InsTRUCTOR'S
 Solutions Manual

Aimee L. Calhoun

Monroe Community College
Richard C. Stewart
Monroe Community College

A Survey of Mathematics with Applications

Seventh Edition and Expanded Seventh Edition

Allen R. Angel
Monroe Community College

Christine D. Abbott

Monroe Community College
Dennis C. Runde
Manatee Community College

Reproduced by Pearson Addison-Wesley from electronic files supplied by the authors.

Copyright © 2005 Pearson Education, Inc.
Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN 0-321-20594-4

123456 VHG 07060504

Table of Contents

CHAPTER 1 CRITICAL THINKING SKILLS
1.1 Inductive Reasoning 1
1.2 Estimation 3
1.3 Problem Solving 5
Review Exercises 12
Chapter Test 15
Group Projects 17
CHAPTER 2 SETS
2.1 Set Concepts 19
2.2 Subsets 2
2.3 Venn Diagrams and Set Operations 23
2.4 Venn Diagrams With Three Sets and Verification of Equality of Sets 29
2.5 Applications of Sets 38
2.6 Infinite Sets 43
Review Exercises 44
Chapter Test 47
Group Projects 48
CHAPTER 3 LOGIC
3.1 Statements and Logical Connectives 49
3.2 Truth Tables for Negation, Conjunction, and Disjunction 51
3.3 Truth Tables for the Conditional and Biconditional 59
3.4 Equivalent Statements 61
3.5 Symbolic Arguments 69
3.6 Eurler Circles and Syllogistic Arguments 76
Review Exercises 79
Chapter Test 83
Group Projects 85
CHAPTER 4 SYSTEMS OF NUMERATION
4.1 Additive, Multiplicative, and Ciphered Systems of Numeration 87
4.2 Place-Value or Positional-Value Numeration Systems 90
4.3 Other Bases 93
4.4 Computation in Other Bases 99
4.5 Early Computational Methods 102
Review Exercises 106
Chapter Test 109
Group Projects 111
CHAPTER 5 NUMBER THEORY AND THE REAL NUMBER SYSTEM
5.1 Number Theory 113
5.2 The Integers 117
5.3 The Rational Numbers 119
5.4 The Irrational Numbers and the Real Number System 126
5.5 Real Numbers and Their Properties 129
5.6 Rules of Exponents and Scientific Notation 132
5.7 Arithmetic and Geometric Sequences 137
5.8 Fibonacci Sequence 141
Review Exercises 143
Chapter Test 147
Group Projects 148
CHAPTER 6 ALGEBRA, GRAPHS, AND FUNCTIONS
6.1 Order of Operations 151
6.2 Linear Equations in One Variable 153
6.3 Formulas 161
6.4 Applications of Linear Equations in One Variable 173
6.5 Variation 178
6.6 Linear Inequalities 183
6.7 Graphing Linear Equations 189
6.8 Linear Inequalities in Two Variables 202
6.9 Solving Quadratic Equations by Using Factoring and by Using the Quadratic Formula 209
6.10 Functions and Their Graphs 215
Review Exercises 225
Chapter Test 237
Group Projects 239
CHAPTER 7 SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES
7.1 Systems of Linear Equations 241
7.2 Solving Systems of Equations by the Substitution and Addition
Methods 247
7.3 Matrices 254
7.4 Solving Systems of Equations by Using Matrices 262
7.5 Systems of Linear Inequalities 265
7.6 Linear Programming 268
Review Exercises 271
Chapter Test 276
Group Projects 278
CHAPTER 8 THE METRIC SYSTEM
8.1 Basic Terms and Conversions Within the Metric System 279
8.2 Length, Area, and Volume 281
8.3 Mass and Temperature 282
8.4 Dimensional Analysis and Conversions to and from the Metric System 285
Review Exercises 290
Chapter Test 292
Group Projects 293
CHAPTER 9 GEOMETRY
9.1 Points, Lines, Planes, and Angles 295
9.2 Polygons 299
9.3 Perimeter and Area 304
9.4 Volume 309
9.5 Transformational Geometry, Symmetry, and Tessellations 313
9.6 The Mobius Strip, Klein Bottle, and Maps 317
9.7 Non-Euclidean Geometry and Fractal Geometry 318
Review Exercises 320
Chapter Test 323
Group Projects 324
CHAPTER 10 MATHEMATICAL SYSTEMS
10.1 Groups 327
10.2 Finite Mathematical Systems 328
10.3 Modular Arithmetic 332
Review Exercises 336
Chapter Test 339
Group Projects 341
CHAPTER 11 CONSUMER MATHEMATICS
11.1 Percent 343
11.2 Personal Loans and Simple Interest 346
11.3 Compound Interest 350
11.4 Installment Buying 353
11.5 Buying a House with a Mortgage 359
Review Exercises 362
Chapter Test 365
Group Projects 366
CHAPTER 12 PROBABILITY
12.1 The Nature of Probability 367
12.2 Theoretical Probability 369
12.3 Odds 371
12.4 Expected Value (Expectation) 375
12.5 Tree Diagrams 378
12.6 "Or" and "And" Problems 382
12.7 Conditional Probability 387
12.8 The Counting Principle and Permutations 389
12.9 Combinations 392
12.10 Solving Probability Problems by Using Combinations 395
12.11 Binomial Probability Formula 399
Review Exercises 400
Chapter Test 404
Group Projects 405
CHAPTER 13 STATISTICS
13.1 Sampling Techniques 407
13.2 The Misuses of Statistics 408
13.3 Frequency Distributions 411
13.4 Statistical Graphs 414
13.5 Measures of Central Tendency 420
13.6 Measures of Dispersion 424
13.7 The Normal Curve 430
13.8 Linear Correlation and Regression 435
Review Exercises 447
Chapter Test 453
Group Projects 454
CHAPTER 14 GRAPH THEORY
14.1 Graphs, Paths, and Circuits 455
14.2 Euler Paths and Euler Circuits 459
14.3 Hamilton Paths and Hamilton Circuits 464
14.4 Trees 471
Review Exercises 482
Chapter Test 487
Group Projects 489
CHAPTER 15 VOTING AND APPORTIONMENT
15.1 Voting Systems 491
15.2 Flaws of Voting 496
15.3 Apportionment Methods 500
15.4 Flaws of Apportionment Methods 507
Review Exercises 511
Chapter Test 515
APPENDIX GRAPH THEORY 517

ACKNOWLEDGMENTS

We would like to thank Allen Angel, Christine Abbott, and Dennis Runde, the authors of A Survey of Mathematics with Applications, for their support and encouragement; Joe Vetere from Addison Wesley for his computer expertise; Lauren Morse from Addison Wesley for her assistance; and Jane Cummings from Monroe Community College for her technical support.

Aimee L. Calhoun
Richard C. Stewart

To my wonderful husband, Justin, for his love and support throughout the process of co-authoring this manual;
my children, Melanie and Jacob, for being my inspiration;
my incredible parents and the rest of my loving family for always believing in me;
and to the loving memories of my grandparents.
Aimee L. Calhoun

I am grateful to my wife, Christy, who enthusiastically supported my efforts to contribute to this manual, and to my daughters, Sarah and Sheila, for their encouragement to serve as an educator.

Richard C. Stewart

CHAPTER ONE

CRITICAL THINKING SKILLS

Exercise Set 1.1

1. a) $1,2,3,4,5, \ldots$
b) Counting numbers
2. a) If $a \div b$ has a remainder of zero, then a is divisible by b.
b) $4,8,12$
c) $9,18,27$
3. A conjecture is a belief based on specific observations that has not been proven or disproven.
4. Inductive reasoning is the process of reasoning to a general conclusion through observation of specific cases.
5. Deductive reasoning is the process of reasoning to a specific conclusion from a general statement.
6. A counterexample is a specific case that satisfies the conditions of the conjecture but shows the conjecture is false.
7. Inductive reasoning
8. Deductive reasoning
9. Inductive reasoning, because a general conclusion was made from observation of specific cases.
10. Inductive reasoning, because a general conclusion was made from observation of specific cases.
11. $15(1+4) 10(4+6) 10(6+4) 5(4+1) 1$
12. $5 \times 9=45$
13.

17.

19. $15,18,21$ (Add 3 to previous number.)
21. $-1,1,-1$ (Alternate -1 and 1.)
23. $\frac{1}{81}, \frac{1}{243}, \frac{1}{729}$ (Multiply previous number by $\frac{1}{3}$.)
25. 36, 49, 64 (The numbers in the sequence are the squares of the counting numbers.)
12. $100,000=10^{5}$
14. $11 \times 14=154$
16.

18.

20. 2, - 4, - 10 (Subtract 6 from previous number.)
22. $-5,-7,-9$ (Subtract 2 from previous number.)
24. 162, - 486, 1458 (Multiply previous number by -3 .)
26. $21,28,36(15+6=21,21+7=28,28+8=36)$

2 CHAPTER 1 Critical Thinking Skills

27. 34, 55, 89 (Each number in the sequence is the sum of the previous two numbers.)
28. Y: There are three letters in the pattern. $39 \times 3=117$, so the $117^{\text {th }}$ entry is the second R in the pattern. Therefore, the $118^{\text {th }}$ entry is Y .
29. a) $36,49,64$
b) Square the numbers $6,7,8,9$ and 10 .

$$
\text { c) } 8 \times 8=64 \quad 9 \times 9=81
$$

72 is not a square number since it falls between the two square numbers 64 and 81 .
28. $\frac{80}{81},-\frac{160}{243}, \frac{320}{729}$
(Multiply previous number by $-\frac{2}{3}$.)
30. a) Answers will vary.
b) The sum of the digits is 9 .
c) The sum of the digits in the product when a one or two digit number is multiplied by 9 is 9 .
32. a) 28 and 36
b) To find the $7^{\text {th }}$ triangular number, add 7 to the $6^{\text {th }}$ triangular number. To find the $8^{\text {th }}$ triangular number, add 8 to the $7^{\text {th }}$ triangular number. To find the $9^{\text {th }}$ triangular number, add 9 to the $8^{\text {th }}$ triangular number. To find the $10^{\text {th }}$ triangular number, add 10 to the $9^{\text {th }}$ triangular number. To find the $11^{\text {th }}$ triangular number, add 11 to the $10^{\text {th }}$ triangular number.
c) $36+9=45 \quad 45+10=55 \quad 55+11=66 \quad 66+12=78$

72 is not a triangular number since it falls between the two triangular numbers 66 and 78 .
33. Blue: 1, 5, 7, 10, 12 Purple: 2, 4, 6, 9, 11 Yellow: 3, 8
34. a) 19 (Each new row has two additional triangles.)
b) $1+3+5+7+9+11+13+15+17+19=100$
35. a) ≈ 58 million
b) ≈ 45 million
c) We are using observation of specific cases to make a prediction.
36. a) $\approx \$ 28,000$
b) $\approx \$ 61,000$
c) We are using observation of specific cases to make a prediction.
37.

P	B	P	B
B	P	B	P
P	B	P	B
B	P	B	P

38.

39. a) You should obtain the original number.
b) You should obtain the original number.
c) Conjecture: The result is always the original number.
d) $n, 4 n, 4 n+8, \frac{4 n+8}{4}=\frac{4 n}{4}+\frac{8}{4}=n+2, n+2-2=n$
40. a) You should obtain twice the original number.
b) You should obtain twice the original number.
c) Conjecture: The result is always twice the original number.
d) $n, 10 n, 10 n+5, \frac{10 n+5}{5}=\frac{10 n}{5}+\frac{5}{5}=2 n+1,2 n+1-1=2 n$
41. a) You should obtain the number 5 .
b) You should obtain the number 5 .
c) Conjecture: No matter what number is chosen, the result is always the number 5 .
d) $n, n+1, n+(n+1)=2 n+1,2 n+1+9=2 n+10, \frac{2 n+10}{2}=\frac{2 n}{2}+\frac{10}{2}=n+5, n+5-n=5$
42. a) You should obtain the number 0 .
b) You should obtain the number 0 .
c) Conjecture: No matter what number is chosen, the result is always the number 0 .
d) $n, n+10, \frac{n+10}{5}, 5\left(\frac{n+10}{5}\right)=n+10, n+10-10=n, n-n=0$
43. $999 \times 999=998,001$ is one example.
44. $11+12+13=36$ is one example.
45. Two is a counting number. The sum of 2 and 3 is 5 . Five divided by two is $\frac{5}{2}$, which is not an even number.
46. One and three are counting numbers. The product of 1 and 3 is 3 , which is not divisible by 2 .
47. One and two are counting numbers. The difference of 1 and 2 is $1-2=-1$, which is not a counting number.
48. The sum of the odd numbers 1 and 5 is 6 , which is not divisible by 4 .
49. a) The sum of the measures of the interior angles should be 180°.
b) Yes, the sum of the measures of the interior angles should be 180°.
c) Conjecture: The sum of the measures of the interior angles of a triangle is 180°.
50. a) The sum of the measures of the interior angles should be 360°.
b) Yes, the sum of the measures of the interior angles should be 360°.
c) Conjecture: The sum of the measures of the interior angles of a quadrilateral is 360°.
51. 129, the numbers in positions are found as follows: $\begin{array}{ll}a & b \\ c & a+b+c\end{array}$
52. 1881, 8008, 8118 (They look the same when looked at in a mirror.)
53. Counterexample
54. c

Exercise Set 1.2

(Note: Answers in this section will vary depending on how you round your numbers. The answers may differ from the answers in the back of the textbook. However, your answers should be something near the answers given. All answers are approximate.)

1. $431+327.2+73.5+20.4+315.9 \approx 430+330+70+20+320=1170$
2. $3.89+402.8+156.9+189+0.23+416 \approx 4+403+157+190+0+416=1170$
3. $297,700 \times 4087 \approx 300,000 \times 4000=1,200,000,000$
4. $\frac{405}{0.049} \approx \frac{400}{0.05}=8000$
5. $0.049 \times 1989 \approx 0.05 \times 2000=100$
6. $51,608 \times 6981 \approx 52,000 \times 7000=364,000,000$
7. $592 \times 2070 \times 992.62$
$\approx 600 \times 2000 \times 1000=1,200,000,000$
8. $1854 \times 0.0096 \approx 1900 \times 0.01=19$
9. $297.521-85.964 \approx 300-90=210$
10. 9% of $2164 \approx 10 \%$ of $2200=0.10 \times 2200=220$
11. $\frac{0.0498}{0.00052} \approx \frac{0.05}{0.0005}=100$
12. $296.3 \div 0.0096 \approx 300 \div 0.01=30,000$

4 CHAPTER 1 Critical Thinking Skills

13. $52 \times \$ 0.37 \approx 50 \times \$ 0.40=\$ 20$
14. $1521+1897+2324+2817$
$\approx 1500+1900+2300+2800=8500 \mathrm{mi}$
15. $\$ 2.29+\$ 12.16+\$ 4.97+\$ 6.69+\$ 49.76+\$ 0.47$
$+\$ 3.49+\$ 5.65 \approx \$ 2+\$ 12+\$ 5+\$ 7+\$ 50+\$ 0.50$
$+\$ 3.50+\$ 5.70=\$ 85.70$
16. $\frac{\$ 44,569}{5} \approx \frac{\$ 45,000}{5}=\$ 9000$
17. $9 \times 5.12 \approx 9 \times 5=45 \mathrm{lb}$
18. $\frac{23,663}{12} \approx \frac{24,000}{12}=2000 \mathrm{mi}$
19. $12(\$ 29.17+\$ 39.95)$

$$
\approx 12(\$ 30+\$ 40)=12(\$ 70)=\$ 840
$$

27. 15% of $\$ 38.60 \approx 15 \%$ of $\$ 40=0.15 \times \$ 40=\$ 6$
28. 100 Mexican pesos $=100 \times 0.092$ U.S. dollars $\approx 100 \times 0.09$ U.S. dollars $=9$ U.S. dollars $\$ 50-\$ 9=\$ 41$
29. ≈ 375 miles
30. a) $30.98 \% \times 105$ million $\approx 31 \% \times 105$ million $=0.31 \times 105$ million $=32.55$ million ≈ 32.6 million b) $18.41 \% \times 3141$
$\approx 18 \% \times 3100=0.18 \times 3100=558$ counties
c) The counties that use punch cards could be the largest counties with the most voters.
31. a) 4 million
b) 98 million
c) 98 million -34 million $=64$ million
d) $19,000+78,000+82,000+61,000+35,000$ $=275$ million
32. 32 hours $\times \$ 7.95$ per hour
≈ 32 hours $\times \$ 8$ per hour $=\$ 256$
33. $6 \times 15.87 \approx 6 \times 16=96 \mathrm{lb}$
34. $\frac{3.12}{6} \approx \frac{3}{6}=0.5 \mathrm{lb}$
35. $32,798-14,292 \approx 32,800-14,300=18,500 \mathrm{lb}$
36. 8% of $\$ 14,876$

$$
\approx 8 \% \text { of } \$ 15,000=0.08 \times \$ 15,000=\$ 1200
$$

24. $\frac{\$ 10.87}{3.2} \approx \frac{\$ 11}{3}=\$ 3 . \overline{6} \approx \$ 3.70$ per pound
25. Team A: $189+172+191 \approx 190+170+190=550$

Team B: $183+229+167 \approx 180+230+170=580$ $580-550=30 \mathrm{lb}$
28. 3.8 grubs per square foot $\times(60 \mathrm{ft} \times 80.2 \mathrm{ft})$ ≈ 4 grubs per square foot $\times(60 \times 80$ square feet $)$ $=4 \times 4800$ grubs $=19,200$ grubs
30. $\$ 973+6(\$ 41)+6(\$ 97)+6(\$ 90)$

$$
\approx \$ 970+6(\$ 40)+6(\$ 100)+6(\$ 90)
$$

$$
=\$ 970+\$ 240+\$ 600+\$ 540=\$ 2350
$$

32. ≈ 70 miles
33. a) $39 \% \times \$ 40,075 \approx 40 \% \times \$ 40,000=\$ 16,000$
b) $22.9 \% \times \$ 40,075 \approx 23 \% \times \$ 40,000=\$ 9200$
34. a) 19%
b) 25%
c) 28% of $180 \mathrm{lb}=0.28 \times 180=50.4 \approx 50 \mathrm{lb}$
35. a) 83%
b) $65 \%-45 \%=20 \%$
c) 83% of 110,567
$\approx 0.83 \times 110,567=91,770.61 \approx 91,771 \mathrm{sq} \mathrm{mi}$
d) No, since we are not given the area of each state.
36. 25
37. ≈ 90 berries
38. 150°
39. 10%
40. 9 square units
41. 150 feet
51.-59. Answers will vary.
42. There are 336 dimples on a regulation golf ball.
43. a) $2(410)+4(545)$
$\approx 2(400)+4(550)=800+2200=3000$ calories
b) Running: $4(920) \approx 4(925)=3700$ calories

Casual bike riding: $4(300)=1200$ calories ,
$3700-1200=2500$ calories
c) $3(545)+3(545) \approx 3(550)+3(550)$
$=1650+1650=3300$ calories per week,
3300 calories per week (52 weeks)
$\approx 3000 \times 50=150,000$ calories
40. 32
42. ≈ 160 leaves
44. 315°
46. 25%
48. 12 square units
50. $5(62)=310$ in. or $\frac{310}{12}=25.8 \overline{3} \approx 25.8 \mathrm{ft}$
60. There are 118 ridges around the edge.
62. a) Answers will vary.
b) 60 seconds per minute $\times 60$ minutes per hour $\times 24$ hours per day $=60 \times 60 \times 24$ seconds per day $=86,400$ seconds per day ,
$\frac{1,000,000}{86,400}=11.57407407 \approx 11.6$ days
63. Answers will vary. The U.S. government categorized the middle class as \$32,000-\$50,000 in 2001.

Exercise Set 1.3

$$
\text { 1. } \begin{aligned}
\frac{1 \mathrm{in} .}{50 \mathrm{mi}} & =\frac{3.75 \mathrm{in} .}{x \mathrm{mi}} \\
1 x & =50(3.75) \\
x & =187.5 \mathrm{mi}
\end{aligned}
$$

2. $\frac{1 \mathrm{in} .}{12 \mathrm{ft}}=\frac{x \mathrm{in} .}{82 \mathrm{ft}}$

$$
12 x=1(82)
$$

$$
\frac{12 x}{12}=\frac{82}{12}
$$

$$
x=\frac{82}{12}=6 \frac{10}{12}=6 \frac{5}{6} \text { in. or } 6.8 \overline{3} \approx 6.83 \mathrm{in} .
$$

6 CHAPTER 1 Critical Thinking Skills

3. $\frac{3 \mathrm{ft}}{1.2 \mathrm{ft}}=\frac{48.4 \mathrm{ft}}{x \mathrm{ft}}$

$$
3 x=1.2(48.4)
$$

$$
\frac{3 x}{3}=\frac{58.08}{3}
$$

$$
x=\frac{58.08}{3}=19.36 \mathrm{ft}
$$

5. 11.5% of $\$ 4222=0.115(\$ 4222)=\$ 485.53$
$\$ 4222+\$ 485.53=\$ 4707.53$
6. $\frac{20,000 \text { miles }}{20 \text { miles per gallon }}=1000$ gallons

Hawaii: $1000(\$ 2.02)=\$ 2020$
South Carolina: $1000(\$ 1.22)=\$ 1220$
$\$ 2020-\$ 1220=\$ 800$
9. Denise parks her car for eight hours per day.
$5[\$ 2.50+\$ 1.00(7$ hours per day $)]$
$=5[\$ 2.50+\$ 7.00]=5(\$ 9.50)=\$ 47.50$
Savings: $\$ 47.50-\$ 35.00=\$ 12.50$
11. $\$ 120+\$ 80(15)=\$ 120+\$ 1200=\$ 1320$

Savings: $\$ 1320-\$ 1250=\$ 70$
13. 20 year mortgage: $\$ 752.40(12)(20)=\$ 180,576$

30 year mortgage: $\$ 660.60(12)(30)=\$ 237,816$
Savings: $\$ 237,816-\$ 180,576=\$ 57,240$
4. $\frac{1 \text { bag }}{6000 \mathrm{ft}^{2}}=\frac{x \text { bags }}{26,000 \mathrm{ft}^{2}}$

$$
\begin{aligned}
6000 x & =1(26,000) \\
\frac{6000 x}{6000} & =\frac{26,000}{6000} \\
x & =\frac{26,000}{6000}=4 . \overline{3} \approx 4.33 \mathrm{bags}
\end{aligned}
$$

6. Cost for mileage:
$\$ 0.30\left(\frac{12}{\frac{1}{5}}\right)=\$ 0.30(12)(5)=\$ 18.00$
Cost for sitting still:
2 minutes $=2(60)=120$ seconds
$\$ 0.30\left(\frac{120}{30}\right)=\$ 0.30(4)=\$ 1.20$
Cost for ride: $\$ 2.00+\$ 18.00+\$ 1.20=\$ 21.20$
7. a) $\approx 1980-1900$ or 80 hours
b) $\approx \frac{2000 \text { hours }}{52 \text { weeks }}=38.46153846 \approx 38.5 \mathrm{hr} / \mathrm{wk}$
c) $\approx \frac{1500 \text { hours }}{52 \text { weeks }}=28.84615385 \approx 28.8 \mathrm{hr} / \mathrm{wk}$
8. $\$ 3.75+(21-3)(\$ 0.50)=\$ 3.75+18(\$ 0.50)$
$=\$ 3.75+\$ 9=\$ 12.75$
9. $\$ 20,000$ down payment:
$\$ 20,000+\$ 699.99(12)(30)$
$=\$ 20,000+\$ 251,996.40=\$ 271,996.40$
$\$ 40,000$ down payment:
$\$ 40,000+\$ 559.20(12)(30)$
$=\$ 40,000+\$ 201,312=\$ 241,312$
Savings: $\$ 271,996.40-\$ 241,312=\$ 30,684.40$
10. Points needed for 80 average: $80(5)=400$ points

Wallace's points so far:
$77+93+90+76=336$ points
Grade needed on fifth exam: $400-336=64$
15. a) $\frac{86.5}{34} \approx 2.54 ; \frac{91.5}{36} \approx 2.54 ; \frac{96.5}{38} \approx 2.54$; $\frac{101.5}{40} \approx 2.54 ; \frac{106.5}{42} \approx 2.54 \ldots$
So, $48(2.54) \approx 122$.
b) Answers will vary. A close approximation can be obtained by multiplying the U.S. sizes by 2.54 .
17. a) $\frac{460}{50}=9.2 \mathrm{~min}$
b) $\frac{1550}{25}=62 \mathrm{~min}$
c) $\frac{1400}{35}=40 \mathrm{~min}$
d) $\frac{1550}{25}+\frac{2200}{25}=\frac{3750}{25}=150 \mathrm{~min}$
19. a) 11% of $273,300,000$
$=0.11(273,300,000)=30,063,000$
b) 10% of $970,000=0.10(970,000)=97,000$
c) 3% of $970,000=0.03(970,000)=29,100$
21. By mail: $(\$ 52.80+\$ 5.60+\$ 8.56) \times 4$
$=\$ 66.96 \times 4=\$ 267.84$
Tire store: $\$ 324+0.08 \times \$ 324$
$=\$ 324+\$ 25.92=\$ 349.92$
Savings: $\$ 349.92-\$ 267.84=\$ 82.08$
23. a) $\$ 620(0.12)=\$ 74.40$
b) $\$ 1200(0.22)=\$ 264$
c) The store lost $\$ 1200-\$ 1000=\$ 200$ on the purchase.
Store's profit: $\$ 264-\$ 200=\$ 64$
16. a) $10 \cdot 10 \cdot 10 \cdot 10=10,000$
b) 1 in 10,000
18. $38,687.0 \mathrm{mi}-38,451.4 \mathrm{mi}=235.6 \mathrm{mi}$ $\frac{235.6 \mathrm{mi}}{12.6 \mathrm{gal}}=18.6984127 \approx 18.7 \mathrm{mpg}$
20. a) $40 \times \$ 8.50 \times 52=\$ 17,680$
b) Each week he makes $40 \times \$ 8.50=\$ 340$.

$$
\frac{\$ 1275}{\$ 340}=3.75 \text { weeks }
$$

22. $(1 \mathrm{yd})^{2}=(3 \mathrm{ft})^{2}=9 \mathrm{ft}^{2}$

$$
\begin{aligned}
2400 \times 9 & =21,600 \mathrm{ft}^{2} \\
\frac{1 \mathrm{gal}}{350 \mathrm{ft}^{2}} & =\frac{x \mathrm{gal}}{21,600 \mathrm{ft}^{2}} \\
350 x & =1(21,600) \\
\frac{350 x}{350} & =\frac{21,600}{350} \\
x & =\frac{21,600}{350}=61.71428571 \approx 62 \mathrm{gal}
\end{aligned}
$$

24. a) $0.1 \mathrm{~cm}^{3} \times 60 \mathrm{sec} \times 60 \mathrm{~min} \times 24 \mathrm{hr} \times 365$ days $=3,153,600 \mathrm{~cm}^{3}$
b) $30 \mathrm{~cm} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}=12,000 \mathrm{~cm}^{3}$
$0.1 \mathrm{~cm}^{3} \times 60 \mathrm{sec} \times 60 \mathrm{~min} \times 24 \mathrm{hr}=8640$
$\frac{12,000}{8640}=1.3 \overline{8} \approx 1.4$ days

8 CHAPTER 1 Critical Thinking Skills

25. Let $x=$ the amount above $\$ 12,000$
$\$ 4950-\$ 1200=\$ 3390$

$$
\begin{aligned}
\frac{0.15 x}{0.15} & =\frac{\$ 3390}{0.15} \\
x & =\$ 22,600 \\
\$ 12,000 & +\$ 22.600=\$ 34,600
\end{aligned}
$$

27. $7(2)+5(1)+4(29)+3(201)+2(1408)+1(10,352)$
$=14+5+116+603+2816+10,352$
$=13,906$ violations
28. a) $1 \mathrm{oz} \times 60 \mathrm{~min} \times 24 \mathrm{hr} \times 365$ days $=525,600 \mathrm{oz}$
$\frac{525,600}{128}=4106.25 \mathrm{gal}$
b) $\frac{4106.25}{1000} \times \$ 11.20=4.10625 \times \$ 11.20=\$ 45.99$
29. a) $\frac{20,000}{20.8}-\frac{20,000}{21.6}=961.5384615-925.9259259$ $=35.6125356 \approx 35.61 \mathrm{gal}$
b) $35.61 \times \$ 1.60=56.976 \approx \$ 56.98$
c) $140,000,000 \times 35.61=4,985,400,000 \mathrm{gal}$
30. a) Yes, divide the total emissions by the emissions per capita.
b) $\frac{6503.8}{24.3}=267.6460905 \approx 267.65$ million
c) $\frac{4964.8}{4.0}=1241.2$ million or 1.2412 billion
31. Value after first year: $\$ 1000+0.10(\$ 1000)$

$$
=\$ 1000+\$ 100=\$ 1100
$$

Value after second year: $\$ 1100-0.10(\$ 1100)$
$=\$ 1100-\$ 110=\$ 990$
$\$ 990$ is less than the intial investment of $\$ 1000$.
30. Cost after 1 year: $\$ 450+0.06(\$ 450)$
$=\$ 450+\$ 27=\$ 477$
Cost after 2 years: $\$ 477+0.06(\$ 477)$
$=\$ 477+\$ 28.62=\$ 505.62$
32. After paying the $\$ 100$ deductible, Yungchen must pay 20% of the cost of x-rays.
First x-ray:
$\$ 100+0.20(\$ 540)=\$ 100+\$ 108=\$ 208$
Second x-ray: $0.20(\$ 920)=\$ 184$
Total: $\$ 208+\$ 184=\$ 392$
33. a) $\frac{\$ 200}{\$ 41} \approx 4.87804878$ The maximum number of 10 packs is 4 .

$$
\$ 200-(4 \times \$ 41)=\$ 200-\$ 164=\$ 36 \quad, \frac{\$ 36}{\$ 17}=2.117647059 \quad \text { Deirdre can also buy two } 4 \text { packs. }
$$

10 packs	4 packs	Number of rolls	Cost
4	2	$4(10)+2(4)=48$	$4(\$ 41)+2(\$ 17)=\$ 198$
3	4	46	\$191
2	6	44	\$184
1	9	46	\$194
0	11	44	\$187

Maximum number of rolls of film is 48 .
b) The cost is $\$ 198$ when she purchases four 10 packs and two 4 packs.
34. a) $\frac{\$ 50}{\$ 5.76} \approx 8.680 \overline{5}$ The maximum number of 4 packs of 36 exposures is 8 .
$\$ 50-(8 \times \$ 5.76)=\$ 50-\$ 46.08=\$ 3.92$, Erika cannot buy any 24 exposures.

| 4 packs of 36 exp. | $\underline{4}$ packs of 24 exp. | Number of exposures
 8 | 0 |
| :---: | :---: | :---: | :--- | | $\underline{\text { Cost }}$ |
| :--- |
| 7 |

2 packs of 24 exposures and 7 packs of 36 exposures, or 5 packs of 24 exposures and 5 packs of 36 exposures, or 8 packs of 24 exposures and 3 packs of 36 exposures
b) 300 exposures in each case
c) The minimum cost is $\$ 48.48$ when she purchases 2 packs of 24 exposures and 7 packs of 36 exposures.
35. a) water/milk: $3(1)=3$ cups \quad salt: $3\left(\frac{1}{8}\right)=\frac{3}{8}$ tsp
cream: $3(3)=9$ tbsp $=\frac{9}{16}$ cup (because 16 tbsp $=1$ cup)
b) water/milk: $\frac{2+3.75}{2}=\frac{5.75}{2}=2.875 \mathrm{cups}=2 \frac{7}{8} \mathrm{cups}$
salt: $\frac{0.25+0.5}{2}=\frac{0.75}{2}=0.375 \mathrm{tsp}=\frac{3}{8} \mathrm{tsp}$

$$
\begin{aligned}
& \text { cream: } \frac{0.5+0.75}{2}=\frac{1.25}{2}=0.625 \text { cups }=\frac{5}{8} \text { cup } \\
& =\frac{5}{8}(16 \mathrm{tbsp})=10 \mathrm{tbsp}
\end{aligned}
$$

c) water/milk: $3 \frac{3}{4}-1=\frac{15}{4}-\frac{4}{4}=\frac{11}{4}=2 \frac{3}{4}$ cups
salt: $\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{3}{8}$ tsp
cream: $\frac{3}{4}-\frac{3}{16}=\frac{12}{16}-\frac{3}{16}=\frac{9}{16}$ cup $=9$ tbsp
d) Differences exist in water/milk because the amount for 4 servings is not twice that for 2 servings. Differences also exist in Cream of Wheat because $\frac{1}{2}$ cup is not twice 3 tbsp.
36. a) rice: $\frac{1}{2}(4)=2$ cups water: $1 \frac{1}{3}(4)=\frac{4}{3}(4)=\frac{16}{3}=5 \frac{1}{3}$ cups salt: $\frac{1}{4}(4)=1 \mathrm{tsp}$ butter/margarine: $1(4)=4 \mathrm{tsp}$
c) rice: $\frac{1}{2}+1 \frac{1}{2}=\frac{1}{2}+\frac{3}{2}=\frac{4}{2}=2 \mathrm{cups}$
water: $1 \frac{1}{3}+3 \frac{1}{3}=\frac{4}{3}+\frac{10}{3}=\frac{14}{3}=4 \frac{2}{3}$ cups
salt: $\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1 \mathrm{tsp}$
butter/margarine: $1 \mathrm{tsp}+1 \mathrm{tbsp}=1 \mathrm{tsp}+3 \mathrm{tsp}=4 \mathrm{tsp}$
d) rice: $3-1=2$ cups
water: $6-2 \frac{1}{4}=\frac{24}{4}-\frac{9}{4}=\frac{15}{4}=3 \frac{3}{4}$ cups
salt: $1 \frac{1}{2}-\frac{1}{2}=1 \mathrm{tsp}$
butter/margarine: $2 \mathrm{tbsp}=2(3 \mathrm{tsp})=6 \mathrm{tsp}$
6 tsp -2 tsp $=4$ tsp
e) Differences exist in water because the amount for 4 servings is not twice that for 2 servings.
37. $1 \mathrm{ft}^{2}$ would be 12 in . by 12 in .

Thus, $1 \mathrm{ft}^{2}=12 \mathrm{in} . \times 12 \mathrm{in} .=144 \mathrm{in} .^{2}$
39. Area of original rectangle $=l w$

Area of new rectangle $=(2 l)(2 w)=4 l w$
Thus, if the length and width of a rectangle are doubled, the area is 4 times as large.
41. 1 and 9
$1 \times 9=9$
$1+9=10$
38. $1 \mathrm{ft}^{3}=12 \mathrm{in} . \times 12 \mathrm{in} . \times 12 \mathrm{in} .=1728$ in. ${ }^{3}$
40. Volume of original cube $=l w h$

Volume of new cube $=(2 l)(2 w)(2 h)=8 l w h$ Thus, if the length, width, and height of a cube are doubled, the volume is 8 times as large or increases eightfold.
42. $\frac{10 \text { pieces }}{\$ x}=\frac{1000 \text { pieces }}{\$ 10}$
$1000 x=10(10)$
$\frac{1000 x}{1000}=\frac{100}{1000}$
$x=\frac{100}{1000}=\$ 0.10=10 \phi$
43. Left side: $1(-6)=-6 \quad$ Right side: $1(2)=2$
$2(-2)=-4$
$1(3)=3$
$-6+-4=-10$
$1(6)=6$

$$
2+3+6=11
$$

Place it at -1 so the left side would total $-10+-1=-11$.
44. 3

45. Birds	Lizards	Number of Heads	Number of Feet
8	14	22	$8(2)+14(4)=72$
9	13	22	$9(2)+13(4)=70$
10	12	22	$10(2)+12(4)=68$

Therefore, there are 10 birds and 12 lizards.
46. $10 ; 2002,2112,2222,2332,2442,2552$, 2662,2772,2882,2992
48. a) Place the object, 1 g , and 3 g on one side and 9 g on the other side.
b) Place the object, 9 g , and 3 g on one side and 27 g and 1 g on the other side.
50. Eight pieces
52.

15	1	11
5	9	13
7	17	3

54. $21,12,33$

Multiply the number in the center of the middle row by 3 .
56. $35-15=20$ cubes
58. Each shakes with four people.
47. a) $(4 \times 4)+(3 \times 3)+(2 \times 2)+(1 \times 1)$
$=16+9+4+1=30$
b) $(7 \times 7)+(6 \times 6)+(5 \times 5)+30$
$=49+36+25+30=140$
49.

