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Abstract

In this thesis a system for aided inertial navigation (aided INS or AINS) has been tested
through a number of kinematic experiments. In the experiments, data was collected and
post-processed by different methods. The system was built up by an IMU (inertial mea-
surement unit) aided by a GPS receiver and an odometer. To fuse and filter the sensor data
a Kalman filter from the AINS Matlab Toolbox has been used.

The following equipment was used

• iNAV-RQH; IMU from iMAR

• System 4000SSE; GPS receiver from Trimble

• Correvit L-CE; odometer from Corsys-Datron

The following methods (and combinations of these) were used on the acquired data

• INS with Zero velocity updates (ZUPT)

• INS under non holonomic constraints

• INS integrated with GPS

• INS integrated with odometer

The work resulted in a number of trajectories; some of these could be compared with a
reference trajectory, in other cases this was not possible due to the nature of the experiment.
Also there are no guidelines or standards on how to test a system in order to compare it
with other systems.

Over all, good results were achieved with the system. The AINS toolbox worked out
well and it was indicated that the odometer could be used as an important aiding source in
an aided inertial navigation system.
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Sammanfattning

I det här examens arbetet har ett understött system för tröghets navigering (Aided
INS, AINS) testats genom ett antal kinematiska experiment. Under dessa experiment har
data samlats in och efterberäknats med olika metoder. Systemet var uppbyggt av en IMU

(Inertial measurement unit) med stöd ifrån en GPS mottagare och en odometer, för att
samanfoga och filtrera sensordata användes ett Kalman filter ifrån AINS Tolbox, en Matlab
toolbox för understödd tröghetsnavigering.

Följande utrustning användes

• iNAV-RQH; IMU från iMAR

• System 4000SSE; GPS mottagare från Trimble

• Correvit L-CE; odometer från Corsys-Datron

Följande metoder (samt kombinationer av dessa) användes på det insamlade datat

• INS med Zero velocity update (ZUPT)

• INS under non holonomic constraints

• INS integrerad med GPS

• INS integrerad med odometer

Arbetet resulterade i en mängd trajektorer som i vissa fall kunde gämföras med en
referens trajektor, i andra fall var detta ej möjligt på grund av experimentets natur. Det
finns heller inga riktlinjer eller standarder på hur system skall testas för att lättare kunna
jämföras sinsemellan.

Generellt sett uppnåddes goda resultat med systemet. AINS toolbox fungerade bra och
det påvisades att en odometer kan användas som ett viktigt stöd till ett understött system
för tröghets navigering.
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Chapter 1

Introduction

The aim of this thesis has been to practically test and evaluate an aided inertial
navigation system (INS), consisting of an inertial measurement unit, a GPS receiver
and an odometer. It has been of special interest to see how velocity data derived
from the odometer could contribute to the final solution.

1.1 INS and geodesy

Friedrich Robert Helmert defined geodesy as the science of the measurement and
mapping of the earth’s surface (Torge 2001). In the book Inertial Navigation Sys-
tems with geodetic Applications (Jekeli 2001), the author use this definition to relate
inertial navigation with geodesy. If the inertial navigation system is used along a
trajectory on the surface of the earth, it will determine the coordinates along this
trajectory, and that is to measure and map a small part of the earth’s surface.

Today’s geodesy is dealing with higher accuracy than normally is achieved with
INS, and INS is mostly used for navigation and guidance, but geodesy is still impor-
tant to provide the reference frames for both navigation and guidance.

If one uses a modern definition of geodesy the need for geodesy in INS becomes
even more evident. A modern definition of geodesy also includes the external gravity
field of the earth (Torge 2001), which is crucial for an inertial navigation. To be able
to isolate the measured accelerations of dynamics from the acceleration of gravity
the system need this extra information.

In situations where the position is already known (for example by using GPS),
one could invert the need for the gravity field data and instead use the system to
estimate the gravity instead (Schwarz 2001).

1.2 Mathematical notation

In the equations, scalars, vectors and matrixes are used. The scalars are denoted
by letters, vectors by bold letters and matrixes by bold capital letters. All the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1. Aided inertial system.

rotation matrixes in the derivations are orthogonal, which means that the following
two equations will hold

Ca
b = (Cb

a)
′

I = Ca
bC

b
a

where the matrix C is a rotation matrix, and the rotation is done from the subscript
to the superscript. The apostrophe (′) denotes the transpose of the matrix and I

denotes the identity matrix.

For the cross product of two vectors, the skew-symmetric matrix generally has
been used. The skew-symmetric matrix is constructed from the components of a
vector. If for example

a =







a1

a2

a3






, (1.1)

the corresponding skew-symmetric matrix is

A =







0 −a3 a2

a3 0 −a1

−a2 a1 0






, (1.2)

which could be used to get the cross product between the vectors a and b:

a × b = Ab (1.3)

or

a × b = −Ba. (1.4)

Where B is the skew-symmetric matrix of vector b.
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The relative rotations of two reference frames are described by the angular turn
rate, denoted by vector ωa

ba, were the subscript denotes the turn rate from a to b.
And the superscript indicate wich reference frame the turn rate is given in.

The corresponding skew symetric matrix of the turn rates is denoted Ω
a
ba, and

the transformation between two skew-symmetric matrixes can be done by

Ω
b
ba = Cb

aΩ
a
baC

a
b . (1.5)





Chapter 2

What is an RLG IMU?

A ring laser gyroscope inertial measurement unit (RLG IMU) contains one triad
of orthogonally assembled accelerometers and one orthogonally assembled triad of
ring laser gyroscopes (RLG). Together these triads form the inertial sensor assembly
(ISA). If the ISA is mounted in a housing and some pre-processing of raw data is done,
this is called an inertial measurements unit (IMU). The output from an IMU can be
processed and used for navigation, this is denoted inertial navigation system (INS).
Although an inertial navigation system could be used stand alone, one generally aid
the INS with data from other sensors, forming an aided inertial navigation system
(AINS).

2.1 Measurements and observables of an IMU

In the INS one makes use of navigation equations that are solved in order to find
the navigation solution, i.e. position, velocity and attitude. These equations need
two kinds of observables: Specific force [m/s2] and angular turn rate [deg/s], which
are estimated from the IMU measurements.

The navigation equations will be explained in Chapter 3.

Specific force

The accelerometers sense the specific force, which is the real force acting on the
unit. Such an applied force could be the force driving an object forward or the
reaction of the Earth’s surface acting on objects at rest (Jekeli 2001). That means
that the accelerometer can not sense the gravitational field directly, a free falling
unit will for example not sense any acceleration.

In scalar form specific force could be described as

f = r̈ + ḡ, (2.1)

where f is the specific force, r̈ is the scalar of the second time derivative of
the position vector and ḡ is the gravitation. Since measurements on the earth

5



6 CHAPTER 2. WHAT IS AN RLG IMU?

are affected by the centripetal force, the combination of the gravitation and the
centrifugal acceleration is often used in the text, that is the gravity (g).

By using equation 2.1, one could see that if the unit is at rest, i.e. if the second
time derivative of the position vector is equal to zero the specific force will be
equal to g (Schwarz 2001). This also implies that in order to find the second time
derivative of the position vector one need to know the specific force and the gravity.

Writing the specific force equation in vectorial form, with respect to inertial
frame (the reference frames will be outlined in Section 3.1) yields

f i = r̈i − ḡi, (2.2)

where f is the specific force vector ([fx fy fz]
′), r̈ is the second time derivative of

the position vector and ḡ is the vector of gravitation.
In order to find the second time derivative of the position vector one need first

to know the specific force and the gravity vector. The specific force one can measure
from the accelerometers and by using a normal gravity model the gravity could be
estimated (see Section 3.1). This is not so easily done. One need for example to
know the attitude of the unit in order to remove the influence of gravity. Another
problem is that the measurements from the accelerometers are not perfect; the
outputs are biased by errors and noise. The measured data from the accelerometers
could therefore be expressed as:

ℓf = f + Ef + εf + nf . (2.3)

Where ℓf is the measurement from the accelerometers and f is the specific force
vector. E and εf represent systematic errors such as non-orthogonal assembly and
biased output. The vector nf is representing the sensor noise.

Angular rate

The rotation of the IMU in inertial space is represented by a vector of angular
rates, but also these measures are affected by errors and noise, the measurement in
vectorial form for the gyroscopes can be formed as:

ℓω = ω + Eω + nω + εω. (2.4)

Where ℓω is the gyro measurements and ω is the rotation in inertial space. E and
εω are systematic errors such as non-orthogonal assembly and biased output. The
vector nω is the sensor noise.

Using the measurements

It has been stated in the beginning of this section that the specific force (f) and
the rotation rate in inertial space (ω) are needed for the navigation equations. The
relation between these true values and the measurements from the IMU have been
outlined in a simplified way.

Estimates of the true values, f & ω, are observable in a Kalman filter where
errors and noise are modelled. The Kalman filter will be described in Chapter 5.



Chapter 3

Inertial navigation

3.1 Reference frames and gravity models

Earth frame

The earth frame (e-frame) is an earth centered earth fixed (ECEF) reference frame
defined as

Origin is in the mass centre of the earth
ze-axis is passing through the mean spin axis of the earth
xe-axis is passing through the Greenwich meridian
ye-axis is completing the right hand system

the positions in the e-frame can also be expressed in geodetic longitude (λ), latitude
(ϕ) and height above a reference ellipsoid (h). The ellipsoid used is often the one
defined by WGS-84. The relation between the cartesian and geodetic position is
given by Jekeli (2001)







xe

ye

ze






=







(N + h) cos ϕ cos λ
(N + h) cos ϕ sinλ

(N(1 − eccentricity2) + h) sin ϕ






. (3.1)

Were the eccentricity is the eccentricity of the ellipsoid, which together with the
ellipsoid major axis a, define the shape and size of the reference ellipsoid. N is the
radius of curvature of the ellipsoid in prime vertical at the current latitude, which
is derived from a, ϕ and the eccentricity.

