

Al Platform for CTAM System

Dr. Himanshu Upadhyay Co-Principle Investigator Florida International University upadhyay@fiu.edu

Research Funded by

OSD Test Resources Management Center T&E S&T Program, Cyberspace Test Technology

FLORIDA INTERNATIONAL UNIVERSITY

Project Description

- CTAM is a Cyberspace Test Technology for T & E purposes to monitor and analyze behavior during cyber attacks and also the impact on the current mission
- CTAM is based on fine-grained introspection of kernel data structures, data collection and advanced cyber analytics using Artificial Intelligence / Machine Learning techniques
- CTAM consists of three platforms:
 - Virtualization
 - Advanced Cyber Analytics
 - Test Control Center

CTAM System Diagram

FIU Applied Research Center

Advancing the research and academic mission of Florida International University.

System Block Diagram

FIU Applied Research Center

Cyber Threat Automation and Monitoring System

Advancing the research and academic mission of Florida International University.

VM Management

Cyber Threat Automation and Monitoring (CTAM)			Cyber Threat Au	tomation a	nd Mo	onitorin	g	Register / Login
■VM Management	😭 Home							
+Network Map	VM Managemer	nt						5 G
Mission Management								
-Mission Map	VM Hosts A	vailable						
Mission Baseline	Connect to Ho	ost(s):						
Mission Test	XEN KVM							
Mission Administration								
⇔ ² Configuration	All Hosts	•	🐇 Connect To Host					
California Introspector Configuration	Airriosts							
H elp								
	Connect to hos	t to start						
	Virtual Mac	hine Manager						
	Create VM							
	🖨 Host ID	🛢 Host Name	≗ + VM UUID	🖵 VM Name	📢 OS	ථ State	😍 Status	¢\$ Manage
	11154	Hypervisor 115 Tushar	edef7f45-925e-460b-a547-24947a6a35ed	win10	Windows	Running	Healthy	
	11154	Hypervisor 115 Tushar	6d37c56e-7804-4fce-903b-deeced57e216	Windows_Tushar	Windows	Running	Healthy	
	11154	Hypervisor 115 Tushar	248cdedf-f33d-464b-97a8-450f6b96e9c1	IAEA Demo	Linux	Running	Healthy	

VM Management

Advancing the research and academic mission of Florida International University.

Network Map

SUT Mission

- SUT Mission Management
 - SUT Mission Definition
 - SUT Mission Subsystems
 - SUT Mission Module
- SUT Mission Map
 - SUT Map View
 - SUT Mission System Summary
- SUT Mission Baseline
- SUT Mission Test
- SUT Mission Administration

Mission Definition

FIU Applied Research Center

Mission Definition

Advancing the research and academic mission of Florida International University.

Mission Subsystems

Mission SubSystem

Add Mission SubSystem

	MissionSystemID	MissionID	MissionSystemName	MissionSystemDescription	HostID	VMStatusID	IsActive
Edit Î Delete	159	114	GPS	GPS	11155	806	1
Edit	161	114	Application Server	Application Server	11155	807	1
Edit Delete	162	114	DBS	DBS	11155	808	1
Edit	157	114	Flight Path Generator - SUT	Flight Path Generator - SUT	11155	809	1
Edit Delete	158	114	Weather	Weather	11155	810	1

F

Mission Modules

Mission Module

Select Mission Subsystem:

Flight Path Generator - SUT 🔻

Add Mission Module

	MissionModuleID	MissionSystemID	ModuleName	ModuleDescription	FileName	FilePath	ModuleTy
Edit Delete	169	157	Input	Input	GPSOut1.dat		1
Edit Delete	170	157	Input	Input	GPSOut1.dat2		1
Edit Delete	171	157	Input	Input	WeatherOut1.dat		1
Edit Delete	172	157	Input	Input	WeatherOut2.dat		1
Edit Delete	173	157	Input	Input	DBSOut1.dat		1
Edit Delete	174	157	Input	Input	AppServerOut1.dat		1

Advancing the research and academic mission of Florida International University.

Mission Map

Mission Systems Summary

Module ID	Module Name	Module Description	Assigned VM Name	Assigned VM UUID
159	GPS	GPS	Mission_SubSystem_VM	0e74bc6b-9250-4feb-b985-270ea0ec5c2
161	Application Server	Application Server	Mission_SubSystem_VM4	d429c12e-6a9a-4525-b731-cdeba644f4f9
162	DBS	DBS	Mission_SubSystem_VM3	616688b8-122f-41f4-86d5-7bc6f6766970
157	Flight Path Generator - SUT	Flight Path Generator - SUT	Mission_VM	ef8175c0-fe02-44ee-8d8b-2154569e1b28
158	Weather	Weather	Mission_SubSystem_VM2	7ef00d1c-c0d4-418e-b3dd- ba6ed026d460

Advanced Cyber Analytics

- Cyber Analytics module consists of Database server and Machine learning server for in-memory analytics
- Machine learning / Deep Learning models with different algorithms are built using the training data
- Models are used to predict the impact of the test vectors on a specific mission

Advancing the research and academic mission of Florida International University.

