Agribusiness Analysis and Forecasting Seasonality and Cycles

Henry Bryant

Texas A&M University

Henry Bryant (Texas A&M University) Agribusiness Analysis and Forecasting

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Uses for Seasonal Models

A **seasonal** pattern is a recurring pattern of variability in a time series that occurs of the course of each year.

- Prices usually differ from one season to another.
 - Tomatoes, avocados, grapes, lettuce
 - Wheat, corn, hay
 - 450-550 pound Steers
 - Gasoline
- Many quantity series have seasonal patterns (e.g., production)
- To forecast seasonal data you must explicitly incorporate variables in the model to reflect the seasonality.

ヘロト ヘヨト ヘヨト

Seasonal Forecasts

 Multiple observations per year are needed to observe a seasonal pattern.

- Seasonal patterns repeat each year due to
 - Seasonal production due to climate or weather.
 - Seasonal demand (holidays, summer, etc.).

• A cycle may also be present, with a seasonal pattern mapped on the top of the cycle.

A 回 > A 回 > A 回 >

Seasonal Forecasts

Example of monthly prices showing seasonal variability on top of a multi-year cycle.

Henry Bryant (Texas A&M University)

Agribusiness Analysis and Forecasting

Econometric Models for Forecasting Seasonal Patterns

- Seasonal indices
- Composite forecast models
- Harmonic regression model
- Dummy variable regression model

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Steps for Estimating a Seasonal Index

- Graph the data.
- Check for a trend and seasonal pattern.
- Develop and use a seasonal index if no trend is present.
- Develop a composite forecast model that includes trend and seasonal components.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Two kinds of Seasonal Indices

• Price Index

- The traditional index value shows the relative relationship of price between months or quarters.
- It is ONLY used with price data.
- Fractional Contribution Index
 - If the variable is a quantity, calculate a fractional contribution index to show the relative contribution of each month to the annual total quantity.
 - It is ONLY used with quantities.

Seasonal Price Index Model

- Seasonal price index is a simple way to forecast a monthly or quarterly series.
- Index represents the fraction that each month's price is above or below the annual mean.
 - If the seasonal index for June is 1.10 it means the June price averages 110% of the annual average price.
 - If the seasonal index for December is 0.85 it means the December price averages 85% of the annual average price.
- A function in Simetar estimates the seasonal price index for time series with a few simple steps, so it is very easy to use this type of forecasting model.