The use of geodetic positions has an advantage if one also uses a local geodetic
system, since that is directly associated with the geodetic position.

Inertial frame

For the practical use of INS a true inertial frame is not used, the frame used will never
the less be referred as the inertial frame or (i-frame) since this is more convenient.
The frame used in this report is defined as

7



8 CHAPTER 3. INERTIAL NAVIGATION

Origin in the mass centre of the earth and therefore free falling in the universe
zi-axis is passing through the mean spin axis of the earth
xi-axis none rotating, with respect to fix stars
yi-axis is completing the right hand system

Local-level frame

The local-level frame (l-frame), is a local geodetic coordinate system here defined
as a north-east-down (NED) system where

origin is the same as the origin of the IMU frame
xl-axis is pointing towards geodetic North
yl-axis is pointing towards geodetic East
zl-axis is pointing down, orthogonal to the reference ellipsoid

When the l-frame is used for inertial navigation one either has to neglect deviation
between the plumb line and the z-axis or estimate this deviation.

There are also other definitions of the l-frames, such as east-north-up (ENU).
Common to them all is that they are used to express the attitude, and to indicate
the velocity of the body (Jekeli 2001).

The transformation between NED to e-frame could be done by (Schwarz 2001)

Ce
l =







− sinϕ cos λ − sinλ − cos ϕ cos λ
− sinϕ sin λ cos λ − cos ϕ sinλ

cos ϕ 0 − sinϕ






. (3.2)

IMU frame

The IMU output is referred to this frame, defined by the manufacture. The position
of all other sensors that have been rigidly connected to the IMU could be measured
in this frame.

Vehicle frame

The vehicle frame used here is defined as having the origin in the origin of the IMU,
the x-axis is pointing forward in the vehicles longitudinal axis, the y-axis is pointing
to the right and the z-axis pointing down.

Body frame

The body frame (b-frame) is very much like the IMU frame, but is not defined by
the manufacture. The origin is defined as the origin of the IMU frame, but the
coordinate axis could have an other direction.
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Figure 3.1. Earth frame and local level frame.

Gravity model

In order to solve the navigation equation one need to know the gravity force acting
on the body at every place and time. For this a normal gravity model is used.

3.2 Navigation equations

Navigation equations in inertial system

The observables needed to form the navigation equations was explained in Chapter
2. The specific force vector was explained by Equation (2.2), were also the position
vector was introduced. The formula is here changed to

r̈i = f i + ḡi, (3.3)

on the right hand are the specific force vector and the gravitation vector. On the left
hand side is the unknown, the second time derivative of the position vector. First
step to solve this second order differential equation is to rewrite it to a system of
first order differential equations

ṙi = vi (3.4)
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v̇i = f i + ḡi. (3.5)

Since the specific force is observed in the body frame, and the normal gravity
vector normally is given in the earth frame or loclal level frame (Schwarz 2001), it
is necessary to use a rotation matrix between one of these frames and the inertial
frame

ṙi = vi (3.6)

v̇i = Ci
bf

b + Ci
eḡ

e. (3.7)

Ci
e is the rotation matrix containing the earth rotation. It can be proved (Schwarz

2001) that Ci
b can be obtained by solving

Ċi
b = Ci

bΩ
b
ib, (3.8)

where Ω
b
ib is the skew symmetric matrix of observed turn rates.

The Eqs. (3.6), (3.7) and (3.8) can be formed into a set of equations

ẋi =







ṙi

v̇i

Ċ
i

b






=







vi

Ci
bf

b + Ci
eḡ

e

Ci
bΩ

b
ib






(3.9)

were the left side is the time derivate of the navigation state vector, and the right
hand side is the first order differential navigation equations.

Navigation equations in local level system

The Equations in (3.9) have limitations since the navigation parameters are given in
inertial space while we navigate on the surface of the earth. Outlined in this section
are instead the more convenient navigation equations in the local level frame.

Position equations

The origin of the local level system is fixed in the IMU, but the position of this
origin is described with curve linear coordinates (ϕ λ h) in the e-frame. The position
equation therefore relate the derivative of the curvelinear positions with the velocity
in the l-frame.

The first derivative of the latitude position in local level frame is found by
dividing the north pointing velocity vector in local level frame with the radius of
curvature of the meridian (M) plus the height above the ellipsoid

ϕ̇ =
vl

north

(M + h)
(3.10)

and the first derivative of the longitude position in local level frame is found by
dividing the eastern velocity vector with the radius in the earth x-y plane

λ̇ =
vl

east

(N + h) cos ϕ
. (3.11)
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Where N is the radius of curvature in the prime vertical.
The first derivative of the height above the ellipsoid is found by reversing the

sign of the down velocity in local level frame.
The position equation in local level frame could now be written as (Schwarz

2001)

ṙl = D−1vl (3.12)

where

D−1 =







1
(M+h) 0 0

0 1
(N+h)cosϕ

0

0 0 −1






(3.13)

and vl is the velocity vector in local level frame.

Velocity equation

The velocity equation in local level frame is here derived from the velocity equation
in the earth frame, starting with the relation between the position in inertial frame
and earth frame (Hofman-Wellenhof, Legat, Wieser 2006) (Whan 2001)

ri = Ci
er

e (3.14)

which is differentiated once to

ṙi = Ċ
i

er
e + Ci

eṙ
e (3.15)

or written as:

ṙi = Ci
e(ṙ

e + Ω
e
ier

e). (3.16)

Differentiating once again we get:

r̈i = Ci
e(r̈

e + 2Ωe
ieṙ

e + Ω̇
e

ier
e + Ω

e
ieΩ

e
ier

e)

= Ci
e(r̈

e + 2Ωe
ieṙ

e + Ω
e
ieΩ

e
ier

e)
(3.17)

The reason why Ω̇
e

ier
i falls out is that the earth spin rate is constant. By substitute

the left hand side with Equation (3.3) and pre-multiply with Ce
i one get

f e + ḡe = r̈e + 2Ωe
ieṙ

e + Ω
e
ieΩ

e
ier

e. (3.18)

Using the relation between and gravity, gravitation and the earth rotation (Schwarz
2001);

ge = ḡe − Ω
e
ieΩ

e
ier

e, (3.19)

we can rewrite Equation (3.18) as:

r̈e = f e − 2Ωe
ieṙ

e + ge (3.20)
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were 2Ωe
ieṙ

e is the Coriolis force due to the rotation of the earth.
The relation

ṙe = Ce
l v

l (3.21)

and its time derivative

r̈e = Ce
l (v̇

l + Ω
l
elv

l) (3.22)

can now be substituted into Equation (3.20) to indicate the velocity in the e-frame
expressed in the l-frame.

Ce
l (v̇

l + Ω
l
elv

l) = f e − 2Ωe
ieC

e
l v

l + ge (3.23)

Pre-multiplying with C l
e and rearranging leads to

v̇l = f l − (Ωl
el + 2C l

eΩ
e
ieC

e
l )v

l + gl. (3.24)

Using the relation from Equation (1.5), Cl
eΩ

e
ieC

e
l could be written as Ω

l
ie, yielding

v̇l = f l − (Ωl
el + 2Ωl

ie)v
l + gl. (3.25)

As mentioned before, the specific force is sensed by the IMU in the body frame, last
step is therefore to use the rotation matrix between body-frame and the local level
frame.

v̇l = C l
bf

b − (2Ωl
ie + Ω

l
el)v

l + gl (3.26)

Attitude equation

Ċ
l

b = Cl
bΩ

b
lb = C l

b(Ω
b
ib − Ω

b
il) (3.27)

Navigation equations

Combining Eqs (3.12), (3.26) and (3.27) into a set of equations for the time derivate
of the navigation state vector in local level frame yields

ẋl =







ṙl

v̇l

Ċ
l

b






=







D−1vl

Cl
bf

b − (2Ωl
ie + Ω

l
el)v

l + gl

Cl
b(Ω

b
ib − Ω

b
il)






. (3.28)

3.3 Mechanization

In the mechanization the navigation equations are solved by using the measure-
ments, compensated for estimated errors, the known earth rotation and the normal
gravity. In Figure 3.2 a mechanization scheme for the local level frame is presented.

As with all integration methods good start values are needed. Without a good
start value, no integration will give good result. In inertial navigation these start
values are found by the initialization.
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Figure 3.2. Local level frame integration scheme.

3.4 Initialization and Alignment

There are different ways of finding the initial attitude of the unit. Here is outlined
one method from Britting (1971), which define the attitude without any external
information except from the start latitude.

At a first stage a coarse alignment is performed. It makes use of average data
from the accelerometers and gyroscopes during a static initialization epoch. From
this data it is possible to analytically resolve the attitude in one step. If

gb = Cb
l g

l (3.29)

ωb
ib = Cb

l ω
l
ib (3.30)

also the following matrix relation will hold.







f b′

ωb′

ib

(f b × ωb
ib)

′






=







f l′

ωl′

ib

(f l × ωl
ib)

′






C l

b (3.31)

The rotation matrix could than be solved by

C l
b =







f l′

ωl′

ib

(f l × ωl
ib)

′







−1 





f b′

ωb′

ib

(f b × ωb
ib)

′






(3.32)

In the NED local level frame the gravity vector will be

f l = −gl =







0
0
−g






(3.33)
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and the earth rotation vector

ωl
ib = ωl

ie =







ωie cos φ
0

−ωie sin φ






(3.34)

which gives

C l
b =







0 0 −g
−ωie cos φ 0 −ωie sin φ

0 −gωie cos φ 0







−1 





f b′

ωb′

ib

(f b × ωb
ib)

′
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− tan φ
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1
ωie cos φ

0

0 0 −1
gωie cos φ

−1
g

0 0













f b′

ωb′

ib

(f b × ωb
ib)

′







(3.35)

After the course alignment a fine alignment is performed. The measurements are
fed to the mechanization and from the mechanization the navigation solution is fed
to the Kalman filter. The Kalman filter than estimates the errors of the navigation
solution and feed them back to the mechanization. In this way the attitude is refined
for each time.