51.

8	6	16
18	10	2
4	14	12

53. $6+10+8+4=28 ; 3+7+5+1=16$;
$10+14+12+8=44$
The sum of the four corner entries is
4 times the number in the center of the middle row.
54. 63,36,99

Multiply the number in the center of the middle row by 9 .
57. $3 \times 2 \times 1=6$ ways
59.

	7	

Other answers are possible, but 1 and 8 must appear in the center.
60.

61.
62. With umbrella policy:

Mustang reduced premium: $\$ 1648-\$ 90=\$ 1558$
Focus reduced premium:
\$1530-0.12(\$1530)
$=\$ 1530-\$ 183.60=\$ 1346.40$
Total for umbrella policy:
$\$ 1558+\$ 1346.40+\$ 450=\$ 3354.40$
Without umbrella policy: $\$ 1648+\$ 1530=\$ 3178$
Net amount for umbrella policy:
$\$ 3354.40-\$ 3178=\$ 176.40$
64. $16+16+4+4+4=44$
66. 1 giraffe $=2$ frogs

1 giraffe $=3$ lions
3 lions = 2 frogs
Therefore, $\frac{3}{3}$ lion $=\frac{2}{3}$ frog.
Therefore, 1 lion $=\frac{2}{3}$ frog.
1 lion $=2$ ostriches
Therefore, $\frac{2}{3}$ frog $=2$ ostriches.
$\frac{2}{3}\left(\frac{3}{2}\right)$ frog $=2\left(\frac{3}{2}\right)$ ostriches
Therefore, 1 frog $=3$ ostriches.

1	2	3	4	5
2	3	4	5	1
3	4	5	1	2
4	5	1	2	3
5	1	2	3	4

Other answers are possible.
63. Mary is the skier.
65. Areas of the colored regions are:
$1 \times 1,1 \times 1,2 \times 2,3 \times 3,5 \times 5,8 \times 8,13 \times 13$,
$21 \times 21 ; 1+1+4+9+25+64+169+441$
$=714$ square units
2. $25,36,49$ (next three perfect squares)
4. $25,32,40(19+6=25,25+7=32$,
$32+8=40$)
5. $15,9,2(20-5=15,15-6=9,9-7=2)$

8.

9. c
10. a) The original number and the final number are the same.
b) The original number and the final number are the same.
c) Conjecture: The final number is the same as the original number.
d) $n, 2 n, 2 n+10, \frac{2 n+10}{2}=\frac{2 n}{2}+\frac{10}{2}=n+5, n+5-5=n$
11. This process will always result in an answer of 3. $n, n+5,6(n+5)=6 n+30,6 n+30-12$
$=6 n+18, \frac{6 n+18}{2}=\frac{6 n}{2}+\frac{18}{2}=3 n+9, \frac{3 n+9}{3}=\frac{3 n}{3}+\frac{9}{3}=n+3, n+3-n=3$
12. $1^{2}+2^{2}=5,5$ is an odd number.
(Note: Answers for Ex. 13-25 will vary depending on how you round your numbers. The answers may differ from the answers in the back of the textbook. However, your answers should be something near the answers given. All answers are approximate.)
13. $210,302 \times 1992 \approx 210,000 \times 2000=420,000,000$
15. 21% of $1012 \approx 20 \%$ of 1000
$=0.20 \times 1000=200$
17. $82 \times \$ 1.09 \approx 80 \times \$ 1.10=\$ 88$
19. $\frac{1.1 \mathrm{mi}}{22 \mathrm{~min}} \approx \frac{1 \mathrm{mi}}{20 \mathrm{~min}}=\frac{3 \mathrm{mi}}{60 \mathrm{~min}}=3 \mathrm{mph}$
21. 5 in. $=\frac{20}{4}$ in. $=20\left(\frac{1}{4}\right)$ in. $=20(0.1) \mathrm{mi}=2 \mathrm{mi}$
23. 5%
25. Length $=1.75$ in., $1.75(12.5)=21.875 \approx 22 \mathrm{ft}$

Height $=0.625$ in., $0.625(12.5)=7.8125 \approx 8 \mathrm{ft}$
27. $4(\$ 2.69)=\$ 10.76$ for four six-packs

Savings: $\$ 10.76-\$ 9.60=\$ 1.16$
29. To produce the 52 Oscars he found:
$52 \times \$ 327=\$ 17,004$
He was awarded
$\$ 50,000-\$ 17,004=\$ 32,996$ more .
14. $346.2+96.402+1.04+897+821$ $\approx 350+100+0+900+800=2150$
16. Answers will vary.
18. 6% of $\$ 202 \approx 6 \%$ of $200=0.06 \times 200=\$ 12$
20. $\$ 2.49+\$ 0.79+\$ 1.89+\$ 0.10+\$ 2.19+\$ 6.75$
$\approx \$ 2+\$ 1+\$ 2+\$ 0+\$ 2+\$ 7=\$ 14.00$
22. 70%
24. 13 square units
26. $\$ 2.00+7(\$ 1.50)=\$ 2.00+\$ 10.50=\$ 12.50$

Change: $\$ 20.00-\$ 12.50=\$ 7.50$
28. Akala's: $2 \mathrm{hr}=120 \mathrm{~min}, \frac{120}{15}=8,8 \times \$ 15=\$ 120$

Berkman's: $2 \mathrm{hr}=120 \mathrm{~min}, \frac{120}{30}=4$,
$4 \times \$ 25=\$ 100$
Berkman's is the better deal by
$\$ 120-\$ 100=\$ 20.00$.
30. $\$ 1.50+\left[\left(10-\frac{1}{5}\right)(5)\right] \$ 0.30$
$=\$ 1.50+\left[\left(\frac{50}{5}-\frac{1}{5}\right)(5)\right] \$ 0.30$
$=\$ 1.50+\left[\frac{49}{5}(5)\right] \$ 0.30$
$=\$ 1.50+49 \times \$ 0.30=\$ 1.50+\$ 14.70=\$ 16.20$
31. 10% of $\$ 530=0.10 \times \$ 530=\$ 53$
$\$ 53 \times 7=\$ 371$
Savings: $\$ 371-\$ 60=\$ 311$
33. $\$ 3800-0.30(\$ 3800)=\$ 3800-\$ 1140$
$=\$ 2660$ take-home
28% of $\$ 2660=0.28 \times \$ 2660=\$ 744.80$
35. 3 P.M. $-4 \mathrm{hr}=11$ A.M.

July 26, 11:00 A.M.
32. $\frac{1.5 \mathrm{mg}}{10 \mathrm{lb}}=\frac{x \mathrm{mg}}{47 \mathrm{lb}}$

$$
10 x=47(1.5)
$$

$$
\frac{10 x}{10}=\frac{70.5}{10}
$$

$$
x=7.05 \mathrm{mg}
$$

34. 9 A.M. Eastern is 6 A.M. Pacific,
from 6 A.M. Pacific to 1:35 P.M. Pacific
is $7 \mathrm{hr} 35 \mathrm{~min}, 7 \mathrm{hr} 35 \mathrm{~min}-50 \mathrm{~min}$ stop
$=6 \mathrm{hr} 45 \mathrm{~min}$
35. a) 1 in. $\times 1$ in. $=2.54 \mathrm{~cm} \times 2.54 \mathrm{~cm}$
$=6.4516 \mathrm{~cm}^{2} \approx 6.45 \mathrm{~cm}^{2}$
b) $1 \mathrm{in} . \times 1 \mathrm{in} . \times 1 \mathrm{in}$.
$=2.54 \mathrm{~cm} \times 2.54 \mathrm{~cm} \times 2.54 \mathrm{~cm}$
$=16.387064 \mathrm{~cm}^{3} \approx 16.39 \mathrm{~cm}^{3}$
c) $\frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}=\frac{x \mathrm{in} \text {. }}{1 \mathrm{~cm}}$
$2.54 x=1(1)$ $\frac{2.54 x}{2.54}=\frac{1}{2.54}$

$$
x=0.393700787 \approx 0.39 \mathrm{in} .
$$

37. Each figure has an additional two dots. To get the hundredth figure, 97 more figures must be drawn, $97(2)=194$ dots added to the third figure. Thus, $194+7=201$.
38.

23	25	15
13	21	29
27	17	19

38.

21	7	8	18
10	16	15	13
14	12	11	17
9	19	20	6

40. 59 min 59 sec Since it doubles every second, the jar was half full 1 second earlier than 1 hour.
41. 6
42. Nothing. Each friend paid $\$ 9$ for a total of $\$ 27 ; \$ 25$ to the hotel, $\$ 2$ to the clerk.
$\$ 25$ for the room $+\$ 3$ for each friend $+\$ 2$ for the clerk $=\$ 30$
43. Let $x=$ the total weight of the four women
$\frac{x}{4}=130, \quad x=520, \quad \frac{520+180}{5}=\frac{700}{5}=140 \mathrm{lb}$
44. Yes; 3 quarters and 4 dimes, or 1 half dollar, 1 quarter and 4 dimes, or 1 quarter and 9 dimes.

Other answers are possible.
45. $6 \mathrm{~cm} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}=216 \mathrm{~cm}^{3}$
46. Place six coins in each pan with one coin off to the side. If it balances, the heavier coin is the one on the side. If the pan does not balance, take the six coins on the heavier side and split them into two groups of three. Select the three heavier coins and weigh two coins. If the pan balances, it is the third coin. If the pan does not balance, you can identify the heavier coin.
47. $\frac{n(n+1)}{2}=\frac{500(501)}{2}=\frac{250,500}{2}=125,250$
48. 16 blue: 4 green $\rightarrow 8$ blue, 2 yellow $\rightarrow 5$ blue, 2 white $\rightarrow 3$ blue
49. 90: $101,111,121,131,141,151,161,171,181,191, \ldots$
50. The fifth figure will be an octagon with sides of equal length. Inside the octagon will be a seven sided figure with each side of equal length. The figure will have one antenna.
51. 61: The sixth figure will have 6 rows of 6 tiles and 5 rows of 5 tiles $(6 \times 6+5 \times 5=36+25=61)$.
52. Some possible answers are given below. There are other possibilities.

53. a) 2
b) There are 3 choices for the first spot. Once that person is standing, there are 2 choices for the second spot and 1 for the third. Thus, $3 \times 2 \times 1=6$.
c) $4 \times 3 \times 2 \times 1=24$
d) $5 \times 4 \times 3 \times 2 \times 1=120$
e) $n(n-1)(n-2) \cdots 1$, (or $n!$), where $n=$ the number of people in line

Chapter Test

1. 18, 21, 24 (Add 3 to previous number.)
2. $\frac{1}{81}, \frac{1}{243}, \frac{1}{729}$ (Multiply previous number by $\frac{1}{3}$.)
3. a) The result is the original number plus 1 .
b) The result is the original number plus 1 .
c) Conjecture: The result will always be the original number plus 1 .
d) $n, 5 n, 5 n+10, \frac{5 n+10}{5}=\frac{5 n}{5}+\frac{10}{5}=n+2, n+2-1=n+1$

16 CHAPTER 1 Critical Thinking Skills

(Note: Answers for \#4 - \#6 will vary depending on how you round your numbers. The answers may differ from the answers in the back of the textbook. However, your answers should be something near the answers given. All answers are approximate.)
4. $0.06 \times 98,000 \approx 0.06 \times 100,000=6000$
5. $\frac{102,000}{0.00302} \approx \frac{100,000}{0.003}=33,333,333 \cdot \overline{3} \approx 33,000,000$
6. 7 square units
7. a) $\frac{130 \mathrm{lb}}{63 \mathrm{in} .}=2.063492063$

$$
\begin{aligned}
& \frac{2.063492063}{63 \text { in. }}=0.032753842 \\
& 0.032753842 \times 703=23.02595093 \approx 23.03 \\
& \text { b) } \mathrm{He} \text { is in the at risk range. }
\end{aligned}
$$

8. $\$ 122.13-\$ 9.63=\$ 112.50$
$\frac{\$ 112.50}{\$ 0.72}=156.25$ therms
156.25 therms + first 3 therms $=159.25$ therms
9. 1 cut yields 2 equal pieces. Cut each of these 2 equal pieces to get 4 equal pieces.
3 cuts $\rightarrow 3(2.5 \mathrm{~min})=7.5 \mathrm{~min}$
10. $\$ 12.75 \times 40=\$ 510$
$\$ 12.75 \times 1.5 \times 10=\$ 191.25$
$\$ 510+\$ 191.25=\$ 701.25$
$\$ 701.25-\$ 652.25=\$ 49.00$
11.

40	15	20
5	25	45
30	35	10

14. Christine drove the first 15 miles at 60 mph which took $\frac{15}{60}=\frac{1}{4} \mathrm{hr}$, and the second 15 miles at 30 mph which took $\frac{15}{30}=\frac{1}{2} \mathrm{hr}$ for a total time of $\frac{3}{4} \mathrm{hr}$. If she drove the entire 30 miles at 45 mph , the trip would take
$\frac{30}{45}=\frac{2}{3} \mathrm{hr}(40 \mathrm{~min})$ which is less than $\frac{3}{4} \mathrm{hr}(45 \mathrm{~min})$.
15. $2 \times 6 \times 8 \times 9 \times 13=11,232 ; 11$ does not divide 11,232 .
16. 243 jelly beans; $260-17=243,234+9=243,274-31=243$
17. a) $3 \times \$ 3.99=\$ 11.97$
b) $9(\$ 1.75 \times 0.75)=11.8125 \approx \$ 11.81$
c) $\$ 11.97-\$ 11.81=\$ 0.16$ Using the coupon is least expensive by $\$ 0.16$.
18. 8: $\$ \rightarrow$ on $\quad * \rightarrow$ off
\$\$\$\$, \$\$\$*, \$\$*\$, \$*\$\$, *\$\$\$, *\$*\$, *\$\$*, \$*\$*

Group Projects

1. a) $\frac{\$ 325}{3} \approx \$ 108.33$
b) Let $x=$ the amount before tax

$$
\begin{aligned}
x+0.07 x & =325 \\
\frac{1.07 x}{1.07} & =\frac{325}{1.07} \\
x & =303.7383178 \approx \$ 303.74 \\
\frac{\$ 303.74}{3} & =101.24 \overline{6} \approx \$ 101.25
\end{aligned}
$$

c) Inductive reasoning - arriving at a general conclusion from specific cases
d) Combination set: $\$ 62.00-(\$ 62.00 \times 0.10)=\$ 62.00-\$ 6.20=\$ 55.80$

Individual sets: $2 \times \$ 36.00=\$ 72.00, \$ 72.00-(\$ 72.00 \times 0.20)=\$ 72.00-\$ 14.40=\$ 57.60$
Therefore, the combination set is cheaper.
e) Combintion with tax: $\$ 55.80 \times 1.07 \approx \$ 59.71$

Individual set with tax: $\$ 57.60 \times 1.07 \approx \$ 61.63$
$\$ 61.63-\$ 59.71=\$ 1.92$
2. a) - d) Answers will vary.
e) $400 \mathrm{mi} \div 50 \mathrm{mi} / \mathrm{hr}=8 \mathrm{hrs}, 9$ A.M. $+8 \mathrm{hrs}=5$ P.M.
f) - h) Answers will vary.

3.	Order	$\underline{\text { Name }}$	$\underline{\text { Apparel }}$
1	Ernie	holster	
2	Zeke	vest	
3	Jed	chaps	
4	Tex	stetson	

CHAPTER TWO

SETS

Exercise Set 2.1

1. A set is a collection of objects.
2. An ellipsis is three dots in a set indicating the elements continue in the same manner.
3. Description: the set of counting numbers less than 7

Roster form: $\{1,2,3,4,5,6\}$
Set-builder notation: $\{x \mid x \in N$ and $x<7\}$
4. A set is finite if it either contains no elements or the number of elements in the set is a natural number.
5. An infinite set is a set that is not finite.
6. Set A is equal to set B, symbolized by $A=B$, if and only if they contain exactly the same elements.
7. Two sets are equivalent if they contain the same number of elements.
8. The cardinal number of a set A, symbolized by $n(A)$, is the number of elements in set A.
9. A set that contains no elements is called the empty set or null set.
10. $\}, \varnothing$
11. Set A and set B can be placed in one-to-one correspondence if every element of set A can be matched with exactly one element of set B and every element of set B can be matched with exactly one element of set A.
12. A universal set, symbolized by U, is a set that contains all the elements for any specific discussion.
13. Not well defined, "large" is interpreted differently by different people.
14. Not well defined, "best" is interpreted differently by different people.
15. Well defined, the contents can be clearly determined.
16. Well defined, the contents can be clearly determined.
17. Well defined, the contents can be clearly determined.
18. Not well defined, "nicest" is interpreted differently by different people.
19. Infinite, the number of elements in the set is not a natural number.
20. Finite, the number of elements in the set is a natural number.
21. Infinite, the number of elements in the set is not a natural number.
22. Infinite, the number of elements in the set is not a natural number.
23. Infinite, the number of elements in the set is not a natural number.
24. Finite, the number of elements in the set is a natural number.
25. \{Atlantic, Pacific, Arctic, Indian\}
27. $\{11,12,13,14, \ldots, 177\}$
29. $B=\{2,4,6,8, \ldots\}$
31. $\}$ or \varnothing
33. $E=\{6,7,8,9, \ldots, 71\}$
26. \{Idaho, Illinois, Indiana, Iowa \}
28. $C=\{4\}$
30. $\}$ or \varnothing
32. \{Hawaii, Alaska\}
34. \{Mark McGwire\}
35. $\{$ Sony DSC-S50, Sony DSC-S70, Sony Mavica FD-90 $\}$
36. \{Olympus D-360L\}
37. $\{$ Sony Mavica FD-73, Olympus D-360L, Sony DSC-S50, Kodak DC215, H-P Photo Smart C315\}
38. $\{$ Sony DSC-S50, Sony DSC-S70, Sony Mavica FD-90\}
39. $\{2002,2003,2004,2005,2006,2007,2008\}$
40. $\{2005,2006,2007,2008\}$
41. $\{2005,2006,2007,2008\}$
42. $\{2002,2003,2004\}$
43. $B=\{x \mid x \in N$ and $3<x<11\}$ or
$B=\{x \mid x \in N$ and $4 \leq x \leq 10\}$
45. $C=\{x \mid x \in N$ and x is a multiple of 3$\}$
44. $A=\{x \mid x \in N$ and $x<8\}$ or $A=\{x \mid x \in N$ and $x \leq 7\}$
47. $E=\{x \mid x \in N$ and x is odd $\}$
46. $D=\{x \mid x \in N$ and x is a multiple of 5$\}$
48. $A=\{x \mid x$ is Labor Day $\}$
49. $C=\{x \mid x$ is February $\}$
50. $F=\{x \mid x \in N$ and $14<x<101\}$ or $F=\{x \mid x \in N$ and $15 \leq x \leq 100\}$
51. Set A is the set of natural numbers less than or equal to 7 .
52. Set D is the set of natural numbers that are multiples of 4 .
53. Set V is the set of vowels in the English alphabet.
54. Set S is the set of the seven dwarfs in Snow White and the Seven Dwarfs.
55. Set C is the set of companies that make calculators.
56. Set B is the set of the five longest rivers in the United States.
57. Set B is the set of members of the Beatles.
58. Set E is the set of natural numbers greater than 5 and less than or equal to 12 .
59. \{St. Louis $\}$
61. $\}$ or \varnothing
63. $\{1999,2000,2001,2002\}$
65. $\{1999,2001,2002\}$
67. False; $\{b\}$ is a set, and not an element of the set.
69. False; h is not an element of the set.
71. False; 3 is an element of the set.
73. True; Titanic is an element of the set.
75. $n(A)=4$
77. $n(C)=0$
60. \{Scranton\}
62. \{Spokane, Detroit\}
64. $\{1998\}$
66. $\}$ or \varnothing
68. True; b is an element of the set.
70. True; Cat in the Hat is an element of the set.
72. False; the capital of Hawaii is Honolulu, not Maui.
74. False; 2 is an even natural number.
76. $n(B)=6$
78. $n(D)=5$
79. Both; A and B contain exactly the same elements.
80. Equivalent; both sets contain the same number of elements, 3 .
81. Neither; the sets have a different number of elements.
82. Neither; not all dogs are collies.
83. Equivalent; both sets contain the same number of elements, 3 .
84. Equivalent; both sets contain the same number of elements, 50.
85. a) Set A is the set of natural numbers greater than 2 . Set B is the set of all numbers greater than 2 .
b) Set A contains only natural numbers. Set B contains other types of numbers, including fractions and decimal numbers.
c) $A=\{3,4,5,6, \ldots\}$
d) No; set B cannot be written in roster form since we cannot list all the elements in set B.
86. a) Set A is the set of natural numbers greater than 2 and less than or equal to 5 . Set B is the set of numbers greater than 2 and less than or equal to 5 .
b) Set A contains only natural numbers. Set B contains other types of numbers, including fractions and decimal numbers.
c) $A=\{3,4,5\}$
d) No, set B cannot be written in roster form since there is no smallest number that is greater than 2 .
87. Cardinal; 12 tells how many.
89. Ordinal; sixteenth tells Lincoln's relative position.
88. Ordinal; 25 tells the relative position of the chart.
90. Cardinal; 35 tells how many dollars she spent.
91. Answers will vary.
92. Answers will vary. Examples: the set of people in the class who were born on the moon, the set of automobiles that get 400 miles on a gallon of gas, the set of fish that can talk
93. Answers will vary.
94. Answers will vary. Here are some examples.
a) The set of men. The set of actors. The set of people over 12 years old. The set of people with two legs. The set of people who have been in a movie.
b) The set of all the people in the world.
95.
(

Exercise Set 2.2

1. Set A is a subset of set B, symbolized by $A \subseteq B$, if and only if all the elements of set A are also elements of set B.
2. Set A is a proper subset of set B, symbolized by $A \subset B$, if and only if all the elements of set A are also elements of set B and set $A \neq$ set B.
3. If $A \subseteq B$, then every element of set A is also an element of set B. If $A \subset B$, then every element of set A is also an element of set B and set $A \neq \operatorname{set} B$.
4. 2^{n}, where n is the number of elements in the set.
5. $2^{n}-1$, where n is the number of elements in the set.
6. No, if two sets are equal one cannot be a proper subset of the other.
7. False; gold is an element of the set, not a subset.
8. True; the empty set is a subset of every set.
9. True; 5 is not an element of $\{2,4,6\}$.
10. False; the set $\{\varnothing\}$ contains the element \varnothing.
11. True; $\}$ and \varnothing each represent the empty set.
12. False; the set $\{0\}$ contains the element 0 .
13. False; $\{$ swimming $\}$ is a subset, not an element.
14. True; the empty set is a subset of every set, including itself.
15. False; no set is a proper subset of itself.
16. $B \subseteq A, B \subset A$
17. $A \subseteq B, A \subset B$
18. $B \subseteq A, B \subset A$
19. $A=B, A \subseteq B, B \subseteq A$
20. $\}$ is the only subset.
21. $\},\{$ pen $\},\{$ pencil $\},\{$ pen, pencil $\}$
22. a) $\},\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\}$, $\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\}$, $\{a, c, d\},\{b, c, d\},\{a, b, c, d\}$
b) All the sets in part a) are proper subsets of A except $\{a, b, c, d\}$.
23. False; A could be equal to B.
24. True; every set is a subset of itself.
25. True; \varnothing is a proper subset of every set except itself.
26. True; every set is a subset of the universal set.
27. True; \varnothing is a proper subset of every set except itself and $U=\varnothing$.
28. True; \varnothing is a subset of every set.
29. False; the empty set is a subset of \{knee, ankle, shoulder, hip\} .
30. False; red is an element of the set, not a proper subset.
31. False; Pete and Mike are not in the second set.
32. True; $\{$ engineer $\}$ is a subset of \{architect, physician, attorney, engineer\} .
33. False; 0 is a number and $\}$ is a set.
34. True; $\{3,8,11\}$ is a subset of $\{3,8,11\}$.
35. True; $\{3,5,9\}=\{3,9,5\}$.
36. True; the elements of the set are themselves sets.
37. True; $\{b, a, t\}$ is a subset of $\{t, a, b\}$.
38. $A=B, A \subseteq B, B \subseteq A$
39. None
40. $B \subseteq A, B \subset A$
41. $B \subseteq A, B \subset A$
42. $\},\{\bigcirc\}$
43. $\},\{$ apple $\},\{$ peach $\},\{$ banana $\},\{$ apple, peach $\}$, $\{$ apple, banana $\},\{$ peach, banana $\}$,
\{apple, peach, banana\}
44. a) $2^{9}=2 \times 2 \times 2=512$ subsets
b) $2^{9}-1=512-1=511$ proper subsets
45. True; every proper subset is a subset.
46. False; no set is a proper subset of itself.
47. True; \varnothing is a subset of every set.
48. False; a set cannot be a proper subset of itself.
49. False; the only subset of \varnothing is itself and $U=\varnothing$.
50. False; U is not a subset of \varnothing. (See answer for \#48.)
51. The number of different variations of the house is equal to the number of subsets of \{deck, jacuzzi, security system, hardwood flooring\}, which is $2^{4}=2 \times 2 \times 2 \times 2=16$.
52. The number of options is equal to the number of subsets of
$\{$ RAM, modem, video card, hard drive, processor, sound card $\}$, which is $2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=64$.
53. The number of different variations is equal to the number of subsets of \{call waiting, call forwarding, caller identification, three way calling, voice mail, fax line\}, which is $2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=64$.
54. The number of variations is equal to the number of subsets of $\left\{\right.$ ketchup, mustard, relish, hot sauce, onions, lettuce, tomato\}, which is $2^{7}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=128$.
55. $E=F$ since they are both subsets of each other.
56. Count the number of boys then count the number of girls. If the number is the same, then they are equivalent.
57. a) Yes, because a is a member of set D.
b) No, c is an element of set D.
c) Yes, each element of $\{a, b\}$ is an element of set D.
58. a) Each person has 2 choices, namely yes or no. $2 \times 2 \times 2 \times 2=16$
b) YYYY, YYYN, YYNY, YNYY, NYYY, YYNN, YNYN, YNNY, NYNY, NNYY, NYYN, YNNN, NYNN, NNYN, NNNY, NNNN
c) 5 out of 16
59. A one element set has one proper subset, namely the empty set. A one element set has two subsets, namely itself and the empty set. One is one-half of two. Thus, the set must have one element.
60. Yes
61. Yes
62. No

Section 2.3

1.

2.

3.

4.

5.

6. Determine the elements that are in the universal set that are not in set A.
7. Combine the elements from set A and set B into one set. List any element that is contained in both sets only once.
8. I, II, III
9. Take the elements common to both set A and set B.
10. II
11. a) $O r$ is generally interpreted to mean union.
b) And is generally interpreted to mean intersection.
12. $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
13. Region II, the intersection of the two sets.
14. Region IV which contains any element not belonging to either set.
15.

16.

17.

18.

19. The set of U.S. colleges and universities that are not in the state of North Dakota
20. The set of marbles in the box that contain no blue coloring
21. The set of insurance companies in the U.S. that do not offer life insurance
22. The set of insurance companies in the U.S. that do no offer car insurance
23. The set of insurance companies in the U.S. that offer life insurance or car insurance
24. The set of insurance companies in the U.S. that offer life insurance and car insurance
25. The set of insurance companies in the U.S. that offer life insurance and do not offer car insurance
26. The set of insurance companies in the U.S. that offer life insurance or do not offer car insurance
27. The set of U.S. corporations whose headquarters are in New York State and whose chief executive officer is a woman
28. The set of U.S. corporations whose headquarters are in New York State or that employ at least 100 people
29. The set of U.S. corporations whose chief executive officer is not a woman and who employ at least 100 people
30. The set of U.S. corporations whose headquarters are in New York State and whose chief executive officer is a woman and who employ at least 100 people
31. The set of U.S. corporations whose headquarters are in New York State or whose chief executive officer is a woman or that employ at least 100 people
32. The set of U.S. corporations whose headquarters are not in New York State or that do not employ at least 100 people
33. $A=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{t}, \mathrm{w}\}$
34. $B=\{\mathrm{a}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}\}$
35. $A \cap B=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{t}, \mathrm{w}\} \cap\{\mathrm{a}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}\}=\{\mathrm{a}, \mathrm{h}\}$
36. $U=\{\mathrm{c}, \mathrm{w}, \mathrm{b}, \mathrm{t}, \mathrm{a}, \mathrm{h}, \mathrm{f}, \mathrm{g}, \mathrm{r}, \mathrm{p}, \mathrm{m}, \mathrm{z}\}$
37. $A \cup B=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{t}, \mathrm{w}\} \cup\{\mathrm{a}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}, \mathrm{t}, \mathrm{w}\}$
38. $(A \cup B)^{\prime}$ From \#37, $A \cup B=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}, \mathrm{t}, \mathrm{w}\} .(A \cup B)^{\prime}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}, \mathrm{t}, \mathrm{w}\}^{\prime}=\{\mathrm{m}, \mathrm{p}, \mathrm{z}\}$
39. $A^{\prime} \cap B^{\prime}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{t}, \mathrm{w}\}^{\prime} \cap\{\mathrm{a}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}\}^{\prime}=\{\mathrm{f}, \mathrm{g}, \mathrm{r}, \mathrm{p}, \mathrm{m}, \mathrm{z}\} \cap\{\mathrm{c}, \mathrm{w}, \mathrm{b}, \mathrm{t}, \mathrm{p}, \mathrm{m}, \mathrm{z}\}=\{\mathrm{p}, \mathrm{m}, \mathrm{z}\}$
40. $(A \cap B)^{\prime}$ From \#35, $A \cap B=\{\mathrm{a}, \mathrm{h}\}$. $(A \cap B)^{\prime}=\{\mathrm{a}, \mathrm{h}\}^{\prime}=\{\mathrm{b}, \mathrm{c}, \mathrm{f}, \mathrm{g}, \mathrm{m}, \mathrm{p}, \mathrm{r}, \mathrm{t}, \mathrm{w}, \mathrm{z}\}$
41. $A=\{\mathrm{L}, \Delta, @, *, \$\}$
42. $B=\{*, \$, \mathrm{R}, \square, \alpha\}$
43. $U=\{\mathrm{L}, \Delta, @, *, \$, \mathrm{R}, \square, \alpha, \infty, \Sigma, \mathrm{Z}\}$
44. $A \cup B=\{\mathrm{L}, \Delta, @, *, \$\} \cup\{*, \$, \mathrm{R}, \square, \alpha\}=\{\mathrm{L}, \Delta, @, *, \$, \mathrm{R}, \square, \alpha\}$
45. $A \cap B=\{\mathrm{L}, \Delta, @, *, \$\} \cap\{*, \$, \mathrm{R}, \square, \alpha\}=\{*, \$\}$
46. $A \cup B^{\prime}=\left\{\mathrm{L}, \Delta, @,{ }^{*}, \$\right\} \cup\left\{{ }^{*}, \$, \mathrm{R}, \square, \alpha\right\}^{\prime}=\{\mathrm{L}, \Delta, @, *, \$\} \cup\{\mathrm{L}, \Delta, @, \infty, \Sigma, \mathrm{Z}\}=\left\{\mathrm{L}, \Delta, @,{ }^{*}, \$, \infty, \Sigma, \mathrm{Z}\right\}$

CHAPTER 2 Sets

47. $A^{\prime} \cap B=\{\mathrm{L}, \Delta, @, *, \$\}^{\prime} \cap\{*, \$, \mathrm{R}, \square, \alpha\}=\{\mathrm{R}, \square, \alpha, \infty, \Sigma, \mathrm{Z}\} \cap\{*, \$, \mathrm{R}, \square, \alpha\}=\{\mathrm{R}, \square, \alpha\}$
48. $(A \cup B)^{\prime}$ From \#44, $A \cup B=\{\mathrm{L}, \Delta, @, *, \$, \mathrm{R}, \square, \alpha\} .(A \cup B)^{\prime}=\{\mathrm{L}, \Delta, @, *, \$, \mathrm{R}, \square, \alpha\}^{\prime}=\{\infty, \Sigma, \mathrm{Z}\}$
49. $A \cup B=\{1,2,4,5,8\} \cup\{2,3,4,6\}=\{1,2,3,4,5,6,8\}$
50. $A \cap B=\{1,2,4,5,8\} \cap\{2,3,4,6\}=\{2,4\}$
51. $B^{\prime}=\{2,3,4,6\}^{\prime}=\{1,5,7,8\}$
52. $A \cup B^{\prime}=\{1,2,4,5,8\} \cup\{2,3,4,6\}^{\prime}=\{1,2,4,5,8\} \cup\{1,5,7,8\}=\{1,2,4,5,7,8\}$
53. $(A \cup B)^{\prime}$ From \#49, $A \cup B=\{1,2,3,4,5,6,8\}$. $(A \cup B)^{\prime}=\{1,2,3,4,5,6,8\}^{\prime}=\{7\}$
54. $A^{\prime} \cap B^{\prime}=\{1,2,4,5,8\}^{\prime} \cap\{2,3,4,6\}^{\prime}=\{3,6,7\} \cap\{1,5,7,8\}=\{7\}$
55. $(A \cup B)^{\prime} \cap B$ From \#53, $(A \cup B)^{\prime}=\{7\}$. $(A \cup B)^{\prime} \cap B=\{7\} \cap\{2,3,4,6\}=\{ \}$
56. $(A \cup B) \cap(A \cup B)^{\prime}$ From \#49, $A \cup B=\{1,2,3,4,5,6,8\}$ and from \#53, $(A \cup B)^{\prime}=\{7\}$.
$(A \cup B) \cap(A \cup B)^{\prime}=\{1,2,3,4,5,6,8\} \cap\{7\}=\{ \}$
57. $(B \cup A)^{\prime} \cap\left(B^{\prime} \cup A^{\prime}\right)$ From \#53, $(A \cup B)^{\prime}=(B \cup A)^{\prime}=\{7\}$.
$(B \cup A)^{\prime} \cap\left(B^{\prime} \cup A^{\prime}\right)=\{7\} \cap\left(\{2,3,4,6\}^{\prime} \cup\{1,2,4,5,8\}^{\prime}\right)=\{7\} \cap(\{1,5,7,8\} \cup\{3,6,7\})$
$=\{7\} \cap\{1,3,5,6,7,8\}=\{7\}$
58. $A^{\prime} \cup(A \cap B)$ From \#50, $A \cap B=\{2,4\}$. $A^{\prime} \cup(A \cap B)=\{1,2,4,5,8\}^{\prime} \cup\{2,4\}=\{3,6,7\} \cup\{2,4\}=\{2,3,4,6,7\}$
59. $B^{\prime}=\{b, c, d, f, g\}^{\prime}=\{a, e, h, i, j, k\}$
60. $B \cup C=\{b, c, d, f, g\} \cup\{a, b, f, i, j\}=\{a, b, c, d, f, g, i, j\}$
61. $A \cap C=\{a, c, d, f, g, i\} \cap\{a, b, f, i, j\}=\{a, f, i\}$
62. $A \cup B^{\prime}$ From \#59, $B^{\prime}=\{a, e, h, i, j, k\} . A \cup B^{\prime}=\{a, c, d, f, g, i\} \cup\{a, e, h, i, j, k\}=\{a, c, d, e, f, g, h, i, j, k\}$
63. $(A \cap C)^{\prime}$ From \#61, $A \cap C=\{a, f, i\} .(A \cap C)^{\prime}=\{a, f, i\}^{\prime}=\{b, c, d, e, g, h, j, k\}$
64. $(A \cap B) \cup C=(\{a, c, d, f, g, i\} \cap\{b, c, d, f, g\}) \cup\{a, b, f, i, j\}=\{c, d, f, g\} \cup\{a, b, f, i, j\}=\{a, b, c, d, f, g, i, j\}$
65. $A \cup(C \cap B)^{\prime}=\{a, c, d, f, g, i\} \cup(\{a, b, f, i, j\} \cap\{b, c, d, f, g\})^{\prime}=\{a, c, d, f, g, i\} \cup\{b, f\}^{\prime}$
$=\{a, c, d, f, g, i\} \cup\{a, c, d, e, g, h, i, j, k\}=\{a, c, d, e, f, g, h, i, j, k\}$
66. $A \cup\left(C^{\prime} \cup B^{\prime}\right)=\{a, c, d, f, g, i\} \cup\left(\{a, b, f, i, j\}^{\prime} \cup\{b, c, d, f, g\}^{\prime}\right)$

$$
\begin{aligned}
& =\{a, c, d, f, g, i\} \cup(\{c, d, e, g, h, k\} \cup\{a, e, h, i, j, k\})=\{a, c, d, f, g, i\} \cup\{a, c, d, e, g, h, i, j, k\} \\
& =\{a, c, d, e, f, g, h, i, j, k\}
\end{aligned}
$$