< □ > < 同 > < 回 > < 回 > < 回 >

Seasonal Price Index Model Estimated by Simetar

Years	1	2	3	4	5	6	7	8	9	10	11	12
1	71.06	71.47	70.06	70.31	68.75	67.08	64.8	63.12	59.44	63.94	66.62	64.12
2	65.12	65.25	62.72	59.15	60.19	60	64.5	65.25	66.13	64.7	64.94	64.68
3	66.88	72.6	73.66	75.43	76.38	75.63	77.53	81.5	85.4	78.81	80.71	79.5
4	83.66	88	88.3	89.75	89.5	82.8	81.5	84.1	84.25	87.5	85.7	85.33
5	89.13	90.88	90.5	88.25	88.4	92.83	93.83	90.7	86.5	87	85.1	88.08
6	89.85	89.63	95.13	95.25	95.8	94.63	94.38	99.2	94.75	93.3	91.88	98.17
7	96.25	101.75	102.75	103.3	103.19	102.69	99.63	92.94	92.19	91.85	89.38	88.25
8	87.44	87.69	91.15	93.88	90	89.4	89.25	88.01	85.75	85.44	84.25	84.13
9	88.63	92.88	94.35	98.32	97.44	96.45	96.34	95.07	90.5	88.82	86.5	87.67
10	89.57	89.5	92.4	91.88	87.55	84	84.34	83.1	79.32	76.57	77.85	80.08
11	82.45	80.51	78.88	78.19	75.9	73.87	71.83	67.4	65	63.5	62.5	61.5
12	56.9	60.07	56.49	54.94	58.3	57.28	62.67	63.94	60.47	59.14	62.31	63.01
13	71.99	75.8	81.49	85.48	85.15	86.6	86.63	82.98	84	78.79	79.14	81.32
14	90.83	93.17	91.86	89.43	83.85	77.815	72.92	70.915	67.275	71.63	70.445	72.835
15	79.465	84.82	84.405	86.25	81.755	81.16	83.04	81.215	81.52	80.805	84.18	90.25
16	93.675	94.99	96.125	100.36	93.265	95.245	100	87.925	87.22	90.31	96.63	98.975
17	97.72	103.825	103.47	107.545	99.585	107.5	99	96	95	91.16	95.135	96.14
SUM	1400.62	1442.835	1453.74	1467.715	1435.005	1424.98	1422.19	1393.365	1364.715	1353.265	1363.27	1384.04
AVERAGE	82.38941	84.87265	85.51412	86.33618	84.41206	83.82235	83.65824	81.96265	80.27735	79.60382	80.19235	81.41412
ST DEV	11.57589	11.9041	12.96476	14.22	12.60769	13.73284	12.45774	11.46838	11.57323	10.96217	10.82638	11.95711
INDEX	0.994	1.024	1.032	1.042	1.019	1.011	1.009	0.989	0.969	0.961	0.968	0.982
FRAC. CONT. INDEX	0.083	0.085	0.086	0.087	0.085	0.084	0.084	0.082	0.081	0.080	0.081	0.082
INDEX LCI	0.719	0.749	0.735	0.719	0.726	0.690	0.718	0.715	0.686	0.691	0.703	0.695
INDEX UCI	1.270	1.299	1.329	1.365	1.311	1.333	1.301	1.263	1.251	1.230	1.232	1.270
STOCHASTIC INDICES	0.944	0.989	1.023	1.110	1.034	1.033	0.991	0.938	0.999	0.928	0.944	0.969
STOCHASTIC FRACTIONA	0.083	0.089	0.088	0.083	0.083	0.086	0.084	0.081	0.080	0.077	0.081	0.086
ADJ. STOCH.INDICES	0.952	0.997	1.031	1.119	1.042	1.041	0.999	0.946	1.008	0.935	0.952	0.977
ADJ. STOCH.FRACTIONAL	0.083	0.089	0.087	0.083	0.083	0.086	0.084	0.081	0.080	0.077	0.081	0.086

(日) (四) (日) (日) (日)

Using a Seasonal Price Index for Forecasting

- Seasonal index has an average of 1.0
- Use seasonal index to forecast monthly prices from annual average price forecast

 $P_{lan} =$ Annual Average Price * Index lan

 $P_{Mar} = Annual Average Price * Index_{Mar}$

• Suppose you have a trend forecasted annual average price of \$125, you can develop monthly forecasts using the seasonal price indices, as:

January Price =
$$125 * 0.88 = 110.0$$

March Price = \$125 * 1.08 = \$135.0

• The forecast can include risk by using a stochastic forecast of annual price. イロト 不得 トイヨト イヨト