The errors are estimated by making use of the fact that we know that the IMU

is in static mode, and that the only observed velocity should be the one of the
earth rotation. (To be able to find the heading of the IMU it is necessary that the
performance of the IMU is good, If the noise is larger than the earth spin rate, this
is not possible.)

3.5 Aidings for inertial navigation

In Section 3.2 the navigation equations has been formulated, a mechanization
scheme to solve these equations was described in Section 3.3, and one method to
find the start values was outlined in 3.4.

After the mechanization the navigation state vector is fed to the Kalman filter,
were the errors are estimated with help of supplementary aiding data and aiding
techniques. These techniques will here be outlined.

3.5.1 Velocity aiding

One of the error states in the Kalman filter is the velocity error. It could be seen
in Equation 3.28 that the error in velocity directly affect the error in position. So
if one could estimate the error in the velocity one would also correct the position
state.

Zero velocity update

One way to estimate the velocity error is through a zero velocity update (ZUPT).
When the unit is in rest, the only forces acting on the unit should be the one
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from the gravity field of the earth and the one from earth rotation, this external
information is provided to the Kalman filter, were the difference between the static
model and the actual observation are used to estimate the errors.

Non holonomic constraints

The non holonomic constraints is well suited for car navigation. Since the real
velocity of the car is constrained to the longitudinal axis of the car, one also have
the possibility to constrain the velocity model to one axis, and to assume that all
other velocities are effects of errors or noise. The constrained model would therefore
be

vv
y = 0

vv
z = 0.

(3.36)

This will of course only hold as long as the car does not drift side ways or jumps
vertically.

Odometer aiding

Another way to estimate the velocity error is to provide the filter with external
velocity data. An odometer (See 4.4) could provide this data. This could be used
together with non holonomic constraints so that

vv
x = vodometer

vv
y = 0

vv
z = 0

(3.37)

Also the odometer data contains errors and noise. And even if the odometer
would deliver error free data, errors due to system assembly could cause problem.
If the axis were the aided data are sensed (vehicles longitudinal axis) and the axis
of the b-frame are not aligned it may cause a scale factor error, that, if it is not
corrected, will cause an accumulated position error. (Also see the lever arm effect
in Section 3.5.3 )

GPS velocity aiding

The GPS system could provide very accurate velocity in three dimensions.

3.5.2 Position aiding

As seen in Chapter 3 the position is related to both the velocity and the attitude.

Aiding with GPS

The errors of the positions derived from GPS are likely to be of gaussian white
nature, which could be used to effectively prevent the accumulating errors of INS
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to grow unbounded. On the other hand are the position errors of the INS smaller
than the errors for GPS for short periods of time. The challenge is to combine and
benefit from these characteristics.

3.5.3 Lever arm effect

The lever arm is the vector that separates the sensors from the origin of the b-fame.
Since this coincide with the origin of the IMU the inertial sensor data is automatically
corrected to refer to this point by the IMU. Still it is necessary to make the lever
arm correction for the external aiding sensors, such as GPS and Odometer.

The offset vectors between the sensors (I.e. GPS antenna phase centre, Odome-
ter) and the centre of the IMU is measured, and denoted ∆rb. The lever arm in the
navigation frame could then be found by

∆rl = C l
b∆rb (3.38)

The correction of the GPS position for the lever arm is done by (Eun-Whan 2005)

rl
IMU = rl

GPS − D−1C l
b∆rb (3.39)

Where rl
GPS is the position of the GPS antenna phase center and rl

IMU is the
corrected position at the center of the IMU. The matrix D−1 have been used earlier
in Section 3.2.

D−1 =







1
(M+h) 0 0

0 1
(N+h)cosϕ

0

0 0 −1






(3.40)

The lever arm correction for the GPS derived velocity is written as

vl
imu = vl

gps − C l
bΩ

b
lb∆rb

gps (3.41)

and for the odometer velocity

vl
imu = C l

bvodo − C l
bΩ

b
lb∆rb

odo (3.42)



Chapter 4

Hardware

4.1 Accelerometers

The principles of integrating accelerometer data to velocity and positions was de-
scribed in Section 2.1 and 3.3. Here is a short outline of how the one axis force
rebalancing accelerometer QA2000-40 from Honeywell sense the specific force (Pe-
ters, Stoddard, Meridith 1998).

The accelerometer is built up around a proof-mass made of quartz, which is
allowed to flex through an etched flexure. When the proof-mass is affected by
acceleration it will flex and shift position, the new position of the proof-mass is de-
termined by a capacity pickoff module. In the electro magnetic feedback system the
position of the mass is used to torque the mass back to zero position (rebalancing).
This closed rebalancing servo loop make sure that the amplitude of the flexing proof
mass is minimal, which results in a good linear output (Dorobantu, Gerlach 2004).
This also means that the current that goes through the rebalancing electro magnets
is propositional to the specific force acting on the quartz proof mass.

Inside the accelerometer there is also an temperature sensor, used to model the
performance parameters affected by variations in temperature.

The output from the QA2000-40 is analog and is therefore converted into a
digital signal in the IMU by a AD converter.

It should also be mentioned that the QA2000-40 is an one axis sensor, implying
that three orthogonally assembled accelerometers have to be used.

Figure 4.1. The QA2000-40 accelerometer from Honeywell. [Honeywell]

17
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Figure 4.2. In this simple sketch one can see the proof-mass that can flex in the
vertical sensible axis due to the flexure. The two pickoff plates sense the capacity
which change when the proof-mass moves. This is fed to the electro magnetic coils
that rebalance the proof-mass to its original position.

Accelerometer measurements

In Chapter 2 was given an simple equation (Equation 2.3) that described the rela-
tions between measurements, observables and errors. Now when the principle of an
force rebalancing accelerometer have been outlined, is it also easier to understand
the types and sources of the errors, therefore the measurement equation is extended

ℓf = f + b + (S1 + S2f)f + Nf + nf (4.1)

Where

ℓf is the measurement
f is the specific force
b is the bias of the accelerometer, an offset of the output
S1 is the linear scale factor errors between the output and the acting force
S2 is the non linear scale factor errors between the output and the acting force
N represent the non-orthogonally of the accelerometer assembly
nf is the sensor noise

For performance data of the QA2000-40, please refer to Appendix C.

4.2 Gyroscopes

The Ring Laser Gyro from Honeywell is built of a closed triangle shaped resonant
cavity with mirrors in each corner. Inside the closed cavity two laser beams are
created, one is traveling clock wise (cw) and the other one counter clockwise (ccw).
The beams have the same integer number of wavelengths, and when the cavity is
in rest (in inertial space), they will also have the same length of traveling and the
same frequency.
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If the cavity is rotated cw, the frequency of the cw laser beam has to increase in
order to keep the number of wavelengths constant despite the fact that the way of
traveling now is shorter due to the rotation. The ccw laser beam will instead have
to decrease in frequency (Siouris 1993).

The frequency shift that will appear between the beams when the cavity is
rotated is proportional to the rotation rate and could be found by detecting the
change in the fringe pattern produced when the two signal is interfered in the
detector. (see Figure 4.3).

Figure 4.3. One axis ring laser gyroscope. The cw and ccw laser beams are created
by the gas discharge when high voltage is applied on the anode-cathode pairs. One
of the corner mirrors allows some of the light to pass through, and to reach the optic
detector.

RLG sensor errors

ℓω = ω + d + Sω + Nω + nω (4.2)

ℓω is the measurement
ω is the rotation in inertial space
d is the drift of the gyro, an integrated output offset.
S is the linear scale factor errors between the output and the real rotation.
N represent the non-orthogonally of the gyroscope axis, due to non orthogonal

assembly
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nω is the sensor noise

For performance data of the Ring laser gyro, please refer to Appendix C.

4.3 IMU

The iNAV-RQH IMU from iMAR is the housing for the above described sensors. It
also contains other hardwares such as AD converters, clock device, storing capacity
and CPU. Files for sensor calibration are also stored internally and used before
output.

I have been using the iNAV-RQH as an measuring device, to acquire and record
inertial data for post processing. The unit could also be used as an real time inertial
navigation system, using the internal CPU, algorithms and Kalman filter for real
time processing.

4.4 Odometer

Odometer in general

The name odometer comes from The Greek words hodós meaning path, and métron
meaning measure. One simple form of odometer is the wheel odometer where the
number of rotations of a wheel is counted and the perimeter of the wheel is known.
The distance traveled is the number of rotations, times the perimeter, and if the
velocity is of interest one just have to divide the perimeter with the time of each
rotation.

In our experiments have we not been using a wheel odometer, but an opti-
cal odometer, which could measure distances without surface contact. The optic
odometer is property of Ecole polytechnique fédérale de Lausanne, Switzerland, and
have been borrowed for our experiments. The data have been acquired by the IMU,
time tagged, and written into the IMU file together with the other sensor data.

Principles of Correvit L-CE

The Correvit L-CE, from the manufacture Corrsys-Datron, is an advanced optic
sensor for odometric use, which make use of optical gratings to find the velocity
(Corrsys-Datron Sensorsysteme). A grating could be composed by a set of spaced
parallel elements, where the space between the elements are equal to the width of
the element. The characteristics of such a grid is described by the density of the
elements, and denoted k.

If light reflected from the surface of the street pass this grating, and the grating
moves in an direction orthogonal to the elements it will cause a modulation of the
light intensity that pass the grating. This modulation is sensed by a sensor and its
frequency could be found, denoted f . Fig 4.4
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Figure 4.4. To better understand the optical odometer principle, one considers an
odometer displacement in the left direction, or equivalently, a right relative displace-
ment of the light spot 1 (reflected from the road structure), with its successive time
positions 2...5. The corresponding time variation of the sensor light intensity has
approximately a sine-form (the maximum light intensity corresponds to position 1,
the minimum one to the position 3, the next maximum to position 5, and so on.)

