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ABSTRACT

Laser Metal Deposition (LMD) is an additive manufacturing technology that attracts great interest
from the industry, thanks to its potential to realize parts with complex geometries in one piece,
and to repair damaged ones, while maintaining good mechanical properties. Nevertheless, the
complexity of this process has limited its widespread adoption, since different part geometries,
strategies and boundary conditions can yield very different results in terms of external shapes and
inner flaws. Moreover, monitoring part quality during the process execution is very challenging, as
direct measurements of both structural and geometrical properties are mostly impracticable. This
work proposes an on-line monitoring and prediction approach for LMD that exploits coaxial melt
pool images, together with process input data, to estimate the size of a track deposited by LMD. In
particular, a novel deep learning architecture combines the output of a convolutional neural network
(that takes melt pool images as inputs) with scalar variables (process and trajectory data). Various
network architectures are evaluated, suggesting to use at least three convolutional layers. Furthermore,
results imply a certain degree of invariance to the number and size of dense layers. This nonlinear
regression model can be used as the basis for a model predictive process controller, which is a key
enabler for improving the quality of LMD parts in general cases. The effectiveness of the proposed
method is demonstrated basing on experiments performed on single tracks deposited by LMD using
powders of Inconel 718, a relevant material for the aerospace and automotive sectors.

Keywords Additive Manufacturing · Artificial Intelligence · Convolutional Neural Networks · Laser Metal Deposition ·
Machine Learning · Process Quality

1 Introduction

Laser Metal Deposition (LMD) is an additive manufacturing technology where a stream of powder particles is blown
out from a set of nozzles (Fig. 1) transported by a carrier gas. The particles intercept a laser beam that provides
the necessary energy to fuse them, resulting in the formation of a melt pool , i.e. a drop of molten metal. As the
deposition head advances, the nozzle and the laser beam move according to the desired product geometry, the melt pool
subsequently cools down and it evolves into a solid metal track [1].

When compared with Powder Bed Fusion (PBF), the most consolidated powder-based metal AM technology, LMD has
a much greater potential:

• efficient use of powders: in LMD, powder is blown only over the deposition spot, whereas in PBF the whole
deposition plate is filled with powder, most of which is not melted;

• use of 5-axis manufacturing strategies, whereas PBF is intrinsically 3-axis-based;
• achievement of greater work volumes, usually limited in PBF below 250x250x300 mm;
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Figure 1: Sketch of LMD functioning principle.

• possibility of part repairing, i.e. deposition of new, functional material on damaged sections of used products;

• integration on existing machine tools with limited modifications, thus opening the exploitation potential to a
market of unprecedented dimensions for AM (tens of thousands of machines, during the next 5 years);

On the other side, LMD does not benefit from the repeatability and the good thermal diffusion properties given by
the powder bed; consequently, metal parts formed by this technique may present various defects, such as significant
deviations from the reference geometry, low mechanical performances, presence of pores and residual stresses [1].
These poor qualities may arise when producing new, untested geometries and materials, because of the high complexity
of this AM process. For these reasons, researchers have been actively developing modelling and control of LMD
in recent years, trying to get the most out of such a promising technology. Accurate multi-physics modelling and
simulation of this process is being developed by many research teams, obtaining promising results in recent years [2, 3],
but achieving meaningful accuracy on very small domains (few cm2) requires a lot of time (about 1 hour per cm of
deposition path), thus making this kind of models useful for process engineering but not in the context of process
control; moreover, initial and boundary conditions and model parameters, even when carefully evaluated, can never
account for the full complexity and stochasticity of some of the involved phenomena, such as particle bumping. For this
reason, another branch of literature is dedicated to process monitoring, on-line prediction and real-time control.

This work is focused on this second approach to improving product quality of LMD. First, we propose a pipeline for
acquiring input and feedback data during the deposition, and associating them to process outcomes. Based on the
data sets assembled with this approach, we propose the use of a Deep Learning System (DLS) made of Convolutional
Neural Networks (CNNs) and a combined fully connected network to predict the track geometry starting from both
process input parameters (such as power, velocity and powder feeding rate) and melt pool images captured on-line. The
obtained on-line predictive model could be used in a closed-loop control method to modulate input parameters, with the
aim of tracking the desired track size.