Probabilistic Monthly Forecasts

We use the Adjusted Stochastic Indices at the bottom of the Simetar output

	1	2	3	4	5	6	7	8	9	10	11	12
1	71.06	71.47	70.06	70.31	68.75	67.08	64.8	63.12	59.44	63.94	66.62	64.12
2	65.12	65.25	62.72	59.15	60.19	60	64.5	65.25	66.13	64.7	64.94	64.68
3	66.88	72.6	73.66	75.43	76.38	75.63	77.53	81.5	85.4	78.81	80.71	79.5
4	83.66	88	88.3	89.75	89.5	82.8	81.5	84.1	84.25	87.5	85.7	85.33
5	89.13	90.88	90.5	88.25	88.4	92.83	93.83	90.7	86.5	87	85.1	88.08
6	89.85	89.63	95.13	95.25	95.8	94.63	94.38	99.2	94.75	93.3	91.88	98.17
7	96.25	101.75	102.75	103.3	103.19	102.69	99.63	92.94	92.19	91.85	89.38	88.25
8	87.44	87.69	91.15	93.88	90	89.4	89.25	88.01	85.75	85.44	84.25	84.13
9	88.63	92.88	94.35	98.32	97.44	96.45	96.34	95.07	90.5	88.82	86.5	87.67
10	89.57	89.5	92.4	91.88	87.55	84	84.34	83.1	79.32	76.57	77.85	80.08
11	82.45	80.51	78.88	78.19	75.9	73.87	71.83	67.4	65	63.5	62.5	61.5
12	56.9	60.07	56.49	54.94	58.3	57.28	62.67	63.94	60.47	59.14	62.31	63.01
13	71.99	75.8	81.49	85.48	85.15	86.6	86.63	82.98	84	78.79	79.14	81.32
14	90.83	93.17	91.86	89.43	83.85	77.815	72.92	70.915	67.275	71.63	70.445	72.835
15	79.465	84.82	84.405	86.25	81.755	81.16	83.04	81.215	81.52	80.805	84.18	90.25
16	93.675	94.99	96.125	100.36	93.265	95.245	100	87.925	87.22	90.31	96.63	98.975
17	97.72	103.825	103.47	107.545	99.585	107.5	99	96	95	91.16	95.135	96.14
SUM	1400.62	1442.835	1453.74	1467.715	1435.005	1424.98	1422.19	1393.365	1364.715	1353.265	1363.27	1384.04
AVERAGE	82.38941	84.87265	85.51412	86.33618	84.41206	83.82235	83.65824	81.96265	80.27735	79.60382	80.19235	81.41412
ST DEV	11.57589	11.9041	12.96476	14.22	12.60769	13.73284	12.45774	11.46838	11.57323	10.96217	10.82638	11.95711
INDEX	0.994	1.024	1.032	1.042	1.019	1.011	1.009	0.989	0.969	0.961	0.968	0.982
FRAC. CONT. INDEX	0.083	0.085	0.086	0.087	0.085	0.084	0.084	0.082	0.081	0.080	0.081	0.082
INDEX LCI	0.719	0.749	0.735	0.719	0.726	0.690	0.718	0.715	0.686	0.691	0.703	0.695
INDEX UCI	1.270	1.299	1.329	1.365	1.311	1.333	1.301	1.263	1.251	1.230	1.232	1.270
STOCHASTIC INDICES	1.021	0.986	1.006	1.054	0.963	1.046	1.013	0.970	1.006	0.937	0.952	1.058
STOCHASTIC FRACTIONAL IND	0.081	0.084	0.088	0.083	0.083	0.085	0.083	0.083	0.084	0.082	0.080	0.085
ADJ.STOCH.INDICES	1.020	0.985	1.005	1.053	0.962	1.045	1.012	0.969	1.005	0.936	0.951	1.057
ADJ.STOCH.FRACTIONAL INDIC	0.081	0.084	0.088	0.083	0.083	0.085	0.083	0.083	0.084	0.082	0.080	0.085

Henry Bryant (Texas A&M University)

Agribusiness Analysis and Forecasting

Probabilistic Monthly Forecasts

- Develop probabilistic forecast of the annual price. In this case a trend forecast is used of the annual average prices and 18th period is forecasted.
- Use the stochastic indices to simulate stochastic monthly forecasts.

