1XW00-0AA0
970	2LC0201-2XV00-0AA0	120	2LC0201-2XU00-0AA0	2LC0201-2XW00-0AA0