67. $\left(A^{\prime} \cup C\right) \cup(A \cap B)=\left(\{a, c, d, f, g, i\}^{\prime} \cup\{a, b, f, i, j\}\right) \cup(\{a, c, d, f, g, i\} \cap\{b, c, d, f, g\})$
$=(\{b, e, h, j, k\} \cup\{a, b, f, i, j\}) \cup\{c, d, f, g\}=\{a, b, e, f, h, i, j, k\} \cup\{c, d, f, g\}$ $=\{a, b, c, d, e, f, g, h, i, j, k\}$, or U
68. $(C \cap B) \cap\left(A^{\prime} \cap B\right)$ From \#65, $C \cap B=\{b, f\}$.

$$
\begin{aligned}
& (C \cap B) \cap\left(A^{\prime} \cap B\right)=\{b, f\} \cap\left(\{a, c, d, f, g, i\}^{\prime} \cap\{b, c, d, f, g\}\right)=\{b, f\} \cap(\{b, e, h, j, k\} \cap\{b, c, d, f, g\}) \\
& =\{b, f\} \cap\{b\}=\{b\}
\end{aligned}
$$

For exercises 69-82: $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,3,5,7,9\}, B=\{2,4,6,8\}, C=\{1,2,3,4,5\}$
69. $A \cap B=\{1,3,5,7,9\} \cap\{2,4,6,8\}=\{ \}$
70. $A \cup B=\{1,3,5,7,9\} \cup\{2,4,6,8\}=\{1,2,3,4,5,6,7,8,9\}$, or U
71. $A^{\prime} \cup B=\{1,3,5,7,9\}^{\prime} \cup\{2,4,6,8\}=\{2,4,6,8\} \cup\{2,4,6,8\}=\{2,4,6,8\}$, or B
72. $(B \cup C)^{\prime}=(\{2,4,6,8\} \cup\{1,2,3,4,5\})^{\prime}=\{1,2,3,4,5,6,8\}^{\prime}=\{7,9\}$
73. $A \cap C^{\prime}=\{1,3,5,7,9\} \cap\{1,2,3,4,5\}^{\prime}=\{1,3,5,7,9\} \cap\{6,7,8,9\}=\{7,9\}$
74. $A \cap B^{\prime}=\{1,3,5,7,9\} \cap\{2,4,6,8\}^{\prime}=\{1,3,5,7,9\} \cap\{1,3,5,7,9\}=\{1,3,5,7,9\}$, or A
75. $(B \cap C)^{\prime}=(\{2,4,6,8\} \cap\{1,2,3,4,5\})^{\prime}=\{2,4\}^{\prime}=\{1,3,5,6,7,8,9\}$
76. $(A \cup C) \cap B=(\{1,3,5,7,9\} \cup\{1,2,3,4,5\}) \cap\{2,4,6,8\}=\{1,2,3,4,5,7,9\} \cap\{2,4,6,8\}=\{2,4\}$
77. $(C \cap B) \cup A$ From \#75, $C \cap B=\{2,4\}$. $(C \cap B) \cup A=\{2,4\} \cup\{1,3,5,7,9\}=\{1,2,3,4,5,7,9\}$
78. $\left(C^{\prime} \cup A\right) \cap B=\left(\{1,2,3,4,5\}^{\prime} \cup\{1,3,5,7,9\}\right) \cap\{2,4,6,8\}=(\{6,7,8,9\} \cup\{1,3,5,7,9\}) \cap\{2,4,6,8\}$ $=\{1,3,5,6,7,8,9\} \cap\{2,4,6,8\}=\{6,8\}$
79. $\left(A^{\prime} \cup C\right) \cap B=\left(\{1,3,5,7,9\}^{\prime} \cup\{1,2,3,4,5\}\right) \cap\{2,4,6,8\}=(\{2,4,6,8\} \cup\{1,2,3,4,5\}) \cap\{2,4,6,8\}$ $=\{1,2,3,4,5,6,8\} \cap\{2,4,6,8\}=\{2,4,6,8\}$, or B
80. $(A \cap B)^{\prime} \cup C$ From \#69, $A \cap B=\{ \}$.
$(A \cap B)^{\prime} \cup C=\{ \}^{\prime} \cup\{1,2,3,4,5\}=\{1,2,3,4,5,6,7,8,9\} \cup\{1,2,3,4,5\}=\{1,2,3,4,5,6,7,8,9\}$, or U
81. $\left(A^{\prime} \cup B^{\prime}\right) \cap C=\left(\{1,3,5,7,9\}^{\prime} \cup\{2,4,6,8\}^{\prime}\right) \cap\{1,2,3,4,5\}$

$$
=(\{2,4,6,8\} \cup\{1,3,5,7,9\}) \cap\{1,2,3,4,5\}=\{1,2,3,4,5,6,7,8,9\} \cap\{1,2,3,4,5\}=\{1,2,3,4,5\} \text {, or } C
$$

82. $\left(A^{\prime} \cap C\right) \cup(A \cap B)$ From \#69, $A \cap B=\{ \}$.

$$
\left(A^{\prime} \cap C\right) \cup(A \cap B)=\left(\{1,3,5,7,9\}^{\prime} \cap\{1,2,3,4,5\}\right) \cup\{ \}=(\{2,4,6,8\} \cap\{1,2,3,4,5\}) \cup\{ \}=\{2,4\} \cup\{ \}=\{2,4\}
$$

83. A set and its complement will always be disjoint since the complement of a set is all of the elements in the universal set that are not in the set. Therefore, a set and its complement will have no elements in common.
For example, if $U=\{1,2,3\}, A=\{1,2\}$, and $A^{\prime}=\{3\}$, then $A \cap A^{\prime}=\{ \}$.
84. $n(A \cap B)=0$ when A and B are disjoint sets. For example, if $U=\{1,2,3,4,5,6\}, A=\{1,3\}, B=\{2,4\}$, then $A \cap B=\{ \} \cdot n(A \cap B)=0$

CHAPTER 2 Sets

85. Let $A=\{$ visitors who visited the Hollywood Bowl $\}$ and $B=\{$ visitors who visited Disneyland $\}$.

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)=27+38-16=49
$$

86. Let $A=\{$ students who sang in the chorus $\}$ and $B=\{$ students who played in the stage band $\}$.

$$
\begin{aligned}
n(A \cup B) & =n(A)+n(B)-n(A \cap B) \\
46 & =n(A)+30-4 \\
46 & =n(A)+26 \\
46-26 & =n(A)+26-26 \\
20 & =n(A)
\end{aligned}
$$

87. a) $A \cup B=\{a, b, c, d\} \cup\{b, d, e, f, g, h\}=\{a, b, c, d, e, f, g, h\}, n(A \cup B)=8$,
$A \cap B=\{a, b, c, d\} \cap\{b, d, e, f, g, h\}=\{b, d\}, n(A \cap B)=2$.
$n(A)+n(B)-n(A \cap B)=4+6-2=8$
Therefore, $n(A \cup B)=n(A)+n(B)-n(A \cap B)$.
b) Answers will vary.
c) Elements in the intersection of A and B are counted twice in $n(A)+n(B)$.
88. $A \cap B^{\prime}$ defines Region I. $A \cap B$ defines Region II. $A^{\prime} \cap B$ defines Region III.
$A^{\prime} \cap B^{\prime}$ or $(A \cup B)^{\prime}$ defines Region IV.
89. $A \cup B=\{1,2,3,4, \ldots\} \cup\{4,8,12,16, \ldots\}=\{1,2,3,4, \ldots\}$, or A
90. $A \cap B=\{1,2,3,4, \ldots\} \cap\{4,8,12,16, \ldots\}=\{4,8,12,16, \ldots\}$, or B
91. $B \cap C=\{4,8,12,16, \ldots\} \cap\{2,4,6,8, \ldots\}=\{4,8,12,16, \ldots\}$, or B
92. $B \cup C=\{4,8,12,16, \ldots\} \cup\{2,4,6,8, \ldots\}=\{2,4,6,8, \ldots\}$, or C
93. $A \cap C=\{1,2,3,4, \ldots\} \cap\{2,4,6,8, \ldots\}=\{2,4,6,8, \ldots\}$, or C
94. $A^{\prime} \cap C=\{1,2,3,4, \ldots\}^{\prime} \cap\{2,4,6,8, \ldots\}=\{0\} \cap\{2,4,6,8, \ldots\}=\{ \}$
95. $B^{\prime} \cap C=\{4,8,12,16, \ldots\}^{\prime} \cap\{2,4,6,8, \ldots\}=\{0,1,2,3,5,6,7,9,10,11,13,14,15, \ldots\} \cap\{2,4,6,8, \ldots\}$
$=\{2,6,10,14,18, \ldots\}$
96. $(B \cup C)^{\prime} \cup C$ From \#92, $B \cup C=C .(B \cup C)^{\prime} \cup C=C^{\prime} \cup C=\{2,4,6,8, \ldots\}^{\prime} \cup\{2,4,6,8, \ldots\}$ $=\{0,1,2,3,4, \ldots\}$, or U
97. $(A \cap C) \cap B^{\prime}$ From \#93, $A \cap C=C .(A \cap C) \cap B^{\prime}=C \cap B^{\prime}$.

From \#95, $B^{\prime} \cap C=C \cap B^{\prime}=\{2,6,10,14,18, \ldots\}$
98. $U^{\prime} \cap(A \cup B)$ From \#89, $A \cup B=A$. $U^{\prime} \cap(A \cup B)=U^{\prime} \cap A=\{ \} \cap\{1,2,3,4, \ldots\}=\{ \}$
99. $A \cup A^{\prime}=U$
100. $A \cap A^{\prime}=\{ \}$
101. $A \cup \varnothing=A$
102. $A \cap \varnothing=\varnothing$
103. $A^{\prime} \cup U=U$
104. $A \cap U=A$
105. $A \cup U=U$
106. $A \cup U^{\prime}=A \cup\{ \}=A$
107. If $A \cap B=B$, then $B \subseteq A$.
108. If $A \cup B=B$, then $A \subseteq B$.
109. If $A \cap B=\varnothing$, then A and B are disjoint sets.
110. If $A \cup B=A$, then $B \subseteq A$.
111. If $A \cap B=A$, then $\mathrm{A} \subseteq \mathrm{B}$.
113. $A-B=\{b, c, e, f, g, h\}-\{a, b, c, g, i\}=\{e, f, h\}$
115. $A^{\prime}-B=\{b, c, e, f, g, h\}^{\prime}-\{a, b, c, g, i\}$ $=\{a, d, i, j, k\}-\{a, b, c, g, i\}=\{d, j, k\}$
117. $A-B=\{2,4,5,7,9,11,13\}-\{1,2,4,5,6,7,8,9,11\}$ $=\{13\}$
119. $(A-B)^{\prime}$ From \#117, $A-B=\{13\}$.
$(A-B)^{\prime}=\{13\}^{\prime}$
$=\{1,2,3,4,5,6,7,8,9,10,11,12,14,15\}$
121. $(B-A)^{\prime}$ From \#118, $B-A=\{1,6,8\}$.

$$
\begin{aligned}
& (B-A)^{\prime}=\{1,6,8\}^{\prime} \\
& =\{2,3,4,5,7,9,10,11,12,13,14,15\}
\end{aligned}
$$

123. Complement
124. If $A \cup B=\varnothing$, then $A=\varnothing$ and $B=\varnothing$.

Therefore, they are equal sets.
114. $B-A=\{a, b, c, g, i\}-\{b, c, e, f, g, h\}=\{a, i\}$
116. $A-B^{\prime}=\{b, c, e, f, g, h\}-\{a, b, c, g, i\}^{\prime}$
$=\{b, c, e, f, g, h\}-\{d, e, f, h, j, k\}=\{b, c, g\}$
118. $B-A=\{1,2,4,5,6,7,8,9,11\}-\{2,4,5,7,9,11,13\}$
$=\{1,6,8\}$
120. $A-B^{\prime}$
$=\{2,4,5,7,9,11,13\}-\{1,2,4,5,6,7,8,9,11\}^{\prime}$
$=\{2,4,5,7,9,11,13\}-\{3,10,12,13,14,15\}$
$=\{2,4,5,7,9,11\}$
122. $A \cap(A-B)$ From \#117, $A-B=\{13\}$.
$A \cap(A-B)=\{2,4,5,7,9,11,13\} \cap\{13\}=\{13\}$
124.

Exercise Set 2.4

1. 8
2. Region V , the intersection of all three sets
3. Regions II, IV, VI
4. $A \cap B$ is represented by regions II and V. If $A \cap B$ contains 10 elements and region V contains 6 elements, then region II contains $10-6=4$ elements.
5. $B \cap C$ is represented by regions V and VI. If $B \cap C$ contains 12 elements and region V contains 4 elements, then region VI contains $12-4=8$ elements.
6. $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} ;(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
7. a) Yes
$A \cup B=\{1,4,5\} \cup\{1,4,5\}=\{1,4,5\}$
$A \cap B=\{1,4,5\} \cap\{1,4,5\}=\{1,4,5\}$
b) No, one specific case cannot be used as proof.
c)

$A \cup B$				$A \cap B$	
$\frac{\text { Set }}{A}$	$\underline{\text { Regions }}$		Set		
A	I, II		Regions		
B	II, III	B		I, II	
$A \cup B$	I, II, III	$A \cap B$	II III		

Since the two statements are not represented by the same regions, $A \cup B \neq A \cap B$ for all sets A and B.
8. Deductive reasoning - the process of reasoning to a specific conclusion from a general statement.
9.

11.

12.

14.

15.

16.

18. Yale, I
20. University of California - Berkeley, VI
22. Duke, IV
24. Pittsburgh, III
26. Houston, I
28. Chicago, VI
30. VIII
32. IV
34. I
36. III
38. VIII
40. VI
42. VII
44. V
46. III
48. $\quad U=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
50. $C=\{4,5,6,7,8,10\}$
52. $A \cap C=\{4,5,6\}$
54. $A \cap B \cap C=\{4,5\}$
56. $B \cup C=\{3,4,5,6,7,8,9,10,12\}$
58. $A \cup B \cup C=\{1,2,3,4,5,6,7,8,9,10,12\}$
60. $(A \cup B \cup C)^{\prime}=\{11\}$

61. $(A \cup B)^{\prime}$		$A^{\prime} \cap B^{\prime}$	
Set	Regions	Set	Regions
A	I, II	A	I, II
B	II, III	A^{\prime}	III, IV
$A \cup B$	I, II, III	B	II, III
$(A \cup B)^{\prime}$	IV	B^{\prime}	I, IV
		$A^{\prime} \cap B^{\prime}$	IV

Both statements are represented by the same region, IV, of the Venn diagram. Therefore, $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ for all sets A and B.

63.		$A \cap B$	
Set	Regions	$\underline{\text { Set }}$	Regions
A	I, II	A	I, II
A^{\prime}	III, IV	B	II, III
B	II, III	$A \cap B$	II
B^{\prime}	I, IV		
$A^{\prime} \cup B^{\prime}$	I, III, IV		

Since the two statements are not represented by the same regions, $A^{\prime} \cup B^{\prime} \neq A \cap B$ for all sets A and B.

65.	$A^{\prime} \cup B^{\prime}$	$(A \cup B)^{\prime}$	
$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{}$	$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{\text { I, II }}$
A^{\prime}	III, IV	B	II, III
B	II, III	$A \cup B$	I, II, III
B^{\prime}	I, IV	$(A \cup B)^{\prime}$	IV
$A^{\prime} \cup B^{\prime}$	I, III, IV		

Since the two statements are not represented by the same regions, $A^{\prime} \cup B^{\prime} \neq(A \cup B)^{\prime}$ for all sets A and B.

67.	$\left(A^{\prime} \cap B\right)^{\prime}$	$A \cup B^{\prime}$	
$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{}$	$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{\text { II II }}$
A^{\prime}	III, IV	B	II, III
B	II, III	B^{\prime}	I, IV
$A^{\prime} \cap B$	III	$A \cup B^{\prime}$	I, II, IV
$\left(A^{\prime} \cap B\right)^{\prime}$	I, II, IV		

Both statements are represented by the same regions, I, II, IV, of the Venn diagram. Therefore, $\left(A^{\prime} \cap B\right)^{\prime}=A \cup B^{\prime}$ for all sets A and B.
62. $(A \cap B)^{\prime}$

$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{\text { I, II }}$		$\frac{\text { Set }}{A}$	
B	II, III	A^{\prime}	I, III	
$B \cap B$	II	B	III IV	
$A \cap B$	B	III		
$(A \cap B)^{\prime}$	I, III, IV	$A^{\prime} \cup B$	II, III, IV	

Since the two statements are not represented by the same regions, $(A \cap B)^{\prime} \neq A^{\prime} \cup B$ for all sets A and B.
64. $(A \cup B)^{\prime}$
$(A \cap B)^{\prime}$

$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{}$		Set	Regions
B	I, II		I, II	
B	II, III III	B	III II	
$A \cup B$	I, II, III	$A \cap B$	II	
$(A \cup B)^{\prime}$	IV		$(A \cap B)^{\prime}$	I, III, IV

Since the two statements are not represented by the same regions, $(A \cup B)^{\prime} \neq(A \cap B)^{\prime}$ for all sets A and B.

$$
\text { 66. } A^{\prime} \cap B^{\prime} \quad A \cup B^{\prime}
$$

$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{}$	$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{\text { I, II }}$
A^{\prime}	III, IV	B	III III
B	III III	B^{\prime}	I, IV
B^{\prime}	I, IV	$A \cup B^{\prime}$	I, II, IV
$A^{\prime} \cap B^{\prime}$	IV		

Since the two statements are not represented by the same regions, $A^{\prime} \cap B^{\prime} \neq A \cup B^{\prime}$ for all sets A and B.

68. $A^{\prime} \cap B^{\prime}$		$\left(A^{\prime} \cap B^{\prime}\right)^{\prime}$	
Set	Regions	Set	$\underline{\text { Regions }}$
A	I, II	A	I, II
A^{\prime}	III, IV	A^{\prime}	III, IV
B	II, III	B	II, III
B^{\prime}	I, IV	B^{\prime}	I, IV
$A^{\prime} \cap B^{\prime}$	IV	$A^{\prime} \cap B^{\prime}$	IV
		$\left(A^{\prime} \cap B^{\prime}\right)^{\prime}$	I, II, III

Since the two statements are not represented by the same regions, $A^{\prime} \cap B^{\prime} \neq\left(A^{\prime} \cap B^{\prime}\right)^{\prime}$ for all sets A and B.

69.		$(A \cap B) \cup C$	
$\underline{\text { Set }}$	Regions	$\underline{\text { Set }}$	Regions
B	II, III, V, VI	A	I, II, IV, V
C	IV, V, VI, VII	B	II, III, V, VI
$B \cup C$	II, III, IV, V, VI, VII	$A \cap B$	II, V
A	I, II, IV, V	C	IV, V, VI, VII
$A \cap(B \cup C)$	II, IV, V	$(A \cap B) \cup C$	II, IV, V, VI, VII

Since the two statements are not represented by the same regions, $A \cap(B \cup C) \neq(A \cap B) \cup C$ for all sets A, B, and C.
70. $A \cup(B \cap C)$

$$
(B \cap C) \cup A
$$

$\frac{\text { Set }}{B}$	Regions	$\underline{\text { Set }}$	$\underline{\text { Regions }}$
C	II, III, V, VI	B	II, III, V, VI
$B \cap C$	IV, V, VI, VII	C	IV, V, VI, VII
A	V, VI	$B \cap C$	V, VI
$A \cup(B \cap C)$	I, II, IV, V	A	I, II, IV, V
I, II, IV, V, VI	$(B \cap C) \cup A$	I, II, IV, V, VI	

Both statements are represented by the same regions, I, II, IV, V, VI, of the Venn diagram.
Therefore, $A \cup(B \cap C)=(B \cap C) \cup A$ for all sets A, B, and C.

$\quad A \cap(B \cup C)$			$(B \cup C) \cap A$		
$\frac{\text { Set }}{B}$	$\underline{\text { Regions }}$	$\underline{\text { Set }}$	$\underline{\text { Regions }}$		
C	II, III, V, VI	B	II, III, V, VI		
$B \cup C$	IV, V, VI, VII	C	IV, V, VI, VII		
A	II, III, IV, V, VI, VII	$B \cup C$	II, III, IV, V, VI, VII		
$A \cap(B \cup C)$	I, II, IV, V	A	I, II, IV, V		
II, IV, V	$(B \cup C) \cap A$	II, IV, V			

Both statements are represented by the same regions, II, IV, V, of the Venn diagram.
Therefore, $A \cap(B \cup C)=(B \cup C) \cap A$ for all sets A, B, and C.

72. $A \cup(B \cap C)^{\prime}$			
$\underline{\text { Set }}$	Regions	$\underline{\text { Set }}$	Regions
B	II, III, V, VI	B	II, III, V, VI
C	IV, V, VI, VII	C	IV, V, VI, VII
$B \cap C$	V, VI	$B \cup C$	II, III, IV, V, VI, VII
$(B \cap C)^{\prime}$	I, II, III, IV, VII, VIII	A	I, II, IV, V
A	I, II, IV, V	A^{\prime}	III, VI, VII, VIII
$A \cup(B \cap C)^{\prime}$	I, II, III, IV, V, VII, VIII	$A^{\prime} \cap(B \cup C)$	III, VI, VII

Since the two statements are not represented by the same regions, $A \cup(B \cap C)^{\prime} \neq A^{\prime} \cap(B \cup C)$ for all sets A, B, and C.
73. $A \cap(B \cup C)$

$$
(A \cap B) \cup(A \cap C)
$$

$\underline{S e t}$	$\underline{\text { Regions }}$	$\underline{\text { Set }}$	$\underline{\text { Regions }}$
B	II, III, V, VI	A	I, II, IV, V
C	IV, V, VI, VII	B	II, III, V, VI
$B \cup C$	II, III, IV, V, VI, VII	$A \cap B$	II, V
A	I, II, IV, V	C	IV, V, VI, VII
$A \cap(B \cup C)$	II, IV, V	$A \cap C$	IV, V
		$(A \cap B) \cup(A \cap C)$	II, IV, V

Both statements are represented by the same regions, II, IV, V, of the Venn diagram.
Therefore, $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ for all sets A, B, and C.

74.								$(A \cup(B \cap C)$	$\underline{\text { Set }}$	Regions
Set	Regions	A	I, II, IV, V							
B	II, III, V, VI	B	II, III, V, VI							
C	IV, V, VI, VII	$A \cup B$	I, II, III, IV, V, VI							
$B \cap C$	V, VI	C	IV, V, VI, VII							
A	I, II, IV, V	$A \cup C$	I, II, IV, V, VI, VII							
$A \cup(B \cap C)$	I, II, IV, V, VI									
		$(A \cup B) \cap(A \cup C)$	I, II, IV, V, VI							

Both statements are represented by the same regions, I, II, IV, V, VI, of the Venn diagram. Therefore, $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ for all sets A, B, and C.

$A \cap(B \cup C)^{\prime}$		$A \cap\left(B^{\prime} \cap C^{\prime}\right)$	
$\underline{\text { Set }}$	Regions	Set	Regions
B	II, III, V, VI	B	II, III, V, VI
C	IV, V, VI, VII	B^{\prime}	I, IV, VII, VIII
$B \cup C$	II, III, IV, V, VI, VII	C	IV, V, VI, VII
$(B \cup C)^{\prime}$	I, VIII	C^{\prime}	I, II, III, VIII
A	I, II, IV, V	$B^{\prime} \cap C^{\prime}$	I, VIII
$A \cap(B \cup C)^{\prime}$	I	A	I, II, IV, V
		$A \cap\left(B^{\prime} \cap C^{\prime}\right)$	I

Both statements are represented by the same region, I, of the Venn diagram.
Therefore, $A \cap(B \cup C)^{\prime}=A \cap\left(B^{\prime} \cap C^{\prime}\right)$ for all sets A, B, and C.

76.			
$\frac{\text { Set }}{A}$			$B \cup(A \cap C)$
B	I, II, IV, V	$\frac{\text { Regions }}{A}$	$\underline{\text { Regions }}$
$A \cup B$	II, III, V, VI	C	II, II, IV, V
C	I, II, III, IV, V, VI	$A \cap C$	IV, V, VI, VII
$B \cup C$	IV, V, VI, VII	B	II, III, V, VI
$(A \cup B) \cap(B \cup C)$	II, III, IV, V, VI, VII	$B \cup(A \cap C)$	II, III, IV, V, VI
II, III, IV, V, VI			

Both statements are represented by the same regions, II, III, IV, V, VI, of the Venn diagram.
Therefore, $(A \cup B) \cap(B \cup C)=B \cup(A \cap C)$ for all sets A, B, and C.

77. Set A			

Since the two statements are not represented by the same regions, $(A \cup B)^{\prime} \cap C \neq\left(A^{\prime} \cup C\right) \cap\left(B^{\prime} \cup C\right)$ for all sets A, B, and C.

78.	$(C \cap B)^{\prime} \cup(A \cap B)^{\prime}$	$A \cap(B \cap C)$	
Set	$\underline{\text { Regions }}$		
C	IV, V, VI, VII	B	$\underline{\text { Regions }}$
B	II, III, V, VI	C	II, III, V, VI
$C \cap B$	V, VI	$B \cap C$	IV, V, VI, VII
$(C \cap B)^{\prime}$	I, II, III, IV, VII, VIII	A	I, II, IV, V
A	I, II, IV, V	$A \cap(B \cap C)$	V
$A \cap B$	II, V		
$(A \cap B)^{\prime}$	I, III, IV, VI, VII, VIII		
$(C \cap B)^{\prime} \cup(A \cap B)^{\prime}$	I, II, III, IV, VI, VII, VIII		

Since the two statements are not represented by the same regions, $(C \cap B)^{\prime} \cup(A \cap B)^{\prime} \neq A \cap(B \cap C)$ for all sets A, B, and C.
79. $(A \cup B)^{\prime}$
81. $(A \cup B) \cap C^{\prime}$
80. $A \cap B^{\prime}$
82. $A^{\prime} \cap B \cap C$
83. a) $(A \cup B) \cap C=(\{1,2,3,4\} \cup\{3,6,7\}) \cap\{6,7,9\}=\{1,2,3,4,6,7\} \cap\{6,7,9\}=\{6,7\}$

$$
(A \cap C) \cup(B \cap C)=(\{1,2,3,4\} \cap\{6,7,9\}) \cup(\{3,6,7\} \cap\{6,7,9\})=\varnothing \cup\{6,7\}=\{6,7\}
$$

Therefore, for the specific sets, $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
b) Answers will vary.
c) $\quad(A \cup B) \cap C$

$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{\text { I, II, IV, V }}$	$\frac{\text { Set }}{A}$	$\frac{\text { Regions }}{\text { I, II, IV, V }}$
B	II, III, V, VI	C	IV, V, VI, VII
$A \cup B$	I, II, III, IV, V, VI	$A \cap C$	IV, V
C	IV, V, VI, VII	B	II, III, V, VI
$(A \cup B) \cap C$	IV, V, VI	$B \cap C$	V, VI
		$(A \cap C) \cup(B \cap C)$	IV, V, VI

Both statements are represented by the same regions, IV, V, VI, of the Venn diagram.
Therefore, $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$ for all sets A, B, and C.
84. a) $(A \cup C)^{\prime} \cap B=(\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\} \cup\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\})^{\prime} \cap\{\mathrm{c}, \mathrm{d}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}^{\prime} \cap\{\mathrm{c}, \mathrm{d}\}$

$$
=\{\mathrm{g}, \mathrm{~h}, \mathrm{i}\} \cap\{\mathrm{c}, \mathrm{~d}\}=\varnothing
$$

$$
(A \cap C)^{\prime} \cap B=(\{\mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}\} \cap\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\})^{\prime} \cap\{\mathrm{c}, \mathrm{~d}\}=\{\mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}^{\prime} \cap\{\mathrm{c}, \mathrm{~d}\}=\{\mathrm{b}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\} \cap\{\mathrm{c}, \mathrm{~d}\}=\varnothing
$$

Therefore, for the specific sets, $(A \cup C)^{\prime} \cap B=(A \cap C)^{\prime} \cap B$.
b) Answers will vary.
c) $\quad(A \cup C)^{\prime} \cap B$

Set	$\underline{\text { Regions }}$	$\underline{\text { Set }}$	$\underline{\text { Regions }}$
A	I, II, IV, V	A	I, II, IV, V
C	IV, V, VI, VII	C	IV, V, VI, VII
$A \cup C$	I, II, IV, V, VI, VII	$A \cap C$	IV, V
$(A \cup C)^{\prime}$	III, VIII	$(A \cap C)^{\prime}$	I, II, III, VI, VII, VIII
B	II, III, V, VI	B	II, III, V, VI
$(A \cup C)^{\prime} \cap B$	III	$(A \cap C)^{\prime} \cap B$	II, III, VI

Since the two statements are not represented by the same regions, $(A \cup C)^{\prime} \cap B \neq(A \cap C)^{\prime} \cap B$ for all sets A, B, and C.
85.

86.

$\underline{\text { Region }}$	$\underline{\text { Set }}$	$\underline{\text { Region }}$	$\underline{\text { Set }}$
I	$A \cap B^{\prime} \cap C^{\prime}$	V	$A \cap B \cap C$
II	$A \cap B \cap C^{\prime}$	VI	$A^{\prime} \cap B \cap C$
III	$A^{\prime} \cap B \cap C^{\prime}$	VII	$A^{\prime} \cap B^{\prime} \cap C$
IV	$A \cap B^{\prime} \cap C$	VIII	$A^{\prime} \cap B^{\prime} \cap C^{\prime}$

87. a) A : Office Building Construction Projects, $B:$ Plumbing Projects, C : Budget Greater Than $\$ 300,000$

b) Region V; $A \cap B \cap C$
c) Region VI; $A^{\prime} \cap B \cap C$
d) Region I; $A \cap B^{\prime} \cap C^{\prime}$
88. $n(A \cup B \cup C)=n(A)+n(B)+n(C)-2 n(A \cap B \cap C)-n\left(A \cap B \cap C^{\prime}\right)-n\left(A \cap B^{\prime} \cap C\right)-n\left(A^{\prime} \cap B \cap C\right)$
89. a)

b)

Region
I
II
III
IV
V
VI
VII
VIII

$\underline{\text { Set }}$	$\underline{\text { Region }}$
$A \cap B^{\prime} \cap C^{\prime} \cap D^{\prime}$	IX
$A \cap B \cap C^{\prime} \cap D^{\prime}$	X
$A^{\prime} \cap B \cap C^{\prime} \cap D^{\prime}$	XI
$A \cap B^{\prime} \cap C^{\prime} \cap D$	XII
$A \cap B \cap C^{\prime} \cap D$	XIII
$A^{\prime} \cap B \cap C^{\prime} \cap D$	XIV
$A \cap B^{\prime} \cap C \cap D$	XV
$A \cap B \cap C \cap D$	XVI

$$
\begin{aligned}
& \underline{\text { Set }} \\
& A \cap B^{\prime} \cap C \cap D^{\prime} \\
& A \cap B \cap C \cap D^{\prime} \\
& A^{\prime} \cap B \cap C \cap D^{\prime} \\
& A^{\prime} \cap B \cap C \cap D \\
& A^{\prime} \cap B^{\prime} \cap C \cap D^{\prime} \\
& A^{\prime} \cap B^{\prime} \cap C \cap D \\
& A^{\prime} \cap B^{\prime} \cap C^{\prime} \cap D \\
& A^{\prime} \cap B^{\prime} \cap C^{\prime} \cap D^{\prime}
\end{aligned}
$$

90.

Exercise Set 2.5

1. a) 33 , Region I
b) 29 , Region III
c) 27 , Region IV

2. a) 36, Region I
b) 22 , Region III
c) 59 , Region IV

3. a) 17 , Region I
b) 12 , Region III
c) 59 , the sum of the numbers in Regions I, II, III

4. a) 39, Region I
b) 27 , Region III
c) 101 , the sum of the numbers in Regions I, II, III

5. a) 27 , Region VIII
b) 80 , Region VII
c) 340 , the sum of the numbers in Regions I, III, VII
d) 55 , the sum of the numbers in Regions II, IV, VI
e) 337, the sum of the numbers in Regions I, II, III, IV, V, VI

CHAPTER 2 Sets

6. a) 2 , Region III
b) 6 , Region II
c) 22 , the sum of the numbers in Regions I, II, III, IV, V, VI
d) 11 , the sum of the numbers in Regions I, II, III
e) 12, the sum of the numbers in Regions II, IV, VI

7. a) 22, Region I
b) 11, Region II
c) 64 , the sum of the numbers in Regions I, II, III, IV, V, VI
d) 50 , the sum of the numbers in Regions I, II, III
e) 23, the sum of the numbers in Regions II, IV, VI

8. a) 9, Region I
b) 20, the sum of the numbers in Regions I, III, VII
c) 57, the sum of the numbers in Regions I, II, III, IV, V, VI, VII
d) 30, the sum of the numbers in Regions II, IV, VI
e) 8, Region VIII

9. a) 17 , Region I
b) 27, Region VII
c) 2, Region II
d) 31, the sum of the numbers in Regions I, II, III
e) 2, Region VIII

10. a) 496 , the sum of the numbers in

Regions I, II, III, IV, V, VI, VII, VIII
b) 132, Region IV
c) 29 , Region III
d) 328 , the sum of the numbers in Regions II, IV, VI
e) 470, the sum of the numbers in Regions I, II, III, IV, V, VI, VII

11. a) 10 , the sum of the numbers in Regions III and VI
b) 15 , the sum of the numbers in Regions I, II, III, IV, V, VI
c) 0 , Region II
d) 6, Region VIII

12. No. The sum of the numbers in the Venn diagram is 99 . Dennis claims he surveyed 100 people.

13. The Venn diagram shows the number of cars driven by women is 37 , the sum of the numbers in Regions II, IV, V. This exceeds the 35 women the agent claims to have surveyed.

14. a) 290 , the sum of the numbers in

Regions I, II, III, IV, V, VI, VII
b) 95 , Region V
c) 10 , Region VIII
d) 125 , the sum of the numbers in Regions II, IV, VI

The number of parks that had only camping, Region I, is 15 . The number of parks that had only hiking trails, Region III, is 20. The number of parks that had only picnicking, Region VII, is 35. 140 parks had camping and hiking trails, Regions II and V. 185 parks had camping. Therefore, the sum of the numbers in Regions I, II, IV, V
 must equal 185. $15+140+$ number in Region IV $=185$.
Thus, the number in Region IV is 30.
15. a) 410 , the sum of the numbers in Regions I through VII
b) 35 , Region V
c) 90 , Region VIII
d) 50 , the sum of the numbers in Regions II, IV, VI

The number of farmers growing wheat only, Region I,
is 125 . The number growing corn only, Region III,
is 110 . The number growing oats only, Region VII,
is 90.60 farmers grew wheat and corn, Regions II and V.
200 farmers grew wheat. Therefore, the sum of the numbers in Regions I, II, IV, V must equal 200.
$125+60+$ number in Region IV $=200$.

