AHU Air Handling Unit Fundamentals

Objectives

- Review primary components of an AHU
- Understand the basic progression and advantages of advanced AHU control
- Understand the basic control sequences
- Review key operating concepts

HVAC System in a Building

HVAC Air Systems

- HVAC air systems are made up of:
 - AHU Air handling units
 - Dampers
 - Coils and Valves
 - Fans
 - Distribution ducts and terminal boxes
 - Pumps and Plumbing
 - Control devices and control loops
 - Unitary equipment: fan coils, perimeter radiation, unit ventilators, unit heaters, etc.

AHU - Components & Terminology

AHU components

AHU components

Types of Air Handlers

Air Handling Units – Mixed Air

Types of Air Handlers

Air Handling Units – Mixed Air

A "Single Duct" AHU variation

 The exhaust air damper is not in this air handler; the building air is exhausted elsewhere, but the basic mixed air and other functions are unchanged.

The fan section with access door open.

The filter section.

Notice the cross stacking of the filters to increase surface area.

Temperature Sensor:

- Temperature sensors are used for measurement of temperatur of a Room, Air Duct, Hot /Cold Water, Outside Air etc.
- Models are available with PT1000, NTC20K, BALCO500 sensing elements.

LF20 : AIR DUCT TEMP. SENSOR (NTC 20k)

T7412 : ROOM TEMP. SENSOR (PT1000/NTC 20k)

.

T7413A : IMMERSION TEMP. SENSOR (PT1000)

Relative Humidity Sensor:

- Relative Humidity sensors are used for measurement of Relative humidity of a Room, Air Duct, Outside Air etc.
- Sensor Type : Capacitance
- Combined Relative Humidity and Temperature Sensors are available with PT1000, NTC20K, BALCO500 sensing elements.

H7015 : DUCT RELATIVE HUMIDITY SENSOR

H7012 : ROOM RELATIVE HUMIDITY SENSOR

Differential Pressure Switch:

 Differential Pressure switches are used for monitoring of Filter, Fan, Pump, Fire Damper, Water Flow, Air Flow Status of air handling systems.

DPS1000 : AIR DIFFERENTIAL PRESSURE SWITCH

TDIAP SERIS : AIR FLOW SWITCH

Differential Pressure Sensors/Transmitter:

• Used for measuring diff. Pressure, positive pressure and vacuum.

DPT1000 : AIR DIFF. PRESSURE TRANSMITTER

ST 3000 Pressure Transmitter

Coils :

Heating Coils Cooling Coils

Coil Construction

- Copper with Aluminium fins,
- 13 Fins /inch
- Number of Rows, I.e 4/6/8 depending on the latent heat load & Bypass Factor.

The coil section of a AHU.

Note: There may be a wide variety of actual configurations

Valves & Actuators

Valve Types

2 Way or 3 Way

Actuator Types

- Motorised
- Magnetic
- Pneumatic

Operation

 On - Off,Floating, Modulating

Heat Recovery :

A heat-recovery system is often used in buildings where a significant quantity of outdoor air is used. Several types of heat-recovery systems are available

- Heat pumps
- Runaround systems
- Rotary heat exchangers
- Heat pipes.

Runaround systems

Heat Wheel

Heat Recovery : Heat Wheel

1. Heating/Cooling Energy (e.g. 80%) Is Always Returned To Where It Came From

2. Moisture and Dry Air (e.g. 80%) Is Always Returned To Where It Came From

- Manually adjustable quantity of outdoor air:
- Similar to "Fixed", but with a user adjustment device for adjusting damper setting from 0% to 100% outdoor air.
- No automatic control.
- W/WO exhaust or return air ducts.

Manual Adjustment of Outside Air

- Mixed Air Dampers:
- Mixes OA and RA to maintain a mixed air setpoint via direct acting controller.
- Modulates 0% to 100%.
- Provides ventilation for IAQ.
- Provides free cooling.
- Provides proper temperature for H/C coil operation.
- OA and EA dampers close via relay with fan off.
- RA damper opens via relay with fan off.