Machine Learning / Deep Learning Algorithms

Traditional ML Algorithms	Deep Learning Algorithms
 Random Forest Support Vector Machine Logistic Regression Gradient Boosting Neural Network Ensemble One Class SVM Cosine Vector Similarity 	 Recurrent Neural Networks Long Short Term Memory (LSTM) Auto-Encoders Bidirectional LSTM Generative Adversarial Network (GANs)

Deep Learning

- Weights are initialized to random values
- Data is propagated forward to produce a prediction
- The error of that prediction is propagated backwards
- The weights are corrected

Types of Deep Neural Network

Convolutional Neural Networks

- Primarily used for image data
- Used for detecting features within an image dataset

Recurrent Neural Networks

- Primarily used for sequential data
- Used for identifying patterns in sequenced information

Reference: https://www.mathworks.com/solutions/deeplearning/convolutional-neural-network.html

Reference:

https://leonardoaraujosantos.gitbooks.io/artificialinteligence/content/recurrent_neural_networks.html

RNN – Long Short Term Memory (LSTM)

Recurrent Neural Networks - LSTM

- Since we are dealing with a large amount of sequential data, it would make sense to use an RNN
- Past sequential information can be used to predict future time steps in the series

Reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM - Autoencoders

- Learns compressed representations of input data and attempts to reconstruct the original input.
- The encoder LSTM transforms an input sequence into a compressed latent space.
- The decoder LSTM tries to reconstruct the sequence from the encoder's latent vector

https://www.sciencedirect.com/science/article/pii/S0010482518300738

System Call

- System call is an OS kernel functions that work as an entry point to the kernel
- System call provides an interface between an application process and the operating system kernel
- Application programs invokes system calls to pass/retrieve data to the OS kernel

Reference: https://www.tutorialspoint.com/what-are-system-calls-in-operating-system

System Call

Types of System Calls:

- Process Control These system calls deal with processes such as process creation, process termination etc.
- File Management These system calls are responsible for file manipulation such as creating a file, reading a file, writing into a file etc.
- Device Management These system calls are responsible for device manipulation such as reading from device buffers, writing into device buffers etc.
- Information Maintenance These system calls handle information and its transfer between the operating system and the user program
- Communication These system calls are useful for inter-process communication. They also deal with creating and deleting a communication connection

Reference: https://www.tutorialspoint.com/what-are-system-calls-in-operating-system

System Call Sequences

- System call sequence is the order in which the system calls are invoked by the application program
- Each application will invoke system calls in a particular sequence to accomplish a specific task
- Table shows the example of the system call sequence

System Call Sequence	System Call Name	System Call Number
1	NtQueryInformationProce ss	25
2	NtOpenKey	18
3	NtQueryValueKey	23
4	NtOpenKey	18
5	NtOpenKey	18
6	NtQueryValueKey	23
7	NtClose	15

- Test vector can modify the system call sequence to change the application behavior
- Anomaly detection with Deep learning can be used to detect the change in the system call sequence

System Call Analysis

Data Pre-processing:

- Every system call is mapped to a number in a dictionary
- Represent every system call as a one-hot encoded sparse vectors so they may be used in the deep learning algorithm

System Call Analysis

- The number of nodes and layers, along with many other hyper-parameters (learning rate, dropout, etc.)
- Weights and bias are initialized to be random
- Backwards propagation and enough training ensures that weights will converge to their optimal values

https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation/backpropagation.png

Process List – One Class SVM Mission Baseline

Mission Baseline			
Select Mission 11 Mission Best Baseline Details Mission Baseline Name PLOneClassSVM_Baseline	Select SubSystem ✓ ✓ SUT - win10(Running)	Select Workflow Process List Process Hollowing System Call Invariant File Monitor	Select Algorithms OneClass SVM AutoEncoder Select All Toggle Data Type
Mission Baseline Description		OLL Monitor Checksum	🔲 Big Data
Enter Scan Duration (in seconds) 40			

Applied Research Center

Process List – One Class SVM Mission Baseline Validation

6867 win10	Process List B 08/29/2019	Baseline Full Process Lis Baseline	st 8/29/2019 4:0	04:01 PM © View Details
Model II	D Model Wo	rkflow Baseline So	an Results	
6867	Process	List ProcessN	ame SimilarityScore	
		GPS.exe	83.9	
		Weather.e	xe 97.65	
		SUT.exe	97.68	