CNNs are the go-to approach for computer vision tasks, achieving state-of-the-art performance, such as [4], by using
multiple filters sliding over the image and detecting certain patterns and spatial context. CNNs are also quite popular
for their transfer learning capability, meaning that CNNs that have been trained for another image related task can often
be adjusted to be used successfully on a different application.

The paper is structured as follows. Section 2 briefly reviews state of the art of LMD process monitoring and prediction.
Section 3 presents the experimental setup and the proposed methodologies for data fusion and for training the predictive
model. Section 4 presents the performances of the proposed AI model in predicting track size thanks to the exploitation
of on-line images. Finally, section 5 presents some concluding remarks about the presented solution and its future
development and applications.

2 State of the art

This section summarizes briefly the existing technologies and methods for monitoring LMD and evaluating its outcomes,
to motivate the solution chosen for this work. Moreover, the main approaches in the field of machine learning for LMD
are reported, to highlight the novelty of the proposed approach with respect to previous efforts found in literature.
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2.1 LMD monitoring and inspection

2.1.1 Process feedback data

Because of the working principles of LMD, it is quite difficult to integrate direct process outcome measurement devices
in an industrial machine, therefore most of the available monitoring solutions that are industrially mature and reliable
can provide only indirect process feedbacks. So far, researchers have explored the use of pyrometers, visible-light,
thermal and hyperspectral cameras, and acoustic sensors, each one providing different advantages and drawbacks.

Dual-color can provide direct temperature measurements, after proper calibration, averaged on a measurement spot (e.g.
1 mm diameter), therefore they can provide a high-speed, integral measurement of the melt pool energy content. On the
contrary, matrix sensors can provide richer, spatially distributed information, but at the expense of other drawbacks.
First, industrial cameras can be heavily affected by phenomena that emit strong light, e.g. sparks or vapor, as they work
mostly on visible-light frequencies. Narrow band or NIR filters can be used to mitigate these effects, as proposed for
example in [5]. Second, the acquired melt pool intensity is not directly interpretable as a temperature. Finally, the
sampling time of an industrial camera can usually reach few hundreds of FPS, well below the 100 kHz of a pyrometer
signal.

Thermal and hyperspectral cameras can partially solve these shortcomings of visible-light cameras, but they are usually
too limited in resolution, speed and integrability to be effective in capturing the process dynamics.

Another option, still in its infancy, is represented by acoustic sensing, although retrieving localized information about
process status is still very challenging.

An extensive report and comparison about these methods can be found in [6]. All of them offer, to some degree,
information about temperature or energy density variations, which are correlated to the resulting mechanical properties
of the part [7]. Matrix sensors can provide information also about the geometry of the track in progress, from a 2D
perspective.

Considering cost and ease of integration, beam-coaxial imaging by visible-light cameras remains the most convenient
and cost-effective solution, as nearly any deposition head for LMD can be easily equipped with a monitoring camera
into the optical chain. For this reason, we decided to focus on a vision setup that could be implemented on a wide range
of existing machines.

2.1.2 Outcome data

Measuring process outcomes is mandatory for assessing the quality of produced parts, but it is also fundamental for
training a prediction model. Process outcomes for LMD can be classified as geometric and mechanical. In this work
we focus on the prediction of track geometry, which is essential even at layer level to avoid size drifts and therefore
large distortions of the final part. Nonetheless, it must be noted that the methodology presented in this work could be
extended in the future to correlate on-line feedbacks also with structural properties of a part, although such indices are
usually measurable only on coarse spatial grids (e.g. part cuts for assessing porosity can only be performed with few
millimeters of distance from each other). Some details about mechanical testing and microstructural measurements for
LMD can be found in [7].

Non-destructive measurements, comprehensively reviewed in [8], are usually performed to reconstruct the overall
geometry of the manufactured part, for example by means of fringe projection 3D scanning [9] or X-Ray Computed
Tomography [10]. In particular, [9] identified the former as the ideal solution for metal AM, as the trade-off between
speed, field of view, resolution and adaptability to surface properties fits well typical AM parts. For this reason, this
technology has been used also in this work to acquire deposition geometries.

2.2 Machine learning methods for LMD

The relationships between the properties of AM-deposited parts, the deposition process itself and the deposition
parameters are quite complex, therefore achieving an accurate model that describes these interrelations is of great
importance to reliably build AM parts with a desired geometry. To help overcoming the computational efforts required
with multi-physics models, an increasing adoption of Neural Networks (NNs) and Machine Learning (ML) methods
in additive manufacturing is observed, which can be categorized into design for AM, in-situ monitoring, and process-
property-performance linkage [11]. This work focuses on the latter, where a lot of research is focused on fused
deposition modeling [12–14] and selective laser sintering [15–20], whereas few results are reported in the field of laser
metal deposition [21].
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Figure 2: Melt pool images captured during the initial
transient (left), cruise (middle) and final transient (right)
of a single track. Figure 3: Inconel 718 substrate with 36 printed tracks.