- 24	F	G	Н	1	J	K	L	M	N	0	P	Q	R
33													
34	STOCHASTIC INDICES	S 0.951	1.031	1 1.006	1.104	1.084	0.993	0.982	1.020	0.9	045 0.9	90 0.94	4 1.030
35	STOCHASTIC FRACT	IO 0.082	0.082	2 0.085	0.084	0.085	0.087	0.088	0.081	0.0	0.0	82 0.07	6 0.084
36	ADJ.STOCH.INDICES	0.945	5 1.024	4 0.999	1.097	1.076	0.986	0.976	1.013	• 0.9	0.9	83 0.93	8 1.023
37	ADJ.STOCH.FRACTIO	DN. 0.082	2 0.082	2 0.085	0.084	0.086	0.087	0.088	0.081	0.0	0.0	82 0.07	7 0.084
38													
39	39 Simualte a Monthly Stochastic Price give a Stochastic Annual Forecast												
40	Stochastic Annual Pr	rice											
41		=Y48+Z4	8*18+NORM	(0, 757)									
42	Jan Feb		Feb	Mar	Apr	May J	un	Jul	Aug	Sep	Oct	Nov	Dec
43		92.23	99.94	97.50	107.06	105.06	96.26	95.22	98.84	- 91.	.63 95.	94 91.5	4 99.88
44		=\$G\$41*0	336	=\$G\$41*l3	=\$G\$41*I36 =\$G\$41*K36 =\$G\$41					=\$G\$41	1*036	=\$G\$41*	236
Sir	metar Simulation Res	sults for 500) Iterations	5.		-							
Va	riable 'Price Inde 'F	Price Inde 'F	Price Inde	Price Inde	'Price Inde	Price Inde	Price Ir	nde 'Price	Inde 'Price	e Inde 'l	Price Inde	Price Inde	Price Inde
Me	an 88.83	91.52	92 23	93.09	91.03	90.40	90	23 88	8 40	86.58	85.86	86.50	87.79
St	Dev 11.11	11.51	11 78	11 80	11 67	11 60	11	54 11	1 27	11 06	10.96	11.09	11.08
CV	12 50	12.58	12 78	12 67	12 82	12 83	12	79 12	2 75	12 77	12 77	12 82	12 62
Mi	56.46	57.42	58.01	60.49	59.10	58.23	57	92 5/	1 15	55 61	54.51	54.63	51.63
Ma	117.61	123.08	124.45	131.05	125.09	129.61	123	03 12	7.66 1	21 12	121.55	120.66	110.62
IVIa	IX 117.01	123.30	124.40	131.35	125.30	129.01	123	.03 121	0.00	21.12	121.00	120.00	113.02
Ite	ration Jan F	eb IV	lar	Apr	May	Jun	Jui	Aug	Sep	0	JCt	NOV	Dec

Henry Bryant (Texas A&M University)

Agribusiness Analysis and Forecasting

Seasonal Price Index Model Estimated by Simetar

[demo]

(日) (四) (日) (日) (日)

Seasonal Fractional Contribution Index

- Fractional Contribution Index sums to 1.0 to represent 100% of annual quantity of sales.
- Each month's value is the fraction of total sales that month.
- Use a trend or structural model to forecast annual sales.

Sales_{Jan} = Total Annual Sales * Index_{Jan}

Sales_{Jun} = Total Annual Sales * Index_{Jun}

• For an annual sales forecast at 340,000 units

 $Sales_{Jan} = 340,000 * 0.050 = 17,000.0$

 $Sales_{Jun} = 340,000 * 0.076 = 25,840.0$

- This forecast is useful for input procurement and inventory management.
- The forecast can include risk by using a stochastic forecast of annual sales.

Henry Bryant (Texas A&M University)

Harmonic Regression for Seasonal Models

- Add sin and cos functions in OLS regression to isolate seasonal variation.
- Define a variable N to represent the number of observations per year
 - Ex.: Monthly observations: N = 12
 - Ex.: Weekly observations: N = 52
- Create the X Matrix for OLS regression.