Thus, the number in Region IV is 15.
16. From the given information, we get the following Venn diagram:

Since $n(A \cup B \cup C)=10$ and $n(U)=12$, the remaining 2 elements in the universal set must be in Region VIII.
a) 10 , the sum of the numbers in Regions II, IV, V, VI
b) 10 , the sum of the numbers in Regions IV, V, VI, VIII
c) 6 , the sum of the numbers in Regions IV, VI, VIII

Exercise Set 2.6

1. An infinite set is a set that can be placed in a one-to-one correspondence with a proper subset of itself.
2. a) A set is countable if it is finite or if it can be placed in a one-to-one correspondence with the set of counting numbers.
b) Any set that can be placed in a one-to-one correspondence with the set of counting numbers has cardinality $\boldsymbol{\aleph}_{0}$.
3. $\{7,8,9,10,11, \ldots, n+6, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{8,9,10,11,12, \ldots, n+7, \ldots\}$
4. $\{3,5,7,9,11, \ldots, 2 n+1, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{5,7,9,11,13, \ldots, 2 n+3, \ldots\}$
5. $\{4,7,10,13,16, \ldots, 3 n+1, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{7,10,13,16,19, \ldots, 3 n+4, \ldots\}$
6. $\{6,11,16,21,26, \ldots, 5 n+1, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{11,16,21,26,31, \ldots, 5 n+6, \ldots\}$
7. $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots, \frac{1}{2 n}, \ldots\right\}$
$\downarrow \downarrow \downarrow \downarrow \quad \downarrow$
$\left\{\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \ldots, \frac{1}{2 n+2}, \ldots\right\}$
8. $\{1,2,3,4, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow$
$\{6,12,18,24, \ldots, 6 n, \ldots\}$
9. $\{1,2,3,4,5, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{4,6,8,10,12, \ldots, 2 n+2, \ldots\}$
10. $\{1,2,3,4,5, \ldots, \quad n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \quad \downarrow$
$\{2,5,8,11,14, \ldots, 3 n-1, \ldots\}$
11. $\{1,2,3,4,5, \ldots, \quad n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{5,8,11,14,17, \ldots, 3 n+2, \ldots\}$
12. $\{1,2,3,4,5, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \quad \downarrow$
$\left\{\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \ldots, \frac{1}{n+2}, \ldots\right\}$
13. $\{12,13,14,15,16, \ldots, n+11, \ldots\}$
$\downarrow \downarrow \quad \downarrow \downarrow \downarrow \quad \downarrow$
$\{13,14,15,16,17, \ldots, n+12, \ldots\}$
14. $\{20,22,24,26,28, \ldots, 2 n+18, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{22,24,26,28,30, \ldots, 2 n+20, \ldots\}$
15. $\{4,8,12,16,20, \ldots, 4 n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{8,12,16,20,24, \ldots, 4 n+4, \ldots\}$
16. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots, \frac{1}{n}, \ldots\right\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots, \frac{1}{n+1}, \ldots\right\}$
17. $\left\{\frac{6}{11}, \frac{7}{11}, \frac{8}{11}, \frac{9}{11}, \frac{10}{11}, \ldots, \frac{n+5}{11}, \ldots\right\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\left\{\frac{7}{11}, \frac{8}{11}, \frac{9}{11}, \frac{10}{11}, \frac{11}{11}, \ldots, \frac{n+6}{11}, \ldots\right\}$
18. $\{1,2,3,4, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow$
$\{50,51,52,53, \ldots, n+49, \ldots\}$
19. $\{1,2,3,4,5, \ldots, \quad n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \quad \downarrow$
$\{0,2,4,6,8, \ldots, 2 n-2, \ldots\}$
20. $\{1,2,3,4,5, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{4,9,14,19,24, \ldots, 5 n-1, \ldots\}$
21. $\{1,2,3,4,5, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \ldots, \frac{1}{2 n}, \ldots\right\}$
22. $\{1,2,3,4,5, \ldots, \quad n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \quad \downarrow$
$\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots, \frac{n}{n+1}, \ldots\right\}$

$$
\text { 23. } \begin{array}{llll}
\{1, & 2,3, & 4, & 5, \ldots, \\
\downarrow & \downarrow, \ldots\} \\
& \downarrow & \downarrow & \downarrow \\
\{1,4,9,16,25, \ldots, & \left.n^{2}, \ldots\right\}
\end{array}
$$

25. $\{1,2,3,4,5, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\left\{3,9,27,81,243, \ldots, 3^{n}, \ldots\right\}$
26. =
27. =
28. =
29. $\{1,2,3,4,5, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\left\{2,4,8,16,32, \ldots, 2^{n}, \ldots\right\}$
30. $\{1,2,3,4,5, \ldots, \quad n, \ldots\}$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \frac{1}{24}, \frac{1}{48}, \ldots, \frac{1}{3 \times 2^{n-1}}, \ldots\right\}$
31. =
32. =
33. a) Answers will vary.
b) No

Review Exercises

1. True
2. True
3. False; the elements $6,12,18,24, \ldots$ are members of both sets.
4. False; both sets do not contain exactly the same elements.
5. True
6. True
7. True
8. $A=\{7,9,11,13,15\}$
9. $C=\{1,2,3,4, \ldots, 296\}$
10. $A=\{x \mid x \in N$ and $52<x<100\}$
11. $C=\{x \mid x \in N$ and $x<3\}$
12. False; the word best makes the statement not well defined.
13. False; no set is a proper subset of itself.
14. True
15. True
16. True
17. True
18. True
19. $B=\{$ California, Oregon, Idaho, Utah, Arizona $\}$
20. $D=\{9,10,11,12, \ldots, 96\}$
21. $B=\{x \mid x \in N$ and $x>63\}$
22. $D=\{x \mid x \in N$ and $23 \leq x \leq 41\}$
23. A is the set of capital letters in the English alphabet from E through M, inclusive.
24. B is the set of U.S. coins with a value of less than one dollar.
25. C is the set of the last three lowercase letters in the English alphabet.
26. D is the set of numbers greater than or equal to 3 and less than 9 .
27. $A \cap B=\{1,3,5,6\} \cap\{5,6,9,10\}=\{5,6\}$
28. $A \cup B^{\prime}=\{1,3,5,6\} \cup\{5,6,9,10\}^{\prime}=\{1,3,5,6\} \cup\{1,2,3,4,7,8\}=\{1,2,3,4,5,6,7,8\}$
29. $A^{\prime} \cap B=\{1,3,5,6\}^{\prime} \cap\{5,6,9,10\}=\{2,4,7,8,9,10\} \cap\{5,6,9,10\}=\{9,10\}$
30. $(A \cup B)^{\prime} \cup C=(\{1,3,5,6\} \cup\{5,6,9,10\})^{\prime} \cup\{1,6,10\}=\{1,3,5,6,9,10\}^{\prime} \cup\{1,6,10\}$ $=\{2,4,7,8\} \cup\{1,6,10\}=\{1,2,4,6,7,8,10\}$
31. $2^{4}=2 \times 2 \times 2 \times 2=16$
32. $2^{4}-1=(2 \times 2 \times 2 \times 2)-1=16-1=15$
33.

35. $A \cap B^{\prime}=\{\mathrm{b}, \mathrm{d}\}$
37. $A \cap B \cap C=\{\mathrm{f}\}$
39. $(A \cap B) \cup C=\{\mathrm{e}, \mathrm{g}, \mathrm{f}, \mathrm{d}, \mathrm{a}, \mathrm{i}\}$
34. $A \cup B=\{\mathrm{b}, \mathrm{e}, \mathrm{g}, \mathrm{k}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{a}\}$
36. $A \cup B \cup C=\{\mathrm{b}, \mathrm{e}, \mathrm{g}, \mathrm{k}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{a}, \mathrm{i}\}$
38. $(A \cup B) \cap C=\{\mathrm{d}, \mathrm{f}, \mathrm{a}\}$
40. $\left(A^{\prime} \cup B^{\prime}\right)^{\prime}$
$A \cap B$

$\underline{\text { Set }}$	$\underline{\text { Regions }}$	$\underline{S e t}$	$\underline{\text { Regions }}$
A	I, II	A	I, II
A^{\prime}	III, IV	B	II, III
B	II, III	$A \cap B$	II
B^{\prime}	I, IV		
$A^{\prime} \cup B^{\prime}$	I, III, IV		
$\left(A^{\prime} \cup B^{\prime}\right)^{\prime}$	II		

Both statements are represented by the same region, II, of the Venn diagram. Therefore, $\left(A^{\prime} \cup B^{\prime}\right)^{\prime}=A \cap B$ for all sets A and B.

$$
A \cup(B \cap C)^{\prime}
$$

$\frac{\text { Set }}{B}$
C
$B \cap C$
$(B \cap C)^{\prime}$
A
$A \cup(B \cap C)^{\prime}$

Regions
II, III, V, VI
IV, V, VI, VII
V, VI
I, II, III, IV, VII, VIII
I, II, IV, V
I, II, III, IV, V, VII, VIII

I, II, III, IV, V, VIII
$\left(A \cup B^{\prime}\right) \cup\left(A \cup C^{\prime}\right)$
I, II, III, IV, V, VII, VIII

Both statements are represented by the same regions, I, II, III, IV, V, VII, VIII, of the Venn diagram.
Therefore, $\left(A \cup B^{\prime}\right) \cup\left(A \cup C^{\prime}\right)=A \cup(B \cap C)^{\prime}$ for all sets A, B, and C.
42. II
44. VIII
46. IV
48. The company paid $\$ 450$ since the sum of the numbers in Regions I through IV is 450 .
49. a) 315 , the sum of the numbers in Regions I through VIII
b) 10 , Region III
c) 30, Region II
d) 110 , the sum of the numbers in Regions III, VI, VII
50. a) 38 , Region I
b) 298 , the sum of the numbers in Regions I, III, VII
c) 28, Region VI
d) 236 , the sum of the numbers in Regions I, IV, VII
e) 106, the sum of the numbers in Regions II, IV, VI
43. V
45. IV
47. VII

51. $\{2,4,6,8,10, \ldots, 2 n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{4,6,8,10,12, \ldots, 2 n+2, \ldots\}$
53. $\left.\begin{array}{c}\{1,2, \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow\end{array}, \downarrow, 5, \ldots, \quad n, \ldots\right\} \begin{aligned} & \downarrow \\ & \{5,8, \\ & \\ & \end{aligned}$
52. $\{3,5,7,9,11, \ldots, 2 n+1, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{5,7,9,11,13, \ldots, 2 n+3, \ldots\}$
54. $\{1,2,3,4,5, \ldots, n, \ldots\}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\{4,9,14,19,24, \ldots, 5 n-1, \ldots\}$

Chapter Test

1. True
2. True
3. False; the empty set is a proper subset of every set except itself.
4. True
5. True
6. Set A is the set of natural numbers less than 9 .
7. False; the sets do not contain exactly the same elements.
8. False; the second set has no subset that contains the element 7.
9. False; the set has $2^{3}=2 \times 2 \times 2=8$ subsets.
10. False; for any set $A, A \cup A^{\prime}=U$, $\operatorname{not}\}$.
11. $A=\{1,2,3,4,5,6,7,8\}$
12. $A \cap B=\{3,5,7,9\} \cap\{7,9,11,13\}=\{7,9\}$
13. $A \cup C^{\prime}=\{3,5,7,9\} \cup\{3,11,15\}^{\prime}=\{3,5,7,9\} \cup\{5,7,9,13\}=\{3,5,7,9,13\}$
14. $A \cap(B \cap C)^{\prime}=\{3,5,7,9\} \cap(\{7,9,11,13\} \cap\{3,11,15\})^{\prime}=\{3,5,7,9\} \cap\{11\}^{\prime}=\{3,5,7,9\} \cap\{3,5,7,9,13,15\}$ $=\{3,5,7,9\}$, or A.
15. $n\left(A \cap B^{\prime}\right)=n\left(\{3,5,7,9\} \cap\{7,9,11,13\}^{\prime}\right)=n(\{3,5,7,9\} \cap\{3,5,15\})=n(\{3,5\})=2$
16.

17. $A \cap\left(B \cup C^{\prime}\right)$

$\frac{\text { Set }}{B}$	Regions
C	II, III, V, VI
C^{\prime}	I, II, III, VIII VII
$B \cup C^{\prime}$	I, II, III, V, VI, VIII
A	I, II, IV, V
$A \cap\left(B \cup C^{\prime}\right)$	I, II, V

$\frac{\text { Set }}{A}$	$\underline{\text { Regions }}$
B	I, II, IV, V
$A \cap B$	II, V , VI
C	IV, V, VI, VII
C^{\prime}	I, II, III, VIII
$A \cap C^{\prime}$	I, II
$(A \cap B) \cup\left(A \cap C^{\prime}\right)$	I, II, V

Both statements are represented by the same regions, I, II, V, of the Venn diagram.
Therefore, $A \cap\left(B \cup C^{\prime}\right)=(A \cap B) \cup\left(A \cap C^{\prime}\right)$ for all sets A, B, and C.
18.

a) 52 , the sum of the numbers in Regions I, III, VII
b) 10 , Region VIII
c) 93 , the sum of the numbers in Regions II, IV, V, VI
d) 17 , Region II
e) 38 , the sum of the numbers in

Regions I, II, III
f) 31, Region VII

Group Projects

1. a) A : Does not shed, B : Less than 16 in. tall, C : Good with kids

b) Border terrier, Region V
2. a) Animal
e) Felidae
b) Chordate
f) Felis
c) Mammalia
g) Catus
d) Carnivore

$\underline{\text { Third }}$	$\underline{\text { Fourth }}$	$\underline{\text { Fifth }}$
red	ivory	green
Senegalese	Spanish	Japanese
banana	peach	fish
milk	whiskey	ale
snail	dog	zebra

CHAPTER THREE

LOGIC

Exercise Set 3.1

1.a. A simple statement is a sentence that conveys one idea and can be identified as either true or false.
b. Statements consisting of two or more simple statements are called compound statements
3. a) Some are
b) All are
c) Some are not
d) None are
5. a) \rightarrow
b) v
c) \wedge
d) ~e) \leftrightarrow
2. All, none (no), some
4. Let p : The ink is purple.

The symbolic form is $\sim p$. The negation symbol, ~, represents the word not.
6. The exclusive OR means that one or the other event can can occur, but not both. b. Yes; the inclusive OR means that one or more events can occur simultaneously. c. The inclusive OR is used in this chapter, unless otherwise stated.
7. When a compound statement contains more than one connective a comma can be used to indicate which simple statements are to be grouped together. When writing a statement symbolically, the simple statements on the same side of the comma are to be grouped together within parentheses.
8. $1^{\text {st }}$ Biconditional $\leftrightarrow 2^{\text {nd }}$ Conditional $\rightarrow 3^{\text {rd }}$ Conjunction \wedge Disjunction $\vee 4^{\text {th }}$ Negation \sim
9. compound; conjunction, \wedge
11. compound; biconditional \leftrightarrow
13. compound; disjunction, \vee
15. simple statement
17. compound; negation, ~
19. compound; conjunction, \wedge
21. compound; conditional; negation, \sim
23. No picnic tables are portable.
25. Some chicken do not fly.
27. All turtles have claws.
29. Some bicycles have three wheels.
31. All pine trees produce pine cones.
33. No pedestrians are in the crosswalk.
35. $\sim \mathrm{p}$
38. $\sim \mathrm{q} \leftrightarrow \sim \mathrm{p}$
41. $\sim q \rightarrow \sim p$
44. $\sim \mathrm{p} \wedge \mathrm{q}$
47. Firemen do not work hard.
49. Firemen wear red suspenders or firemen work hard.
10. compound; negation, \sim
12. compound; conditional, \rightarrow
14. compound; conjunction, \wedge
16. compound; biconditional, \leftrightarrow
18. compound; conditional, \rightarrow
20. compound; conjunction, \wedge
22. compound; conditional, \rightarrow
24. Some stock mutual funds have guaranteed yields.
26. Some plants do not create (contain) chlorphyll.
28. Some teachers made the roster.
30. Some horses do not have manes.
32. Someone likes asparagus.
34. All dogs with long hair get cold.
37. $\sim q \vee \sim p$
40. $\sim q \wedge p$
43. $\sim \mathrm{p} \wedge \sim \mathrm{q}$
46. $\sim(p \wedge q)$
48. Firemen do not wear red suspenders.
50. Firemen work hard and wear red suspenders.
51. Firemen do not work hard if and only if firemen do not wear red suspenders.
53. It is false that firemen wear red suspenders or firemen work hard.
55. Firemen do not work hard and firemen do not wear red suspenders.
57. $(p \vee \sim q) \rightarrow r$
59. $(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$
61. $p \rightarrow(q \vee \sim r)$
63. $(\mathrm{r} \leftrightarrow \mathrm{q}) \wedge \mathrm{p}$
65. $q \rightarrow(p \leftrightarrow r)$
67. The water is 70° or the sun is shining, and we do not go swimming.
69. If water is not, and the sun is shining or we do go swimming.
71. If we do not go swimming, then the sun is shining and the water is 70°.
73. If the sun is shining then we go swimming, and the water is 70°.
75. The sun is shinning if and only if the water is 70°, and we go swimming.
52. If firemen do not work hard, then firemen wear red suspenders.
54. Firemen do not work hard or firemen do not wear red suspenders.
56. It is false that firemen work hard and firemen wear red suspenders.
58. $(\mathrm{r} \leftrightarrow \sim \mathrm{p}) \vee \sim \mathrm{q}$
60. $(\mathrm{r} \wedge \mathrm{q}) \rightarrow \mathrm{p}$
62. $(\sim \mathrm{p} \leftrightarrow \sim \mathrm{q}) \vee \sim \mathrm{r}$
64. $\sim(r \rightarrow \sim q)$
66. $(\mathrm{r} \vee \sim \mathrm{q}) \leftrightarrow \mathrm{p}$
68. The water is 70° and the sun is shining, or we go swimming.
70. If the sun is shining then the water is 70°, or we go swimming.
72. If the sun is shining and we go swimming, then the water is 70°.
74. If the water is not 70°, then the sun is shining or we will go swimming.
76. If the sun is shining, then the water is 70° if and only if we go swimming.
77. Not permissible. In the list of choices, the connective "or" is the exclusive or, thus one can order either the soup or the salad but not both items.
78. Permissible.
79. Not permissible. Potatoes and pasta cannot be ordered together.
80. Not permissible. Potatoes and pasta cannot be ordered together.
81. a) $(\sim \mathrm{p}) \rightarrow \mathrm{q}$
b) conditional
83. a) $(\sim \mathrm{q}) \wedge(\sim \mathrm{r})$ b) conjunction
85. a) $(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{r} \quad$ b) conditional
87. a) $\mathrm{r} \rightarrow(\mathrm{p} \vee \mathrm{q}) \quad$ b) conditional
89. a) $(\sim \mathrm{p}) \leftrightarrow(\sim \mathrm{q} \rightarrow \mathrm{r}) \quad$ b) biconditional
91. a) $(\mathrm{r} \wedge \sim \mathrm{q}) \rightarrow(\mathrm{q} \wedge \sim \mathrm{p}) \quad$ b) conditional
93. a) $\sim[(p \wedge q) \leftrightarrow(p \vee r)] \quad$ b) negation
95. a) r: retired; c: concrete business; $\mathrm{r} \wedge \mathrm{c}$
b) conjunction
97. a) b: below speed limit; p: pulled over
$\sim(b \rightarrow \sim p)$
b) conditional, negation
99. a) f: food has fiber; v: food has vitamins h : be healthy; (f $\vee v) \rightarrow h \quad b)$. conditional
82. a) $(\sim \mathrm{p} \wedge \mathrm{r}) \leftrightarrow(\sim \mathrm{q}) \quad$ b) biconditional
84. a) $(\sim$ p) $\vee q \quad$ b) disjunction
86. a) $\mathrm{q} \rightarrow(\mathrm{p} \wedge \sim \mathrm{r}) \quad$ b) conditional
88. a) $(\mathrm{q} \rightarrow \mathrm{p}) \leftrightarrow(\mathrm{p} \rightarrow \mathrm{q}) \quad$ b) biconditional
90. a) $(\sim \mathrm{q}) \rightarrow(\mathrm{r} \wedge \mathrm{p}) \quad$ b) conditional
92. a) $\sim[p \rightarrow(q \vee r)]$ b) negation
94. a) $\sim[r \wedge \sim q) \rightarrow(q \wedge r)]$ b) negation
96. a) w: water level up; c: go canoeing; r: go rafting; $w \rightarrow(c \vee r) \quad b)$ conditional
98. a) d: dinner is ready; e: can eat; r: can go to
restaurant; $(d \rightarrow e) \vee \sim r \quad$ b) disjunction
100. a) c: Corliss is teaching.; f: Faye in Math.lab.
w: a weekend; $\quad(\mathrm{c} \rightarrow \mathrm{f}) \leftrightarrow \sim \mathrm{w} \quad$ b)
biconditional
102. a) g: car has gas; b: battery charged; s: car will start; $\quad(\mathrm{g} \wedge \mathrm{b}) \rightarrow \mathrm{S} \quad \mathrm{b})$ conditional
exam; p: passed placement test; $\mathrm{c} \leftrightarrow(\sim \mathrm{f} \vee \mathrm{p}) \quad$ b) biconditional
103. a) c: classroom is empty; w: is the weekend s : is 7:00 a.m.; $\quad(\mathrm{c} \leftrightarrow \mathrm{w}) \vee \mathrm{s}$ b) disjunction
105. $[(\sim \mathrm{q}) \rightarrow(\mathrm{r} \vee \mathrm{p})] \leftrightarrow[(\sim \mathrm{r}) \wedge \mathrm{q}]$, biconditional
107. a) The conjunction and disjunction have the same dominance.
b) Answers will vary.
104. This statement/question is a paradox. Therefore it is false.
106. $\sim[[(\sim \mathrm{r}) \rightarrow(\mathrm{p} \wedge \mathrm{q})] \leftrightarrow[(\sim \mathrm{p}) \vee \mathrm{r}]]$, negation
107. c) If we evaluate the truth table for $p \vee q \wedge r$ using the order $(p \vee q) \wedge r$ we get a different solution than if we used the order $\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})$. Therefore, unless we are told where the parentheses belong, we do not know which solution is correct.

Exercise Set 3.2

1. a) $2^{2}=2 \times 2=4$ distinct cases
b)

Case 1:
Case 2:
Case 3:
Case 4: F F
3. a)

p	q	p	v	q
T	T	T	T	T
T	F	T	T	F
F	T	F	T	T
F	F	F	F	F
		1	3	2

b) Only in Case 4, in which both simple statements are false.
5.

p	p		
\vee	$\sim p$		
T	T	T	F
F	F	T	T

7.

p	q	p	\wedge	$\sim q$
T	T	T	F	F
T	F	T	T	T
F	T	F	F	F
F	F	F	F	T
		1	3	2

2. a) $2^{3}=2 \times 2 \times 2=8$ distinct cases
b) case 1 : case 2: case 3: case 4: case 5: case 6: case 7: case 8:

p	q	r
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

4. a)

p	q	p	\wedge	q
T	T	T	T	T
T	F	T	F	F
F	T	F	F	T
F	F	F	F	F
		1	3	2

b) Only in case 1 , when both simple statements are true.

6

p	p		
	$\wedge \sim \mathrm{p}$		
T	T	F	F
F	F	F	T
	1	3	2

8.

P	q	q	V	$\sim \mathrm{p}$
T	T	T	T	F
T	F	F	F	F
F	T	T	T	T
F	F	F	T	T
		1	3	2

9.

P	q	$\sim(\mathrm{p} \quad \vee \sim \mathrm{q})$
T	T	F T T F
T	F	F T T T
F	T	T F F F
F	F	F F T T
		4132

11.

p	q	$\sim(\mathrm{p} \wedge \sim \mathrm{q})$
T	T	T T F F
T	F	F T T T
F	T	T F F F
F	F	T F F T
		4132

13.

p	q	r	$\sim \mathrm{q} \vee(\mathrm{p} \wedge \mathrm{r})$
T	T	T	F T T T T
T	T	F	F F T F F
T	F	T	T T T T T
T	F	F	T F T F F
F	T	T	F F F F T
F	T	F	F F F F F
F	F	T	T T F F T
F	F	F	$\begin{array}{lllll} \text { T T F F F } \end{array}$

15.

p	q	r	$\mathrm{r} \vee(\mathrm{p} \wedge \sim \mathrm{q})$
T	T	T	T T T F F
T	T	F	F F T F F
T	F	T	T T T T T
T	F	F	F T T T T
F	T	T	T T F F F
F	T	F	F F F F F
F	F	T	T T F F T
F	F	F	$\begin{array}{lllll} \text { F } & \text { T } \\ 1 & 5 & 2 & 4 & 3 \end{array}$

17.

p	q	r	$\sim \mathrm{q} \wedge(\mathrm{r} \vee \sim \mathrm{p}$
T	T	T	F F T T F
T	T	F	F F F F F
T	F	T	T T T T F
T	F	F	T F F F F
F	T	T	F F T T T
F	T	F	F F F T T
F	F	T	T T T T T
F	F	F	T T F T T
			15243

10.

p	q	$\sim \mathrm{p}$	\vee	$\sim \mathrm{q}$
T	T	F	F	F
T	F	F	T	T
F	T	T	T	F
F	F	T	T	T
		1	3	2

12

| p | q | $\sim(\sim \mathrm{p}$ | | | $\sim \mathrm{q})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | F |
| T | F | T | F | F | T |
| F | T | T | T | F | F |
| F | F | F | T | T | T |
| | | 4 | 1 | 3 | 2 |

14.

p	q	r	$(\mathrm{p}$				\vee
\sim	q	\wedge	$\mathrm{r})$				
T	T	T	T	T	F	T	T
T	T	F	T	T	F	F	F
T	F	T	T	T	T	T	T
T	F	F	T	T	T	F	F
F	T	T	F	F	F	F	T
F	T	F	F	F	F	F	F
F	F	T	F	T	T	T	T
F	F	F	F	T	T	F	F
			1	3	2	5	4

16.

| p | q | r | $(\mathrm{r} \wedge \mathrm{q})$ | \wedge | $\sim \mathrm{p}$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| T | T | T | T | F | F |
| T | T | F | F | F | F |
| T | F | T | F | F | F |
| T | F | F | F | F | F |
| F | T | T | T | T | T |
| F | T | F | F | F | T |
| F | F | T | F | F | T |
| F | F | F | F | F | T |
| | | | 1 | 3 | 2 |

18.

p	q	r	$\sim \mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$
T	T	T	F F T T T
T	T	F	F F T T F
T	F	T	F F F T T
T	F	F	F F F F F
F	T	T	T T T T T
F	T	F	T T T T F
F	F	T	T T F T T
F	F	F	T F F F F
			15243

19.

p	q	r	$(\sim q \wedge r) \vee p$
T	T	T	F F T T T
T	T	F	F F F T T
T	F	T	T T T T T
T	F	F	T F F T T
F	T	T	F F T F F
F	T	F	F F F F F
F	F	T	T T T T F
F	F	F	T F F F F
			13254

21. $\mathrm{p}:$ Meetings are dull.
q : Teaching is fun.
In symbolic form the statement is $\mathrm{p} \wedge \mathrm{q}$.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F
		1

23. p: Bob will get a haircut.
q : Bob will shave his beard.
In symbolic form the statement is $\mathrm{p} \wedge \sim \mathrm{q}$.

p	q	p	\wedge	$\sim q$
T	T	T	F	F
T	F	T	T	T
F	T	F	F	F
F	F	F	F	T
		1	3	2

25. p: Jasper Adams is the tutor.
q : Mark Russo is a secretary.
In symbolic form the statement is $\sim(p \wedge q)$.

p	q	$\sim(p \wedge q)$
T	T	F T T T
T	F	T T F F
F	T	T F F T
F	F	T F F F
		4132^{2}

20.

p	q	r	$\sim \mathrm{r} \vee(\sim \mathrm{p} \wedge \mathrm{q})$
T	T	T	F F F F T
T	T	F	T T F F T
T	F	T	F F F F F
T	F	F	T T F F F
F	T	T	F T T T T
F	T	F	T T T T T
F	F	T	F F T F F
F	F	F	$\begin{array}{lll} \text { T T } & \text { T F F } \\ 4 & 5 & 1 \end{array}$

22. p: The stadium is enclosed.
q : The stadium is air-conditioned.
In symbolic form the statement is $\mathrm{p} \wedge \sim \mathrm{q}$.

p	q	p	\wedge	$\sim q$
T	T	T	F	F
T	F	T	T	T
F	T	F	F	F
F	F	F	F	T
		1	3	2

24. p : The class has 15 minutes.
q : The class is cancelled.
In symbolic form the statement is $\sim(p \vee q)$.

p	q	\sim	$(p$	V	$q)$
T	T	F	T	T	T
T	F	F	T	T	F
F	T	F	F	T	T
F	F	T	F	F	F
		4	1	3	2

26. p: Mike made pizza.
q : Dennis made a chef salad.
r : Gil burned the lemon squares.
In symbolic form the statement is $(p \wedge q) \wedge r$.

p	q	r	$(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r}$
T	T	T	T TT TT
T	T	F	T T T FF
T	F	T	T FFFT
T	F	F	T FFFF
F	T	T	T FT FT
F	T	F	T FT FF
F	F	T	T FFFT
F	F	F	T FFFF
			13254

27. p : The copier is out of toner.
q : The lens is dirty.
r: The corona wires are broken.
The statement is $\mathrm{p} \vee(\mathrm{q} \vee \mathrm{r})$.

p	q	r	$\mathrm{p} \vee(\mathrm{q} \vee \mathrm{r})$		
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	T	T	T
T	F	F	T	T	F
F	T	T	F	T	T
F	T	F	F	T	T
F	F	T	F	T	T
F	F	F	F	F	F
			2	3	1

29. p : Congress acts on the bill.
q : The President signs the bill.
In symbolic form, the statement is
$\mathrm{p} \wedge(\mathrm{q} \vee \sim \mathrm{q})$.

p	q	$\mathrm{p} \wedge(\mathrm{q} \vee \sim \mathrm{q})$	
T	T	TT T T F	
T	F	TT F F T	T
F	T	FF T T	F
F	F	FF F T	T
		15	24

31. (a) $\sim p \vee(q \vee r)$
$F \vee(F \wedge T)$
$F \vee \quad F$
F
Therefore the statement is false.
(b) $\sim p \vee(q \wedge r)$
$T \vee(T \wedge T)$
$T \vee T$
T
Therefore the statement is true.
32. (a) $(\sim \mathrm{q} \wedge \sim \mathrm{p}) \vee \sim \mathrm{r}$
$(T \wedge F) \vee F$
F $\vee \mathrm{F}$
F
Therefore the statement is false.
(b) $\begin{aligned}(\sim \mathrm{q} \wedge \sim \mathrm{p}) & \vee \sim \mathrm{r} \\ (\mathrm{F} \wedge \mathrm{T}) & \vee \mathrm{F} \\ \mathrm{F} & \vee \mathrm{F} \\ & \mathrm{F}\end{aligned}$

Therefore the statement is false.
28. p: I am hungry.
q : I want to eat a healthy lunch.
r : I want to eat in a hurry.
The statement is $p \wedge(q \wedge r)$.

p	q	r	$\mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$		
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	T	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	T	F	F	F	F
F	F	T	F	F	F
F	F	F	F	F	F
			2	3	1

30. p: Gordon likes the PowerMac G4 Cube.
q : Gordon likes the iBook.
r: Gordon likes the Pentium IV.
In symbolic form, the statement is

$(\mathrm{p} \wedge \mathrm{q}) \wedge \sim \mathrm{q}$.
p q $(\mathrm{p} \wedge \mathrm{q}) \wedge \sim \mathrm{q}$ T T T T T F F T F TF F F F T F T FF T F F F F FF F F T 13 25 4

32. (a) $(\sim \mathrm{p} \wedge \mathrm{r}) \wedge \mathrm{q}$
$(F \wedge T) \wedge F$
$F \wedge F$
F
Therefore the statement is false.
(b) $(\sim \mathrm{p} \wedge \mathrm{r}) \wedge \mathrm{q}$

$$
(T \wedge T) \wedge T
$$

$T \wedge T$
T
Therefore the statement is true.
34. (a) $(\sim \mathrm{p} \vee \sim \mathrm{q}) \vee \sim \mathrm{r}$

$$
\begin{array}{cc}
(\mathrm{F} \vee \mathrm{~T}) & \vee \mathrm{F} \\
\mathrm{~T} & \vee \mathrm{~F} \\
& \mathrm{~T}
\end{array}
$$

Therefore the statement is true.
(b) $(\sim p \vee \sim q) \vee \sim r$

$$
\begin{array}{cc}
(T \vee F) & \vee F \\
T & \vee F \\
& T
\end{array}
$$

Therefore the statement is true.
35. (a) $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{r}$

$$
\begin{array}{ccc}
(\mathrm{T} \wedge \mathrm{~T}) & \vee \mathrm{T} \\
\mathrm{~T} & \vee \mathrm{~T} \\
& \mathrm{~T}
\end{array}
$$

Therefore the statement is true.
(b) $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{r}$

$$
\begin{array}{cc}
(\mathrm{F} \wedge \mathrm{~F}) & \vee \mathrm{T} \\
\mathrm{~F} & \vee \mathrm{~T} \\
& \mathrm{~T}
\end{array}
$$

Therefore the statement is true.
37. (a) $(\sim \mathrm{r} \wedge \mathrm{p}) \vee \mathrm{q}$

$$
\begin{gathered}
(\mathrm{F} \wedge \mathrm{~T}) \vee \mathrm{F} \\
\mathrm{~F} \quad \vee \mathrm{~F} \\
\mathrm{~F}
\end{gathered}
$$

Therefore the statement is false.
(b) $(\sim r \wedge p) \vee q$
$(F \wedge F) \vee T$
F $\vee \mathrm{T}$
T
Therefore the statement is true.
39. (a) $(\sim q \vee \sim p) \wedge r$

$$
\begin{array}{cc}
(T \vee F) & \wedge T \\
T & \wedge T \\
& T
\end{array}
$$

Therefore the statement is true.
(b) $(\sim q \vee \sim p) \wedge r$

$$
\begin{array}{cc}
(\mathrm{F} \vee \mathrm{~T}) & \wedge \mathrm{T} \\
\mathrm{~T} & \wedge \mathrm{~T} \\
& \mathrm{~T}
\end{array}
$$

Therefore the statement is true.
41. (a) $(\sim p \vee \sim q) \vee(\sim r \vee q)$

$$
\begin{array}{ccc}
(\mathrm{F} \vee \mathrm{~T}) & \vee(\mathrm{F} \vee \mathrm{~F}) \\
\mathrm{T} & \vee & \mathrm{~F} \\
& \mathrm{~T} &
\end{array}
$$

Therefore the statement is true.
(b) $(\sim p \vee \sim q) \vee(\sim r \vee q)$

$$
\begin{array}{ccc}
(\mathrm{T} \vee \mathrm{~F}) & \vee & (\mathrm{F} \vee \mathrm{~T}) \\
\mathrm{T} & \vee & \mathrm{~T} \\
& \mathrm{~T} &
\end{array}
$$

Therefore the statement is true.
36. (a) $(\mathrm{p} \vee \sim \mathrm{q}) \wedge \sim(\mathrm{p} \wedge \sim \mathrm{r})$

$$
\begin{array}{ccc}
(\mathrm{T} \vee \mathrm{~T}) & \wedge \sim(\mathrm{T} \wedge \mathrm{~F}) \\
\mathrm{T} & \wedge & \sim \mathrm{~F} \\
& \mathrm{~T} &
\end{array}
$$

Therefore the statement is true.
(b) $(\mathrm{p} \vee \sim \mathrm{q}) \wedge \sim(\mathrm{p} \wedge \sim \mathrm{r})$

$$
\begin{array}{ccc}
(\mathrm{F} \vee \mathrm{~F}) & \wedge & (\mathrm{F} \wedge \mathrm{~F}) \\
\mathrm{F} & \wedge & \sim \mathrm{~F} \\
& \mathrm{~F} &
\end{array}
$$

Therefore the statement is false.
38. (a) $\sim q \vee(r \wedge p)$
$T \vee(T \wedge T$
$T \vee T$ T
Therefore the statement is true.
(b) $\sim q \vee(r \wedge p)$
$F \vee(T \wedge F$
$F \vee \quad F$
F
Therefore the statement is false.
40. (a) $(\sim r \vee \sim p) \vee \sim q$
$\begin{array}{cc}(\mathrm{F} \vee \mathrm{F}) & \vee \mathrm{T} \\ \mathrm{F} & \vee \mathrm{T} \\ & \mathrm{T}\end{array}$
Therefore the statement is true.
(b) $(\sim r \vee \sim \mathrm{p}) \vee \sim \mathrm{q}$
$(F \vee T) \vee F$
$T \quad \vee F$
T
Therefore the statement is true.
42. (a) $(\sim \mathrm{r} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{r} \vee \sim \mathrm{p})$
$(\mathrm{F} \wedge \mathrm{T}) \wedge(\mathrm{F} \vee \mathrm{F})$
$F \wedge \quad \wedge$
F
Therefore the statement is false.
(b) $(\sim r \wedge \sim q) \wedge(\sim r \vee \sim p)$

Therefore the statement is true.
43. $3+5=4+47$ or $10-9=9-10$
$8=8$
T
$1 \neq-1$
T

Therefore the statement is true.
45. E: Elvis was a singer.

C: Chickens can swim.

$$
\begin{array}{lll}
\mathrm{E} & \vee & \mathrm{C} \\
\mathrm{~T} & \vee & \mathrm{~F} \\
& \mathrm{~T} &
\end{array}
$$

Therefore the statement is true.
47. U2: U2 is a rock band.

DW: Denzel Washington is an actor.
JS: Jerry Seinfeld is a comedian.