For laser metal deposition processes, like LMD, research has been done using various different materials, models and
aims. In [21], the geometrical accuracy of 2024 Al alloy single tracks is predicted with NNs using laser power, powder
supply and deposition speed as inputs. The geometry of the deposited parts was evaluated cutting a cross-section for
each deposited track and the height, width and depth of the cross-section were given as target to the neural network,
without following the process in its temporal evolution. In [22] thermal images are added to process parameters by
stacking a CNN with a standard NN in order to predict the distortion of the deposited parts from the planned geometry,
basing on the local thermal history. The approach proposed in [22] is promising, as it accounts for the temporal
evolution of the temperature during the deposition, but it is not applicable at the boundary of complex parts and with
complex geometries comprising internal cavities [22]. Moreover, it relies on thermal images acquired during the
deposition process, limiting the applicability of this approach in a process control setting. In [23] features are extracted
from thermal images and subsequently multiple machine learning methods, like K-nearest neighbors, Support-Vector
Machines (SVM) and Decision Trees, are applied to predict surface roughness. The employment of NNs in the present
work removes the need of feature extraction, a necessary step towards on-line process control. Moreover, using models
with a higher degree of complexity like NNs can further improve performance, as NNs applied to AM-related tasks
empirically outperform other ML methods like SVM and Random Forests [24].

3 Methodology

This section describes first of all the equipment used to perform LMD depositions and to acquire process and outcome
data. Secondly, the pipeline set up for performing data fusion, i.e. for integrating the heterogeneous available sources of
information into a coherent data base, is described, and the selected regressors and response variables of the prediction
problem at hand are presented. Finally, the deep-learning architecture designed to solve the target prediction problem is
detailed.

3.1 Experimental setup

The machine used for testing the proposed approach is a 3-axis Prima Power Laserdyne 430, originally designed
for laser cutting operations, and converted by the research group to an AM machine through the integration of an
Optomec four-nozzle LMD head and an Optomec powder feeder. An IDS UI-3070CP-C-HQ2 camera is mounted
onto the deposition head and acquires a top view of the melt pool area thanks to a dichroic mirror in the optical chain.
Additionally, a 850 nm narrow band filter cleans up the radiation from several spurious signals and aberrations, thus
improving the signal-to-noise ratio.

During the deposition process, two types of data are acquired:

• process inputs: the X, Y and Z axis positions, commanded power and laser activation status (ON/OFF) are
sampled every 1 ms and recorded as a new line into a text log-file, directly by the machine controller;

• process feedback: melt pool images are acquired by artificial vision at 200 fps by the beam-coaxial camera
and cropped on a region of 400x400 pixels that is large enough to contain the full melt pool (Fig. 2).

After the deposition process, process outcomes in terms of sample geometries are acquired using a GOM ATOS Core
200 fringe projection 3D scanner, that produces 3D meshes representing the built part surface.

The performed experimental campaign is constituted by the deposition of 36 single tracks of nickel alloy Inconel 718,
deposited with different machine settings (a factorial design of experiment on 6 powers and 6 deposition head speeds,
as shown in Fig. 3). The resulting sample is analyzed automatically by a pipeline of computer vision techniques,
described in detail in Section 3.2, that aligns the traces of process signals with outcome geometries and measures the
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Figure 4: Top panel: detail of 3D-scanned surface, with
superimposed profile of a cross-section. Bottom panel:
cross-section profile and outcome measurements (W , H
and A).
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Figure 5: Boolean features accelerating, decelerating and
stable (left-side axis) and deposition speed (right-side axis)
as a function of deposition time.

outcomes considered in this work, i.e. track height, width and section area. The integrated data set is then used to train
the deep-learning system described in Section 3.3.

3.2 Data fusion

Data collected from the three sources described in Section 3.1, (machine, vision and 3D scanner) must be integrated in
a comprehensive data set, to be used as training features and targets, respectively, for the predictive model described
in Section 3.3. The integration process, here called data fusion, is based on the pipeline outlined in [25], adapted to
the experimental infrastructure used in this work and extended to include additional variables. The main steps, with
reference to Fig. 6, are described in the following.