The signal frequency tells how many peaks that is detected per second, and we
already know the distance between each peak from k.

Because of the optic scale factor of the lens system it is also needed to multiply
with a scale factor, denoted m. The observed frequency could therefore be described
as

f =
mv

k
, (4.3)

were v denote the velocity over the surface of the street.
In a more advanced optic odometer, advanced prism gratings are used together

with two sensors. The two signals generated are shifted 180 degrees in phase, as
seen in Figure 4.5. To remove the low-frequency superimposed common mode signal
(produced, e.g. by the slow mean-intensity changes of the reflected beam - ground
luminosity, dependent on the road surface structure) one difference the two signals,
generating a differential-mode signal. (Figure 4.6 )

When the frequency of the useful signal has been determined and the velocity
derived from Equation 4.3, next step is to generate the output signal. This signal is
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Figure 4.5. The light that reflects into the prism grating is divided so that one of the
sensors only receive light from the left side of each prism, and the other sensor only
will receive light from the right side of the prism. The two wave shaped modulations
that occur when the odometer is moving are shifted 180 degrees.

Figure 4.6. Signal 1 & 2 are shifted 180 degrees to each other, and they are both
disturbed by an underlying signal of longer wave length. The effect of the disturbing
signal could be eliminated by differentiate signal 1 & 2.
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Figure 4.7. Correvit L-CE, below the housing to the left can one see the halogen
lamp (not obvious an lamp in this sketch) that illuminates the surface. Inside: the
prism grating and optic system.

of transistor-transistor logic (TTL) type, a rectangular shaped signal that theoretical
is either 0 or 5 volt, down or high. The odometer is configured to send n pulses per
meter, the frequency of the output signal is therefore

fsignal = n
pulse

m
× v

m

s
(4.4)

and the period of the pulse is

T =
1

fsignal

(4.5)

The output with period T is shaped as one down of the length 0.25 ∗T seconds and
one high of the length 0.75 ∗ T seconds. ( figure 5.1)

Laboratory test of Correvit L-CE

The performance test was carried out by registering the odometer output when used
on a test surface. The test surface was a rotating turntable for which the turn rate
was measured using stroboscopic light of known frequency.
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Figure 4.8. The TTL signal is used to transmit the velocity data from the odometer.
The period T is equal to one pulse, and the odometer is configured to send n pulses
per meter.

Method

The turn table was calibrated for the scale factor between input signal to the
turntable, and the turn rate of the turntable. This was done by changing the
frequency of the stroboscopic light until it coincided with the turn rate. It was very
convenient that the turntable had an scale engraving in degrees on the side. The
scale factor was than estimated by a least square estimation.

The scale factor between odometer measured velocity and the calibrated turntable
velocity was estimated by logging data from the rotating turntable, and adjusted
the data by least square estimation.

We also tested the influence of the test surface. Starting with a paper surface of
fine texture and a limited light pattern, we later added black dots to get a surface
with a pattern easier to process for the odometer.

We also made a registration with half of the normal sampling rate, to see if there
would be any changes in the data acquisition.

It should be mentioned that the test was carried out in two steps. First the
odometer was used together with the turntable and test surface. In step two the
turn rate of the turntable was examined with the stroboscope.

Test setup

The turn rate of the turntable was observed by a stroboscope assembled by a LED
and a signal generator. The shape of the signal was controlled by an oscilloscope.

The input signal to the turntable was changed by a stabilized power supply.
The odometer was set to send 446 pulses per meter, send by the TTL signal. This

signal was send to the IMU where the signal was quantified and processed before it
was written into a text file in the laptop computer. (Also see Figure 1.1)



4.4. ODOMETER 25

Figure 4.9. Setup. On the top is the oscilloscope, under to the right is the power
supply, under the power supply, the signal generator and the larger device is the
turntable control unit.

Figure 4.10. Picture of the turntable and the stroboscope. By adjusting the fre-
quency of the stroboscope, the turn rate of the turn table could be determined.
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Result of laboratory test

The scale factor between input voltage (V ) and turn rate (deg/s) was found to be
11.237 deg/V s, and the standard error of the residuals were 2.203 deg/V s. This
values correspond with the velocity of the maximum radii of the turn table by; 0.029
m/V s and standard error 0.006 m/V s.

To better understand the results from the estimated scale factor for the odome-
ter, one should first see the result of the error characteristics for the odometer.

At a velocity of 1,6 m/s, measurements had a standard error of 0.11 m/s. But
in the test data, ranging between 0.16 and 1.6 m/s, there is also a linear progression
of around 0.1 times the velocity for the standard error.

The test with different patterns on the test surface resulted in an decrease of the
standard error. By adding black dots to the surface the standard error decreased
from 0.17 m/s to 0.12 m/s at a velocity of 1.6 m/s. In Figure 4.11 the measured
velocity is plotted, one could see the difference in noise and also the sampling error.
One could also see that the mean velocity have dropped to 1.62 from 1.63 m/s,
when the dots were added. We also found that this difference is increasing with
velocity.
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Figure 4.11. Plot of odometer derived velocities, where surface umber two is having
a pattern of better contrast than surface number one.

By generating a TTL signal with a signal generator, we could see that this data,
as well as the true odometer data, was affected by a sampling error when quantified
with the IMU. This could be seen as bands of denser data in Figure 4.11.

An registration was also done were the TTL was reduced to 230 pulses per meter,
but without any improvement.
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The relation between the velocity of the turn table and the measured velocity
by the odometer was measured with a test surface of the better type and was found
to be 1.018.

Conclusions of laboratory test

The test showed that the absolute velocity and the linearity of the odometer was
hard to determine or estimate with our methods and hardware.

The noise of the odometer had an small, positive correlation with the velocity,
but more important was the relation between the velocity noise and the pattern of
the measured surface. An surface with strong random dots in high contrast lowered
the noise remarkably compared to a pattern with lower contrast. This change in the
measurements also lowered the average velocity, which would result in non linear
errors if traveling over varying surfaces.

The error caused by the IMU registration could be a part of this velocity de-
crease. There is a IMU sampling error and the effect is more legible with larger
noise. The error in the data acquisition has not been further investigated.

Because of the dynamic surface and the higher velocities in a real navigation
mission I have not found the data useful for a odometer calibration of high precision.

4.5 GPS

GPS plays an important role in my experiments. But aside from the specifications
of the Trimble 4000SSE in Appendix C no further details of the hardware or the
Global Positioning System (GPS) will be given in this report.

All GPS solutions are relative, differential, solutions of either pseudorange or
phase shift types.





Chapter 5

Extended Kalman filtering

The nine parameter navigation state vector that was developed in Chapter 3 con-
tains errors due to the sensors, not perfect assembly of sensors and uncertainty of
the gravity field.

These errors are often modeled and estimated by a Kalman filter. Using data
from the aiding sensor to estimate the errors, this results in a data fusion of IMU

and aiding sensor data.
In this chapter the principles of a 15 error states extended Kalman filter (EKF)

will be outlined (Schwarz 2001) (Jekeli 2001) (Shin 2001) (Welch, Bishop 2001).
The 15 states are nine states for errors in the navigation states, plus six sensor error
states.

5.1 Filter design

Error analysis

The dynamic error process that takes place in the INS due to sensor errors could be
studied by expanding the navigation equations into a Taylor series, truncated to the
terms of first order. By the truncation become the error dynamics equations linear,
this assumes that the errors are "‘sufficiently"’ small (Jekeli 2001). In practice
the error dynamics equations are derived by perturbing the navigation equation
differentially.

It is also possible to include the perturbed sensor biases and scale factors in the
error states. A system of linear differential equations for the error states referring
to Equation 3.9 with augment for sensor errors could be developed as in Schwarz
(2001):

δẋi =















δṙi

δv̇i

ǫ̇i

ḋg

ḃa















=















δvi

f iǫi + N iδri

Ci
bdg

−αdg + wd

−βba + wb















. (5.1)
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or

δẋ = F δx + Gw (5.2)

where

δx =
[

δr′ δv′ ǫ′ d′

g b′a

]

′

(5.3)

are the first nine error states (δr δv ǫ) of the state parameters in the dynamic
system (r v Cl

b). And the next six states (dg ba) are the drift of the gyroscope
and the bias of the accelerometer (see Chapter 4). N is a coefficient matrix that
describe the linearized normal gravity error due to position error. F is the dynamic
system matrix. White noise is introduced by (w) and the shaping matrix G.

System integration

The fusion of INS data and data from the aiding systems i.e. sensor integration,
could be done in a numerous ways. One could order the ways it is done by how
tight the coupling between the sensor data is in the filter. In a tight coupled system
could for example every single satellite observations be directly used together with
the inertial data. In such a system would observations from less than four satellites
still be useful.

In a loosely coupled filter the inertial data is processed through the mecha-
nization, the odometer velocity data is derived by a separate routine and the GPS

positions and velocities are generated by separate software or routines. The EKF is
than used to fuse the data together. A flow chart of a loosely coupled system be
seen in Figure 5.1.

By continuously improve the error states of the INS by estimations based on both
INS performance and the aiding measurements the sensor data are fused together.
This estimation starts by forming the error measure δz

δzl = xl
ins − xl

aiding (5.4)

where xl
ins is the current navigation state from the mechanization and xl

aiding is one
or more of the navigation states measured from an aiding sensor and corrected for
eventual lever arm effect.

Error update and correction

The next step is to blend the error state (δx) and the error measure (δz),

δx̂k = δx̂−

k + Kk(δzk − Hkδx̂
−

k ) (5.5)

were K is a blending gain factor matrix, x̂− is an prediction (forward projection)
of the estimated error state, Hk relates the error states to the measurements and
δx̂k is the updated estimate of the error states at the current state k.
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Figure 5.1. Loosely coupled aided inertial navigation system, where the INS system
have been described in Figure 3.2. Note that the GPS data and the odometer data
have been transformed by the use of C l

e and C l

b, were the later is fed from the KF
output.