 X_1 indexes obervations : $T = 1, 2, 3, 4, 5, \dots$

$$X_2 = \sin\left(\frac{2\pi T_t}{N}\right)$$
$$X_3 = \cos\left(\frac{2\pi T_t}{N}\right)$$

• Fit the regression equation as:

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \beta_3 X_{3,t}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Harmonic Regression for Seasonal Models

This is what the X matrix looks like for a Harmonic Regression.

	A	B C		D	E		
7			Let SL =	12			
8	Formulas for	r Period 1:		=SIN(2*PI()*C10/\$D\$7)	=COS(2*PI()*C10/\$D\$7)		
9		Price	Т	Sin(2PiT/SL)	Cos(2PiT/SL)		
10	Jan	71.06	1	0.5000000	0.8660254		
11	Feb	71.47	2	0.8660254	0.5000000		
12	Mar	70.06	3	1.0000000	0.0000000		
13	Apr	70.31	4	0.8660254	-0.5000000		
14	May	68.75	5	0.5000000	-0.8660254		
15	Jun	67.08	6	0.0000000	-1.0000000		
16	Jul	64.8	7	-0.5000000	-0.8660254		
17	Aug	63.12	8	-0.8660254	-0.5000000		
18	Sep	59.44	9	-1.0000000	0.0000000		
19	Oct	63.94	10	-0.8660254	0.5000000		
20	Nov	66.62	11	-0.5000000	0.8660254		
21	Dec	64.12	12	0.0000000	1.0000000		
22	Jan	65.12	13	0.5000000	0.8660254		
23	Feb	65.25	14	0.8660254	0.5000000		

Henry Bryant (Texas A&M University)

Agribusiness Analysis and Forecasting

16 / 30

Harmonic Regression for Seasonal Models

- Note that the cos term is not statistically significant, but it MUST be included when using the model to forecast.
- sin and cos are creating the wave effect in the forecast.
- T is creating the positive trend in the forecast.
- The model needs more terms to capture the underlying cycle.

OLS Regr	ession Sta	tistics for	Price,										
F-test	8.147	Prob(F)	0.000	Unrestrict							. .		
MSE ^{1/2}	11.835	CV Regr	14.281	F-test		0	bserved	and Pre	edicted V	alues for	Price		
R ²	0.109	Durbin-W	0.068	R ²									
RBar ²	0.096	Rho	0.967	RBar ²	150								
Akaike Inf	4.952	Goldfeld-0	0.360	Akaike Inf						~ ~ /	~~~	\sim	
Schwarz I	5.001			Schwarz I	100	\sim	\sim	\sim	\sim		A	$\wedge \wedge \wedge$	
95%	Intercept	т	Sin(2PiT/S	Cos(2PiT/S	\sim	$\sim \sim $	\sim	\sim	$\sim \sim$				
Beta	76.714	0.060	2.735	-1.572	50	\sim	$\sim\sim$	\sim	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim \sim \sim$	/~~	
S.E.	1.665	0.014	1.173	1.172									
t-test	46.083	4.265	2.331	-1.342									
Prob(t)	0.000	0.000	0.021	0.181	0 +				1	1		1	
Elasticity	at Mean	0.074	0.000	0.000			radiated			Obconvod			[
Variance I	Inflation Fa	1.002	1.002	1.000			Tedicted			Observed			
Partial Correlation 0.289 0.163 -0.094			—L	ower 95%	Predict. I	nterval —	Opper 95%	6 Predict. I	nterval				
Semiparti	al Correlat	0.284661	0.155613	-0.08955		— L	ower 95%	6 Conf. Inte	rval —	Upper 95%	6 Conf. Inte	erval	
								·					4)Q(S

Henry Bryant (Texas A&M University)

Recap of Harmonic Regression

$$Y_t = \beta_0 + \beta_1 Z_t + \beta_2 T_t + \beta_3 \sin\left(\frac{2\pi T_t}{N}\right) + \beta_4 \cos\left(\frac{2\pi T_t}{N}\right)$$