All the collected signals must be synchronized to a shared timestamp. This process is carried out by synchronizing both
3d scan and vision data to machine data.

First of all, outcome data must be associated to each point of the process trajectory, since a mesh of the deposited
sample obtained by 3D scanning is a purely spatial object, with no reference to the time history of the deposition. To do
this, deposition trajectory and sample geometry must be aligned. This is done in two steps:

(a) Segmentation of deposition and substrate: a low-degree polynomial surface is fitted to the sample plate,
which in our test case is the one shown in the right panel of Figure 3. A robust regression method is applied
iteratively on mesh vertices, alternating it with the exclusion of vertices that lie above a small threshold (e.g.
0.02 mm) from the fitted surface itself. At convergence, the set of points lying within the given threshold is
very similar to the region of substrate that is free from deposition material. This result is further refined by
isolated points/clusters removal.

(b) Alignment of laser spot trajectory with deposition geometry: trajectory points, each representing the laser
spot position at 1 ms time step, that correspond to active laser (G1 instructions, in G-code notation) are used as
a skeleton point cloud, that must be fitted into the deposition point cloud, i.e. the complementary of the set of
vertices found at the preceding step. This is done firstly by performing a rough registration based on principal
components, then refining it by a custom variant of Iterative Closest Points [26] that minimizes distances
between trajectory points and a fixed radius neighbourhood of deposition vertices (the radius is set equal to the
laser spot radius).

When the trajectory-mesh alignment is performed, the mesh can be sectioned at each trajectory point, by a cut plane
perpendicular to the laser spot velocity vector. This allows to extract track profiles along all the deposition path, and to
perform measurements of the geometrical features that will be used to assess the performances of the DLS described in
Section 3.3: track height H , track width W and track section area A, the desired process outcomes (Fig. 4).

To complete the training data set, also camera images must be referenced to a timestamp that is shared with machine
and outcome data. Since trajectory data are collected at a higher frequency (1000 Hz) with respect to image data (200
Hz), the former are sub-sampled, to bring all measurements on a common clock. The last step is therefore:

(c) Registration of machine time history and process feedback. A laser activation signal is estimated from the
melt pool images, basing on an activation threshold for the average image intensity. The true laser ON signal,
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Figure 6: Diagram of data fusion approach.

available within machine data, is registered to the image-estimated activation signal by minimization of the
cross-correlation, thus allowing to establish for both a shared timestamp.

The resulting data set includes the following variables, all recorded at a common clock of 200 Hz:

• timestamp;
• laser spot velocity modulus V (computed from the original trajectory at 1 kHz sampling rate);
• emitted laser power P ;
• filename of corresponding image;
• laser ON binary signal;
• process outcomes H , W and A.

Moreover, the following boolean features, depicted in Fig. 5, have been added:

• accelerating, set to one when V is increasing;
• decelerating, set to one when V is decreasing;
• stable, set to one when V is constant;

they are set to zero otherwise. These features have been introduced to account for the differences observed in the
deposited tracks outside a stationary regime.

Finally, the following image features have been computed and added to the integrated data set to train a simpler linear
model, that used is Section 4 to demonstrate the advantages offered by the DLS approach:

• mean image intensity Imean and its moving average on 10 timestamps Imovemean

• mean image intensity on a cropped subregion of 200x200 pixels ICmean and its moving average on 10 timestamps
ICmovemean

3.3 Deep-Learning System design

A deep-learning system has been designed to predict the track geometries in terms of width, height and area. The DLS
needs to account for image as well as numerical data inputs. The DLS achieves this by stacking two neural networks, i.e.
a convolutional part and a part, as depicted in Figure 7, similarly to [22]. The convolutional part is fed with the image
as a tensor with dimensions (224, 224, 3), being the output of a standard preprocessing pipeline for CNNs [27], which
is then processed by convolutional layers and the subsequent fully connected dense layers. The consecutive combined
part is a standard dense neural network, which receives as input from the convolutional part a vector of varying size
(depending on the chosen architecture), joint with the numerical input data (P, V ) as well as the one-hot-encoded phases
(accelerating, decelerating and stable), and as outputs the target variables W , H and A.