$(\mathrm{U} 2 \wedge$	$\mathrm{DW})$	\wedge	$\sim \mathrm{JS}$
$(\mathrm{T} \wedge$	\wedge	\wedge	\wedge
	F		
		\wedge	F
		F	

Therefore the statement is false.
49. CR: Cal Ripken played football.

GB: Bush was prime minister of England.
CP: Colon Powell was in the Army.

```
(CR \vee GB) ^ CP
(F\veeF) ^ T
    F}\wedge 
        F
```

Therefore the statement is false.
51. p: 30 pounds of cheese was consumed by the average American in 1909.
q : The average American consumed 154 pounds of sweetners in 2001.
$\mathrm{p} \wedge \sim \mathrm{q}$
$\mathrm{F} \wedge \sim \mathrm{T}$
$F \wedge F$
False
44. $5<4$ and $4<5$

F $\wedge \quad \mathrm{T}$
F
Therefore the statement is false.
46. AL: Alaska is the $50^{\text {th }}$ state.

HI: Hawaii is a group of islands.
AT: Atlanta is the capitol of Alabama.

$$
\begin{aligned}
&(\mathrm{AL} \vee \mathrm{HI}) \wedge \mathrm{AT} \\
&(\mathrm{~F} \vee \mathrm{~T}) \wedge \mathrm{F} \\
& \mathrm{~T} \quad \wedge \mathrm{~F}
\end{aligned}
$$

Therefore the statement is false.
48. T: Toronto is a city in Minnesota.

M: Mexico City is in Texas.
C: Cairo is in Egypt.

$$
\begin{array}{cc}
(\mathrm{T} \vee \mathrm{M}) & \wedge \mathrm{C} \\
(\mathrm{~F} \vee \mathrm{~F}) & \wedge \mathrm{T} \\
\mathrm{~F} & \wedge
\end{array}
$$

Therefore the statement is false.
50. $\mathrm{H}:$ Holstein is a breed of cattle.

C : Collie is a breed of dog.
B : Beagle is a breed of cat.

$$
\begin{array}{ccc}
(\mathrm{H} \wedge \mathrm{C}) & \vee & \sim \mathrm{B} \\
(\mathrm{~T} \wedge \mathrm{~T}) & \vee & \mathrm{T} \\
\mathrm{~T} & \vee & \mathrm{~T} \\
& & \mathrm{~T}
\end{array}
$$

Therefore the statement is true.
52. p: Per capita consumption of red meat was less for average American in 2001 than in 1909.
q: The average American consumed 154 pounds of sweetners in 2001.
$p \vee q$
$F \vee T$
True
53. p: In 1909, average American ate approximately the same amount of fish and poultry.
q: Between 1909 and 2001, average
American consumed more poultry.
$\mathrm{p} \wedge \mathrm{q}$
$\mathrm{T} \wedge \mathrm{T}$
True
55. p: 30% of Americans get 6 hours of sleep.
$\mathrm{q}: 9 \%$ get 5 hours of sleep.
$\sim(p \wedge q)$
$\sim(\mathrm{F} \wedge \mathrm{T})$
\sim F
True
57. p: 13% of Americans get $\leq 5 \mathrm{hrs}$. of sleep.
$\mathrm{q}: 32 \%$ of Americans get $\geq 6 \mathrm{hrs}$. of sleep.
r: 30% of Americans get $\geq 8 \mathrm{hrs}$. of sleep.

$$
(\mathrm{p} \vee \mathrm{q}) \wedge \mathrm{r}
$$

$(T \vee F) \wedge F$

$$
T \wedge F)
$$

False
59. $\mathrm{p} \wedge \sim \mathrm{q}$
61. $\mathrm{p} \vee \sim \mathrm{q}$
63. $(r \vee q) \wedge p$
65. $q \vee(p \wedge \sim r)$
67. (a) Mr. Duncan qualifies for the loan. Mrs. Tuttle qualifies for the loan.
(b) The Rusineks do not qualify because their gross income is too low.
69. (a) Wing Park qualifies for the special fare.
(b) The other 4 do not qualify:

Gina V. returns after 04/01;
Kara S. returns on Monday;
Christos G. does not stay
at least one Saturday; and
Alex C. returns on Monday.
54. p: In 1909, average American ate approximately

9 times as much red meat as fish.
q: By 2001, average American only ate 8 times as much red meat as fish.
$\mathrm{p} \wedge \mathrm{q}$
$\mathrm{T} \wedge \mathrm{T}$
True
56. p: 25% of Americans get 6 hours of sleep.
$\mathrm{q}: 30 \%$ of Americans get 7 hours of sleep.
r : 9% of Americans get 5 hours of sleep.
$\mathrm{p} \wedge(\mathrm{q} \vee \sim \mathrm{r})$
$T \wedge(T \vee \sim T)$
$T \wedge(T \vee F)$
$\mathrm{T} \wedge \mathrm{T}$
True
58. p: > 50\% of Americans get $\leq 7 \mathrm{hrs}$. of sleep.
$\mathrm{q}:>25 \%$ of Americans get $\leq 6 \mathrm{hrs}$. of sleep.
$\mathrm{p} \wedge \mathrm{q})$
$\mathrm{T} \wedge \mathrm{T}$
True
60. $\sim p \wedge q$
62. $\sim p \vee \sim q$
64. $(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$
66. $\sim p \wedge(\sim r \wedge q)$
68. (a) The Argentos qualify for the loan. Mrs. Tuttle qualifies for the loan.
(b) Ms. McVey does not qualify because her gross income is too low. Ms. Fox and Mr. Siewert do not qualify because their assets are too low.
70.

p	q	r	$\sim[(\sim(\mathrm{p} \wedge \mathrm{q})) \wedge(\mathrm{q} \vee \mathrm{r})]$				
T	T	T	F	F	T	T	T
T	T	F	T	F	T	F	F
T	F	T	T	F	T	F	F
T	F	F	T	F	T	F	F
F	T	T	F	F	T	T	T
F	T	F	T	F	T	F	F
F	F	T	F	T	F	T	F
F	F	F	F	T	F	T	F
			5	2	1	4	3

71.

p	q	r	$[(\mathrm{q} \wedge \sim \mathrm{r}) \wedge(\sim \mathrm{p} \vee \sim \mathrm{q})] \vee \sim(\mathrm{p} \vee \sim \mathrm{r})$				
T	T	T	F	F	F	T	T
T	T	F	T	F	F	T	T
T	F	T	F	F	T	T	T
T	F	F	F	F	T	T	T
F	T	T	F	F	T	F	F
F	T	F	T	T	T	T	T
F	F	T	F	F	T	F	F
F	F	F	F	F	T	T	T
			1	4	2	5	3

72. (a) $2^{4}=16$ distinct cases
73. Answers will vary (out of order).
74. (b)

p	q	r	s
T	T	T	T
T	T	T	F
T	T	F	T
T	T	F	F
T	F	T	T
T	F	T	F
T	F	F	T
T	F	F	F
F	T	T	T
F	T	T	F
F	T	F	T
F	T	F	F
F	F	T	T
F	F	T	F
F	F	F	T
F	F	F	F

72 (d)

p	q	r	s	$(\sim \mathrm{r} \wedge \sim \mathrm{s}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$		
T	T	T	T	F	F	T
T	T	T	F	F	F	T
T	T	F	T	F	F	T
T	T	F	F	T	T	T
T	F	T	T	F	F	F
T	F	T	F	F	F	F
T	F	F	T	F	F	F
T	F	F	F	T	F	F
F	T	T	T	F	F	T
F	T	T	F	F	F	T
F	T	F	T	F	F	T
F	T	F	F	T	T	T
F	F	T	T	F	F	T
F	F	T	F	F	F	T
F	F	F	T	F	F	T
F	F	F	F	T	T	T

73.

| p | q | r | s | $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{r}$ | $(\mathrm{q} \wedge \sim \mathrm{r}) \vee \mathrm{p}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | F | T | T | F | T | T |
| T | T | T | F | F | T | T | F | T | T |
| T | T | F | T | F | F | F | T | T | T |
| T | T | F | F | F | F | F | T | T | T |
| T | F | T | T | T | T | T | F | T | T |
| T | F | T | F | T | T | T | F | T | T |
| T | F | F | T | T | T | F | F | T | T |
| T | F | F | F | T | T | F | F | T | T |
| F | T | T | T | F | T | T | F | F | F |
| F | T | T | F | F | T | T | F | F | F |
| F | T | F | T | F | F | F | T | T | F |
| F | T | F | F | F | F | F | T | T | F |
| F | F | T | T | F | T | T | F | F | F |
| F | F | T | F | F | T | T | F | F | F |
| F | F | F | T | F | F | F | F | F | F |
| F | F | F | F | F | F | F | F | F | F |

Exercise Set 3.3

1.a) | p | q | p | \rightarrow | q |
| :---: | :---: | :---: | :--- | :--- |
| T | T | T | T | T |
| T | F | T | F | F |
| F | T | F | T | T |
| F | F | F | T | F |
| | | 1 | 3 | 2 |

b) The conditional statement is false only in the case when antecedent is true and the consequent is false, otherwise it is true.
3.a) Substitute the truth values for the simple statement. Then evaluate the compound statement for that specific case.
b) $[(p \leftrightarrow q) \vee(\sim r \rightarrow q)] \rightarrow \sim r$ $[(\mathrm{T} \rightarrow \mathrm{T}) \vee(\sim \mathrm{T} \rightarrow \mathrm{T})] \rightarrow \sim \mathrm{T}$ $\left.\left[\begin{array}{c}\mathrm{T} \\ \mathrm{T}\end{array} \mathrm{T}_{\mathrm{T}} \rightarrow \mathrm{T}\right)\right] \rightarrow \mathrm{T}$ $\left[\begin{array}{lllll}{\left[\begin{array}{llll}\mathrm{T} & \vee & \mathrm{T} &]\end{array}\right.} & \rightarrow \mathrm{T} \\ & \mathrm{T} & & & \rightarrow\end{array}\right.$
\rightarrow
In this specific case the statement is true.
7.

| p | q | $\sim \mathrm{q}$ | | |
| :---: | :--- | :--- | :--- | :--- |$\rightarrow \mathrm{p}, \mathrm{F}$

9.

p	q	$\sim(\mathrm{q} \rightarrow \mathrm{p})$	
T	T	F	T
T	F	F	T
F	T	T	F
F	F	F	T
		2	1

11.

p	q	$\sim \mathrm{q}$	\leftrightarrow	p
T	T	F	F	T
T	F	T	T	T
F	T	F	T	F
F	F	T	F	F
		1	3	2

13.

p	q	p	\leftrightarrow	$(\mathrm{q} \vee \mathrm{p})$
T	T	T	T	T
T	F	T	T	T
F	T	F	F	T
F	F	F	T	F
		1	3	2

2.a)

p	q	$\mathrm{p} \leftrightarrow \mathrm{q}$
T	T	T T T
T	F	T F F
F	T	F F T
F	F	F T F
		132

b) The biconditional statement is true when the statements to the left and right of the biconditional symbol match, otherwise, false.
4. A tautology is a compound statement that is true in every case.
5. A self-contradiction is a compound statement that is false in every case.
6. An implication is a conditional statement that is a tautology.
8.

p	q	$p \rightarrow \sim$		q
T	T	T	F	F
T	F	T	T	T
F	T	F	T	F
F	F	F	T	T
		1	3	2

10.

p	q	$\sim(p \leftrightarrow q)$	
T	T	F	T
T	F	T	F
F	T	T	F
F	F	F	T
		2	1

12

p	q	$(\mathrm{p}$	\leftrightarrow	$\mathrm{q})$	\rightarrow	p
T	T		T		T	T
T	F		F		T	T
F	T		F		T	F
F	F		T		F	F
			1		3	2

14.

p	q	$(\sim q \wedge p) \rightarrow \sim q$
T	T	FFTT F
T	F	T TTT T
F	T	FFFT F
F	F	T FFT T
		13254

15.

p	q	q		\rightarrow	$(\mathrm{p}$	\rightarrow
\sim	\sim					

17.

p	q	r	r	\wedge	$(\sim \mathrm{q}$	\rightarrow	$\mathrm{p})$
T	T	T	T	T	F	T	T
T	T	F	F	F	F	T	T
T	F	T	T	T	T	T	T
T	F	F	F	F	T	T	T
F	T	T	T	T	F	T	F
F	T	F	F	F	F	T	F
F	F	T	T	F	T	F	F
F	F	F	F	F	T	F	F
			4	5	1	3	2

19.

p	q	r	$(\mathrm{q}$	\leftrightarrow	$\mathrm{p})$	\wedge	$\sim \mathrm{r}$
T	T	T		T		F	F
T	T	F		T		T	T
T	F	T		F		F	F
T	F	F		F		F	T
F	T	T		F		F	F
F	T	F		F		F	T
F	F	T		T		F	F
F	F	F		T		T	T
				1		3	2

21.

| p | q | r | $(\mathrm{q}$ | $\vee \sim \mathrm{r})$ | $\leftrightarrow \sim \mathrm{p}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | F | F | F |
| T | T | F | T | T | T | F | F |
| T | F | T | F | F | F | T | F |
| T | F | F | F | T | T | F | F |
| F | T | T | T | T | F | T | T |
| F | T | F | T | T | T | T | T |
| F | F | T | F | F | F | F | T |
| F | F | F | F | T | T | T | T |
| | | | 1 | 3 | 2 | 5 | 4 |

23.

p	q	r	$(\sim \mathrm{r}$	\vee	$\sim \mathrm{q})$	\rightarrow	p
T	T	T	F	F	F	T	T
T	T	F	T	T	F	T	T
T	F	T	F	T	T	T	T
T	F	F	T	T	T	T	T
F	T	T	F	F	F	T	F
F	T	F	T	T	F	F	F
F	F	T	F	T	T	F	F
F	F	F	T	T	T	F	F
			1	3	2	5	4

16.

p	q	$(\mathrm{p} \vee \mathrm{q})$	\leftrightarrow	$(\mathrm{p} \wedge \mathrm{q})$
T	T	T	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	T	F
		1	3	2

18.

p	q	r	p	\rightarrow	$(\mathrm{q} \vee \mathrm{r})$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	T	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	T	F	F	T	T
F	F	T	F	T	T
F	F	F	F	T	F
			2	3	1

20.

p	q	r	q	\leftrightarrow	$(\mathrm{r}$	\wedge	$\mathrm{p})$
T	T	T	T	T		T	
T	T	F	T	F		F	
T	F	T	F	F		T	
T	F	F	F	T		F	
F	T	T	T	F		F	
F	T	F	T	F		F	
F	F	T	F	T		F	
F	F	F	F	T		F	
			2	3		1	

22.

P	q	r	$(\mathrm{p}$	\wedge	$\mathrm{r})$	\rightarrow	$(\mathrm{q} \vee \mathrm{r})$
T	T	T		T		T	T
T	T	F		F		T	T
T	F	T		T		T	T
T	F	F		F		T	F
F	T	T		F		T	T
F	T	F		F		T	T
F	F	T		F		T	T
F	F	F		F		T	F
				1		3	2

24.

p	q	r	$[\mathrm{r}$	\wedge	$(\mathrm{q}$	\vee	$\sim \mathrm{p})]$	\leftrightarrow	$\sim \mathrm{p}$
T	T	T	T	T	T	T	F	F	F
T	T	F	F	F	T	T	F	T	F
T	F	T	T	F	F	F	F	T	F
T	F	F	F	F	F	F	F	T	F
F	T	T	T	T	T	T	T	T	T
F	T	F	F	F	T	T	T	F	T
F	F	T	T	T	F	T	T	T	T
F	F	F	F	F	F	T	T	F	T
			4	5	1	3	2	7	6

25.

p	q	r	$(\mathrm{p}$	\rightarrow	$\mathrm{q})$	\leftrightarrow	$(\sim \mathrm{q}$	\rightarrow	$\sim \mathrm{r})$
T	T	T		T		T	F	T	F
T	T	F		T		T	F	T	T
T	F	T		F		T	T	F	F
T	F	F		F		F	T	T	T
F	T	T		T		T	F	T	F
F	T	F		T		T	F	T	T
F	F	T		T		F	T	F	F
F	F	F		T		T	T	T	T
				1		5	2	4	3

26.

p	q	r	$(\sim \mathrm{p}$	\leftrightarrow	$\sim \mathrm{q})$	\rightarrow	$(\sim \mathrm{q}$	\leftrightarrow	$\mathrm{r})$
T	T	T	F	T	F	F	F	F	T
T	T	F	F	T	F	T	F	T	F
T	F	T	F	F	T	T	T	T	T
T	F	F	F	F	T	T	T	F	F
F	T	T	T	F	F	T	F	F	T
F	T	F	T	F	F	T	F	T	F
F	F	T	T	T	T	T	T	T	T
F	F	F	T	T	T	F	T	F	F
			1	3	2	7	4	6	5

Exercise Set 3.4

1. Two statements are equivalent if both statements have exactly the same truth values in the answer column of the truth table.
2. The two statements must be equivalent. A biconditional is a tautology only when the statements on each side of the biconditional are equivalent.
3. a) $\mathrm{q} \rightarrow \mathrm{p}$
b) $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$
c) $\sim q \rightarrow \sim p$
4. $\sim p \vee q$
5. Using DeMorgan's Laws on the statement
$\sim p \vee \sim q$, we get the following: $(1) \sim(\sim p \vee \sim q)$
(2) $\sim(p \vee q), \quad(3) \sim(p \wedge q)$.

Therefore $\sim \mathrm{p} \vee \sim \mathrm{q} \Leftrightarrow \sim(\mathrm{p} \wedge q)$.
11. Using DeMorgan's Laws on the statement
$\sim(p \wedge q)$, we get the following: (1) $(p \wedge q)$,
(2) $\sim \mathrm{p} \wedge \sim \mathrm{q},(3) \sim \mathrm{p} \vee \sim \mathrm{q}$.

Therefore $\sim(p \wedge q)$ is not equivalent to $p \vee \sim q$.
13. Yes, $\sim(p \vee \sim q) \Leftrightarrow \sim p \wedge q$
15. Yes, $(\sim p \wedge \sim q) \rightarrow r$
17. Yes, $\sim(p \rightarrow \sim q) \Leftrightarrow \sim(\sim p \vee q) \Leftrightarrow p \wedge q$
19.

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{p}$	$\vee \mathrm{q}$	
T	T	T	F	T	T
T	F	F	F	F	F
F	T	T	T	T	T
F	F	T	T	T	F
		1	1	3	2

The statements are equivalent.
2. Construct a truth table for each statement and then compare the columns. If they are identical, then the statements are equivalent. If the answer columns are not identical, then the statements are not equivalent.
4. $\sim(p \wedge q) \Leftrightarrow \sim p \vee \sim q$
$\sim(p \vee q) \Leftrightarrow \sim p \wedge \sim q$
6. converse \Leftrightarrow inverse; conditional \Leftrightarrow contrapositive
8. p: $\mathrm{T} \quad \mathrm{p} \leftrightarrow \mathrm{q} \Leftrightarrow \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$
$\mathrm{q}: \mathrm{T} \quad \mathrm{p} \leftrightarrow \mathrm{q} \Leftrightarrow \mathrm{p} \rightarrow \mathrm{q}) \wedge(\sim \mathrm{q} \rightarrow \mathrm{p})$
10. Using DeMorgan's Laws on the statement $\sim(p \vee q)$, we get the following:
(1) $\mathrm{p} \vee \mathrm{q},(2) \sim \mathrm{p} \vee \sim \mathrm{q},(3) \sim \mathrm{p} \wedge \sim \mathrm{q}$.

Therefore $\sim(p \vee q) \Leftrightarrow \sim p \wedge \sim q$.
12. Using DeMorgan's Laws on the statement $\sim(p \wedge q)$, we get the following:
(1) $\mathrm{p} \wedge \mathrm{q},(2) \sim \mathrm{p} \wedge \sim \mathrm{q},(3) \sim \mathrm{p} \vee \sim \mathrm{q}$.

Therefore $\sim(p \wedge q)$ is not equivalent to $\sim p \wedge q$.
14. No, $\sim(p \wedge \sim q) \Leftrightarrow \sim p \vee \sim q$
16. Yes, $q \rightarrow \sim(p \wedge \sim r) ; q \rightarrow \sim p \vee r$
18. Yes, $\sim(\sim p \rightarrow q) \Leftrightarrow \sim(p \vee q) \Leftrightarrow \sim p \wedge \sim q$
20.

| p | q | $\sim p$ | \rightarrow | q | $p \wedge q$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| T | T | F | T | T | T |
| T | F | F | T | F | F |
| F | T | T | T | T | F |
| F | F | T | F | F | F |
| | | 1 | 3 | 2 | 1 |

The statements are not equivalent.
21.

p	q	r	$(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r}$		$\mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$	
T	T	T	T	T T	T T	T
T	T	F	T	F F	T F	F
T	F	T	F	F T	T F	F
T	F	F	F	FF	T F	F
F	T	T	F	F T	F F	T
F	T	F	F	FF	F F	F
F	F	T	F	F T	F F	F
F	F	F	F	F F	F F	F
			1	32	23	1

The statements are equivalent.
23.

p	q	r	$(\mathrm{p} \vee \mathrm{q}) \vee \mathrm{r}$	$\mathrm{p} \vee(\mathrm{q} \vee \mathrm{r})$		
T	T	T	T	T T	T	T
T						
T	T	F	T	T F	T	T
T						
T	F	T	T	T T	T	T
T	T					
T	F	F	T	T F	T	T
F	F					
F	T	T	T T	F	T	T
F	T	F	T	T F	F	T
F	T					
F	F	F	F	T T	F	T
F						
			F	F F	F	F
F						
		F				

The statements are equivalent.
25.

p	q	r	$p \wedge(q \vee r)$	$(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$
T	T	T	T T T T T	T T T T T
T	T	F	TT TTF	T TTTT
T	F	T	TT FTT	TFFTT
T	F	F	TFFFF	TFFFF
F	T	T	FF TTT	FFT TT
F	T	F	FF T T F	FFTFF
F	F	T	FF FT T	FFFTT
F	F	F	FF FF F	FFFFF
			15243	13254

The statements are not equivalent.
27.

p	q	r	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})$					$(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{r}$
T	T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	F	F
T	F	T	F	F	T	F	T	T
T	F	F	F	F	T	F	T	F
F	T	T	T	T	T	T	T	T
F	T	F	T	F	F	T	F	F
F	F	T	T	T	T	T	T	T
F	F	F	T	T	T	T	F	F
			1	3	2	1	3	2

The statements are not equivalent.
22.

| p | q | $\mathrm{p} \rightarrow \mathrm{q}$ | $\sim \mathrm{q} \rightarrow$ | $\sim \mathrm{p}$ | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | T | F |
| T | F | F | T | F | F |
| F | T | T | F | T | T |
| F | F | T | T | T | T |
| | | 1 | 1 | 3 | 2 |

The statements are equivalent.
24.

p	q	r	p		$\vee(\mathrm{q} \wedge \mathrm{r})$	$\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r})$	
T	T	T	T	T	T	F	T
T	T	F	T	T	F	F	T
T	F						
T	F	T	T	T	F	F	T
T	F	F	T	T	F	F	T
F	T	T	F	T	T	T	T
F	T	F	F	F	F	T	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	
			2	3	1	1	F

The statements are equivalent.
26.

p	q	r	$\sim(q \rightarrow p) \vee r$			$(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{r}$
T	T	T	F	T	T T	T F F
T	T	F	F	T	F F	T T T
T	F	T	F	T	T T	T F F
T	F	F	F	T	F F	T T T
F	T	T	T	F	T T	T F F
F	T	F	T	F	T F	T T T
F	F	T	F	T	T T	F F F
F	F	F	F	T	F F	F F T
				1	43	

The statements are not equivalent.
28.

The statements are not equivalent.

p	q	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$			$\mathrm{p} \leftrightarrow \mathrm{q}$
T	T	T	T	T	T
T	F	F	F	T	F
F	T	T	F	F	F
F	F	T	T	T	T
		1	3	2	1

The statements are equivalent.
31. p: The Mississippi River runs through Ohio. q : The Ohio River runs through Mississippi. In symbolic form, the statement is $\sim(p \vee q)$. Applying DeMorgan's Laws we get: $\sim \mathrm{p} \wedge \sim \mathrm{q}$. The Mississippi River does not run through Ohio And the Ohio River does not run through Miss.
33. p: The snowmobile was not an Arctic Cat.
q : The snowmobile was not a Ski-Do. In symbolic form, the statement is $\sim p \vee \sim q$. Applying DeMorgan's Laws we get: $\sim(p \wedge q)$. It is false that the snowmobile was an Arctic Cat and was a Ski-Do.
35. p : The hotel does not have a weight room.
q : The conference center does not have an auditorium.
In symbolic form, the statement is $\sim \mathrm{p} \wedge \sim \mathrm{q}$. Applying DeMorgan's Laws we get: $\sim(p \vee q)$. It is false that the hotel has a weight room and the conference center has an auditorium.
37. p: We go to Cozemel.
q : We will go snorkeling.
r: We will go to Senior Frogs.
In symbolic form, the statement is
$\mathrm{p} \rightarrow(\mathrm{q} \vee \sim \mathrm{r})$. Applying DeMorgan's Laws we get: $p \rightarrow \sim(\sim q \wedge r)$. If we go to Cozemel, then it is false that we will not go snorkeling and we will go to Senior Frogs.
39. p: You drink a glass of orange juice.
q: You'll get a full day's supply of folic acid. In symbolic form, the statement is $p \rightarrow q$. Since $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$, an equivalent Statement is: You do not drink a glass of OJ or you will get a full day's supply of folic acid.

p	q	$[\sim(\mathrm{p} \rightarrow \mathrm{q})] \wedge[\sim(\mathrm{q} \rightarrow \mathrm{p})]$				$\sim(\mathrm{p} \leftrightarrow \mathrm{q})$		
T	T	F	T	F	F	T	F	T
T	F	T	F	F	F	T	T	F
F	T	F	T	F	T	F	T	F
F	F	F	T	F	F	T	F	T
		2	1	5	4	3	2	1

The statements are not equivalent.
32. p : The printer is out of toner.
q : The fax machine is out of paper.
In symbolic form, the statement is $\sim(p \wedge q)$.
Applying DeMorgan's Laws we get:
$\sim p \vee \sim q$. The printer is not out of toner or the fax machine is not out of paper.
34. p : The pot roast is hot.
q : The pot roast is not well done.
In symbolic form, the statement is $\mathrm{p} \wedge \sim \mathrm{q}$.
Applying DeMorgan's Laws we get: $\sim(\sim p \vee q)$. It is false that the pot roast is not hot or it is well done.
36. p: Robert Farinelli is authorized WedgCor dealer.
$\mathrm{q}: \mathrm{He}$ is not going to work for Prism Constr. Co.
In symbolic form, the statement is $\mathrm{p} \vee \sim \mathrm{q}$.
Applying DeMorgan's Laws we get: $\sim(\sim \mathrm{p} \wedge \mathrm{q})$. It is False that Robert Farinelli isn't an authorized WedgCor Dealer and he is going to work for Prism Constr. Co.
38. p: Phil Murphy buys us dinner.
q: We will not go to the top of the CN Tower.
r: We will be able to walk to the Bistro Restaurant.
In symbolic form the statement is $p \rightarrow(\sim q \wedge r)$.
Applying DeMorgan's Laws we get: $\mathrm{p} \rightarrow \sim(\mathrm{q} \vee \sim \mathrm{r})$. If Phil Murphy buy us dinner, then it is false that we will go to the top of the CN Tower and that we will not be able to walk to the Bistro Restaurant.
40. p: Nick-at-Nite is showing Family Ties.
q : Nick-at-Nite is showing The Facts of Life.
In symbolic form, the statement is $\mathrm{p} \vee \mathrm{q}$.
Since $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$, an equivalent statement is: If Nick-at-Nite is not showing Family Ties, then they are showing The Facts of Life.
41. p : Bob the Tomato visited the nursing home.
q : Bob the Tomato visited the Cub Scout meeting.
In symbolic form, the statement is $\mathrm{p} \vee \sim \mathrm{q}$. Since $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$, an equivalent
Statement is: If Bob the Tomato did not visit the nursing home, then he did not visit the Cub Scout meeting.
43. p: The plumbers meet in Kansas City.
q : The Rainmakers will provide the entertainment.
In symbolic form, the statement is $\sim(\mathrm{p} \rightarrow \mathrm{q})$. $\sim(p \rightarrow q) \Leftrightarrow \sim(\sim p \vee q) \Leftrightarrow p \wedge \sim q$. The plumbers meet in KC and the Rainmakers did not provide the entertainment.
45. p: It is cloudy.
q : The front is coming through.
In symbolic form, the statement is $(p \rightarrow q) \wedge$ $(\mathrm{q} \rightarrow \mathrm{p}) .(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \Leftrightarrow \mathrm{p} \leftrightarrow \mathrm{q}$. It is cloudy if and only if the front is coming through.
47. p: The chemistry teacher uses mathematics.
$\mathrm{q}:$ There is a shortage of math. teachers.
In symbolic form, the statement is $\mathrm{p} \leftrightarrow \mathrm{q}$.
$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \Leftrightarrow \mathrm{p} \leftrightarrow \mathrm{q}$.
If the chemistry teachers uses math., then there Is a shortage of math. teachers and if there is a shortage of math. teachers, then the chemistry teacher uses math.
49. Converse: If I finish the book in 1 week, then it is interesting.
Inverse: If the book is not interesting, then I do not finish it in 1 week.
Contrapositive: If I do not finish the book in One week, then it is not interesting.
51. Converse: If you can watch TV, then you finish your HW.
Inverse: If you do not finish your HW, then you cannot watch TV.
Contrapositive: If you do not watch TV, then You did not finish your HW.
42. p: John Peden will buy a Harley Davidson.
q: John Peden will buy a Honda.
In symbolic form, the statement is $\mathrm{p} \rightarrow \sim \mathrm{q}$.
Since $p \rightarrow q \Leftrightarrow \sim p \vee q$, an equivalent statement is: John Peden will not buy a H-D or he will not buy a Honda.
44. p: Mary Beth Headlee organized the conference.
$\mathrm{q}:$ John Waters works at Sinclair Community College.
In symbolic form, the statement is $p \vee \sim q$.
$\sim p \rightarrow \sim q \Leftrightarrow p \vee \sim q$. If Mary Beth Headless did not organize the conference, then John Waters does not work for SCC.
46. p: Model Road is closed.
q: Use Kirkwood Road.
In symbolic form, the statement is $(p \rightarrow q) \wedge(q \rightarrow p)$.
$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \Leftrightarrow \mathrm{p} \leftrightarrow \mathrm{q}$. Model Rd. is closed if and only if we use Kirkwood Rd.
48. p: John Deere will hire new workers.
q : The City of Dubuque will retrain the workers.
In symbolic form, the statement is $\mathrm{p} \leftrightarrow \mathrm{q}$.
$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \Leftrightarrow \mathrm{p} \leftrightarrow \mathrm{q}$.
If John Deere hires new workers, then the City of Dubuque will retrain the workers and if the City of Dubuque retrains the workers, then John Deere will hire new workers.
50. Converse: If you need to replace the blower fan, then the dryer is making a loud noise.
Inverse: If the dryer is not making a loud noise, Then you do not need to replace the blower fan. Contrapositive: If you do not need to replace the blower fan, then the dryer is not making a loud noise.
52. Converse: If Bob Dylan goes on tour, then he releases a new CD.
Inverse: If Bob Dylan does not release a new CD, then he does not go on tour.
Contrapositive: If Bob Dylan does not go on tour, then he does not release a new CD.
53. Converse: If I scream, then that annoying paper clip (Clippie) shows up on my screen. Inverse: If Clippie does not show up on my screen, then I will not scream.
Contrapositive: If I do not scream, then Clippie does not show up on my screen.
55. Converse: If we go down to the marina and take out a sailboat, then the sun is shining.
Inverse: If the sun is not shining, then we do not go down to the marina and take out a sailboat.
Contrapositive: If we do not go down to the marina and do not take out a sailboat, then the sun is not shining.
57. If a natural number is divisible by 10 , then it is divisible by 5 . True
59. If a natural number is not divisible by 6 , then it is not divisible by 3 . False
61. If two lines are not parallel, then the two lines intersect in at least one point. True
63. If the polygon is a quadrilateral, then the sum of the interior angles is 360 degrees. True
65. p: Maria has retired.
$\mathrm{q}:$ Maria is still working.
In symbolic form, the statements are:
a) $\sim \mathrm{p} \vee \mathrm{q}, \mathrm{b}) \mathrm{q} \rightarrow \sim \mathrm{p}$, c) $\mathrm{p} \rightarrow \sim \mathrm{q}$

Statement (c) is the contrapositive of statement. (b). Therefore, statements (b) and (c) are equivalent.

P	q	$\sim p \vee q$	$q \rightarrow \sim p$		
T	T	F	TT	T F	F
T	F	F	FF	F T	F
F	T	T	TT	T T	T
F	F	T	TF	F T	T
		1	32	13	2

Since the truth tables for (a) and (b) are different we conclude that only statements (b) and (c) are equivalent.
54. Converse: If I watch the same channel all night, then the remote control is not within my reach
Inverse: If the remote control is within my reach, then I will not watch the dame channel all.night.
Contrapositive: If I do not watch the same channel all night, then the remote control is within my reach.
56. Converse: If we eat a piece of apple and save some for later, then the apple pie is baked.
Inverse: If the apple pie is not baked, then we do not eat a piece of pie nor do we save some for later.
Contrapositive: If we do not eat a piece of pie nor do we save some for later, then the apple pie is not baked.
58. If a quadrilateral is a parallelogram, then the opposite sides are parallel. True
60. If n is a natural number, then $1 / \mathrm{n}$ is a natural number. False
62. If m is a counting number, then $\frac{m a}{m b}=\frac{a}{b}$. True
64. If the product of a and b is an even counting number then a and b are both even counting numbers. False
66. p: Today is Monday.
q : Tomorrow is Wednesday.
In symbolic form, the statements are:
a) $\mathrm{p} \rightarrow \sim \mathrm{q}, \mathrm{b}) \sim(\mathrm{p} \wedge \sim \mathrm{q})$, c) $\sim \mathrm{p} \vee \mathrm{q}$.

If we use DeMorgan's Laws on statement
(b) we get statement (c).

Therefore, statements (b) and (c) are equivalent. If we look at the truth tables for all three statements we can see that only statements (b) and (c) are equivalent.

a)			b)	c)
p	q	$\mathrm{p} \rightarrow \sim \mathrm{q}$	$\sim(p \wedge \sim q)$	$\sim \mathrm{p} \vee \mathrm{q}$
T	T	T F F	T T F F	F TT
T	F	T T T	F T T T	F FF
F	T	F T F	T FF F	T T T
F	F	$\begin{array}{lll}\text { F } & \text { T } & \text { T } \\ 1 & 3 & 2\end{array}$	$\begin{array}{llll}\text { T F F } \\ 4 & 1 & 3 & 2\end{array}$	$\begin{array}{llll}\text { T } & \text { T F } \\ 1 & 3\end{array}$

66 CHAPTER 3 Logic

67. p: The car is reliable.
q : The car is noisy.
In symbolic form, the statements are: a) $\sim p \wedge q$,
b) $\sim p \rightarrow \sim q, c) \sim(p \vee \sim q$. If we use DeMorgan's Laws on statement (a), we get statement (c).
Therefore, statements (a) and (c) are equivalent. If we look at the truth tables for statements (a), (b), and (c), we see that only statements (a) and (c) are equivalent.

a)			b)	c)
p	q	$\sim \mathrm{p} \wedge \mathrm{q}$	$\sim p \rightarrow \sim q$	$\sim(p \vee \sim q)$
T	T	F F T	F T F	F TT F
T	F	F F F	F \quad T T	F T T T
F	T	T T T	T F F	T FFF
F	F	T F F	T T T	F FT T
		132	132	4132

69. p: Today is Sunday.
q : The library is open.
In symbolic form, the statements are: a) $\sim p \vee q$,
b) $\mathrm{p} \rightarrow \sim \mathrm{q}$, c) $\mathrm{q} \rightarrow \sim \mathrm{p}$. Looking at the truth table for all three statements, we can determine that only statements (b) and (c) are equivalent.

a)			b)	c)
p	q	$\sim p \vee q$	$\mathrm{p} \rightarrow \sim \mathrm{q}$	$\mathrm{q} \rightarrow \sim \mathrm{p}$
T	T	F T T	T F F	T F F
T	F	F FF	T T T	F T F
F	T	T T T	F T F	T T T
F	F	T T F	F T T	F T T
		132	132	132

71. p : The grass grows.
q : The trees are blooming.
In symbolic form, the statements are: a) $p \wedge q$,
b) $\mathrm{q} \rightarrow \sim \mathrm{p}, \mathrm{c}) \sim \mathrm{q} \vee \sim \mathrm{p}$. Using the fact that $\mathrm{p} \rightarrow \mathrm{q}$ $\Leftrightarrow \sim p \vee q$, on statement (b) we get $\sim q \vee \sim p$. Therefore, statements (b) and (c) are equivalent. Looking at the truth table for statements (a) and (b) we can conclude that only statements (b) and (c) are equivalent.

p	q	$\mathrm{p} \wedge \mathrm{q}$	$q \rightarrow \sim p$
T	T	T	T F F
T	F	F	F T F
F	T	F	T T T
F	F	F	F T T
		1	132

68. p : The house is made of wood.
q : The shed is made of wood.
In symbolic form, the statements are:
a) $\sim \mathrm{p} \vee \sim \mathrm{q}, \mathrm{b}) \mathrm{p} \rightarrow \sim \mathrm{q}$, and c$) \sim(\mathrm{q} \wedge \sim \mathrm{p})$.