To relate this to what we actually want to achieve, an error correction of the
INS navigation state, it is now shown that

x = xins − δx

is an combined navigation solution, since δx by Formula (5.4) and (5.5) relate to
the aiding state xaiding via the error measure δz.

Finding the optimal solution

The predicted estimate of the error state δx̂−, and the gain factor K In Equation
5.5 are still unknown. Finding these is the core of the EKF and could be written by
four equations (Jekeli 2001).

Time update (prediction) equations:

δx̂−

k = φtk,tk−1
δx̂k−1 (5.6)

P−

k = φtk,tk−1
P k−1φ

′

tk,tk−1
+ GkQkG

′

k (5.7)

Were φtk,tk−1
is the state transition matrix, used to predict the error states and

error covariance at time k, under the assumption that the error dynamics are con-
stant over the time interval ∆t. Qk is the covariance matrix of the system noise
process, and Gk is the shaping matrix of the measurement noise process at time tk
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Measurements update equations:

Kk = P−

k H ′

k(HkP
−H ′

k + Rk)
−1 (5.8)

P k = (I − KkHk)P
−

k (I − KkHk)
′ + KRkK

′

k (5.9)

Were Rk is the covariance matrix of the measurements at time k.

Feed back implementation

As have been pointed out before, the errors in the nine navigation states in INS

are dependent of previous states, and therefore the errors are accumulating. The
Kalman filter estimates these errors and makes corrections of the output data. But
in time the output errors from the INS could grow larger than the Kalman filter can
handle. The Kalman filter uses a linearization of the non linear dynamic system
and hence only small errors can be accepted.

So depending on the performance of the IMU it is necessary to feed the result of
the filtered states backwards, back to the INS mechanization. This is in also followed
by setting the error states in the Kalman filter back to zero (Shin 2001)

Another form of feedback is the correction of sensor data. If the Kalman filter
estimates the sensor biases and scale factor errors, these errors could be used to
correct the sensor measurements prior the mechanization.

Extension of the Kalman filter

There are good reasons not to extend a Kalman filter with too many states, at least
not without first analyze the observability of the states (Schumacher 2006). There
is an increasing filter instability with the number of the state variables. If one have
limited computer power it is also a good idea not to produce to big matrixes.

A state variable for the scale factor of the odometer would indeed be a good way
to calibrate the odometer on the fly, making use of the long term stable GPS data.
We also proved that the noise of the odometer depends on the surface measured,
but in the Kalman filter used, the standard deviation of the odometer is fixed in the
R matrix. Therefore an improvement of the uncertainly estimation of the odometer
derived velocities would probably improve the result as well.

5.2 Pre-filtering of data

I did some experiments where the accelerometer data was filtered prior the mecha-
nization and Kalman filtering. This was done by a FIR II low pass filter of various
degrees, together with the Matlab FiltFilt function which does not introduce any
phase shifts.

The reason for pre-filter the data is that the data have been sampled at 200
Hz, while the true motion dynamics is much lower, i.e. the frequency of position,
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velocity and attitude. (The relative high acquisition rate of 200 Hz was adopted to
minimize the potential coning and sculling errors in the presence of vibrations.)

The low frequency noise and errors are effectively reduced by the fusion of GPS

data, and while this is possible also the effect of high frequency noise is suppressed.
But for the short time between GPS updates, in the presence of GPS outages or if
GPS data is not available at all, high frequency noise will have an negative effect on
the solution (Skaloud 1999).

If the frequency spectrum of the true motion dynamics could be found, it would
mean that a simple low pass filter as the one described above, could be used before
the mechanization and sensor integration to improve the solution. (See Figure 5.2)

To find the frequency spectrum of the motion dynamics I compared the power
density spectrum of data from when the unit was in motion, and data from when
the unit was in rest. Although this is not an very precise method, it gave a hint of
the frequency spectrum of the motion dynamics.

Pre-filtering of data was not a major part of my work, but the results gave some
hints of how the pre-filtering could be used in future work.

Figure 5.2. Figure after Skaloud 1999. Plot of inertial signal in the frequency
domain: (a) before filtering, (b) after INS/GPS integration and low-pass filtering





Chapter 6

Theresienwiese,

Outdoor navigation mission

For this mission the system was mounted on a car and the mission took place at
the Theresienwiese, a big open field in Munich, Figure 6.1. Theresienwiese have
been used in previous missions by IAPG. The openness and low skyline makes good
conditions for receiving GPS signals, and there is a grid of paved roads running all
over the field.

The performance of the optic odometer depends of the surface, (see Section 4.4)
hence it was favored to do the mission on a day without a snow cover.

Figure 6.1. Theresienwiese and the system mounted on a car.
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6.1 Aim of mission

The aim of this mission was to get all hardware to work together, and to see how
the sensors complete each other.

6.2 System setup

The data acquisition was carried out with a system built up by the following sensors:

• iNAV-RQH from iMAR (described in 4.3)
• System 4000SSE from Trimble (described in 4.5)
• Correvit L-CE from Corsys-Datron (described in 4.4)

The IMU and GPS antenna was mounted on the roof of the car, and the odometer
was mounted at the back of the car (see Photo 6.1). The GPS receiver and the
operating laptop was installed inside the car. Each sensor also had its own set of
accumulators for power supply inside the car. A GPS base station was put up in the
center of the field, so that relative GPS position solutions could be calculated.

To be able to compute the lever arm it is needed to know the relative positions
of the sensors. Therefore the positions of the IMU, odometer and GPS antenna was
measured with a total station.

6.3 Data flow

The communication between the IMU and the laptop is done via Ethernet and
TCP/IP protocol. During the navigation there is a constant flow of IMU data which
is stored on the laptop in a text file, the IMU file. (See Appendix A for details about
the IMU file). The inertial data could be stored also simultaneously on the IMU, in
binary format.

Two output cables leaves the GPS receiver, one is for the NMEA signal, a nav-
igation message standard from the National Marine Electronics Association, from
which the GPS time could be obtained. The second cable is for the pulse per second
(PPS) signal, which is used by the IMU for precise time synchronization with the
GPS time. The raw GPS data are logged internally in the GPS receiver.

The data from the odometer is transmitted to the IMU via the digital TTL signal
(see section 4.4). In the IMU the signal is quantified, pre-processed, time tagged
and included in the IMU file. In our case the odometer was configured to send 446
pulses per meter.

6.4 Data sets

All the data sets started with a 15 minutes static registration, which is needed for
the post-processing determination of the initial attitude (initial alignment phase).
All data sets also ended with a 15 minutes static registration, which can be used
for smoothing or reverse filtering of the navigation solution in post-processing.
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Data set 1

The alignment phase was followed by a 7 minutes long drive in the field. One minute
long ZUPTs was planed every 40-50 second. The ZUPTs was carried out with the
engine turned off and the driver and operator sitting as still as possible!

Data set 2

This data set followed in much the same procedures as the first one, starting with a
15 minutes long static registration, followed with a 30 minutes long drive with one
minute long ZUPT every 40-60 second.

Data set 3

The third data set was supposed to be a five minutes long drive on the Theresien-
wiese without any stops, I.e. without any ZUPTs. During the drive was no problem
to see, but while downloading the file from the IMU an error message appeared. The
file was corrupt and we were not able to restore the data.

The manufacturer have spotted the problem and the new software eliminate the
bug that caused the problem.

6.5 Data preparation

IMU file

Prior the processing the sensor data is rotated to better suit the local level system
used by the AINS Toolbox.

Prior the integration with other sensors it is also important to make sure that
the time stamps in the measurement files coincide with the same time reference.
We have used GPS time in seconds of the week (SoW).

GPS data

The AINS toolbox can be used to fuse IMU data with GPS derived positions and
velocities. But there is no internal engine to process the raw GPS data in the
toolbox. Therefore we have used the Trimble Total Control (TTC) software, to
generate a relative pseudorange GPS solution, which could be used as input to the
toolbox, and from here on simply denoted GPS solution or GPS.

TTC was also used to process a precise reference trajectory from relative phase
measurements (best estimated trajectory), denoted reference.

Odometer data

The sensitive axis of the odometer was in the mission aligned with the longitudinal
axis of the car, mounted 1.8 meters behind, 0.15 meters to the right and 1.46 meters
below the IMU (-1.70 -0.15 -1.46, given in the body frame). The fact the odometer is
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not centered at the x-axis (y 6= 0) means that the sensed velocity from the odometer
has to be corrected with respect to the lever arm.

The fact that the sensor is placed behind and below the origin of the IMU, could
be ignored, since our odometer only senses velocity in the x-axis.

The output rate from the odometer was set to 460 pulses per meter or 2.2 mm
per pulse. Already in a speed of 36 km/h this will produce an output rate of 4.6
kHz.

The data is registered by the internal CPU and software in the IMU. Some
problem with quantification of the odometer data have been seen, especially with
higher output rates of the odometer (higher velocity).

The raw odometer data is very noisy but could be low pass filtered with good
results. The data from this mission was resampled to 1 Hz, using the resample
function in MatLab. The function uses an anti-aliasing filter and also compensates
for time shift which arise during the filter process. The data still showed an average
higher velocity than the solution from the GPS/INS integration, which might be
deduced to the quantification problem. The velocity difference was corrected by a
least square estimated scale factor of 0.997.

A comparison could be found in Figure (6.2), (6.3) and Table (6.1). Notice that
the scale factor found by the comparison with GPS derived velocity differ from the
one found during the performance test in Section 4.4.

Table 6.1.

Std error before correction 0.032 m/s
Std error after correction 0.030 m/s
Mean error before correction 0.005 m/s
Mean error after correction 0.000 m/s
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Figure 6.2. Velocity with respect to time, before correction of the resampled odome-
ter data.
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Figure 6.3. Deviation between resampled odometer velocity and GPS/INS velocity,
plotted with respect to velocity.