For the convolutional part, in each block traditional max-pooling layers have been replaced by additional convolutional
layers with stride 3, as suggested in [28]. Dropout with probability 0.2 has been consistently applied after each block,
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Figure 7: Deep-learning system architecture. First, a CNN is applied to the image tensor, and subsequently a Neural
Network is applied to the output of the the CNN concatenated with P , V and the one-hot-encoded three phases
(accelerating, stable, decelerating). Max-Pooling has been replaced with another convolutional layer with stride 3, such
that each convolutional block contains two convolutional layers. In this sample the CNN outputs a vector of size three,
which is then concatenated with the numerical data input to a vector of size eight.

Hyperparameter Values
Convolutional layers [16, 32, 64, 128], [16, 16, 32, 32],

[16, 32, 64], [32, 32, 32], [16, 64]
Kernel sizes 2, 3
Dense layers [256, 128], [64, 32], [16, 3]
Combined [512, 16], [128, 16], [32, 16]

Table 1: Hyperparameters values used for the deep-learning system. The number of layers is indicated by the length of
the vector, whereas the explicit number refers to (i) the number of filters applied in case of convolutional layers, or (ii)
the number of neurons in case of standard neural networks. All possible combinations were employed for training and
testing.

except the first one. Transfer learning, i.e. the use of pre-trained nets, could not be employed, since most readily
available CNNs have been mainly trained on images in a scenic setting, which have little in common with the present
use case, as preliminary results suggest. The subsequent combined neural network concatenates the resulting vector of
the CNN with numerical and one-hot encoded data, and finally outputs the required targets. A full overview of the
hyperparameters used during training can be found in Table 1. The DLS technically consists of two neural networks, the
convolutional and combined part, whereas training occurs end-to-end, meaning that from a backpropagation perspective
the two networks have been treated as unified. Only data relative to deposited tracks (i.e. with laser signal ON) have
been employed for training and testing the system.

The results of the DLS have been compared against a linear regression model used as a baseline. The linear baseline
(LBL) does not take into account the deposition images, but employs the image brightness (Imean, ICmean, Imovemean

and ICmovemean), the nominal power, the deposition speed and three additional one-hot-encoded phases as input. A
different linear model has been trained for each brightness input.

The deposition data have been split for training and testing the DLS against the LBL. The same splits have been used
for both systems. All data points coming from a single track have been assigned either to the training or the test set.
The available 36 tracks have been split into 4 random folds and used for training and testing using a cross-validation
strategy [29], repeated 5 times. The input features have been scaled to have zero mean and unit variance.

The models have been evaluated and compared in terms of Mean Squared Error (MSE) defined as:

MSE(y, f̂(x)) =
1

n

n∑
i=0

(yi − f̂(xi))
2 (1)

where f̂(xi) is the model prediction for the i-th data point and yi is the corresponding target value [29].
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Figure 9: Deep-learning system (circles) and linear baseline (crosses) predictions versus real track geometry values
(ground truth) for three representative test tracks. The dashed line represents an ideal prediction with zero error. The
tracks have been deposited with the following parameters: (600 W, 1050 mm/min), (700 W, 300 mm/min), (300 W, 450
mm/min).

4 Experimental results

4.1 Experimental campaign

The experimental campaign consisted of 36 single tracks of Inconel 718, each one of length 20 mm, printed on the same
Inconel 718 substrate (Fig. 3), at starting ambient temperature. Powder feeding parameters have been kept constant
(powder flux 0.032 g/s, carrier gas flux 4 l/min, shielding gas flux 15 l/min), whereas laser power and speed have been
varied on a grid of 6x6 values typically used on the test machine, i.e. powders from 200 to 700 W, with step 100 W, and
velocities from 300 to 1050 mm/min, with step 150 mm/min (see [30] regarding optimal process windows for LMD).
To ensure some degree of independence between tracks, laser powers have been alternated in a high-low sequence, and
tracks have been deposited with 3-track spacing.

As described in Section 3, machine data and process feedback data (camera images) have been recorded during the
deposition process, whereas process outcome measurements have been performed on the obtained sample. Finally, the
three data sources have been fused in the integrated data set described in Section 3.2, and used as training inputs and
outputs to the DLS.