Using the fact that $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$ to rewrite statement (b), we get $\sim p \vee \sim q$.
Therefore, statements (a) and (b) are equivalent. Looking at the truth tables for all three, it can be determined that only statements (a) and (b) are equivalent.

a)			b)	c)
p	q	$\sim \mathrm{p} \vee \sim \mathrm{q}$	$\mathrm{p} \rightarrow \sim \mathrm{q}$	$\sim(q \wedge \sim p)$
T	T	F F F	T F F	T T F F
T	F	F T T	T T T	T F F F
F	T	T T F	F T F	F T T T
F	F	T T T	F T T	T F F T
		132	132	4132

70. p: You are fishing at 1 PM .
q : You are driving a car at 1 PM .
In symbolic form, the statements are:
a) $\mathrm{p} \rightarrow \mathrm{q}, \mathrm{b}) \sim \mathrm{p} \vee \mathrm{q}, \mathrm{c}) \sim(\mathrm{p} \wedge \sim \mathrm{q})$.

Using the fact that $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$, we see that (a) and (b) are equivalent statements. If we use DeMorgan's Laws on statement (b), we get statement (c). Therefore all three statements are equivalent.
72. p: Johnny Patrick is chosen as department chair. q: Johnny Patrick is the only candidate.
In symbolic form, the statements are:
a) $\mathrm{p} \leftrightarrow \mathrm{q}, \mathrm{b})(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$, and c$) \sim \mathrm{p} \wedge \sim \mathrm{q}$.

p	q	p ¢ q	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$	$\sim \mathrm{p} \wedge \sim \mathrm{q}$
T	T	T T	TT T T T T T	F F F
		T		
T	F	T F F	TFFFFTT	F F T
F	T	F F T	FT TFTFF	T F F
F	F	F T F	FT F T FTF	T T T
		132	46510789	111312

Therefore, p is equivalent to q .
73. p: Johnny Patrick is chosen as department chair. q : Johnny Patrick is the only candidate.
In symbolic form, the statements are: a) $p \leftrightarrow q$,
b) $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$, and c$) \sim \mathrm{p} \wedge \sim \mathrm{q}$.

P	q	$\mathrm{p} \leftrightarrow \mathrm{q}$	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$	$\sim \mathrm{p} \wedge \sim \mathrm{q}$
T	T	T T T	TT T T TTT	F F F
T	F	T F F	TFFFFTT	F F T
F	T	F F T	FT T F TFF	T F F
F	F	F T F	FT F T FTF	T T T
		132	46510789	111312

Therefore, p is equivalent to q .
75. p: The pay is good.
q : Today is Monday.
r : I will take the job.
Looking at the truth tables for statements (a), (b), and (c), we can determine that none of these statements are equivalent.

a)				b)	c)
p	q	r	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$	$\sim \mathrm{r} \rightarrow \sim(\mathrm{p} \vee \mathrm{q})$	$(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$
T	T	T	T T T	F T F T	T T T
T	T	F	T F F	T F F T	T T F
T	F	T	FT T	F T F T	F T T
T	F	F	FT F	T F F T	F F F
F	T	T	F T T	F T F T	F T T
F	T	F	FT F	T F F T	F F F
F	F	T	F T T	F T T F	F T T
F	F	F	F T F	T T T F	F F F
			132	1432	132

77. p: The package was sent by Federal Express.
q: The package was sent by United Parcel Service.
r : The package arrived on time.
Using the fact that $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$ to rewrite statement (c), we get $\mathrm{p} \vee(\sim \mathrm{q} \wedge \mathrm{r})$. Therefore, statements (a) and (c) are equivalent. Looking at the truth table for statements (a) and (b), we can conclude that only statements (a) and (c) are equivalent.
b)

p	q	r		$\mathrm{p} \vee(\sim \mathrm{q} \wedge \mathrm{r})$	$\mathrm{r} \rightarrow(\mathrm{p} \vee \sim \mathrm{q})$
T	T		T	T T F F T	T T T T F
T	T		F	T T F F F	F F T T F
T	F		T	T T T T T	T T T T T
T	F		F	T T T F F	F F T T T
F	T		T	F F F F T	T F F F F
F	T		F	F F F F F	F T F F F
F	F		T	F T T T T	T T F T T
F	F		F	F F T F F	F F F T T
				15243	$\begin{array}{lllll}1 & 5 & 2 & 4 & 3\end{array}$

74. p: You drink milk.
q: Your cholesterol count will be lower. In symbolic form, the statements are:
a) $\sim(\sim \mathrm{p} \rightarrow \mathrm{q}), \mathrm{b}) \mathrm{q} \leftrightarrow \mathrm{p}$, and c$) \sim(\mathrm{p} \rightarrow \sim \mathrm{q})$.

Therefore, none of the statements are equivalent.
76. p: You are 18 years old.
$\mathrm{q}:$ You are a citizen of the United States.
r : You can vote in a presidential election.
Looking at the truth tables for statements
(a), (b), and (c), we can determine that
none of these statements are equivalent.

a)				b)	c)
p	q	r	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$	$\mathrm{r} \rightarrow(\mathrm{q} \wedge \mathrm{p})$	$\sim \mathrm{r} \vee(\mathrm{p} \wedge \sim \mathrm{q})$
T	T	T	T T T	T T T	F F T F F
T	T	F	T F F	F F T	T T T F F
T	F	T	F T T	T F F	F T T T T
T	F	F	F T F	F T F	T T T T T
F	T	T	F T T	T F F	F F F F F
F	T	F	F T F	F T F	T T F F F
F	F	T	F T T	T F F	F F F F T
F	F	F	F T F	F T F	T T F F
			132	132	$1 \begin{array}{lllll}1 & 5 & 2 & 4 & 3\end{array}$

78. p : We will put the dog outside.
q: We feed the dog.
r : The dog will bark.
In symbolic form, the statements are:
a) $(p \vee q) \rightarrow \sim r, b) r \rightarrow(\sim p \wedge \sim q)$,
and c) $r \Leftrightarrow \sim(p \vee q)$. Statement (c) is the contrapositive of statement (b) and if we use DeMorgan's Laws on statement (b) we obtain statement (c). Therefore, statements (a), (b), and (c) are equivalent.
79. p: The car needs oil.
q : The car needs gas.
r : The car is new.
In symbolic form, the statements are: a) $\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$,
b) $\mathrm{p} \wedge \sim(\sim \mathrm{q} \wedge \sim \mathrm{r})$, and c) $\mathrm{p} \rightarrow(\mathrm{q} \vee \sim \mathrm{r})$. If we use DeMorgan's Laws on the disjunction in statement (a), we obtain $\mathrm{p} \wedge \sim(\sim \mathrm{q} \wedge \sim \mathrm{r})$. Therefore, statements (a) and (b) are equivalent. If we compare the truth tables for (a) and (c) we see that they are not equivalent. Therefore, only statements (a) and (b) are equivalent.

p	q	r	$\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$		$\mathrm{p} \rightarrow(\mathrm{q} \vee \sim \mathrm{r})$
T	T	T	T T	T	T T T T F
T	T	F	T T	T	T T T T T
T	F	T	T T	T	TF FFF
T	F	F	T F	F	T T FT T
F	T	T	F F	T	FT T T F
F	T	F	F F	T	F T T T T
F	F	T	F F	T	FT FFF
F	F	F	F F	F	F T FT T
			13	2	15243

81. Yes conditional: If it is a bird, then it can fly.
(False); converse: If it can fly, then it is a bird. (F)
82. Yes conditional: If $2+5=7$, then $5+1=4$. (F) contrapositive: If $5+1 \neq 4$, then $2+5 \neq 7$. (False)
83. If we use DeMorgan's Laws to rewrite $\sim p \vee q$, we get $\sim(p \wedge \sim q)$. Since $\sim p \vee q \Leftrightarrow \sim(p \wedge \sim q)$ and $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$, we can conclude that $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow$ $\sim(p \wedge \sim q)$. Other answers are possible.
84. Research problem -- Answers will vary.
85. (a) conditional; (b) biconditional; (c) inverse;
(d) converse; (e) contrapositive
86. p: The mortgage rate went down.
$\mathrm{q}:$ Tim purchased the house.
r: The down payment was 10%.
Looking at the truth tables for statements
(a), (b), and (c), we can determine that none of these statements are equivalent.

a)				b)	c)
p	q	r	$\mathrm{p} \leftrightarrow(\mathrm{q} \wedge \mathrm{r})$	$\mathrm{r} \wedge(\mathrm{q} \rightarrow \mathrm{p})$	$\mathrm{q} \rightarrow(\mathrm{p} \wedge \sim \mathrm{r})$
T	T	T	T T T	T T T	TF TFF
T	T	F	T F F	F F T	TT TT T
T	F	T	T F F	T T T	FT TFF
T	F	F	T F F	F F T	FT TT T
F	T	T	F F T	T F F	TF FFF
F	T	F	F T F	FF F	TF FFT
F	F	T	F T F	T T T	FT FFF
F	F	F	F T F	F F T	FT FF T
			132	132	15243

82. Yes conditional: If $5+1=9$, then $2+5=7$. (T)
converse: If $2+5=7$, then $5+1=9$. (F)
83. No. A conditional statement and its contrapositive are equivalent statements.
84. $\sim[\sim(p \vee \sim q)] \Leftrightarrow p \vee \sim q$. Make use of the fact that $\sim(\sim p) \Leftrightarrow p$, then use DeMorgan's Law twice.
$\sim[\sim(p \vee \sim q)]=\sim[\sim p \wedge q]=p \vee \sim q$
85. a) $\sim \mathrm{p}=1-\mathrm{p}=1-0.25=0.75$
b) $\sim \mathrm{q}=1-\mathrm{q}=1-0.20=0.80$
c) $\mathrm{p} \wedge \mathrm{q}$ has a truth value equal to the lesser of $p=0.75$ and $q=0.20$. Thus $p \wedge q=0.20$
d) $\mathrm{p} \vee \mathrm{q}$ has truth value equal to the greater of $\mathrm{p}=0.25$ and $\mathrm{q}=0.20$. Thus $\mathrm{p} \vee \mathrm{q}=0.25$
e) $p \rightarrow q$ has truth value equal to the lesser of 1 and $1-(p+q)=1-0.25+0.20=0.95$. Thus $\mathrm{p} \rightarrow \mathrm{q}=0.95$
f) $\mathrm{p} \leftrightarrow \mathrm{q}$ has a truth value equal to $1-|\mathrm{p}-\mathrm{q}|=$ $1-(0.25-0.20)=1-0.05=0.95$. Thus $\mathrm{p} \leftrightarrow \mathrm{q}$ $=0.95$

Exercise Set 3.5

1. An argument is valid when its conclusion necessarily follows from the given set of premises.
2. Yes. It is not necessary for the premises or the conclusion to be true statements for the argument to be valid.
3. Yes. If the conclusion follows from the set of premises, then the argument is valid, even if the premises are false.
4. a) $p \rightarrow q$
\qquad q
b) Pizza is served on time or is free. The pizza was not served on time. The pizza is free.
5. a) $\mathrm{p} \rightarrow \mathrm{q}$ hot.

$$
\begin{aligned}
& \mathrm{q} \rightarrow \mathrm{r} \\
& \mathrm{p} \rightarrow \mathrm{r}
\end{aligned} \quad \underline{\text { If it is hot, then will wear shorts. }} \text { If sky is clear, then wear shorts. }
$$

11. a) $\mathrm{p} \rightarrow \mathrm{q}$
b) If you wash my car, then I pay $\$ 5$.
$\sim \mathrm{p} \quad$ You did not wash my car.
$\sim \mathrm{q} \quad$ I will not give you $\$ 5$.
12. This argument is the law of detachment and therefore it is valid.
13.

The argument is valid.
17.

p	q	$[\sim p \wedge(p \vee q)] \rightarrow \sim q$		
T	T	F F	T T	F
T	F	F F	T T	T
F	T	T T	T F	F
F	F	T F	F T	T
		13	25	4

The argument is a fallacy.
2. An argument is invalid or a fallacy when the conclusion is false.
4. Yes. If the conclusion does not follow from the set of premises, then the argument is invalid.
6. If the truth table is a tautology, then the argument is valid. If the truth table is not a tautology, then the argument is invalid.
8. a) $\mathrm{p} \rightarrow \mathrm{q}$
b) If soil is dry, then grass needs water.
$\sim q$ $\sim p$
The grass does not need water. The soil is not dry.
10. a) $\mathrm{p} \rightarrow \mathrm{q}$ p q
b) If sky is clear, then I'll go to game. The sky is clear. I will go to the game.
12. a) $\mathrm{p} \rightarrow \mathrm{q}$ q
. p

b) If you wash my car, then pay $\$ 5$. I will give you $\$ 5$.
 You washed my car.

14.

| p | q | $[(p \rightarrow q) \wedge \sim p]$ | q | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | T |
| T | F | F | F | F | T | F |
| F | T | T | T | T | T | T |
| F | F | T | T | T | F | F |
| | | 1 | 3 | 2 | 5 | 4 |

The argument is invalid.
16.

p	q	$[(\sim p$	\vee

The argument is not valid.
20.

| p | q | $[(p \vee q)$ | \wedge | $\sim q]$ | p | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | T |
| T | F | T | T | T | T | T |
| F | T | T | F | F | T | F |
| F | F | F | F | T | T | F |
| | | 1 | 3 | 2 | 5 | 4 |

The argument is valid.
18. This argument is the law of contraposition and therefore it is valid.
21.

p	q	$[(\sim \mathrm{p} \rightarrow \mathrm{q}) \wedge \sim \mathrm{q}] \rightarrow \sim \mathrm{p}$
T	T	F T T F F T F
T	F	F T F T T F F
F	T	T T T F F T T
F	F	T F F F T T T
		$\begin{array}{lllllll}1 & 3 & 2 & 5 & 4 & 7 & 6\end{array}$

The argument is invalid.
23. This argument is the law of syllogism and therefore it is valid.
25.

p	q	r	$[(\mathrm{p} \leftrightarrow \mathrm{q}) \wedge(\mathrm{q} \wedge \mathrm{r})]$	\rightarrow	$(\mathrm{p} \vee \mathrm{r})$		
T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	T
T	F	T	F	F	F	T	T
T	F	F	F	F	F	T	T
F	T	T	F	F	T	T	T
F	T	F	F	F	F	T	F
F	F	T	T	F	F	T	T
F	F	F	T	F	F	T	F
			1	3	2	5	4

The argument is valid.
19. This argument is the fallacy of the inverse. Therefore, it is not valid.

22

p	q	$[(q \wedge \sim p) \wedge \sim p] \rightarrow q$
T	T	TF F F F T T
T	F	
F	T	T T T T T T T
F	F	FF T F T T F
		$\begin{array}{lllllll}13 & 2 & 5 & 4 & 7 & 6\end{array}$

The argument is valid.
24.

| p | q | $[(q \wedge p)$ | \wedge | $q]$ | $\sim p$ | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | F | F |
| T | F | F | F | F | T | F |
| F | T | F | F | T | T | T |
| F | F | F | F | F | T | T |
| | | 1 | 3 | 2 | 5 | 4 |

The argument is invalid.
26.

| p | q | r | $[(\mathrm{p} \leftrightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})]$ | | | | | | \rightarrow | $(\sim \mathrm{r} \rightarrow \sim \mathrm{p})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | T | T | T | T | T | T | F | T | F | |
| T | T | F | T | F | F | T | T | F | F | |
| T | F | T | F | F | T | T | F | T | F | |
| T | F | F | F | F | T | T | T | F | F | |
| F | T | T | F | F | T | T | F | T | T | |
| F | T | F | F | F | F | T | T | T | T | |
| F | F | T | T | T | T | T | F | T | T | |
| F | F | F | T | T | T | T | T | T | T | |
| | | | 1 | 3 | 2 | 7 | 4 | 6 | 5 | |

The argument is valid.
27.

p	q	r	$[(\mathrm{r} \leftrightarrow \mathrm{p}) \wedge(\sim \mathrm{p} \wedge \mathrm{q})] \rightarrow(\mathrm{p} \wedge \mathrm{r})$				28.	p	q	r	$[(p \vee q) \wedge(r \wedge p)] \rightarrow q$			
T	T	T	T	F F FT	T	T		T	T	T	T	T	T	T T
T	T	F	F	F FFT	T	F		T	T	F	T	F	F	T T
T	F	T	T	F F FF	T	T		T	F	T	T	T	T	F F
T	F	F		F F FF	T	F		T	F	F	T	F	F	T F
F	T	T	F	F T T T	T	F		F	T	T	T	F	F	T T
F	T	F	T	T T TT	F	F		F	T	F	T	F	F	T T
F	F	T	F	F T FF	T	F		F	F	T	F	F	F	T F
F	F	F	T	F T FF	T	F		F	F	F	F	F	F	T F
			1	$5 \quad 243$	7	6					1	3	2	54

The argument is invalid.
The argument is invalid.
29.

| p | q | r | $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \vee \mathrm{r}) \wedge(\mathrm{r} \vee \mathrm{p})] \rightarrow \mathrm{p}$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | T | T | T | T | T | T | T | T | T |
| T | T | F | T | T | T | T | T | T | T |
| T | F | T | F | F | T | F | T | T | T |
| T | F | F | F | F | F | F | T | T | T |
| F | T | T | T | T | T | T | T | F | F |
| F | T | F | T | T | T | F | F | T | F |
| F | F | T | T | T | T | T | T | F | F |
| F | F | F | T | F | F | F | F | T | F |
| | | | 1 | 3 | 2 | 5 | 4 | 7 | 6 |

The argument is invalid.
30. This argument is the law of syllogism and therefore it is valid.
31.

The argument is valid.
32.

p	q	r	$[(\mathrm{p} \leftrightarrow \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{q} \vee \mathrm{r})$						
T	T	T	T	T	T	T	T	T	T
T	T	F	T	T	T	F	F	T	T
T	F	T	F	F	T	F	T	T	T
T	F	F	F	F	T	F	T	T	F
F	T	T	F	F	T	F	T	T	T
F	T	F	F	F	T	F	F	T	T
F	F	T	T	F	F	F	T	T	T
F	F	F	T	F	F	F	T	T	F
			1	4	2	5	3	7	6

The argument is valid.
33. p: Will Smith wins an Academy Award. q : Will Smith retires from acting.

| p | q | $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \sim \mathrm{p}] \rightarrow \sim \mathrm{q}$ | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | F |
| T | F | F | F | F | T | T |
| F | T | T | T | T | F | F |
| F | F | T | T | T | T | T |
| | | 1 | 3 | 2 | 5 | 4 |

The argument is invalid.
34. p : The president resigns.
q : The vice president becomes president.

p	q	$[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \mathrm{q}] \rightarrow \mathrm{p}$
T	T	T T T T T
T	F	F F F T T
F	T	T T T F F
F	F	T F F T F
		13254

The argument is invalid.
35. p: The baby is a boy.
q : The baby will be named Alexander Martin.

p	q	$[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \mathrm{q}] \rightarrow \mathrm{p}$
T	T	T TTT T
T	F	F FFT T
F	T	T T T F F
F	F	T F F T F
		13254

The argument is valid.
37. p: Monkeys can fly.
$\mathrm{q}:$ Scarecrows can dance.
$[(p \rightarrow q) \wedge \sim q] \rightarrow \sim p$
This argument valid because of the Law of Contraposition.
39. p : The orange was left on the tree for one year.
q : The orange is ripe.

p	q	$[\mathrm{p} \rightarrow \mathrm{q}) \wedge \mathrm{q}]$				\rightarrow	p
T	T	T	T	T	T	T	
T	F	F	F	F	T	T	
F	T	T	T	T	F	F	
F	F	T	F	F	T	F	
		1	3	2	5	4	

This is the Fallacy of the Converse; thus the argument is valid.
41. p: The X-Games will be in San Diego.
$\mathrm{q}:$ The X-Games will be in Corpus Christi.

| P | q | $[(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p}]$ | | | | $\rightarrow \mathrm{q}$ |
| :--- | :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | T |
| T | F | T | F | F | T | F |
| F | T | T | F | T | T | T |
| F | F | F | T | F | T | F |
| | | 1 | 3 | 2 | 5 | 4 |

The argument is valid.
43. p: It is cold.
q : The graduation will be held indoors.
r : The fireworks will be postponed.

$$
[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})
$$

This argument is valid because of the Chain Rule.
36. p: I get my child to preschool by 8:45 a.m.
q : I take the 9:00 a.m. class.
r: I am done by 2:00 p.m.
$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
This argument is valid because of the Law of Syllogism.
38. p: Rob Calcatera will go on sabbatical.
q: Frank Cheek will teach Logic.

| p | q | $[(p \vee q) \wedge \sim q]$ | p | | | |
| :--- | :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | T |
| T | F | T | T | T | T | T |
| F | T | T | F | F | F | F |
| F | F | T | T | T | T | F |
| | | 1 | 3 | 2 | 5 | 4 |

The argument is valid.
40. p: You pass General Chemistry. q : You take Organic Chemistry.

p	q	$[(p \rightarrow q) \wedge p] \rightarrow q$				
T	T	T		T	T	
T	F	F	F	T	T	
F	T	T	F	F	T	
F	F	T	F	F	T	
		1		2	5	

This is the Law of Detachment, thus the argument is valid.
42. p: Nicholas Thompson teaches this course. q : I will get a passing grade.

p	q	$[(p \rightarrow q) \wedge \sim q]$					$\sim p$
T	T	T	F	F	T	F	
T	F	F	F	T	T	F	
F	T	T	F	F	T	T	
F	F	T	T	T	T	T	
		1	3	2	5	4	

This argument is valid - Contraposition.
44. p: Miles Davis played with Louis Armstrong.
$\mathrm{q}:$ Charlie Parker played with Dizzy Gillespie.

| p | q | $[(p \rightarrow q) \wedge \sim p]$ | | | | $\rightarrow q$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | F |
| T | F | F | F | F | T | T |
| F | T | T | T | T | F | F |
| F | F | T | T | T | T | T |
| | | 1 | 3 | 2 | 5 | 4 |

This argument is invalid.
45. f: The canteen is full
w: We can go for a walk.
t : We will get thirsty.

f	w	t	[(f \rightarrow w)	$\wedge(\mathrm{w} \wedge \sim \mathrm{t})$	$\rightarrow(\mathrm{w} \rightarrow \sim \mathrm{f})$
T	T	T	T	F T F F	$\mathrm{T} T \mathrm{~F} \mathrm{~F}$
T	T	F	T	T T T T	F T F F
T	F	T	F	F F F F	T F T F
T	F	F	F	F F F T	T F T F
F	T	T		F T F F	T T T T
F	T	F		T T T T	T T T T
F	F	T	T	F F F F	$\mathrm{T} F \mathrm{~T}$ T
F	F	F	T	F F F T	T F T T
			1	5243	9687

The argument is not valid.
47. s: It is snowing.
$\mathrm{g}: ~ \mathrm{I}$ am going skiing.
c: I will wear a coat.

s	g	c	$[(\mathrm{s} \wedge \mathrm{g}) \wedge(\mathrm{g} \rightarrow \mathrm{c})]$			$\rightarrow(\mathrm{s} \rightarrow \mathrm{c})$	
T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	F
T	F	T	F	F	T	T	T
T	F	F	F	F	T	T	F
F	T	T	F	F	T	T	T
F	T	F	F	F	F	T	T
F	F	T	F	F	T	T	T
F	F	F	F	F	T	T	T
			1	3	2	5	4

The argument is valid.
49. h: The house has electric heat.
b: The Flynns will buy the house.
p : The price is less than $\$ 100,000$.

| h | b | p | $[(\mathrm{h} \rightarrow \mathrm{b}) \wedge(\sim \mathrm{p} \rightarrow \sim \mathrm{b})]$ | $\rightarrow(\mathrm{h} \rightarrow \mathrm{p})$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | F | T | F | T | T |
| T | T | F | T | F | T | F | F | T | F |
| T | F | T | F | F | F | T | T | T | T |
| T | F | F | F | F | T | T | T | T | F |
| F | T | T | T | T | F | T | F | T | T |
| F | T | F | T | F | T | F | F | T | T |
| F | F | T | T | T | F | T | T | T | T |
| F | F | F | T | T | T | T | T | T | T |
| | | | 1 | 5 | 2 | 4 | 3 | 7 | 6 |

The argument is valid.
46. p: Bryce Canyon National Park is in Utah.
$\mathrm{q}:$ Bryce Canyon National Park is in Arizona.

p	q	$[(p \vee q) \wedge(q \rightarrow \sim p)] \rightarrow \sim q$
T	T	T F TF F T F
T	F	T T FT F T T
F	T	T T T T T F F
F	F	F F F F T T T T
		$\begin{array}{lllllll}1 & 5 & 2 & 4 & 3 & 7 & 6\end{array}$

The argument is invalid.
48. g: The garden has vegetables.
f : The garden has flowers.

g	f	$[(\mathrm{g} \vee \mathrm{f}) \wedge(\sim \mathrm{f} \rightarrow \mathrm{g})]$	$\rightarrow(\mathrm{f} \vee \mathrm{g})$					
T	T	T	T	F	T	T	T	T
T	F	T	T	T	T	T	T	T
F	T	T	T	F	T	F	T	T
F	F	F	F	T	F	F	T	F
		1	5	2	4	3	7	6

The argument is valid.
50. a: There is an atmosphere.
g : There is gravity.
w : An object has weight.

a	g	w	$[(\mathrm{a} \rightarrow \mathrm{g}) \wedge(\mathrm{w} \rightarrow \mathrm{g})]$	$\rightarrow(\mathrm{a} \rightarrow \mathrm{w})$			
T	T	T	T	T	T	T	T
T	T	F	T	T	T	F	F
T	F	T	F	F	F	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	T	T	T
F	T	F	T	T	T	T	T
F	F	T	T	F	F	T	T
F	F	F	T	T	T	T	T
			1	3	2	5	4

The argument is invalid.
51. p : The prescription is called in to Walgreen's.
q. You pick up the prescription at 4:00 p.m.

| p | q | $[(p$ | $\rightarrow q)$ | \wedge | $\sim q]$ | $\sim p$ | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | F | F | T | F |
| T | F | T | F | F | F | T | T | F |
| F | T | F | T | T | F | F | T | T |
| F | F | F | T | F | T | T | T | T |
| | | 1 | 3 | 2 | 5 | 4 | 7 | 6 |

The argument is valid.
53. t : The television is on.
p : The plug is plugged in.

| t | p | $[(\mathrm{t} \vee$ | $\sim \mathrm{p})$ | $\wedge(\mathrm{p})] \rightarrow \mathrm{t}$ | | |
| :--- | :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | T | T | T |
| T | F | T | T | T | T | T |
| F | T | F | F | F | T | F |
| F | F | T | T | F | T | F |
| | | 2 | 1 | 3 | 5 | 4 |

The argument is valid.
55. t : The test was easy.
$\mathrm{g}:$ I received a good grade.

| t | g | $[(\mathrm{t} \wedge \mathrm{g})$ | \wedge | $(\sim \mathrm{t}$ | $\vee \sim \mathrm{g})]$ | \rightarrow | $\sim \mathrm{t}$ | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | F | F | T | F |
| T | F | F | F | F | T | T | T | F |
| F | T | F | F | T | T | F | T | T |
| F | F | F | F | T | T | T | T | T |
| | | 1 | 5 | 2 | 4 | 3 | 7 | 6 |

The argument is valid.
57. c: The baby is crying.
h : The baby is hungry.

c	h	$[(\mathrm{c} \wedge \sim \mathrm{h}) \wedge(\mathrm{h} \rightarrow \mathrm{c})] \rightarrow \mathrm{h}$						
T	T	T F	F	F	T	T	T	
T	F	T	T	T	T	T	F	F
F	T	$\mathrm{F} F$	F	F	F	T	T	
F	F	$\mathrm{~F} F$	T	F	T	T	F	
		1	3	2	5	4	7	6

The argument is invalid.
52. p: The printer has a clogged nozzle.
q. The printer has no toner.

The argument is valid.
54. c : The cat is in the room. $\mathrm{c} \rightarrow \mathrm{m}$
m : The mice are hiding. $\quad \frac{\sim \mathrm{m}}{\sim \mathrm{c}}$
This argument is the law of contraposition and is valid.
56. b: Bonnie passed the bar exam. $\quad \mathrm{b} \rightarrow \mathrm{p}$
p : Bonnie will practice law. $\frac{\sim \mathrm{p}}{. \sim \mathrm{b}}$
This argument is the law of contraposition and is valid.
58. n: The car is new.
a: The car has air conditioning.

n	a	$[(\mathrm{n} \rightarrow \mathrm{a}) \wedge(\sim \mathrm{n} \wedge \mathrm{a})] \rightarrow \sim \mathrm{n}$						
T	T	T	F	F	F	T	T	F
T	F	F	F	F	F	F	T	F
F	T	T	T	T	T	T	T	T
F	F	T	F	T	F	F	T	T
		1	5	2	4	3	7	

The argument is valid.
59. f: The football team wins the game. $f \rightarrow d$
d: Dave played quarterback. $\quad \mathrm{d} \rightarrow \sim \mathrm{s}$
s : The team is in second place. $\mathrm{f} \rightarrow \mathrm{s}$

Using the law of syllogism, this argument is invalid.
52. e: The engineering courses are difficult.
c: The chemistry labs are long.
A: The art tests are easy.

e	c	a	$[(\mathrm{e} \wedge \mathrm{c}) \wedge(\mathrm{c} \rightarrow \mathrm{a})]$						\rightarrow
T	$\wedge \sim \mathrm{a})$								
T	T	T	T	T	T	F	T	F	F
T	T	F	T	F	F	T	T	T	T
T	F	T	F	F	T	T	T	F	F
T	F	F	F	F	T	T	T	T	T
F	T	T	F	F	T	T	F	F	F
F	T	F	F	F	F	T	F	F	T
F	F	T	F	F	T	T	F	F	F
F	F	F	F	F	T	T	F	F	T
			1	3	2	7	4	6	5

The argument is invalid.
62. p: The temperature hits 100 degrees.
q : We go swimming.

p	q	$[(p \rightarrow q)$	\wedge	$\sim q]$	$\rightarrow p$	
T	T	T	F	F	T	F
T	F	F	F	T	T	F
F	T	T	F	F	T	T
F	F	T	T	T	T	T
		1	3	2	5	4

The argument is valid.
64. p: Margaret Chang arranged the conference.
$\mathrm{q}:$ Many people attend the conference.
r : Our picture will be in the paper.

p	q	r	$[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$				
T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	F
T	F	T	F	F	T	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T
			1	3	2	5	4

Using the Chain Rule, the argument is valid.
66. r: You read a lot.
$\sim \mathrm{r} \rightarrow \sim \mathrm{k}$
k: You gain knowledge.
$\frac{\sim r}{\sim k}$

Using the Law of Detachment, you will not gain knowledge.
67. c: You pay off your credit card bill.

$$
\sim \mathrm{c} \rightarrow \mathrm{p}
$$

p: You will have to pay interest.
$\mathrm{p} \rightarrow \mathrm{m}$
$\sim \mathrm{c} \rightarrow \mathrm{m}$
$[(\sim \mathrm{c} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \rightarrow \mathrm{m}) \rightarrow(\sim \mathrm{c} \rightarrow \mathrm{m})$
Using the Law of Syllogism, the bank makes money.
68. p: Lynn wins the contest.
$\mathrm{q}:$ Lynn strikes oil.
r : Lynn will be rich.
s : Lynn will stop working.

| p | q | r | s | $[((\mathrm{p} \vee \mathrm{q})$ | $\rightarrow \mathrm{r}) \wedge(\mathrm{r} \rightarrow \mathrm{s})]$ | $(\sim \mathrm{s} \rightarrow$ | $\sim \mathrm{p})$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | T | T | T | T | T | T | T | T | T | T |
| T | T | T | F | T | T | T | F | F | T | F |
| T | T | F | T | T | F | F | F | T | T | T |
| T | T | F | F | T | F | F | F | T | T | F |
| T | F | T | T | T | T | T | T | T | T | T |
| T | F | T | F | T | T | T | F | F | T | F |
| T | F | F | T | T | F | F | F | T | T | T |
| T | F | F | F | T | F | F | F | T | T | F |
| F | T | T | T | T | T | T | T | T | T | T |
| F | T | T | F | T | T | T | F | F | T | T |
| F | T | F | T | T | F | F | F | T | T | T |
| F | T | F | F | T | F | F | F | T | T | T |
| F | F | T | T | F | T | T | T | T | T | T |
| F | F | T | F | F | T | T | F | F | T | T |
| F | F | F | T | F | T | F | T | T | T | T |
| F | F | F | F | F | T | F | T | T | T | T |
| | | | | 1 | 3 | 2 | 5 | 4 | 7 | 6 |

The argument is valid.
63. p: I think.
q: I am.

p	q	$[(p \rightarrow q)$	\wedge	$\sim \mathrm{p}]$	$\rightarrow \sim q$	
T	T	T	F	F	T	F
T	F	F	F	F	T	T
F	T	T	T	T	F	F
F	F	T	T	T	T	T
		1	3	2	5	4

By the Fallacy of the Inverse, the argument is invalid.
2. The argument is valid.
4. Symbolic arguments use the connectives "and," "or," "not," "but," "if-then," and "if and only if", while syllogistic arguments use the quantifiers "all," "some," and "none."
6. Yes. An argument in which the conclusion does not necessarily follow from the given set of premises is invalid, even if the conclusion is a true statement.

fallacy
22.

fallacy

fallacy

fallacy

valid
23.

fallacy

fallacy

fallacy
21.

24.

fallacy

valid

fallacy
31. $[(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{P} \vee \mathrm{Q})] \rightarrow \sim \mathrm{P}$ can be expressed as a set statement by $\left[\left(\mathrm{P}^{\prime} \cup \mathrm{Q}\right) \cap(\mathrm{P} \cup \mathrm{Q})\right] \cap \mathrm{P}^{\prime}$. If this statement is true, then the argument is valid; otherwise, the argument is invalid.

$\underline{\text { Set }}$	$\underline{\text { Regions }}$
$\mathrm{P}^{\prime} \cup \mathrm{Q}$	II, III, IV
$\mathrm{P} \cup \mathrm{Q}$	I, II, III
$\left(P^{\prime} \cup \mathrm{Q}\right) \cap(\mathrm{P} \cup \mathrm{Q})$	II, III
P^{\prime}	III, IV

Since $\left(\mathrm{P}^{\prime} \cup \mathrm{Q}\right) \cap(\mathrm{P} \cup \mathrm{Q})$ is not a subset of P^{\prime}, the argument is invalid.