6.6 GPS / INS / Odometer Integration with AINS toolbox

The INS data was processed and integrated with GPS and odometer data using a
MatLab toolbox, the AINS toolbox. The power of the AINS Toolbox is its versatility,
there are a number of tools included, and it is easy to look into the code to see how
things are done, or to do some changes. The documentation is found in the manual,
and in the dissertation of the toolbox author, Eun-Whan Shin (2005).

I have only been using one of two main filters in the toolbox, the extended
Kalman filter (EKF). The other one is a sample based, unscented filter, that I am
looking forward to test in the future.

6.7 Results of outdoor experiment

Here are the most important results from the processing of data set 2 (see section
6.4) presented. The tuning of the Kalman filter have for each experiment been ex-
tend to an level where the results should give a understanding of the error magnitude
for each aiding technique, and the relative difference between them.

As reference for the experiment a relative phase measurement GPS solution has
been generated with TTC (best estimated trajectory). Deviation from this trajectory
has been treated as an error.

For the numerical presentation of the trajectory error a radial root mean square
(RMS) error has been used. That is the RMS of the radial error of the trajectory
projected to a plane by a Gauss Krüger map projection. The RMS error is given as

RMS error =

√

∑

(X − X̄)2 +
∑

(Y − Ȳ )2

N
(6.1)

where X and Y denote the map coordinates of the projected test trajectory, and X̄
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and Ȳ denote the map coordinates of the projected reference trajectory. N is the
number summated errors.

For the numerical representation of errors due to GPS data outages the maximal
radial error of the projection during the outage has been used.

radial error = max

(

√

(X − X̄)2 + (Y − Ȳ )2
)

(6.2)

For the graphical presentation is either the test trajectory presented in a map
projection together with the reference trajectory, or as the error of the north, east
and height above the ellipsoid components, plotted with respect to time.

INS only solution

The first experiment was to process a pure INS solution, by using IMU data only.
The initial attitude of the IMU where determined using the 15 minutes long static
registration (Start position was given) . (Figures 6.4 and 6.5)

−100 0 100 200 300 400 500 600

0

100

200

300

400

500

600

East [m]

N
or

th
 [m

]

INS only

Figure 6.4. Trajectory computed with INS data only (test trajectory). The reference
trajectory is seen as red circles, the test trajectory as blue dots. The 60 seconds stops
could be seen from the drift in the corners.

INS only solution with pre-filtered IMU data

For this result the accelerometer data was pre-filtered for high frequency noise by
using the filter described in Chapter 5.2. Still only IMU data are used. (Figure 6.6)
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Figure 6.5. Error plot of the test trajectory in figure 6.4, timing from right after
the end of the allignment phase.
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Figure 6.6. Trajectory computed with pre-filtered INS data only (test trajectory).
The reference is seen as red circles, the pre-filtered test trajectory as blue dots.
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INS with non holonomic constraints

During the data acquisition we where only driving forward, not jumping, nor drift-
ing with the car. Therefore we could process the IMU data with non holonomic
constraints. The RMS is error was 4.52 meters. (Figure 6.7)
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Figure 6.7. Error plot of the test trajectory, timing from right after the end of the
allignment phase. The test trajectory was generated by processing IMU data under
non holonomic constraints.

INS with ZUPT

During the data acquisition one minute stops were planed every 40-60 second. These
stops were used to make ZUPTs during the INS processing. The RMS error was 0.47
meters. (Figure 6.8)

INS with odometer

The IMU data have here been used together with odometer derived velocity data.
The AINS toolbox is original set to do a ZUPT when the odometer velocity drops
below the variance that is set for the odometer. This function was suppressed in
the code, velocities below the variance was instead ignored, and no ZUPT was used.
The RMS error is 4.78 meters. (Figure 6.9)

INS with DGPS

When the INS data is fused with GPS data (relative pseudorange GPS) the RMS error
is 0.22 meters (Figure 6.11). This should be compared with the RMS error of the
pure GPS derived trajectory which was 0.39 meters (Figure 6.10).
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Figure 6.8. Error plot of the test trajectory, timing from right after the end of the
allignment phase. The test trajectory was generated by processing IMU data with
zero velocity updates.
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Figure 6.9. Error plot of the test trajectory, timing from right after the end of the
allignment phase. The test trajectory was generated by fusing IMU and odometer
data together.
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Figure 6.10. Error plot of the test trajectory, timing from right after the end of
the allignment phase. The test trajectory was generated by relative pseudo range
positioning using GPS.
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Figure 6.11. Error plot of the test trajectory, timing from right after the end of the
allignment phase. The test trajectory was generated by fusing relative pseudo range
positions from GPS with IMU data.
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INS / DGPS with GPS data outages

The INS/GPS solution have here been processed with a 120 seconds simulated outage
in the GPS data. Two results are presented, for which different configurations of the
Kalman filter has been used. Figure 6.12 shows the error plot when a higher weight
has been used to the GPS solution, and Figure 6.13 shows the error plot after that
weight of the GPS solution have been lowered, in favor for the IMU data.

When the GPS raw data is processed in the TTC, the variances of the components
in each coordinate triplet are computed. For the higher weighted GPS solution this
variances are used within the AINS computation, for the lower weighted GPS solution
this variances have been doubled.

(Figure 6.12)(Figure 6.13)
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Figure 6.12. Error plot of the test trajectory, timing from right after the end of the
allignment phase. The test trajectory was generated by fusing relative pseudo range
positions from GPS with IMU data. In the GPS data, an simulated data outages of
120 seconds was used. In the Kalman filter, the IMU data was given a relative low
weight.

6.8 Discussion of the results

The results supports in many ways the expectations one could have. The INS only
solution has the characteristic unbounded accumulated errors. By pre filtering the
accelerometer data one could see an improvement, the first ten minutes the radial
error was not exceeding 6 meters.

In the IMU with ZUPT solution the velocity errors are bounded at the time for
the ZUPT, but it is still possible to see how the position errors accumulate (clearly
visible for the height component).
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Figure 6.13. Error plot of the test trajectory, timing from right after the end of the
allignment phase. The test trajectory was generated by fusing relative pseudo range
positions from GPS with IMU data. In the GPS data, an simulated data outages of
120 seconds was used. In the Kalman filter, the IMU data was given a high weight.

The use of non holonomic constraints works very well together with the IMU

data. Some fine tuning of the rotation matrix between the body and vehicle frame
had to be done, since they where not fully aligned. An other way could be to in-
clude a state for this angles in the Kalman filer, and in that way calibrate the non
holonomic constrain during good GPS conditions.

As one could expect the error of the GPS only solution from TTC have the
characteristics of white noise (this was also seen in an autocorrelation of the data).
This noise is reduced in the INS/GPS solution. For this sensor combination, INS/GPS,
it is also of interest to see the effect of GPS data outages.

In the first configuration of the outage test (Figure 6.12), the error was growing
quite rapid, much faster than after a ZUPT. This shows the importance of configur-
ing, tuning, the Kalman filter correctly. When the weight was too high for the GPS

this resulted in a bad estimation of the sensor errors. In the other figure (6.13), one
could instead see how the IMU data fills the two minutes gap, just by lowering the
weight of the GPS solution.

When the INS were integrated with the odometer derived velocities, the errors
are notably smaller compared to the INS only solution. Still a small error accu-
mulation is to be seen, and comparing these results with the ones from the non
holonomic constraints or INS with ZUPT, the question was raised if the odometer is
really needed.

Also when I processed a INS/GPS/odometer solution the result was worse com-
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pared to the result without the odometer. I have not found any good configuration
for this problem even if the variance of the odometer is very high, the result is
bad. This is probably explained by the nature of the odometer error, it is not white
noise but biased error. As seen in the performance test (4.4) the scale factor of the
odometer is not to easy to estimate since it seems to vary with the measured surface.
By implementing an on-line calibration of the odometer, to use during good GPS

reference, one could probably reduce this error. There is also the problem with miss
alignment between the sensor axes, also this would be possible to calibrate on-line.

Concerning the pre-filtered data this have only been presented as a INS only
solution, where it also gave good results. For more precise trajectories, where the
IMU data have been processed together with GPS data, the pre-filtered IMU data
have not been shown to improve the results, contrary the results have been worse.
The reason could be that the high frequency really is important in the filter, due
to the linearization. Or that the low pass filter has not worked to well,(time shift
e.t.c.?).





Chapter 7

City navigation mission

In this mission the car mounted system was used in the city centre of Munich. The
city of Munich does not house any sky scrapers but the buildings rise six, eight
stories high and the streets are sometimes narrow. This does not make the best
environment for receiving GPS signals.

7.1 Aim of mission

The aim of this mission was to see how the sensors could complement each other in
an urban environment, also by making use of the results from the previous mission.

7.2 System setup

The Experiments was carried out with the same system as described in Chapter
6, with the difference that we did not use our own GPS base station. Thanks to
the collaboration with the Bavarian Committee for International Geodesy BEK
(Beyerische Komission für die Internationale Erdmessung) we could use data from
the German Satellite Positioning Service (SAPOS).

SAPOS is a net of permanent reference stations all over Germany, and we used
data from a station less than 2 km away.

7.3 Data flow

The data flow was identical with the one described in Chapter 6.

7.4 Data set

The mission started at the Theresienwiese with a 15 minutes static registration.
We than drove out from the field, into the city. The drive in the city lasted for 20
minutes, until we arrived at the technical university of Munich. During this time we
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had some natural stops due to stop lights. The mission then ended with 15 minutes
registration, which could be used in smoothing during post-processing.

7.5 Data preparation

IMU data

The IMU data was prepared as in Chapter 6.

GPS data

The GPS measurements from the mission was very poor, most of the time the number
of visible satellites was below four, and there was a constant change of satellite
constellations. The Trimble Total Control was used to process the data, but due
to the poor number of simultaneously visible satellites, a solution could only be
generated for some positions using a relative pseudorange method. The relative
phase measure method generated a solution for two positions.