4.2 Predictive performance

The DLS has been trained and tested using the hyperparameters and cross-validation strategy described in Section 3. The
effects of the hyperparameters on the performance are depicted in Fig. 8, where each box plot represents the distribution
of the MSE for different DLS architectures. Figure 8a shows that the architectures with just two convolutional layers
exhibit higher mean squared errors with respect to systems having three or four convolutional layers. The number of
filters in each layer does not appear to have a significant effect. The higher values of MSE observed for the kernel sizes
[2, 2] and [3, 3] (Fig. 8d) can also be attributed to the presence of just two convolutional layers. No significant effect on
the performance of the system are observed varying the size of the fully connected layers (Fig. 8 a and b). The DLS
already shows very good performances with a small amount of neurons for the combined network, resulting in reduced
training times and risk of overfitting.
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distribution. For the deep-learning system, all hyperpa-
rameters combinations as well as all CV-folds have been
represented (2700 models in total). For the linear base-
line, all predictors as well as all CV-folds are reported (80
models in total).

The DLS shows better performance when compared with the LBL. Figure 9 depicts the predictions of the LBL (green
circles) and of the DLS (blue crosses) versus the real values of process outcomes W , H and A. The dashed line
represents an ideal prediction with zero error (i.e. yi = f̂(xi)). The data points reported in Fig. 9 are relative to three
representative test tracks relative to the deposition parameters (600 W, 1050 mm/min), (700 W, 300 mm/min) and (300
W, 450 mm/min). All points of these tracks have never been seen from the models during training. No significant
difference between the DLS and the LBL can be observed for the predictions of the track width for these tracks (Fig.
9a), whereas the LBL shows a bigger bias in the prediction of the track height and area, respectively, as clusters of
prediction points at a bigger distance from the yi = f̂(xi) line are present in Fig. 9b and c. The same effect can be
observed in Fig. 10, where the predicted values for the DLS and for the LBL are shown as a function of the deposition
time for the same tracks. The ground truth, i.e. the real values of the track geometries, are depicted by the red dashed
lines. Figure 10 not only underlines the higher performance of the DLS in predicting the average values of the track
geometry, i.e. the lower prediction bias, but it also shows that the DLS has a better capability in following the evolution
of W , H and A during the transients at the beginning and ending of the track, i. e. where the deposition speed is not
constant. As such transients are much more present when depositing more complex parts with AM, the better prediction
capability of the DLS in these conditions makes it a very good candidate for predicting more complex geometries. An
accurate prediction of the geometry during transients is also a prerequisite for on-line process control, with the potential
to reduce the dimension deviations of the deposited parts and therefore their subsequent post-processing.

Figure 11 depicts a quantitative comparison between the LBL and the DLS in terms of MSE and it clearly indicates that
the latter has superior predicting capabilities. The boxplots represent the MSE distribution for all the hyperparameters
combinations and cross-validation folds (DLS, 2700 points in total), and for all the brightness features and cross-
validation folds (LBL, 80 points in total). The better performance of the DLS can be explained by the fact that the
DLS is indeed able to take advantage of the deposition images as a whole and not only of its average intensity, as it is
the case for the LBL. The images can contain additional information (such as the melt pool shape or the presence of
sparks) which are relevant for the prediction of the track geometry (Fig. 2. An additional advantage of using a system
containing CNNs is that all these information are modeled without the need of explicitly coding them into features. This
is a promising starting point for extending the system to more complicated settings, such as complex geometries and
on-line process control, where hard-coded features would need to be adapted or newly defined. Moreover, such a system
can also be newly trained using data coming from the deposition of different materials, allowing for a deployment for a
wide range of applications.
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5 Conclusions

The proposed approach allows to predict geometric process outcomes with a good degree of accuracy, unprecedented
among machine learning methods suitable for on-line prediction. Moreover, the data acquisition and processing pipeline
could be applied on nearly any LMD machine, as it exploits signals that are usually readily available or easily integrable
on such equipment. The proposed DLS allows to effectively extract information from melt pool images, also thanks
to the particular network design that blends image and scalar variables within the last layers of the deep structure,
providing a starting point for experimenting with deeper and more sophisticated network structures. In fact, the results
demonstrate that the proposed DLS is far more performing than a linear baseline, with the additional advantage that
image filters learned by the CNN layers must not be hard-coded, in contrast with traditional image processing methods,
which to present day had few success in determining significant image features a priori.

The obtained results indicate that the proposed methodology is promising for being applied to more complex and
general cases, for example to generic geometries and different materials. Moreover, the same framework could be
applied in the future with additional variables as either inputs (e.g. melt pool temperature from a pyrometer) or outputs
(e.g. porosity, measured from sample cuts).
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