Review Exercises

1. No rock bands play ballads.
2. Some panthers are not endangered.
3. The coffee is Maxwell House or the coffee is hot.
4. The coffee is Maxwell House if and only if the coffee is not strong.
5. $\mathrm{r} \wedge \mathrm{q}$
6. $(q \leftrightarrow p) \wedge \sim r$
7. All bananas are ripe.
8. Some chickens have lips.
9. Some pens do not use ink.
10. Some rabbits wear glasses.
11. The coffee is not hot and the coffee is strong.
12. The coffee is not Maxwell House, if and only if the coffee is strong and the coffee is not hot.
13. If the coffee is hot, then the coffee is strong and it is not Maxwell House.
14. The coffee is Maxwell House or the coffee is not hot, and the coffee is not strong.
15.

p	q	$(p \vee q) \wedge$	$\sim p$	
T	T	T	F	F
T	F	T	F	F
F	T	T	T	T
F	F	F	F	T
		1	3	2

20.

p	q	r	p	$\wedge(\sim \mathrm{q} \vee$	$\mathrm{r})$		
T	T	T	T	T	F	T	T
T	T	F	T	F	F	F	F
T	F	T	T	T	T	T	T
T	F	F	T	T	T	T	F
F	T	T	F	F	F	T	T
F	T	F	F	F	F	F	F
F	F	T	F	F	T	T	T
F	F	F	F	F	T	T	F
			4	5	1	3	2

21.

p	q	r	$(\mathrm{p} \vee \mathrm{q}) \leftrightarrow$		
T	T	T	$\mathrm{p} \vee \mathrm{r})$		
T	T	F	T	T	
T	F	T	T	T	
T	F	T	T		
F	F	T	T	T	
F	T	T	T	T	
F	F	T	F	F	
F	F	F	F	T	
	F	F	T	F	
			1	3	2

22

p	q	$\mathrm{q} \leftrightarrow(\mathrm{p} \vee \sim \mathrm{q})$
T	T	T T T T F
T	F	F F T T T
F	T	T F FF F
F	F	F F F T T
		15243

23.

p	q	r	$\mathrm{P} \rightarrow(\mathrm{q} \wedge \sim \mathrm{r})$			
T	T	T	T	F	T F	F
T	T	F	T	T	T T	T
T	F	T	T	F	F F	F
T	F	F	T	F	F F	T
F	T	T	F	T	T F	F
F	T	F	F	T	T T	T
F	F	T	F	T	F F	F
F	F	F	F	T	F F	T
				5	13	2

25. p: 7 is odd.

$$
\begin{gathered}
\mathrm{p} \rightarrow \mathrm{q} \\
\mathrm{~T} \rightarrow \mathrm{~F} \\
\mathrm{~F}
\end{gathered}
$$

$\mathrm{q}: 11$ is even.
27. p: Oregon borders the Pacific Ocean. $p \vee q$ $\mathrm{q}:$ California borders the Atlantic Ocean. $\mathrm{T} \vee \mathrm{F}$ T
29. p: 32% of OR's electricity - coal $\quad(p \leftrightarrow q) \vee r$ q: 54% of OR's electricity - hydro $(\mathrm{T} \leftrightarrow \mathrm{T}) \vee \mathrm{F}$
r: 38% of OR's electricity - nuclear $T \quad \vee \mathrm{~F}$
31. $(\mathrm{p} \rightarrow \sim \mathrm{r}) \vee(\mathrm{p} \wedge \mathrm{q})$

$$
\begin{array}{cc}
(\mathrm{T} \rightarrow \mathrm{~T}) & \vee(\mathrm{T} \wedge \mathrm{~F}) \\
\mathrm{T} & \vee \\
& \mathrm{~F} \\
& \mathrm{~T}
\end{array}
$$

33. $\sim \mathrm{r} \leftrightarrow[(\mathrm{p} \vee \mathrm{q}) \leftrightarrow \sim \mathrm{p}]$
$\mathrm{T} \leftrightarrow[(\mathrm{T} \vee \mathrm{F}) \leftrightarrow \mathrm{F}]$
$\mathrm{T} \leftrightarrow[\mathrm{T} \quad \leftrightarrow \mathrm{F}]$
$\mathrm{T} \leftrightarrow$
F
34.

p	q	$\sim \mathrm{p}$	\vee	$\sim \mathrm{q}$	$\sim \mathrm{p}$	\leftrightarrow	q
T	T	F	F	F	F	F	T
T	F	F	T	T	F	T	F
F	T	T	T	F	T	T	T
F	F	T	T	T	T	F	F
		1	3	2	1	3	2

The statements are not equivalent.
24.

p	q	r	$(\mathrm{p} \wedge \mathrm{q})$	\rightarrow	$\sim \mathrm{r}$
T	T	T	T	F	F
T	T	F	T	T	T
T	F	T	F	T	F
T	F	F	F	T	T
F	T	T	F	T	F
F	T	F	F	T	T
F	F	T	F	T	F
F	F	F	F	T	T
			1	3	2

26. p: The St. Louis arch is in St. Louis.
$p \vee q$ q : Abraham Lincoln is buried in $\quad \mathrm{T} \vee \mathrm{F}$ in Grant's Tomb. T
27. p: $15-7=22$
q: $4+9=13$
r: $9-8=1$

$$
\begin{gathered}
(\mathrm{p} \vee \mathrm{q}) \wedge \mathrm{r} \\
(\mathrm{~F} \vee \mathrm{~T}) \wedge \mathrm{T} \\
\mathrm{~T} \wedge \mathrm{~T} \\
\mathrm{~T}
\end{gathered}
$$

$\mathrm{q}: 45 \%$ of OR's electricity - coal $\quad \mathrm{F} \rightarrow(\mathrm{F} \wedge \mathrm{T})$
r: 3\% of OR's electricity - nuclear $\quad \mathrm{F} \rightarrow \mathrm{F}$
T
32. $(\mathrm{p} \vee \mathrm{q}) \leftrightarrow(\sim \mathrm{r} \wedge \mathrm{p})$
$(T \vee F) \leftrightarrow(T \wedge T)$
$\mathrm{T} \quad \leftrightarrow \quad \mathrm{T}$
T
34. $\sim[(\mathrm{q} \wedge \mathrm{r}) \rightarrow(\sim \mathrm{p} \vee \mathrm{r})]$
$\sim[(\mathrm{F} \wedge \mathrm{F}) \rightarrow(\mathrm{F} \vee \mathrm{F})]$
$\sim\left[\begin{array}{llll}\mathrm{F} & \rightarrow & \mathrm{F}\end{array}\right]$
$\sim T$
F
36. Using the fact that $(\mathrm{p} \rightarrow \mathrm{q}) \Leftrightarrow(\sim \mathrm{p} \vee \mathrm{q})$,
we can conclude that $\sim \mathrm{p} \rightarrow \sim \mathrm{q} \Leftrightarrow \mathrm{p} \vee \sim \mathrm{q}$.
37.

p	p		r		$\sim p \vee$	\wedge r)	$(\sim \mathrm{p} \vee \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{r})$							
T	T	T	T		F T	T				T	T	F		T
T	T	T	F		F F	F				T	F	F		F F
T		F	T		F F	F			F	F	F	F		T
		F	F		F F	F				F	F	F		F
F		T	T		T T	T			T	T	T	T		
F		T	F		T T	F				T	T	T		
F	F	F	T		T T	F			T	F	T	T		
F	F	F	F							T	T	T		
										2	7			

The statements are equivalent.
39. p: Johnny Cash is in the Rock and Roll (R\&R) Hall of Fame.
q: India Arie recorded Acoustic Soul.
In symbolic form, the statement is $\mathrm{p} \wedge \mathrm{q}$. Using
DeMorgan's Laws, we get $\mathrm{p} \wedge \mathrm{q} \Leftrightarrow \sim(\sim \mathrm{p} \vee \sim \mathrm{q})$. It is false that Johnny Cash is not in the R\&R Hall of Fame or India Arie did not sing Acoustic Soul.
41. p: Altec Lansing only produces speakers.
q: Harmon Kardon only produces stereo receivers.
The symbolic form is $\sim(p \vee q)$.
Using DeMorgan's Laws, we get $\sim(p \vee q) \Leftrightarrow \sim p \wedge \sim q$. Altec Lansing does not produce only speakers and Harmon Karson does not produce only stereo receivers.
43. p: The temperature is above 32 degrees Fahrenheit. q: We will go ice fishing at O'Leary's Lake. The symbolic form is $\sim \mathrm{p} \rightarrow \mathrm{q}$.
Using DeMorgan's Laws, we get $\sim \mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \mathrm{p} \vee \mathrm{q}$. The temperature is above 32 degrees Fahrenheit or we will go ice fishing at O'Leary's Lake.
45. Converse: If the quilt has a uniform design, then you followed the correct pattern.
Inverse: If you do not follow the correct pattern, then the quilt will not have a uniform design.
Contrapositive: If the quilt does not have a uniform design, then you did not follow the correct pattern.
38.

p	q	$(\sim \mathrm{q}$	\rightarrow	$\mathrm{p})$	\wedge	p	$\sim(\sim \sim$	\sim	p	p	p	
T	T	F	T	T	T	T	T	F	F	T	T	T
T	F	T	T	T	T	T	F	F	T	F	T	T
F	T	F	T	F	F	F	F	T	T	T	F	F
F	F	T	F	F	F	F	T	T	F	F	T	F
		1	3	2	5	4	4	1	3	2	6	5

The statements are not equivalent.
40. p: Her foot fell asleep.
q: She has injured her ankle.
In symbolic form, the statement is
$\mathrm{p} \vee \mathrm{q}$. Using the fact that $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow$
$\sim p \vee q$, we can rewrite the given statement as $\sim \mathrm{p} \rightarrow \mathrm{q}$. If her foot did not fall asleep, then she has injured it.
42. p: Travis Tritt won an Academy Award.
q: Randy Jackson does commercials for Milk Bone dog biscuits. The symbolic form is $\sim \mathrm{p} \wedge \sim \mathrm{q}$. Using DeMorgan's Laws, we get $\sim \mathrm{p} \wedge \sim \mathrm{q} \Leftrightarrow \sim(\mathrm{p} \vee \mathrm{q})$. It is false that Travis Tritt won an Academy Award or Randy Jackson does commercials for Milk Bone dog biscuits.
44. Converse: If you enjoy life, then you will hear a beautiful songbird today. Inverse: If you do not hear a beautiful songbird today, then you will not enjoy life.
Contrapositive: If you will not enjoy life, then you will not hear beautiful songbird today.
46. Converse: If Maureen Gerald is helping at school, then she is not in attendance.
Inverse: If Maureen Gerald is in attendance, then she is not helping at school.
Contrapositive: If Maureen Gerald is not helping at school, then she is in attendance.
47. Converse: If we do not buy a desk at Miller's Furniture, then the desk is made by Winner's Only and is in the Rose catalog.
Inverse: If we did not buy the desk at Miller's Furniture, then it is not made by Winner's Only and is not in the Rose catalog.
Contrapositive: If the desk is not made by Winner's Only and is not in the Rose catalog., then we did not buy it at Miller's Furniture.
49. p: The temperature is over 80°.
q : The air conditioner will come on.
In symbolic form, the statements are: a) $p \rightarrow q$,
b) $\sim p \vee q$, and $c) \sim(p \wedge \sim q)$. Using the fact that
$\mathrm{p} \rightarrow \mathrm{q}$ is equivalent to $\sim \mathrm{p} \vee \mathrm{q}$, statements (a) and (b) are equivalent. Using DeMorgan's Laws on statement (b) we get $\sim(\mathrm{p} \wedge \sim \mathrm{q})$.

Therefore all 3 statements are equivalent.
51. $\mathrm{p}: 2+3=6$.
$\mathrm{q}: 3+1=5$.
In symbolic form, the statements are: a) $p \rightarrow q$,
b) $\mathrm{p} \leftrightarrow \sim \mathrm{q}$, and c) $\sim \mathrm{q} \rightarrow \sim \mathrm{p}$.

Statement (c) is the contrapositive of statement
(a). Therefore statements
(a) and (c) are equivalent.
(a) $\mathrm{F} \rightarrow \mathrm{F}$
(b) $\mathrm{F} \leftrightarrow \mathrm{T}$
(c) $\mathrm{T} \rightarrow \mathrm{T}$
T
F
T
48. Converse: If I let you attend the prom, then you get straight A's on your report card.
Inverse: If you do not get straight A's on your report card, then I will not let you attend the prom.
Contrapositive: If I do not let you attend the prom, then you do not get straight A's on your report card.
50. p : The screwdriver is on the workbench.
q : The screwdriver is on the counter.
In symbolic form, the statements are: a) $p \leftrightarrow \sim q$,
b) $\sim \mathrm{q} \rightarrow \sim \mathrm{p}$, and c$) \sim(\mathrm{q} \wedge \sim \mathrm{p})$. Looking at the truth tables for statements (a), (b), and (c) we can conclude that none of the statements are equivalent.

52. p: The sale is on Tuesday.
q : I have money.
r : I will go to the sale.
In symbolic form the statements are: $a)(p \wedge q) \rightarrow r$, b) $r \rightarrow(p \wedge q)$, and c) $r \vee(p \wedge q)$. The truth table for statements (a), (b), and (c) shows that none of the statements are equivalent.

p	q	r	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$				$\mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q})$			$r \vee(p \wedge q)$	
T	T	T		T	T	T		T	T	T T	T
T	T	F		T	F	F		T	T	F T	T
T	F	T			T	T		F	F	T T	F
T	F	F		F	T	F		T	F	F F	F
F	T	T			T	T		F	F	T T	F
F	T	F		F	T	F		T	F	F F	F
F	F	T			T	T		F	F	T T	F
F	F	F		F	T	F		T	F	F F	F
				1	3	2		3	2	13	2

53.

p	q	$[(p \rightarrow q)$				
T	T	T	F	F	T	T
T	F	F	F	F	T	F
F	T	T	T	T	T	T
F	F	T	T	T	F	F
		1	3	2	5	4

The argument is invalid.
55. p: Nicole is in the hot tub.
q : Nicole is in the shower.

| p | q | $[(\mathrm{p} \vee \mathrm{q})$ | $\wedge \mathrm{p}]$ | $\rightarrow \sim \mathrm{q}$ | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | F | F |
| T | F | T | T | T | T | T |
| F | T | T | F | F | T | F |
| F | F | F | F | F | T | T |
| | | 1 | 3 | 2 | 5 | 4 |

The argument is invalid.
54.

p	q	r	$[(\mathrm{p} \wedge \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})]$				
T	T	T	T	T	T	p	T
T	T	F	T	F	F	T	F
T	F	T	F	F	T	T	T
T	F	F	F	F	T	T	F
F	T	T	F	F	T	T	T
F	T	F	F	F	F	T	T
F	F	T	F	F	T	T	T
F	F	F	F	F	T	T	T
			1	3	2	5	4

The argument is valid.
56. p : The car has a sound system. $\quad \mathrm{p} \rightarrow \mathrm{q}$
p : Rick will buy the car. $\quad \sim \mathrm{r} \rightarrow \sim \mathrm{q}$
r : The price is less than $\$ 18,000$. $p \rightarrow r$

| p | q | r | $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\sim \mathrm{r} \rightarrow \sim \mathrm{q})]$ | | | | $\rightarrow(\mathrm{p} \rightarrow \mathrm{r})$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | T | T | T | T | F | T | F | T | T |
| T | T | F | T | F | T | F | F | T | F |
| T | F | T | F | F | F | T | T | T | F |
| T | F | F | F | F | T | T | T | T | F |
| F | T | T | T | T | F | T | F | T | T |
| F | T | F | T | F | T | F | F | T | T |
| F | F | T | T | T | F | T | T | T | T |
| F | F | F | T | T | T | T | T | T | T |
| | | | 1 | 5 | 2 | 4 | 3 | 7 | 6 |

The argument is valid.
58.

invalid

Chapter Test

1. $(\mathrm{p} \wedge \mathrm{r}) \vee \sim \mathrm{q}$
2. $(r \rightarrow q) \vee \sim p$
3. $\sim(\mathrm{r} \leftrightarrow \sim \mathrm{q})$
4. Ann Veneman is the Secretray of Agriculture, if and only if Dick Cheney is the Vice President and Elaine Chao is the Secretary of Labor.
5. It is false that if Ann Veneman is the Secretary of Agriculture, then Elaine Chao is not the Secretary the Secretary of Labor.
6. | p | q | r | $[\sim(\mathrm{p} \rightarrow \mathrm{r})] \wedge \mathrm{q}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | T | T | F | T | F | T |
| T | T | F | T | F | T | T |
| T | F | T | F | T | F | F |
| T | F | F | T | F | F | F |
| F | T | T | F | T | F | T |
| F | T | F | F | T | F | T |
| F | F | T | F | T | F | F |
| F | F | F | F | T | F | F |
| | | | 2 | 1 | 4 | 3 |

p	q	r	$[\sim(\mathrm{p} \rightarrow \mathrm{r})] \wedge \mathrm{q}$			
T	T	T	F	T	F	T
T	T	F	T	F	T	T
T	F	T	F	T	F	F
T	F	F	T	F	F	F
F	T	T	F	T	F	T
F	T	F	F	T	F	T
F	F	T	F	T	F	F
F	F	F	F	T	F	F
			2	1	4	3

8. $\mathrm{p}: 2+6=8$
$\mathrm{q}: 7-12=5$

$$
\begin{gathered}
p \vee q \\
T \vee F \\
T
\end{gathered}
$$

9. p: A scissors can cut paper.
q : A dime equals 2 nickels.
r : Louisville is a city in Kentucky.

$$
\begin{aligned}
& (\mathrm{p} \vee \mathrm{q}) \leftrightarrow \mathrm{r} \\
& (\mathrm{~T} \vee \mathrm{~T}) \leftrightarrow \mathrm{T} \\
& \mathrm{~T} \leftrightarrow \mathrm{~T} \\
& \text { T }
\end{aligned}
$$

10. $(\mathrm{r} \vee \mathrm{q}) \leftrightarrow(\mathrm{p} \wedge \sim \mathrm{q})$
$(T \vee F) \leftrightarrow(T \wedge T)$
$\mathrm{T} \leftrightarrow \mathrm{T}$
T
11. $[\sim(\mathrm{r} \rightarrow \sim \mathrm{p})] \wedge(\mathrm{q} \rightarrow \mathrm{p})$
$[\sim(\mathrm{T} \rightarrow \mathrm{F})] \wedge(\mathrm{F} \rightarrow \mathrm{T})$ $\left[\begin{array}{cc}\sim(F)\end{array}\right] \wedge T$
$\mathrm{T} \wedge \mathrm{T}^{\wedge}$
12. Applying DeMorgan's Law to statement (a), we get:
(1) $\sim(\sim p \vee q),(2) \sim(p \vee \sim q)$, and (3) $\sim(p \wedge \sim q)$.

Therefore, $\sim \mathrm{p} \vee \mathrm{q} \Leftrightarrow \sim(\mathrm{p} \wedge \sim \mathrm{q})$.
13. p : The bird is red.
q : It is a cardinal.
In symbolic form the statements
are: a) $p \rightarrow q, b) \sim p \vee q$,
and c$) \sim \mathrm{p} \rightarrow \sim \mathrm{q}$.
Statement (c) is the inverse of statement (a) and thus they cannot be equivalent. Using the fact that $p \rightarrow q \Leftrightarrow \sim p \vee q$, to rewrite statement (a) we get $\sim p \vee q$. Therefore statements (a) and (b) are equivalent.
14. p : The test is today. q : The concert is tonight. In symbolic form the statements are: a$) \sim(\mathrm{p} \vee \mathrm{q}), \mathrm{b}) \sim \mathrm{p} \wedge \sim \mathrm{q}$, and $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$.
Applying DeMorgan's Law to statement (a) we get: $\sim \mathrm{p} \wedge \sim \mathrm{q}$.
Therefore statements (a) and (b) are equivalent. When we compare the Truth tables for statements (a), (b), and (c) we see that only statements (a) and (b) are equivalent.

p	q	$\sim(\mathrm{p}$	$\vee \mathrm{q})$	$\sim \mathrm{p}$	$\wedge \sim \mathrm{q}$	$\sim \mathrm{p}$	$\rightarrow \sim \mathrm{q}$		
T	T	F	T	F	F	F	F	T	F
T	F	F	T	F	F	T	F	T	T
F	T	F	T	T	F	F	T	F	F
F	F	T	F	T	T	T	T	T	T
		2	1	1	3	2	1	3	2

15. s: The soccer team won the game.
f: Sue played fullback.
p : The team is in second place.
This argument is the law of syllogism and therefore it is valid.

$$
\begin{aligned}
& \mathrm{s} \rightarrow \mathrm{f} \\
& \mathrm{f} \rightarrow \mathrm{p} \\
& \mathrm{~s} \rightarrow \mathrm{p}
\end{aligned}
$$

This argument is the law of syllogism and therefore it is valid.
16.

Fallacy
20. Yes. An argument is valid when its conclusion necessarily follows from the given set of premises. It doesn't matter whether the conclusion is a true or false statement.

Group Projects

1. a) 4,	p closed, q closed		
p open, q closed		\quad	p closed, q open
:---			
p open, q open			

1. c) If a closed switch is represented as T and an open switch is represented as F , and the bulb lighting as T , and the bulb not lighting as F , then the table would be identical to the truth table for $\mathrm{p} \wedge \mathrm{q}$.
1.f) $(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$
2. a) The tables have the same truth values as the not, and and or tables respectively.
b) 0
c) 1
d) 0
e) $I_{a}=0, I_{b}=1$ or
$\mathrm{I}_{\mathrm{a}}=1, \quad \mathrm{I}_{\mathrm{b}}=0$
3. Some leopards are not spotted.
4. No Jacks-in-the-box are electronic.
5. Converse: If today is Saturday, then the garbage truck comes.
Inverse: If the garbage truck does not come today, then today is not Saturday.
Contrapositive: If today is not Saturday, then the garbage truck does not come.
6. b)

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

1. d)

p	q	$p \vee q$
1	1	1
1	0	1
0	1	1
0	0	0

1. g)

2.f)	I_{a}	I_{b}	0
	1	1	1
	1	0	1
	0	1	1
	0	0	0

CHAPTER FOUR

SYSTEMS OF NUMERATION

Exercise Set 4.1

1. A number is a quantity, and it answers the question, "How many?" A numeral is a symbol used to represent the number.
2. $\bigcap, x, \neq,<, 10$
3. A system of numeration consists of a set of numerals and a scheme or rule for combining the numerals to represent numbers.
4. 〇, c, 百, $\rho, 100$
5. The Hindu-Arabic numeration system
6. In an additive system, the sum of the values of the numerals equals the number.
7. In a multiplicative system, there are numerals for each number less than the base and for powers of the base. Each numeral less than the base is multiplied by a numeral for the power of the base, and these products are added to obtain the number.
8. In a ciphered system, the number represented by a particular set of numerals is the sum of the values of the numerals.
9. $100+10+10+10+10+1+1=142$
10. $1000+1000+100+100+100+100+10+10$
$+1+1+1=2423$
11. $100,000+100,000+100,000+10,000$
$+10,000+10,000+1000+1000+1000+1000$
$+100+100+10+1+1+1+1=334,214$
gوgogem IIIII
12.

10. $100+100+10+10+1+1=222$
12. $10,000+10,000+10,000+10,000+1000$
$+100+100+10=41,210$
14. $1,000,000+1,000,000+1,000,000+100,000$
$+100,000+100,000+100+100+100+100$
$+10+10+10+1=3,300,431$

18.

890990909nil
21. $10+(10-1)=19$
23. $500+(50-10)+5+1+1=547$
25. $1000+(500-100)+(100-10)+1+1=1492$
27. $1000+1000+(1000-100)+(50-10)+5+1$ $=2946$
22. $10+5+1=16$
24. $500+50+10+10+5=575$
26. $1000+(1000-100)+10+5+1+1+1=1918$
28. $1000+500+100+100+(50-10)+5+1$
$=1746$

29． $10(1000)+1000+1000+500+100+50+10$
$+5+1=12,666$
31． $9(1000)+(500-100)+50+10+(5-1)=9464$

33．LIX
35．CXXXIV
37．MMV
39．$\overline{\text { IVDCCXCIII }}$
41．$\overline{\mathrm{IX}} \mathrm{CMXCIX}$
43．$\overline{\text { XXDCXLIV }}$

45． $7(10)+4=74$
47． $4(1000)+8(10)+1=4081$
49． $8(1000)+5(100)+5(10)=8550$
51． $4(1000)+3=4003$

\section*{53． | 五 |
| :--- |
| 士 |}

55．云

57．元

30． $50(1000)+1000+(1000-100)+(50-10)$

$$
+(5-1)=51,944
$$

32． $5(1000)+1000+100+100+100+10+10$ $+10+1+1+1=6333$

34．XCIV
36．CCLXIX
38．$\overline{\text { IVCCLXXXV }}$
40．VICCLXXIV
42．$\overline{X I V} C C C X V$
44．$\overline{\text { XCIX }} \mathrm{CMXCIX}$

46． $6(10)+2=62$
48． $3(1000)+2(10)+9=3029$
50． $3(1000)+4(100)+8(10)+7=3487$
52． $5(1000)+6(100)+2=5602$
54.

56．

五

61． $300+40+1=341$
63． $20(1000)+2(1000)+500+5=22,505$
65． $9(1000)+600+7=9607$
67．$v \theta$
69．$\psi \kappa 2$

71．$\pi^{\prime} \beta^{\prime} \psi \delta$
60.

62． $700+30+6=736$
64． $100(1000)+50(1000)+800+10+3=150,813$
66． $4(1000)+900+90+9=4999$
68．ρ o η
70．$\beta^{\prime} \alpha$

72．$\chi^{\prime} \mathrm{Q}^{\prime} \phi \mu$

73．Advantage：You can write some numbers more compactly． Disadvantage：There are more numerals to memorize．
74．Advantage：Numbers are written in a more compact form． Disadvantage：There are more symbols to remember．
75．Advantage：You can write some numbers more compactly．
Disadvantage：There are more numerals to memorize．
The Hindu－Arabic system has fewer symbols，more compact notation，the inclusion of zero，and the capability of expressing decimal numbers and fractions．

76． $1000+10+10+1=1021$, MXXI， $\alpha^{\prime} \kappa \alpha$

78．$\quad 5(100)+2(10)+7=527$ ，
（））Cのค $\bigcap\|\|\|$ ，DXXVII，$\phi к \zeta$

77． $1000+(1000-100)+10+10+10+5+1=1936$ ，
8999999990․․․․․․I．
$\alpha^{\prime} \pi \lambda 2$ ，

79． $400+20+2=422$ ，О）$) \bigcap \cap 11$ ，cDXXII，
置
$\underline{\text { 关 }}$

80. $\overline{\text { CMXCIXCMXCIX }}$

82. a) - c) Answers will vary.
83. MM

81. $\pi^{\prime} Q^{\prime} \theta^{\prime} \pi Q \theta$

83. Turn the book upside down.
84. 1888, MDCCCLXXXVIII

Exercise Set 4.2

1. A base 10 place-value system
2. Positional value system
3. $40 \rightarrow$ four tens, $400 \rightarrow$ four hundreds
4. Base 10 , because we have 10 fingers.
5. A true positional-value system requires a base and a set of symbols, including a symbol for zero and one for each counting number less than the base.
6. a) 10
b) $0,1,2,3,4,5,6,7,8,9$
7. Write each digit times its corresponding positional value.
8. It lacked a symbol for zero.
9. a) There may be confusion because numbers could be interpreted in different ways. For example, $\boldsymbol{\gamma}$ could be interpreted to be either 1 or 60 .
b) $\boldsymbol{\nabla} \boldsymbol{\eta} \boldsymbol{\eta}$ for both numbers; $133=2(60)+13(1)$ and $7980=133(60)$
10. $(10+1)(1)=11$ and $(10+1)(60)=660$
11. $1,20,18 \times 20,18 \times(20)^{2}, 18 \times(20)^{3}$
12. The Mayan system has a different base and the numbers are written vertically.
13. $(6 \times 10)+(3 \times 1)$
14. $(3 \times 100)+(5 \times 10)+(9 \times 1)$
15. $(8 \times 100)+(9 \times 10)+(7 \times 1)$
16. $(4 \times 1000)+(3 \times 100)+(8 \times 10)+(7 \times 1)$
17. $(7 \times 10)+(5 \times 1)$
18. $(5 \times 100)+(6 \times 10)+(2 \times 1)$
19. $(3 \times 1000)+(7 \times 100)+(6 \times 10)+(9 \times 1)$
20. $(2 \times 10,000)+(3 \times 1000)+(4 \times 100)+(6 \times 10)$ $+(8 \times 1)$
21. $(1 \times 10,000)+(6 \times 1000)+(4 \times 100)+(0 \times 10)+(2 \times 1)$
22. $(1 \times 100,000)+(2 \times 10,000)+(5 \times 1000)+(6 \times 100)+(7 \times 10)+(8 \times 1)$
23. $(3 \times 100,000)+(4 \times 10,000)+(6 \times 1000)+(8 \times 100)+(6 \times 10)+(1 \times 1)$
24. $(3 \times 1,000,000)+(7 \times 100,000)+(6 \times 10,000)+(5 \times 1000)+(9 \times 100)+(3 \times 10)+(4 \times 1)$
25. $(10+10+10+10+1+1)(1)=42$
26. $(10+10+10)(1)-(1+1+1+1)(1)=30-4=26$
27. $(10+1+1+1)(60)+(1+1+1+1)(1)=13(60)+4(1)=780+4=784$
28. $(10+1)(60)+((10+10)-(1+1+1))(1)=11(60)+(20-3)(1)=660+17=677$
29. $1\left(60^{2}\right)+(10+10+1)(60)+(10-(1+1))(1)=3600+21(60)+(10-2)(1)=3600+1260+8=4868$
30. $10\left(60^{2}\right)+((10+10)-(1+1+1))(60)+(1+1)(1)=10(3600)+(20-3)(60)+2=36,000+17(60)+2$ $=36,000+1020+2=37,022$
31. 88 is 1 group of 60 and 28 units remaining. $|\lll \nabla|$
32. 97 is 1 group of 60 and 37 units remaining. $|\lll<T|$
33. 295 is 4 groups of 60 and 55 units remaining.

W <<<<<<WV

36. 3030 is 50 groups of 60 and 30 nuist remaninge $\lll \lll \lll<$
37. $4(20)+12(1)=80+12=92$
38. $10(20)+5(1)=200+5=205$
39. $12(18 \times 20)+0(20)+1(1)=4320+0+1=4321$
40. $7(18 \times 20)+9(20)+7(1)=2520+180+7=2707$
41. $11(18 \times 20)+2(20)+0(1)=3960+40+0=4000$
42. $2(18 \times 20)+10(20)+10(1)=720+200+10=930$
43.

44.

45.

46.

$$
406=1(18 \times 20)+2(20)+6(1)
$$

47.

48.

$$
1978=5(18 \times 20)+8(20)+18(1)
$$

49. Advantages: In general, a place-value system is more compact; large and small numbers can be written more easily; there are fewer symbols to memorize.
Disadvantage: If many of the symbols in the numeral represent zero, then a place-value system may be less compact.

50．Answers will vary．

52．Hindu－Arabic：
$5(18 \times 20)+7(20)+4(1)=1800+140+4=1944$
Babylonian： $1944=32(60)+24(1)$

51．Hindu－Arabic： $10+10+10+1+1+1=33$
Mayan： $33=1(20)+13(1)$
 $\stackrel{\bullet \bullet}{ }$
$\lll \boldsymbol{P} \ll \boldsymbol{F} \boldsymbol{F}$
54.

$$
\left(\succcurlyeq \times \square^{3}\right)+\left(\Delta \times \square^{2}\right)+(Q \times \square)+(\square \times 1)
$$

55．a）No largest number；The positional values are $\ldots,(60)^{3},(60)^{2}, 60,1$ ．
b） $999,999=4(60)^{3}+37(60)^{2}+46(60)+39(1)$

56．a）No largest number；The positional values above 18×20 are $18 \times 20^{2}, 18 \times 20^{3}, \ldots$
b） $999,999=6\left(18 \times 20^{3}\right)+18\left(18 \times 20^{2}\right)+17(18 \times 20)+13(20)+19(1)$

57． $2(60)+23(1)=120+23=143$
23
$143+23=166$
$166=2(60)+46(1)$＜＜＜＜＜ヴWい

58． $3(60)+33(1)=180+33=213$
32
$213-32=181$
$181=3(60)+1(1)$
IV｜
59. $7(18 \times 20)+6(20)+15(1)=2520+120+15=2655$

$$
6(18 \times 20)+7(20)+13(1)=2160+140+13=2313
$$

$$
2655+2313=4968
$$

$$
4968=13(18 \times 20)+14(20)+8(1)
$$

60. $7(18 \times 20)+6(20)+15(1)=2520+120+15=2655$

$$
6(18 \times 20)+7(20)+13(1)=2160+140+13=2313
$$

$$
2655-2313=342
$$

$$
342=17(20)+2(1)
$$

61.