Begin

Process List – One Class SVM Mission Test

ssion Test			
Select Mission11 Mission Best	Select SubSystem ▼ SUT - win10(Running) ♥	Select Workflow Process List Process Hollowing System Call Invariant File Monitor DLL Monitor Checksum	Select Algorithms ConeClass SVM AutoEncoder Select All Toggle Data Type Big Data
TestCase Details Mission TestCase Name PLOneClassSVM Test Scar	Select Baseline PLOneClassSVM Baseline		
Mission Test Description One class SVM Baseline	Enter Scan Duration (in seconds) 40		

Process List – One Class SVM Mission Test Results

2358 win10	Process List Baseli 08/29/2019	ne Testing	8/29/2019 5:34:45 PM	View Details
TestCase Result ID	Mission Workflow	Mis	sion Result	
8137	Process List		Normal	
8138	Process List	Cor	npromised	View Details

seline Scan R	esults	•	Test Vector Scar	n Results
rocessName	SimilarityScore		ProcessName	SimilarityScore
S.exe	83.9		SUT.exe	76.44
ather.exe	97.65		Weather.exe	100.0
Г.exe	97.68		GPS.exe	94.21

Applied Research Center

System Call – RNN – LSTM Mission Baseline

lission Baseline			
Select Mission11 Mission Best Baseline Details Mission Baseline Name SC RNN-LSTM Baseline	Select SubSystem ✓ SUT - win10(Running) ♀ .	Select Workflow Process List Process Hollowing System Call Invariant File Monitor	Select Algorithms OneClass SVM RNN-LSTM VectorSimilarity AutoEncoder
Mission Baseline Description RNN-LSTM Baseline Scan		Checksum	Big Data
Enter Scan Duration (in seconds)			

3111

Applied Research Center

System Call – RNN – LSTM Mission Test

Applied Research Center

System Call – RNN – LSTM Mission Test Results

TestCasell	D VM Name	Model Name	TestCase Name	Inserted On	Detailed View
2431	win10	SC RNN-LSTM Baseline	SC RNN-LSTM Test Scan	9/12/2019 1:27:32 PM	() View Details
	TestCase Result ID	Mission Workflow		Mission Result	
	8195	System Call		Compromised	View Details

aseline Scan Results	Test Vector Scan Results	Status
7.004	0.00204	

Applied Research Center

System Call – Vector Similarity Mission Baseline

40

Applied Research Center

System Call – Vector Similarity Mission Test

lission Test			
Select Mission11 Mission Best	Select SubSystem ▼ SUT - win10(Vm Not Available) Ω 👲	Select Workflow Process List Process Hollowing System Call Invariant File Monitor DLL Monitor Checksum	Select Algorithms OneClass SVM RNN-LSTM VectorSimilarity AutoEncoder Select All Toggle Data Type Big Data
TestCase Details Mission TestCase Name SC VectorSimilarity Test St	Select Baseline SC VectorSimilarity Baseline		
Mission Test Description VectorSimilarity Test	Enter Scan Duration (in seconds) 40		

System Call – Vector Similarity Mission Test Results

2428	win10	Vector Similarity Baselin	e Vector Similarity Test	9/12/2019 12:27:01 PM	(View Details
Te	estCase Result ID	Mission Workflow	Missio	on Result	
	8190	System Call	Comp	promised	View Details

Baseline Scan	Test Scan	Status
Weather.exe, SUT.exe, GPS.exe	SUT.exe	Compromised

Artificial Intelligence & Big Data Hub On-Premise | Cloud | Hybrid

Artificial Intelligence Applications & Algorithms

Data Processing / Analysis					
Machine Learning	Deep Learning	Natural Language Processing	Computer Vision		
Supervised Classification Regression Unsupervised Clustering Anomaly Detection Association / Recommendation Dimensionality Reduction	 Deep Neural Network Convolutional Neural Network Recurrent Neural Network RNN-LSTM RNN-GRU Bidirectional RNN AutoEncoder Generative Adversarial Network 	 Speech Recognition Language Translation Sentiment Analysis Text to Speech Search 	 Image Recognition Image Classification Object Identification Object Detection 		
Scikit-learn / CRAN-R / RevoScaleR / MicrosoftML	TensorFlow / CNTK / Keras / Theano	Chainer / Nlpnet / Keras / Deepnl / NLTK	TensorFLow / OpenCV / SimpleCV / CUDA		

Advancing the research and academic mission of Florida International University.

QUESTIONS AND DISCUSSION

Bidirectional RNN-LSTM

Bidirectional RNN-LSTM

- Utilizes past and future sequence data.
- Gives "context" to our predictions.

https://www.sciencedirect.com/science/article/pii/S0010482518300738

LSTM - Generative Adversarial Networks (GANs)

- Generator creates benign
 sequences
- The discriminator determines if a given sequence is valid

https://www.sciencedirect.com/science/article/pii/S0010482518300738

Applied Research Center