- The T variable captures the trend in the Y variable.
- The sin and cos capture the seasonal variability in Y.
- The Z variable represents structural variables that could explain changes due to income, population, tastes and preferences, policy shifts.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Harmonic Regression Demo

[demo]

э

イロト イボト イヨト イヨト

- Business cycle
- Beef cycle
- Hog cycle
- Earnings season

э

イロト イヨト イヨト イヨト

Analyzing and Forecasting Cycles

- Cyclical analysis involves analyzing data for underlying cycles.
- Estimate the length of an average cycle and forecast Y variable in part based on cycle length.
- May still include trend, seasonal, and structural variables to be removed with other parts of your model.
- Need adequate data to reflect several cycles

- 4 回 ト 4 ヨ ト 4 ヨ ト

Rules for Cyclical Analysis Models

- Note that a cycle is simply a generalization of the seasonal concept
- Seasonal pattern: one cycle per year
- More general: cyclic pattern that repeats with an arbitrary frequency
- Now define *N* as the number of observations *per cycle* (previously number of obs per year)
- Example: to reflect a quarterly cycle with weekly obs, N = 13
- Example: to a reflect a five-year cycle with monthly obs, N = 60

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cyclical Analysis Models

The regression model, including a possible trend, is still just

$$Y = \beta_0 + \beta_1 T + \beta_2 \sin\left(\frac{2\pi T}{N}\right) + \beta_3 \cos\left(\frac{2\pi T}{N}\right)$$

where N = number of observations per cycle.

Steps to estimate a cycle length:

- Enter N in a cell.
- Reference the cell with N to calculate all of the sin and cos values in the X matrix.
- Stimate regression model.
- Change the value for N, observe the F ratio, MAPE, R², or information criterion
- Repeat process for numerous N values and choose the N with the best value for your chosen fit metric

Multiple Simultaneous Cycles

OLS regression model:

$$Y = \beta_0 + \beta_1 T + \beta_2 \sin\left(\frac{2\pi T}{N_1}\right) + \beta_3 \cos\left(\frac{2\pi T}{N_1}\right) + \beta_4 \sin\left(\frac{2\pi T}{N_2}\right) + \beta_5 \cos\left(\frac{2\pi T}{N_2}\right)$$

where: N_1 = Number of obs per cycle for the first cycle and N_2 = Number of obs per cycle for the second cycle

For example: make N_1 the number of observations per year to reflect a seasonal/annual cycle, and N_2 some larger number to reflect a multi-year cycle.

イロト 不得 ト イヨト イヨト

Results from a combined seasonal and multi-year cycle model

- Monthly data
- Slightly different notation than above: here "cycle length" is the of *years* (not obs) in the multi-year cycle, chosen based on maximum MAPE.

Henry Bryant (Texas A&M University)

Agribusiness Analysis and Forecasting

Cycle Demo

[demo]

3

Seasonal Forecast Using Dummy Variable Models

- Dummy variable regression model can forecast trend and seasonal variability.
- Include a trend if one is present.
- Regression model can be estimate as:

 $Y = \beta_0 + \beta_1 Jan + \beta_2 Feb + \ldots + \beta_{11} Nov + \beta_{13} T + \beta_{14} Z$

- Jan-Nov are individual dummy variable 0's and 1's.
- Effect of Dec is captured in the intercept.
- If the data are quarterly, use 3 dummy variables, for first 3 quarters and intercept picks up affect for fourth quarter.

$$Y = \beta_0 + \beta_1 Q t 1 + \beta_2 Q t 2 + \beta_3 Q t 3 + \beta_4 T + \beta_5 Z$$

• The Z variable represents other structural variables that can be included in the model.

What is Each Part of the Equation Doing?