Both the GPS receiver and TTC is working to reduce the influence of multi path
effects. In the resulting GPS positions there was still a few outliers to be seen, which
I deduce to the multi path errors. For the experiment this was good, since it would
be interesting to see how these errors would be handled in the EKF.

Odometer data

The Velocity data derived from the odometer was multiplied with the scale factor
found in previous mission.

7.6 Results of Munich city centre experiment

No good reference is to be used this mission since no continuous GPS trajectory was
generated. The best measure of a good trajectory was instead the closing error at
those GPS positions we had, and by comparison to map data.

The trajectories from some of the solutions are plotted together in Figure 7.1.
Figure 7.2 & 7.3 are detailed plots.

7.7 Discussion of the results

The results have shown that navigation is possible with the system, even when long
GPS outages occur.

The synergy between the INS and ZUPT respective INS and GPS was easily seen.
There are only fragments of a trajectory when one use GPS only, and the INS only
trajectory is drifting away very early. The data fusion of INS & GPS resulted in a very
good trajectory, and by doing ZUPTs one effectively bound velocity errors when the
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Figure 7.1. Trajectories from the Theresienwiese to the TUM. The open field of the
Theresienwiese is stretching 800 m north and 500 m east.

car stops due to stop lights. The error is most probably never exceeding five meters.

The INS/ZUPT solution was very good as well. Large errors occur in the begin-
ning of the trajectory before the first ZUPT, most probably due to error in start
alignment. After the first ZUPT much off this error was corrected, but in the end
the error still exceeded ten meters.

By using the INS/ZUPT solution with non holonomic constraints one reduce the
error in the beginning, but there are other errors accumulating, the error at the end
is few meters larger than without the non holonomic constraints.

The INS/Odometer solution was slightly worse than the INS/ZUPT solution with
non holonomic constraints. The position errors of these both drifted to the east,
this could be a result of a miss alignment of the vehicle-IMU reference frames.
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Figure 7.2. Zoom figure of figure 7.1,just when the firs GPS outage occur.
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Figure 7.3. Zoom figure of the round about in the upper corner of figure 7.1.





Chapter 8

High way navigation mission

This mission took place on one of the high ways leading from Munich.(Figure 8.1.)
Most part of the highway is surrounded by open fields. There are some tunnels and
bridges crossing the highway, but we had reason to believe that the conditions for
receiving GPS signals was good.

Figure 8.1. The highway leading from out east from Munich. The trajectory could
bee seen in blue.
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8.1 Aim of mission

The previous two missions showed that processing IMU data with ZUPTs or non
holonomic constraints gave better results compared to if the INS is aided with an
odometer. I.e. we have not been able to show that the odometer as extra sensor is
really necessary.

In this mission we wanted to see if the contribution of odometer derived velocity
data would be more important if there were no regular stops in the mission.

8.2 System setup

The Experiments was carried out with the same system as described in Chapter 6.
Thanks to the collaboration with the Bavarian Committee for International Geodesy
we could once again use data from the German Satellite Positioning Service (SAPOS).

8.3 Data flow

The data flow was identical with the one described in Chapter 6.

8.4 Data set

The mission started with a 15 minutes static registration at a gas station just by
the highway. One important remark here is that we were reversing the car out
from the station. One has to remember this if one want to use the odometer data
or to constrain the INS with non holonomic constraints.(The TTL signal from the
odometer does not differ on forward and backward movement.)

After the static registration we drove on the highway leading out from the city
for 40 minutes until we change the direction, heading back to Munich. The mission
ended with 15 minutes static registration, which could be used for smoothing of the
navigation solution in post-processing.

8.5 Data preparation

IMU data

The IMU data was prepared as in Chapter 6.

GPS data

The GPS data was processed with Trimble total control, where both relative phase
measurements and pseudorange measurements were used. Although the theoretical
conditions for the day where good, with a large number satellites and a low DOP
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Figure 8.2. GPS solutions during the mission, with the time axis in minutes. Red
denote phase measurements solution and black pseudorange measurements solution.
The long periods of phase solutions are the static initialization.

values, the measurements did show something else. The reccorded data was sparse
and the generated trajectory showed lots of gaps.

By importing the GPS trajectory into Google Earth, one can see that the outages
occur during and after tunnels, one could also see that outages occur after every
passed bridge or larger obstructers. This was something that I was expecting. What
I had not expected was that it would take minutes before the receiver locks on the
satellites again. This problem could be more examined, but the general explanation
for the problem is the low number of satellites available in the line of sight.

Odometer data

The velocity derived from the odometer was multiplied with the scale factor found
in the experiment at the Theresienwiese (See Chapter 6) , and than resampled down
to 1 Hz. Estimation of the scalefactor using this data set gave a similar result as
previous (see Section 6.5).

8.6 Results of High way experiment

Despite the large number of outages in GPS data, the data set is good and there is
lots of possibilities to process the data further. Here I present the limited tests that
I have done.

INS only

After half the drive, half an hour of driving, the INS only has an radial error in the
plane of 1200 meters.

INS with non holonomic constraints

With non holonomic constraints the error after half an hour was 900 meters.
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INS with odometer

When the INS data is fused with odometer derived velocities, the error after half an
hour was 30 meter.

INS/GPS

It is not to easy to generally describe the error during a outage, since the filter is
affected by how long it have been aided with the GPS solution before the outages.
I used a semi simulated outage of 120 seconds, for which there was no GPS data
available for the first 90 seconds and the last 30 seconds was a simulated outage.
This after a 55 seconds period of GPS aiding.

After the 120 second outage the error was 2 meters, the largest error component
is in the longitudinal axis of the vehicles .

INS/GPS non holonomic constraints

The same outage as above was used, it resulted in a error of 5 meters and the largest
component was a drift orthogonal to the vehicles longitudinal axis.

INS/GPS odometer

The same outage as above was used, it resulted in a error of 5 meters and the largest
component was a drift orthogonal to the vehicles longitudinal axis.

8.7 Discussion of the results

The fusion of INS and GPS data showed good result, also the errors during the GPS

data outages was generally lower compared to the test at the Theresienwiese (Chap-
ter 6). This could be deduced to better performance of the IMU in higher velocities,
better performance of the IMU in smoother dynamics, or better performance of the
EKF during smoother dynamics. To find out which, more work have to be done
concerning the error behavior.

In this mission the fusing of INS and odometer data gave good result, better
than if non holonomic constraints was used.

In the last two results, the constraints and extra data from the odometer, have
not improved the solution. Further processing would have to be made.
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Conclusions

The results have shown that the hardware used in the system could be integrated
using the AINS Toolbox.

The fusion of INS and GPS data gave good results also in an urban environment
with long GPS outages. The adaptive Kalman filter in the AINS Toolbox did also
answered well on GPS outliers (i.e. there was a low impact on the result).

The integration of the odometer, i.e the fusion of INS data with odometer derived
velocities, did produce the desired results under certain conditions. There was a
problem when there was repeatedly full stops during the mission, the source for this
error have not fully been investigated. (In those situations ZUPTs could be used as
a powerful aiding technique). When the car and the system was on a longer mission
with continuous high speed the result was better and the odometer constrained the
navigation errors as desired. ( Results presented in Section 8.6).

I think that the results with odometer could be improved by using an on-line
calibration for the odometer scale factor as discussed in Section 5.1 (also 4.4, 6.5,
6.8 and 8.7). Also other variables such as update rate and variance of the measures
have to be further examined.

The effective improvement of the navigation solution, using odometric data up-
date, was shown best for longer missions, without undesired stops and in the pres-
ence of a poor GPS signal (i.e. in tunnels, on mountainous roads or roads lined with
trees).
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Appendix A

Logged data

For the missions at the Theresienwiese and the Munich city centre was the following
data logged:

# Started: 01/16/2007 12:15:23 (local) 01/16/2007 11:15:23 (UTC)

# Column 1: Marker,

# Column 2: TINTRPL, TINTRPL, [ s]

# Column 3: IACC, IAcc_X, [ m/s2]
# Column 4: IACC, IAcc_Y, [ m/s2]
# Column 5: IACC, IAcc_Z, [ m/s2]
# Column 6: IOMG, IOmg_X, [ °/s]

# Column 7: IOMG, IOmg_Y, [ °/s]

# Column 8: IOMG, IOmg_Z, [ °/s]

# Column 9: ODOVEL, OdoVel_0, [ m/s]

# Column 10: ODOT, OdoT, [ s]

# Column 11: RODO, RawOdo0, [ m]

# Column 12: RVEL, RVel_0, [ m/s]

# Column 13: TIME, IMS_time, [ s]

# Column 14: ITACCF, ITAccF_0, [ µA]
# Column 15: ITACCF, ITAccF_1, [ µA]
# Column 16: ITACCF, ITAccF_2, [ µA]
# Column 17: RAWVX, RawVX, [ m/s]

# Column 18: NRPY, roll, [ °]

# Column 19: NRPY, pitch, [ °]

# Column 20: NRPY, yaw, [ °]

MARKER Event mark, trigged by the operator
TINTRPL Time reference constructed by the NMEA message, PPS signal and the

internal time (TIME)
IACC Inertial accelerations, Incl. gravity
IOMG Inertial rotation rates, Incl. earth rotation
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ODOVEL Odometer derived velocity
ODOT Odometer data
RODO Odometer data
TIME Internal time of the IMU, refer to start up.
ITACCF Current proportional with the accelerometers temperatures.
RAWVX Raw value of longitudinal velocity
NRPY The real time computed attitude by the IMU. (Using internal algorithms

and CPU. This data was not used in my work)



Appendix B

Cookbook

This appendix is written to give some system specific details about the data pro-
cessing. Special intended for future work with iNAV-RQH and the AINS Toolbox
at IAPG.

IMU configuration file

The IMU configuration file is used to set how the IMU will handle its sensor data. For
my work, I have used an earlier template wich I renamed. Thereafter it is possible
to change the sampling rate and to configure and name the output file.