- Example of operation:
 - Setpoint = 55 deg.
 - MAT = 55 deg.
- Proportional Controller output = 50%
- Fan = On
- Dampers:
 - OA = 50%
 - RA = 50%

- Example of operation on temperature rise:
 - Setpoint = 55 deg.
 - MAT = 57.5 deg.
- Controller output = 75%
- Fan = On
- Dampers:
 - OA = 75%
 - RA = 25%
- More outdoor air!

Mixed Air Control

- Example of operation on temperature fall:
 - Setpoint = 55 deg.
 - MAT = 50 deg.
 - Controller output = 0%
 - Fan = On
- Dampers:
 - OA = 0%
 - RA = 100%
- No outdoor air; no fresh air in the building!

Mixed Air Dampers with a Minimum Position Setting

- Maintains a "minimum" outdoor damper position via a minimum adjustment device when building is occupied. (fan on)
- Meets IAQ code requirements.

Typical AHU Damper Sequences - Mixed Air

- Example of operation on temperature fall:
 - Setpoint = 55 deg.
 - MAT = 50 deg.
 - Controller output = 0%
- Min. Position Setpoint = 25%
- Fan = On
- Dampers:
 - $\qquad \mathbf{OA} = \mathbf{25\%}$
 - $\mathbf{RA} = 75\%$

Even though the Mixed Air controller is sending a control signal to completely close OA dampers, the minimum position controller or logic is maintaining setpoint.

Fresh air is maintained in the building!

Mixed Air Control with Minimum Ventilation

- <u>Economizer Override</u>
 of Outdoor Air:
- Requires an additional reverse <u>Exhaust</u> acting controller in the outdoor air.
- Brings OA damper to minimum when outdoor air temperature is high.
- Provides for economical operation of the cooling coil.

- Example of economizer operation with <u>low</u> outdoor temp.
 - MA StPt = 55 deg
 - MA temp = 55 deg
 - MA controller out = 50%
 - OA StPt = 70 deg
 - OA temp = 67 deg
 - OA controller out = 100%
- Min. Pos. StPt = 25%
- OA damper = 50%:
- MA controller is in control of
- the OA damper due to OAT acceptable for efficient use of mechanical cooling.

- Economizer Override with outdoor temperature <u>high</u>:
 - MA StPt = 55 deg
 - MA temp = 55 deg
 - MA controller out = 50%
 - OA StPt = 70 deg
 - OA temp = 74 deg
 - **OA controller out = 0\%**
 - Min. Pos. StPt = 25%
- **OA damper = 25%:**

OA controller is in control of the OA damper due to OAT unacceptable for efficient mechanical cooling. Economizer Control

- Enthalpy controlled override of Mixed Air control:
- Total heat (enthalpy) of <u>outdoor air</u> is compared to total heat of <u>return air</u> to decide which is more economical for efficient cooling coil operation.

- Example of operation with OA enthalpy lower:
- MA StPt = 55 deg
 - MA temp = 55 deg
 - MA controller out = 50%
- OA humidity = 35%
- OA temp = 60 deg
- RA humidity = 39%
- RA temp = 71 deg
- Outdoor air enthalpy is <u>lower</u> than return air enthalpy, so relay passes MA controller signal.
- Min. Pos. StPt = 25%
- OA damper = 50%

Practical Example

100%Outside Air AHU :

Practical Example

Mixed Air AHU :

Chiller Plant

Chiller Plant

Chiller Plant systems are made up of:

- Chiller/Condenser Unit
- Chilled Water Pumps
- Condenser Water Pumps
- Cooling Towers
- Makeup Water Tank
- A/C Expansion Water Tank

Chiller Plant

Chiller Plant Concept :

Typical Cooling Tower

Typical Chiller Plant

Example Chiller Plant

Example Chiller Plant (THL New Building)

Example Chiller Plant

Boiler Plant

Boiler Plant systems are made up of:

- Boiler Units
- Primary Pumps
- Secondary Pumps

SIDE OUTLET FLUE GAS CLOSE-OFF BLOWER HEAT ASSEMBLY -EXCHANGER FLUE GAS COLLECTOR-00 0 BIOLER SECTIONS BURNER M15055

Typical Firetube Boiler

Boiler Plant

Boiler Plant Example

Boiler Plant Example

Boiler Plant Example

end