 $Y = \beta_0 + \beta_1 Jan + \beta_2 Feb + \ldots + \beta_{11} Nov + \beta_{13} T + \beta_{14} Z$

- The β₀ intercept is capturing the average value of Y when all the other variables are zero.
- The β₁ through β₁₁ are capturing the effects of different months on the Y variable, some may be positive and others negative. Some may not be statistically significant but should be left in the model for completeness.
- The "T" variable is trend and effectively "de-trends" the data prior to estimating the seasonal effects.
- The "Z" variable represents other structural variables that can be included in the model, such as income, population, own price and competing prices.

Seasonal Forecast with Dummy Variable Models

- Set up the X matrix with 0's and 1's.
- Easy to forecast as the seasonal effect is assumed to persist forever.
- Note the pattern of 0s and 1s for months.
- December effect is captured in the intercept.

	Price	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Trend
Jan	71.06	1	0	0	0	0	0	0	0	0	0	0	1
Feb	71.47	0	1	0	0	0	0	0	0	0	0	0	2
Mar	70.06	0	0	1	0	0	0	0	0	0	0	0	3
Apr	70.31	0	0	0	1	0	0	0	0	0	0	0	4
May	68.75	0	0	0	0	1	0	0	0	0	0	0	5
Jun	67.08	0	0	0	0	0	1	0	0	0	0	0	6
Jul	64.8	0	0	0	0	0	0	1	0	0	0	0	7
Aug	63.12	0	0	0	0	0	0	0	1	0	0	0	8
Sep	59.44	0	0	0	0	0	0	0	0	1	0	0	9
Oct	63.94	0	0	0	0	0	0	0	0	0	1	0	10
Nov	66.62	0	0	0	0	0	0	0	0	0	0	1	11
Dec	64.12	0	0	0	0	0	0	0	0	0	0	0	12
Jan	65.12	1	0	0	0	0	0	0	0	0	0	0	13
Feb	65.25	0	1	0	0	0	0	0	0	0	0	0	14
Mar	62.72	0	0	1	0	0	0	0	0	0	0	0	15
Apr	59.15	0	0	0	1	0	0	0	0	0	0	0	16
May	60.19	0	0	0	0	1	0	0	0	0	0	0	17
Jun	60	0	0	0	0	0	1	0	0	0	0	0	18

Seasonal Forecast with Dummy Variable Models

- Regression output for a monthly dummy variable model may not have a statistically significant effect for each month, as indicated by the Student *t* on the betas.
- Monthly forecasts use beta for the month being forecasted.

January forecast = 45.93 + 4.147 * (1) + 1.553 * T

95%	Intercept	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Trend
Beta	45.930	4.147	6.334	6.682	7.213	4.999	4.121	3.671	1.689	-0.281	-1.240	-0.936	1.553
S.E.	2.973	2.718	2.717	2.716	2.715	2.714	2.714	2.713	2.713	2.712	2.712	2.712	0.095
t-test	15.450	1.525	2.331	2.460	2.656	1.842	1.519	1.353	0.623	-0.104	-0.457	-0.345	16.275
Prob(t)	0.000	0.129	0.021	0.015	0.009	0.067	0.131	0.178	0.534	0.918	0.648	0.730	0.000
Elasticity	at Mean	0.004	0.006	0.007	0.007	0.005	0.004	0.004	0.002	0.000	-0.001	-0.001	1.921
Variance I	Inflation Fa	1.842	1.841	1.839	1.838	1.837	1.836	1.835	1.835	1.834	1.834	1.833	103.050
Partial Co	rrelation	0.110	0.167	0.176	0.190	0.133	0.110	0.098	0.045	-0.008	-0.033	-0.025	0.764
Semiparti	al Correlat	0.06802	0.103941	0.109692	0.118445	0.082118	0.067719	0.060325	0.027767	-0.00463	-0.02039	-0.0154	0.725712
Restrictio	n												

May forecast = 45.93 + 4.999 * (1) + 1.553 * T

Henry Bryant (Texas A&M University)