IMU output to AINS input

If the iMAR Navcomand have been configured as above, an ASCII output file similar
to the one in Appendix A will be generated, from here on called the IMU file. To
be able to use the IMU file together with GPS data and the AINS Toolbox, one have
to apply the following steps.

• Change the time stamps to seconds of the week, GPS time.

• Rotate the accelerometer and gyroscope data.

• Write the above data into a binary file.

• Produce an ASCII odometer file.

How the time is changed in txt2imu

The matlab file txt2imu could be used to do the first three steps above. The file
could be rewritten into a function file with some simple modifications.

To be able to read the IMU file into txt2imu, one first has to remove the header,
and save the new file as name.txt (In order to follow the standard at IAPG). Then
the name of the new file should be typed into the input line of txt2imu. And an
output name will have to be typed into the output line, outputname
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The TINTRPL time in the second column of the IMU file is given in second of the
day, coordinated universal time (UTC). To have same time-reference as for the GPS

measurement, one converts this time to GPS time in seconds of the week (SoW).
This is done in the txt2imu file, and it is possible to change the leap seconds (at
this time set to 14s), and to write which day of the week that the mission took
place. Day 0 is Sunday and if the mission took place on a Tuesday, the seconds
from two days will be added (2*86400 sec), plus the leap seconds.

How the rotations is done in txt2imu

The sensor data in the IMU file is measured along the axis of the IMU-reference
frame, for the iNAV RQH this is a right handed system where the z-axis is pointing
upward. For this design a East, North, Up local level reference system (ENU) is
best used to express the attitude of the unit. This since, when the IMU is vertically
aligned and north oriented, the axis of the IMU and the local level system will
coincide. (XIMU

ENU oriented towards East, Y IMU
ENU oriented toward North and ZIMU

ENU

towards the up direction )
The AINS Toolbox use a North, East, Down local level system (NED). Therefore

I have rotated the data from the IMU so that the rotated IMU system can coincide
with the NED system.

(The positions of the IMU refer to the e-frame and will not be effected by this,
only how the attitude and velocity refer to the local level system is effected)

The transformation between the two systems could be done by finding the ro-
tation matrix R in the formulas

AccelerometerDataNED = R ∗ AccelerometerDataENU

and

GyroscopeDataNED = R ∗ GyroscopeDataENU

In txt2imu R is given by a direction cosine matrix (DCM), which easiest could
be found through the Euler angels of rotation between the two systems. In Figure
B.1 are the two system presented and one could see how two rotations differ the
two systems from each other.

Following are the Euler angels used in B.1.

Euler Angels

roll = π
pitch = 0
yaw = −π/2

Where the roll is around X-axis, pitch around the Y-axis and yaw is around the
Z-axis. The direct cosine matrix could thereafter be constructed by

Rroll =







1 0 0
0 cos(roll) sin(roll)
0 − sin(roll) cos(roll)
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Figure B.1. To the left the local level ENU system, orientated in the earth sys-
tem. Two rotations rotate the system into a NED system, shown to the right. The
translation in west-east direction over the intermediate system (ESD) added only for
a clearer view.

,

Rpitch =







cos(pitch) 0 − sin(pitch)
0 1 0

sin(pitch) 0 cos(pitch)







Ryaw =







cos(yaw) sin(yaw) 0
− sin(yaw) cos(yaw) 0

0 0 1







DCM = (Ryaw ∗ Ryaw) ∗ Rroll

which, if the values used above are used, results in

DCM =







0 1 0
1 0 0
0 0 −1






.

How the new file is written in txt2imu

After that the time have been changed and the rotation have been made, one also
have to change the gyroscope data from degrees/second to radians/second, by mul-
tiply with π/180. The time, accelerometer and gyroscope data is then written into
a binary file of the format outputname.imu.
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How to create an ASCII odometer file with the makeOdoV file

The AINS Toolbox does not read the raw odometer data, the input should be a
velocity file in ASCII format, and time tagged in the same system as the IMU and
GPS data.

The velocity to use could be the odometer velocity data in the IMU output file,
the ODOVEL column (See Appendix A). Or one could combine the raw odometer data
(RODO) with the special odometer time column in the IMU file, the ODOT column, to
derive the velocity. The later method has showed better result.

The matlab file makeOdoV read the name.txt file, and derive the velocity from
RODO and ODOT. Since the velocity data is rather noisy it is filtered and resampled
to 1 Hz by the matlab resample function. The time is not resampled, instead a
new time column is created by taking the time from the first row in name.txt and
adding one second for each new row (1 Hz).

The filtering of odometer data is something that could be examined more, by
testing different filter methods, and to further examine the error between GPS and
odometer velocities. (Auto correlation, time shifts?)

GPS receiver output to AINS input

Downloading GPS raw data

If the System 4000sse from Trimble has been used, the raw data could be downloaded
through a serial communication, by using the Trimble Data Transfer software (free
to download).

If the 4000sse receiver is not listed in the Device menu, it is possible to create a
new device, by go to Devices => New => GPS Receiver 4000 series=> ok. The
maximal baud rate have to be set to the same as in the receiver (I used 19200),
and the parity should be set to odd.(if there is problem down loading the data, try
to decrease the baud rate further, and remember to set the same baud rate in the
receiver!)

GPS data processing

I have been using Trimble Total Control (TTC) for the GPS data processing. The
software is easy to learn and has good help in the Help menu.

If TTC is used, the trajectory could be exported in the Geodimeter Format with
the option WGS-84 (See TTC handbook or Help files for more information on how
to export).

From the TTC generated file the time, position and standard deviation data has
to be stored into a new ASCII file. For this the matlab file TTC2AINS could be
used. In TTC2AINS I have used the matlab load command in the file, therefore the
header of the TTC generated file must be removed and the letter columns changed
to integers. The integers I used was
0 for ?
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1 for FIXED

3 for DGPS

Create an AINS configuration file

The Manual for AINS Toolbox gives a good description of the configuration file.
Here is only some complimentary information.

If one use an odometer and the IMU is mounted on the car with the IMU x-axis
pointing forward, one must use a body to vehicle rotation of −90 degrees around
the z-axis. This since the IMU data have been rotated in the txt2imu step, so
in the body frame it is actually the y-axis that is pointing forward (longitudinal
to the car). The vehicle to body rotation is easily done by the Body to vehicle

attitude boxes in the graphic user interface. It is also possible to adjust this angle
if the IMU was not fully aligned with the vehicle.

If one use non holonomic constraints, than the boxes of the Wheel lever arm

must be set to Zero. Or one have to make a small change in the code for the
ins_ekf_psi_bs sub routine. Otherwise the lever arm correction for the odometer
will be used.

The lever arms (GPS & odometer) should be given in the body frame. I.e. they
have to be rotated with R, if they are measure in the IMU-frame.

R =







0 1 0
1 0 0
0 0 −1







The values for the IMU performance have to be modelled and filled in. I cheated
and used the values from the AINS example file, which actually is for a Litton 200.

Leave no empty boxes in the graphic user interface! If they are not needed, that
means that the value should be zero.

AINS output to ASCII data.

The AINS output data is ether a navigation file of the form outputname.nav or a
navigation file and a smoothed navigation file, outputname.rts. Both are in binary
form, and the files could of course be used as they are, but it is also possible to
use the nav2txt file to write ASCII files for further use. In ether case one must
know how the output file is built up, which could be found in the AINS Manual. If
a outputname.rts file is created one could use the matlab flipud function to flip
the file into a file with chronological events.
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Find more help

• The AINS Toolbox manual by the Toolbox author Eun-WhanShin
• Estimation Techniques for Low-Cost Inertial Navigation by Eun-WhanShin
• Accurate improvement of Low Cost INS/GPS for Land Applications by Eun-

WhanShin
• Investigation of a Navigation-Grade RLG SIMU type iNAV-RQH by R. Dorobantu,

C. Gerlach
• NavCommand, Software to Operate and Configure iMAR Inertial Measuring

and Surveying Systems, operation and user Instruction from iMAR
• iNAV-RQH Configuration and Usage from iMAR



Appendix C

Manufactures specification of hardware

Table C.1. Principal Parameters of the Honeywell Ring Laser Gyroscope type
GG1320 (Dorobantu, Gerlach 2004)

Performance Value Unit

Bias stability error ≤ 0.002 deg/h

Random walk noise ≤ 0.0018 deg/
√

h
Scale factor stability / nonlinearity ≤ 10 ppm
Input axes alignment error ≤ ±1 mrad
Maximal angular rate ±500 deg/s
Mean time between failures ≤ 5 · 104 h

Table C.2. Principal Parameters of Q-Flex accelerometers QA 2000-40 (Dorobantu,
Gerlach 2004)

Performance Value Unit

Range ±25 g
Bias ≤ 4000 µg
Scale factor 1.2...1.46 dB
Damping ratio 0.3...0.8 n/a

Noise power density 8 µg/
√

Hz
2nd Order nonlinearity 15 µg/g2

Input axes alignment error ≤ ±1 mrad
Maximal angular rate ±500 deg/s
Temperature sensitivity ≤ 3...25 µg/◦C
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Table C.3. Principal Parameters of iNAV-RQH, IMU from Imar (Dorobantu, Ger-
lach 2004)

Performance Value Unit

Position accuracy (unaided) ≤ 1.85 km/h
Sampling rate up to 1000 Hz
Output rate 1...500 Hz
Latency ≤ 1 ± 0.01 ms
Weight ca.13 kg
Size ca. × 350 × 213 × 180 mm
Shock 60 g (11ms)

Table C.4. Principal Parameters of Correcit L-CE, odometer from Corsys-Datron
(Corsys-Datron)

Performance Value Unit

Range 0.5...400 km/h
Resolution 2.2 mm
maximum deviation ≤ ±0.1% n/a

Table C.5. Principal Parameters of System 4000 SSE, GPS receiver from Trimble
(Trimble)

Performance Value Unit

Band L1L2
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