Exercise Set 4.3

1. Answers will vary.
2. Answers will vary.
3. $5_{6}=5(1)=5$
4. $60_{7}=6(7)+0(1)=42+0=42$
5. $42_{5}=4(5)+2(1)=20+2=22$
6. $101_{2}=1\left(2^{2}\right)+0(2)+1(1)=4+0+1=5$
7. $1011_{2}=1\left(2^{3}\right)+0\left(2^{2}\right)+1(2)+1(1)=8+0+2+1=11$
8. $1101_{2}=1\left(2^{3}\right)+1\left(2^{2}\right)+0(2)+1(1)=8+4+0+1=13$
9. $84_{12}=8(12)+4(1)=96+4=100$
10. $21021_{3}=2\left(3^{4}\right)+1\left(3^{3}\right)+0\left(3^{2}\right)+2(3)+1(1)=2(81)+27+0(9)+6+1=162+27+0+6+1=196$
11. $565_{8}=5\left(8^{2}\right)+6(8)+5(1)=5(64)+48+5=320+48+5=373$
12. $654_{7}=6\left(7^{2}\right)+5(7)+4(1)=6(49)+35+4=294+35+4=333$
13. $20432_{5}=2\left(5^{4}\right)+0\left(5^{3}\right)+4\left(5^{2}\right)+3(5)+2(1)=2(625)+0+4(25)+15+2=1250+0+100+15+2=1367$
14. $101111_{2}=1\left(2^{5}\right)+0\left(2^{4}\right)+1\left(2^{3}\right)+1\left(2^{2}\right)+1(2)+1(1)=32+0+8+4+2+1=47$
15. $4003_{6}=4\left(6^{3}\right)+0\left(6^{2}\right)+0(6)+3(1)=4(216)+0+0+3=864+0+0+3=867$
16. $123 \mathrm{E}_{12}=1\left(12^{3}\right)+2\left(12^{2}\right)+3(12)+11(1)=1728+2(144)+36+11=1728+288+36+11=2063$
17. $123_{8}=1\left(8^{2}\right)+2(8)+3(1)=64+16+3=83$
18. $2043_{8}=2\left(8^{3}\right)+0\left(8^{2}\right)+4(8)+3(1)=2(512)+0+32+3=1024+0+32+3=1059$
19. $14705_{8}=1\left(8^{4}\right)+4\left(8^{3}\right)+7\left(8^{2}\right)+0(8)+5(1)=4096+4(512)+7(64)+0+5=4096+2048+448+0+5=6597$
20. $67342_{9}=6\left(9^{4}\right)+7\left(9^{3}\right)+3\left(9^{2}\right)+4(9)+2(1)=6(6561)+7(729)+3(81)+36+2$
$=39,366+5103+243+36+2=44,750$
21. To convert 8 to base 2 $\ldots 16 \quad 8 \quad 4 \quad 2 \quad 1$

22. To convert 16 to base 2
$\begin{array}{llllll}\ldots & 32 & 16 & 8 & 4 & 2\end{array} 1$

16 | 1 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 16 | $8\lceil 0$ | $4 \longdiv { 0 }$ | $2 \longdiv { 0 }$ | $1 \begin{array}{l}0 \\ \frac{16}{0}\end{array}$ |
| | $\underline{0}$ | $\underline{0}$ | $\underline{0}$ | $\underline{0}$ |
| | 0 | 0 | 0 | 0 |

$$
16=10000_{2}
$$

23. To convert 23 to base 2

$\begin{array}{llllll}32 & 16 & 8 & 4 & 2 & 1\end{array}$

 4 | 1 |
| :---: |

$$
23=10111_{2}
$$

24. To convert 243 to base 6

$$
\begin{array}{lllll}
\ldots 1296 & 216 & 36 & 6 & 1
\end{array}
$$

216 | 1 | 1 | 0 |
| ---: | ---: | ---: |
| | 36 | 27 |
| $\frac{216}{27}$ | | $2 \frac{0}{7}$ |

4	3
$6 \longdiv { 2 7 }$	$1 \longdiv { 3 }$
$\underline{24}$	$\underline{3}$
,	0

$$
243=1043_{6}
$$

25. To convert 635 to base 6

$$
\ldots 1296 \quad 216 \quad 36
$$

$$
635=2535_{6}
$$

26. To convert 908 to base $4 \quad \ldots 1024 \quad 256 \quad 6416 \quad 4 \quad 1$

$$
908=32030_{4}
$$

27. To convert 2061 to base $12 \quad \ldots 20,736 \quad 1728 \quad 144 \quad 12 \quad 1$

	1		2		3	9	
1728	2061	144	333	12	45	$1 \longdiv { 9 }$	
	$\underline{1728}$		$\underline{288}$		36	$\underline{9}$	
	333		45		9	0	$2061=1239$

28. To convert 200 to base 4 $\begin{array}{ccccc}\ldots 256 & 64 & 16 & 4 & 1 \\ 0 & & & & \\ 1 \begin{array}{c}1 \\ 0 \\ 0\end{array} & & \\ & & & \\ & & 200 & =3020_{4}\end{array}$
29. To convert 529 to base 8
30. To convert 81 to base $3 \quad \ldots .243 \quad 81 \quad 27 \quad 9 \quad 3 \quad 1$

31. To convert 2867 to base $12 \ldots 20,736 \quad 1728 \quad 144 \quad 12 \quad 1$

32. To convert 4312 to base 6

33. To convert 1011 to base 2

	1024	512	256	128	64
	1		1		1
128	243	64	115	32	51
	128		64		$\underline{32}$
	115		51		19

34. To convert 1589 to base 7
... $2401 \quad 3434971$

$$
1589=4430_{7}
$$

35. To convert 2307 to base 8
... $4096 \quad 512 \quad 64 \quad 8 \quad 1$

$$
\begin{aligned}
& \text {... } 4096 \quad 512 \quad 64 \quad 8 \quad 1 \\
& 529=1021_{8}
\end{aligned}
$$

36. To convert 13,469 to base $8 \quad \ldots 32,768 \quad 4096 \quad 512 \quad 6481$

37. $735_{16}=7\left(16^{2}\right)+3(16)+5(1)=7(256)+48+5=1792+48+5=1845$
38. $581_{16}=5\left(16^{2}\right)+8(16)+1(1)=5(256)+128+1=1280+128+1=1409$
39. $6 \mathrm{D} 3 \mathrm{~B} 7_{16}=6\left(16^{4}\right)+13\left(16^{3}\right)+3\left(16^{2}\right)+11(16)+7(1)=6(65,536)+13(4096)+3(256)+176+7$
$=393,216+53,248+768+176+7=447,415$
40. $24 \mathrm{FEA}_{16}=2\left(16^{4}\right)+4\left(16^{3}\right)+15\left(16^{2}\right)+14(16)+10(1)=2(65,536)+4(4096)+15(256)+224+10$
$=131,072+16,384+3840+224+10=151,530$
41. To convert 573 to base 16

.. 4096	2561616
$13=\mathrm{D}$	
$1 \longdiv { 1 3 }$	
$\underline{13}$	
0	$573=23 \mathrm{D}_{16}$

42. To convert 349 to base 16

$$
\ldots 4096 \quad 256 \quad 16 \quad 1
$$

43. To convert 5478 to base $16 \quad \ldots 65,5364096 \quad 256 \quad 16 \quad 1$

44. To convert 34,721 to base $16 \quad \ldots 65,5364096 \quad 256 \quad 16 \quad 1$

45. To convert 2005 to base $2 \quad \ldots .2048 \quad 1024 \quad 512 \quad 256$

	1		1		1		1		1
1024	2005	512	981	256	469	128	213	64	85
	1024		512		256		128		64
	981		469		213		85		21

0	1	0	1	0	1	
$3 2 \longdiv { 2 1 }$	$1 6 \longdiv { 2 1 }$	$8 \longdiv { 5 }$	$4 \longdiv { 5 }$	$2 \longdiv { 1 }$	$1 \longdiv { 1 }$	
0	16	$\underline{0}$	4	$\underline{0}$	1	
21	5	5	1	1	0	$2005=11111010101_{2}$

46. To convert 2005 to base $3 \quad \ldots 2187 \quad 729 \quad 243$ 81 $27 \quad 9 \quad 3 \quad 1$

47. To convert 2005 to base $5 \quad \ldots 33125 \quad 625$ 125 25

48. To convert 2005 to base $7 \quad \ldots 2401 \quad 343 \quad 49 \quad 7 \quad 1$

	5		5		6	3	
343	2005	49	290	7	45	$1 \longdiv { 3 }$	
	1715		245		$\underline{42}$	$\underline{3}$	
	290		45		3	0	$2005=5563$

49. To convert 2005 to base $12 \quad \ldots 20,736 \quad 1728 \quad 144 \quad 12 \quad 1$

50. To convert 2005 to base $16 \quad \ldots 409625616 \quad 1$

$$
2005=7 \mathrm{D} 5_{16}
$$

51. Incorrect; there is no 5 in base 5 .
52. Correct
53. Incorrect; there is no 8 in base 7 .
54. $2(5)+3(1)=10+3=13$
55. $2\left(5^{2}\right)+4(5)+3(1)=2(25)+20+3$
$=50+20+3=73$
56. Incorrect; there is no 3 in base 3 .
57. Correct
58. Correct
59. $4(5)+3(1)=20+3=23$
60. $3\left(5^{2}\right)+0(5)+3(1)=3(25)+0+3$
$=75+0+3=78$
61. To convert $\ldots 2551$

$$
19=\ominus \bigcirc_{5}
$$

62. To convert ... 25 5 1

$$
23=\bigcirc \bigodot_{5}
$$

63. To convert $\ldots 125 \quad 25 \quad 51$
$25 \begin{gathered}\frac{2}{74} \\ \frac{50}{24}\end{gathered} \quad \begin{gathered}5 \longdiv { 2 4 } \\ \end{gathered}$
$\frac{4}{1 \longdiv { 4 }} \begin{gathered}\frac{4}{0}\end{gathered}=\bigcirc$ $74=\bigcirc \bigcirc)_{5}$
64. To convert ... $125 \quad 25 \quad 51$

$$
85=\ominus \bigcirc \bigcirc_{5}
$$

65. $1(4)+3(1)=4+3=7$
66. $3(4)+2(1)=12+2=14$
67. $2\left(4^{2}\right)+1(4)+0(1)=2(16)+4+0=32+4+0=36$
68. $3\left(4^{2}\right)+2(4)+1(1)=3(16)+8+1=48+8+1=57$

For \#69-72, blue $=0=b$, red $=1=r$, gold $=2=$ go, green $=3=$ gr
69. To convert ... 1641

$$
10=\text { go go } 4
$$

70. To convert $\ldots 1641$

$$
15=\mathrm{gr} \mathrm{gr}_{4}
$$

71. To convert $\ldots 641641$

$$
60=\mathrm{gr} \mathrm{gr} \mathrm{~b} 4
$$

72. To convert $\ldots 64 \quad 1641$

$$
56=\text { gr go b } 4
$$

73. a) Each remainder is multiplied by the proper power of 5 .
b)

5	683	
5	136	3
5	27	1
5	5	2
5	1	0
	0	1

c)

8	763	
8	95	
8	3	\uparrow
8	71	
	7	\uparrow
	3	\uparrow
	1	\uparrow

$$
763=1373_{8}
$$

74. a) $1_{3}, 2_{3}, 10_{3}, 11_{3}, 12_{3}, 20_{3}, 21_{3}, 22_{3}, 100_{3}, 101_{3}, 102_{3}, 110_{3}, 111_{3}, 112_{3}, 120_{3}, 121_{3}, 122_{3}, 200_{3}, 201_{3}, 202_{3}$ b) 1000_{3}
75. Answers will vary.
76. $2^{7}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=128$
77. $1\left(b^{2}\right)+1(b)+1=43$
$b^{2}+b+1=43$
$b^{2}+b-42=0$
$(b+7)(b-6)=0$
$b+7=0$ or $b-6=0$
$b=-7 \quad$ or $b=6$
Since the base cannot be negative, $b=6$.
78. $d\left(5^{2}\right)+d(5)+d(1)=124$

$$
25 d+5 d+d=124
$$

$$
\begin{aligned}
\frac{31 d}{31} & =\frac{124}{31} \\
d & =4
\end{aligned}
$$

79. a) $3\left(4^{4}\right)+1\left(4^{3}\right)+2\left(4^{2}\right)+3(4)+0(1)=3(256)+64+2(16)+12+0=768+64+32+12+0=876$
b) To convert $\quad \ldots 256 \quad 64 \quad 16 \quad 4 \quad 1$

Exercise Set 4.4

1. a) $b^{0}=1, b^{1}=b, b^{2}, b^{3}, b^{4}$
b) $6^{0}=1,6^{1}=6,6^{2}, 6^{3}, 6^{4}$
2. $8^{0}=1,8^{1}=8,8^{2}=64$ using base 8 .
3. No; there is no 6 in base 5 .
4. No; there is no 3 in base 3 .
5. Answers will vary.
6. Answers will vary.

7.	$\begin{array}{r} 43_{5} \\ 41_{5} \\ 134_{5} \end{array}$	8.	$\begin{array}{r} 33_{8} \\ \frac{65}{65} \\ 120_{8} \end{array}$	9.	$\begin{array}{r} 2303_{4} \\ \underline{232}_{4}^{4} \\ 3201_{4} \end{array}$	10.	$\begin{array}{r} 101_{2} \\ 101_{2} \\ 1000_{2} \end{array}$
11.	$\begin{aligned} & 799_{12} \\ & \underline{218}_{12} \\ & \hline \mathrm{EE} 5_{12} \end{aligned}$	12.	$\begin{array}{r} 222_{3} \\ \underline{22} \\ 1021_{3} \end{array}$	13.	$\begin{aligned} & 1112_{3} \\ & \underline{1011}_{2}^{2200} \end{aligned}$	14.	$\begin{aligned} & 470_{12} \\ & \underline{347}_{12} 7 \mathrm{E} 7_{12} \end{aligned}$
15.	14631_{7} $6^{6040_{7}}$ 240017	16.	$\begin{array}{r} 1341_{8} \\ \frac{341_{8}}{1702_{8}} \end{array}$	17.	$\begin{array}{r} 1110_{2} \\ 1010_{2} \\ 10100_{2} \end{array}$	18.	$\begin{aligned} & 43 \mathrm{~A}_{16} \\ & \underline{496}_{86}^{8 \mathrm{D} 0_{16}} \end{aligned}$
19.	$\begin{array}{r} 322_{4} \\ -103_{4} \\ \hline 213_{4} \end{array}$	20.	$\begin{array}{r} 526_{7} \\ -145_{7} \\ \hline 351_{7} \end{array}$	21.	$\begin{array}{r} 2342_{5} \\ -1442_{5} \\ \hline 400_{5} \end{array}$	22.	$\begin{array}{r} 1011_{2} \\ -101_{2} \\ \hline 110_{2} \end{array}$
23.	$\begin{array}{r} 782_{12} \\ -13 \mathrm{~T}_{12} \\ \hline 644_{12} \end{array}$	24.	$\begin{array}{r} 1221_{3} \\ -\underline{202} \\ 1012_{3} \end{array}$	25.	$\begin{array}{r} 1001_{2} \\ -110_{2} \\ \hline 11_{2} \end{array}$	26.	$\begin{array}{r} 2 \mathrm{~T} 34_{12} \\ -345_{12} \\ \mathbf{2 6 T E}_{12} \end{array}$
27.	$\begin{array}{r} 4223_{7} \\ -304_{7} \\ \hline 3616_{7} \end{array}$	28.	$\begin{array}{r} 4232_{5} \\ -2341_{5} \\ \hline 1341_{5} \end{array}$	29.	$\begin{array}{r} 2100_{3} \\ -1012_{3} \\ \hline 1011_{3} \end{array}$	30.	$\begin{array}{r} 4 \mathrm{E} 7_{16} \\ -189_{16} \\ \hline 35 \mathrm{E}_{16} \end{array}$
31.	$\begin{array}{r} 33_{5} \\ \times \quad 25 \\ \hline 121_{5} \end{array}$	32.	$\begin{array}{r} 323_{6} \\ \times \quad 46 \\ \hline 2140_{6} \end{array}$	33.	$\begin{array}{r} 342_{7}^{7} \\ \times \quad 57 \\ \hline 2403_{7} \end{array}$	34.	$\begin{array}{r} 101_{2} \\ \times \quad 11_{2} \\ \hline 101 \\ \hline 101 \\ \hline 111_{2} \end{array}$
35.	$\begin{array}{r} 512_{6} \\ \times \quad 23_{6} \\ \hline 2340 \\ \frac{1424}{21020} \end{array}$	36.	$\begin{array}{r} 124_{12} \\ \times \quad 6_{12} \\ \hline 720_{12} \end{array}$	37.	$\begin{array}{r} 436_{9} \\ \times \quad 25 \\ \hline 2403 \\ \frac{873}{2233} 9 \end{array}$	38.	$\begin{array}{r} 6 \mathrm{~T} 3_{12} \\ \times \quad 24_{12} \\ 2350 \\ \underline{1186} \\ \hline 13 \mathrm{EE} 0_{12} \end{array}$
39.	$\begin{array}{r} 111_{2} \\ \times 101_{2} \\ \hline 111 \\ 000 \\ 100011 \\ \hline 1000 \end{array}$	40.	$\begin{array}{r} 584_{9} \\ \times 24_{9} \\ \hline 2567 \\ 1278 \\ \hline 154579 \end{array}$	41.	$\begin{aligned} & 316_{7} \\ & \times 16_{7} \\ & \hline 2541 \\ & \frac{316}{6031} \end{aligned}$	42.	$\begin{array}{r} 8 \mathrm{~T}_{12} \\ \times \quad 2 \mathrm{~T}_{12} \\ \hline 744 \\ 158 \\ \hline 2104_{12} \end{array}$

43. $1_{2} \times 1_{2}=1_{2}$

44. $\quad 4_{6} \times 1_{6}=4_{6}$
$4_{6} \times 2_{6}=12_{6}$ $4_{6} \times 3_{6}=20_{6}$
$4_{6} \times 4_{6}=24_{6}$ $4_{6} \times 5_{6}=32_{6}$

45. $\quad 3_{5} \times 1_{5}=3_{5}$
$3_{5} \times 2_{5}=11_{5}$
$3_{5} \times 3_{5}=14_{5}$
$3_{5} \times 4_{5}=22_{5}$

	31_{5}
3_{5}	143_{5}

$\frac{14}{03}$
$\frac{3}{0}$
46. $\quad 7_{8} \times 1_{8}=7_{8}$
$7_{8} \times 2_{8}=16_{8}$
$7_{8} \times 3_{8}=25_{8}$

$$
7_{8} \times 4_{8}=34_{8}
$$

$$
7_{8} \times 5_{8}=43_{8}
$$

$$
7_{8} \times 6_{8}=52_{8}
$$

$$
7_{8} \times 7_{8}=61_{8}
$$

$7_{8} \begin{gathered}\frac{37_{8}}{335_{8}} \\ \frac{25}{65} \\ \frac{61}{4}\end{gathered}$
47.

$$
\begin{aligned}
& 2_{4} \times 1_{4}=2_{4} \\
& 2_{4} \times 2_{4}=10_{4} \\
& 2_{4} \times 3_{4}=12_{4}
\end{aligned}
$$

	123_{4}
2_{4}	312_{4}
	$\underline{2}$
	11
	$\frac{10}{12}$
	$\frac{12}{0}$

48.

$6_{12} \times 1_{12}=6_{12}$	86_{12}	R_{12}
$6_{12} \times 2_{12}=10_{12}$	6_{12}	431_{12}
$6_{12} \times 3_{12}=16_{12}$	$\underline{40}$	
$6_{12} \times 4_{12}=20_{12}$	31	
$6_{12} \times 5_{12}=26_{12}$	$\underline{30}$	
$6_{12} \times 6_{12}=30_{12}$		
$6_{12} \times 7_{12}=36_{12}$		
$6_{12} \times 8_{12}=40_{12}$		

49.

$$
\begin{aligned}
& 2_{4} \times 1_{4}=2_{4} \\
& 2_{4} \times 2_{4}=10_{4} \\
& 2_{4} \times 3_{4}=12_{4}
\end{aligned}
$$

$\underline{00}$
$\frac{12}{1}$
50.
50. $\quad 5_{6} \times 1_{6}=5_{6}$
$5_{6} \times 2_{6}=14_{6}$
$5_{6} \times 3_{6}=23_{6}$
$5_{6} \times 4_{6}=32_{6}$
$5_{6} \times 5_{6}=41_{6}$

51. $3_{5} \times 1_{5}=3_{5}$
$3_{5} \times 2{ }_{5}=11_{5}$
$3_{5} \times 3_{5}=14_{5}$

52. $4_{6} \times 1_{6}=4_{6}$
$4_{6} \times 2_{6}=12_{6}$
$4_{6} \times 3_{6}=20_{6}$
$4_{6} \times 4_{6}=24_{6}$
$4_{6} \times 5_{6}=32_{6}$

53.

$6_{7} \times 1_{7}=6_{7}$	$45_{7} \quad \mathrm{R}^{2}{ }_{7}$
$6_{7} \times 2_{7}=15_{7}$	$6_{7} \xlongequal{404_{7}}$
$6_{7} \times 3_{7}=24_{7}$	$\underline{33}$
$6_{7} \times 4_{7}=33_{7}$	
$6_{7} \times 5_{7}=42_{7}$	$\underline{42}$
$6_{7} \times 6_{7}=51_{7}$	

54. $\quad 3_{7} \times 1_{7}=3_{7}$
$3_{7} \times 2_{7}=6_{7}$
$3_{7} \times 3_{7}=12_{7}$
$3_{7} \times 4_{7}=15_{7}$
$3_{7} \times 5_{7}=21_{7}$
$3_{7} \times 6_{7}=24_{7}$
$3_{7} \xlongequal[2101_{7}]{ }$
$\mathrm{R1}_{7}$
$\underline{21}$
00
00

$\frac{00}{01}$
$\underline{00}$

55. $\begin{array}{r}2_{5} \\ +3_{5} \\ \hline 10_{5}=\Theta \bigcirc_{5}\end{array}$
$\begin{array}{ll}56 . & 3_{5} \\ +3_{5} \\ & 11_{5} \\ & =\ominus \Theta_{5}\end{array}$
56.

$\begin{array}{r}21_{5} \\ +43_{5} \\ \hline 114_{5}\end{array}=\bigcirc \bigcirc \bigcirc_{5}$
58.
$\begin{array}{r}23_{5} \\ +13_{5} \\ \hline 41_{5}=\bigcirc \Theta_{5}, ~\end{array}$

For \#59-66, blue $=0=b$, red $=1=r$, gold $=2=$ go, green $=3=\mathrm{gr}$
59. $\begin{array}{r}3_{4} \\ +2_{4} \\ 11_{4} \\ =\mathrm{r} \\ 4\end{array}$

63.

$$
\begin{array}{rrr}
\begin{array}{r}
33_{4} \\
-12_{4} \\
21_{4}
\end{array}=\mathrm{Og}_{4} & \begin{array}{r}
64 . \\
\mathrm{g}_{4}
\end{array}
\end{array}
$$

| 32_{4} | 62. | 130_{4} |
| :--- | :--- | :--- | $\mathrm{t}_{103_{4}}^{+11_{4}}=\mathrm{O} \mathrm{Or}_{4} \quad \frac{+221_{4}}{1011_{4}}=\mathrm{CrOr}_{4}$

67. $2302_{5}=2\left(5^{3}\right)+3\left(5^{2}\right)+0(5)+2(1)=2(125)+3(25)+0+2=250+75+0+2=327$
68. To convert 327 to base 9 ... $72981 \quad 9 \quad 1$

81 | 4 |
| :--- |
| |
| 327 |

$\underline{324}$
0
9
3
$\underline{0}$
3
$1 \longdiv { 3 }$
3

$$
\begin{aligned}
& 327=403_{9} \\
& 9^{2}=\bullet \cdot \cdot \\
& 9^{1}=\text { none } \\
& 9^{0}=\cdots \cdot
\end{aligned}
$$

69.

$14_{5} \times 1_{5}=14_{5}$
$14_{5} \times 2_{5}=33_{5}$ $14_{5} \times 3_{5}=102_{5}$ $14_{5} \times 4_{5}=121_{5}$
$1 4 _ { 5 } \longdiv { 2 4 2 _ { 5 } }$
14
102
102
70.
$20_{4} \times 1_{4}=20_{4}$
$20_{4} \times 2_{4}=100_{4}$
$20_{4} \times 3_{4}=120_{4}$
$20_{4} \begin{gathered}11_{4} \\ \frac{223_{4}}{23} \\ \frac{20}{23} \\ \frac{20}{3}\end{gathered}$
71. a) 462_{8}
$\begin{array}{r} \\ \times 35_{8} \\ \hline\end{array}$
b) $462_{8}=4\left(8^{2}\right)+6(8)+2(1)=4(64)+48+2=256+48+2=306$
$35_{8}=3(8)+5(1)=24+5=29$
$\underline{1626}$
c) $306 \times 29=8874$
21252_{8}
d) $21252_{8}=2\left(8^{4}\right)+1\left(8^{3}\right)+2\left(8^{2}\right)+5(8)+2(1)$
$=2(4096)+512+2(64)+40+2$
$=8192+512+128+40+2=8874$
e) Yes, in part a), the numbers were multiplied in base 8 and then converted to base 10 in part d).

In part b), the numbers were converted to base 10 first, then multiplied in part c).
72. $b=5$
73. Orange $=0 ;$ purple $=1 ;$ turquoise $=2 ;$ brown $=3$

Exercise Set 4.5

1. Duplation and mediation, the galley method and Napier rods
2. a) Answers will vary.
b) $267-193$

133 - 386
66-772
33 - 1544
16-3088
8- 6176
4-12,352
z-24,704

$$
\underline{1-49,408}
$$

51,531
3. a) Answers will vary.
b)

1
0

$$
362 \times 29=10,498
$$

4. a) Answers will vary.
b)

5

$25 \times 6=150$
5. $23-31$
$11-62$
$5-124$
2-248
$1-496$
713
6. $35-23$
17 - 46
8-92
4-184
2-368
1-736
7. $\begin{array}{r}9-162 \\ 4-324 \\ z-648 \\ 1-1296 \\ \hline 1458\end{array}$
8. 175 - 86
87 - 172
43 - 344
$21-688$
10- 1376
5 - 2752
$z-5504$
$\frac{1-11,008}{15,050}$
9. $\begin{array}{r}35-236 \\ 17-472 \\ 8-944 \\ 4-1888 \\ 2-3776 \\ 1-7552 \\ 8260\end{array}$
10. $\begin{array}{r}96-53 \\ 48-106 \\ 24-212 \\ 12-424 \\ 6-848 \\ 3-1696 \\ 1-3392 \\ 5088\end{array}$
11. $93-93$
46-186
$23-372$
11 - 744
5-1488
z- 2976
$1-5952$
8649
12. 49 - 124
24-248
12-496
6-992
3-1984
1-3968
6076
13.

16.

14.

920
$8 \times 365=2920$
17.

15.

$3 \quad 3 \quad 2$
$4 \times 583=2332$
18.

104 CHAPTER 4 Systems of Numeration
19.

21.

23.

25.

27.

22.

24.

26. $75 \times 125=(70+5) 125=70(125)+5(125)$

From \# 24, $70 \times 125=8750$
From \# 25, $5 \times 125=\underline{625}$
$75 \times 125=9375$
28.

9
,
29. a) 253×46; Place the factors of 8 until the correct factors and placements are found so the rest of the rectangle can be completed.
b)

31. a) 4×382; Place the factors of 12 until the correct factors and placements are found so the rest can be completed.
b)

33. $13-22$

6-44
3-88
$1-\underline{176}$ $286=0) ค$ คค
35. Answers will vary.
30. a) 475×263; Place the factors of 8 until the correct factors and placements are found so the rest of the rectangle can be completed.
b)

32. a) 7×685; Place the factors of 42 until the correct factors and placements are found so the rest can be completed.
b)

$$
\begin{array}{ccc}
7 & 9 & 5 \\
7 \times 685=4795
\end{array}
$$

34. 26- 67
$13-134$
6-268
3-536
$1-\underline{1072}$
$1742=$ MDCCXLII
35.

37.

Review Exercises

1. $1000+1000+1000+100+1+1+1=3103$
2. $10+100+100+100+1+1000=1311$
3. $1000+1000+100+100+100+10$
$+1+1+1+1=2314$
4. bbbbbaaaaaa
5. ccbbbbbbbbbbaaa
6. ddddddccccccccbbbbba
7. $4(10)+3=40+3=43$
8. $7(100)+4(10)+9=700+40+9=749$
9. $5(1000)+6(100)+4(10)+8$
$=5000+600+40+8=5648$
10. $h x b$
11. hyfxb
12. $f z d$
13. $4(10)+5(1)=40+5=45$
14. $5(100)+6(10)+8(1)=500+60+8=568$
15. $6(10,000)+4(1000)+4(100)+8(10)+1$ $=60,000+4000+400+80+1=64,481$
16. qe
17. vrc
18. ODvog
19. 89999Mm.
20.
21.

$1462=24(60)+22$
38. a) $1000+500+100+100+50+10+10+5+1=1776$ b) Answers will vary.
2. $100+100+10+1000+1=1211$
4. $100+10+1000+1+1000+1+1+1=2114$
6. $100+100+10+1+1000+1000+1+100=2312$
8. cbbaaaaa
10. ddaaaaa
12. ddcccbaaaa
14. $2(10)+7=20+7=27$
16. $4(1000)+6(10)+8=4000+60+8=4068$
18. $6(1000)+9(100)+5=6000+900+5=6905$
20. byixe
22. czixd
24. bza
26. $3(100)+8(1)=300+8=308$
28. $4(10,000)+6(1000)+8(100)+8(10)+3(1)$ $=40,000+6000+800+80+3=46,883$
30. $6(10,000)+5(100)+2(10)+9(1)$ $=60,000+500+20+9=60,529$
32. upb
34. BArg
36. QFvrf
38. MCDLXII
40. $\alpha^{\prime} v \xi \beta$
42.

$1462=4(18 \times 20)+1(20)+2(1)$
43. $100,000+100,000+10,000+10,000+1000+1000+10+10+10+1+1+1+1+1=222,035$
44. $8(1000)+2(100)+5(10)+4=8000+200+50+4=8254$
45. $600+80+5=685$
46. $1000+(1000-100)+(100-10)+1=1000+900+90+1=1991$
47. $21(60)+(20-3)=1260+17=1277$
48. $7(18 \times 20)+8(20)+10(1)=7(360)+160+10=2520+160+10=2690$
49. $47_{8}=4(8)+7(1)=32+7=39$
50. $101_{2}=1\left(2^{2}\right)+0(2)+1(1)=4+0+1=5$
51. $130_{4}=1\left(4^{2}\right)+3(4)+0(1)=16+12+0=28$
52. $3425_{7}=3\left(7^{3}\right)+4\left(7^{2}\right)+2(7)+5(1)=3(343)+4(49)+14+5=1029+196+14+5=1244$
53. $~ T 0 \mathrm{E}_{12}=10\left(12^{2}\right)+0(12)+11(1)=10(144)+0+11=1440+0+11=1451$
54. $20220_{3}=2\left(3^{4}\right)+0\left(3^{3}\right)+2\left(3^{2}\right)+2(3)+0(1)=2(81)+0+2(9)+6+0=162+0+18+6+0=186$
55. To convert 463 to base 4 $\begin{array}{llllll}\text {.. } & 1024 & 256 & 64 & 16 & 4\end{array}$

	1		3
256	463	64	207
	256		$\underline{192}$
	207		15

16 | | 3 |
| ---: | ---: |
| | 45 |
| | $\frac{0}{5}$ |
| | $\frac{12}{3}$ |

3
$1 \longdiv { 3 }$
$\frac{3}{3}$ $463=13033_{4}$
56. To convert 463 to base $3 \quad \ldots \quad 729 \quad 243$ 81 $27 \quad 9 \quad 3 \quad 1$

$463=122011_{3}$
57. To convert 463 to base $2 \quad \ldots \quad \ldots \quad 512 \quad 256$

256	1	128	1		1		0	16	$\frac{0}{15}$	8	$\frac{1}{15}$	4		3	$1 \stackrel{1}{1}$	
	463		207		79		15									
	256		128		$\underline{64}$		$\underline{0}$		$\underline{0}$		$\underline{8}$	4		$\underline{2}$		$\underline{1}$
	207		79		15		15		15		7	3		1		0

58. To convert 463 to base 5

$\begin{array}{lllll}625 & 125 & 25 & 5 & 1\end{array}$

$$
463=3323_{5}
$$

59. To convert 463 to base 12 ... $172814412 \quad 1$
$144 \begin{array}{r}3 \\ \begin{array}{r}463 \\ 432 \\ 31\end{array}\end{array}$
$1 2 \longdiv { 3 1 }$
$\underline{24}$
 $463=327_{12}$
60. To convert 463 to base 8

$\begin{array}{r}8 \\ 1 \begin{array}{r}7 \\ 7 \\ \\ \\ \hline\end{array} \\ \\ \hline\end{array}$... $512 \quad 6481$

$142 \times 24=3408$
61.

$4 \quad 0 \quad 8$
8
87.

$2 \times 142=284$, therefore $20 \times 142=2840$
Therefore, $142 \times 24=2840+568=3408$.

Chapter Test

1. A number is a quantity and answers the question "How many?" A numeral is a symbol used to represent the number.
2. $1000+1000+1000+500+100+$
$(50-10)+5+1=3646$
3. $8(1000)+0+9(10)=8000+0+90=8090$
4. $100,000+10,000+10,000+1000+1000+100$
$+10+10+10+10+1+1=122,142$
5. ()()OORคค
6.

$$
1434=3(18 \times 20)+17(20)+14(1)
$$

3. $21(60)+15(1)=1260+15=1275$
4. $2(18 \times 20)+12(20)+9(1)=2(360)+240+9$
$=720+240+9=969$
5. $9(1000)+900+90+9=9000+900+90+9$
$=9999$
6. $\beta^{\prime} \cup o 2$
7.

$$
1596=26(60)+36(1)
$$

12. MMCCCLXXVIII

13. In an additive system, the number represented by a particular set of numerals is the sum of the values of the numerals.
14. In a multiplicative system, there are numerals for each number less than the base and for powers of the base. Each numeral less than the base is multiplied by a numeral for the power of the base, and these products are added to obtain the number.
15. In a ciphered system, the number represented by a particular set of numerals is the sum of the values of the numerals. There are numerals for each number up to and including the base and multiples of the base.

110 CHAPTER 4 Systems of Numeration

16. In a place-value system, each number is multiplied by a power of the base. The position of the numeral indicates the power of the base by which it is multiplied.
17. $56_{7}=5(7)+6(1)=35+6=41$
18. $403_{5}=4\left(5^{2}\right)+0(5)+3(1)=4(25)+0+3$ $=100+0+3=103$
19. $101101_{2}=1\left(2^{5}\right)+0\left(2^{4}\right)+1\left(2^{3}\right)+1\left(2^{2}\right)+0(2)+1(1)=32+0+8+4+0+1=45$
20. $368{ }_{9}=3\left(9^{2}\right)+6(9)+8(1)=3(81)+54+8=243+54+8=305$
21. To convert 36 to base 2
$\ldots 6432 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1$

32 | 1 | 0 |
| :---: | ---: |
| $\frac{36}{4}$ | $1 6 \longdiv { 4 }$ |
| | |
| | |
| | |

8
$\begin{array}{r}0 \\ \underline{0} \\ 4\end{array}$
1
$4 \longdiv { 4 }$
$\begin{gathered}4 \\ 0\end{gathered}$
$\left.2 \begin{array}{cc}0 & 0 \\ \hline 0 & 1 \longdiv { 0 } \\ \underline{0} & \\ 0 & \underline{0} \\ & \\ & \end{array}\right)$.

$$
36=100100_{2}
$$

22. To convert 93 to base 5 $\ldots 125 \quad 25 \quad 5 \quad 1$

$$
93=333_{5}
$$

23. To convert 2356 to base 12

$$
\begin{array}{lllll}
\ldots 20,736 & 1728 & 144 & 12 & 1
\end{array}
$$

 $2356=1444_{12}$
24. To convert 2938 to base 7
$\begin{array}{llllll}\text {.. } 16,807 & 2401 & 343 & 49 & 7 & 1\end{array}$

$$
2938=11365_{7}
$$

25.

$$
133_{5}
$$

26. 324_{6} -142_{6}
27.

45_{6}
$\times 23_{6}$
223

134 2003_{6}
28. $3_{5} \times 1_{5}=3_{5}$
$3_{5} \times 2_{5}=11_{5}$
$3_{5} \times 3_{5}=14_{5}$
$3_{5} \times 4_{5}=22_{5}$

11

11
11

00
$\frac{00}{0}$
29. 35-28

17-56
-8112
4-224
z-448
$1-896$
980
30.

0

8

$43 \times 196=8428$

Group Projects

1. a) 06470-9869-1
$\begin{array}{ll}\text { b) i) 51593-4837-7 } & \text { ii) 14527-8924-75-6 }\end{array}$
c) i) $|||\mid$
ii)

d) Answers will vary.

CHAPTER FIVE

NUMBER THEORY AND THE REAL NUMBER SYSTEM

Exercise Set 5.1

1. Number theory is the study of numbers and their properties.
2. If a and b are factors of c , then $\mathrm{c} \div \mathrm{a}$ is an integer and $\mathrm{c} \div \mathrm{b}$ is an integer.
3. a) a divides b means that b divided by a has a remainder of zero.
b) a is divisible by b means that a divided by b has a remainder of zero.
4. A prime number is natural number greater than 1 that has exactly two factors (or divisors), itself and one.
5. A composite number is a natural number that is divisible by a number other than itself and 1 . Any natural number that is not prime is composite.
6. Every composite number can be expressed as a unique product of prime numbers.
7. a) The least common multiple (LCM) of a set of natural numbers is the smallest natural number that is divisible (without remainder) by each element of the set.
b) Determine the prime factorization of each number. Then find the product of the prime factors with the largest exponent in each of the prime factorizations.
8. a) The greatest common divisor (GCD) of a set of natural numbers is the largest natural number that divides (without remainder) every number in that set.
b) Determine the prime factorization of each number. Then find the product of the prime factors with the smallest exponent that appears in each of the prime factorizations.
c)

2	16
2	8
2	4
	2

$16=2^{4}$

5 40 2 8 2 4 2
$40=2^{3} \cdot 5$

The prime factors with the smallest exponents that appear in each of the factorizations are 2^{3}.
The GCD of 16 and 40 is $2^{3}=8$.
9. Mersenne Primes are prime numbers of the form $2^{n}-1$ where n is a prime number.
10. A conjecture is a supposition that has not been proved nor disproved.
11. Goldbach's conjecture states that every even number greater than or equal to 4 can be represented as the sum of two (not necessarily distinct) prime numbers.
12. Twin primes are of the form $\mathrm{p}, \mathrm{p}+2$, where p is a prime number. An example is 5 \& 7 .
13. The prime numbers between 1 and 100 are: $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61$, 67, 71, 73, 79, 83, 89, 91, 97.
14.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150

The prime numbers between 1 and 150 are: $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59$, $61,67,71,73,79,83,87,89,91,97$,
15. True; since $54 \div 9=6$
17. False; since 21 is divisible by 7 .
19. False; since 56 is divisible by 8 .
21. True; If a number is divisible by 10 , then it is also divisible by 5 .
23. False; If a number is divisible by 3 , then the sum of the number's digits is divisible by 3 .
25. True; since $2 \cdot 3=6$.
27. Divisible by $2,3,4,6,8$ and 9 .
29. Divisible by 3 and 5 .
31. Divisible by $2,3,4,5,6,8$, and 10
33. $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720$. (other answers are possible)
16. True; since $36 \div 4=9$
18. False; since 35 is a multiple of 5 .
20. True; since $45 \div 15=3$.
22. False; If a number is divisible by 10 , then it is also divisible by 5 .
24. True.
26. True; since $3 \cdot 4=12$.
28. Divisible by $2,3,4,5,6,8$, and 10 .
30. Divisible by $2,3,4,5,6,8$, and 10
32. Divisible by none of the numbers.
34. $3 \cdot 4 \cdot 5 \cdot 9 \cdot 10=5400$. (other answers are possible

$45=3^{2} \cdot 5$

36. 2 | $\frac{52}{26}$ |
| :---: |
| |
| |
| |
| |

$52=2^{2} \cdot 13$
39. $3 \longdiv { 3 0 3 }$
$303=3 \cdot 101$

37. | | 2 | 196 |
| :--- | :--- | :--- |
| | 2 | 98 |
| | 79 | |
| | | 7 |

$196=2^{2} \cdot 7^{2}$

40. 2 | | 200 |
| :--- | :--- |
| | 2 |
| | 200 |
| | 100 |
| | 50 |
| | 25 |
| | |
| | |
| | |

$400=2^{4} \cdot 5^{2}$

41. | 3 | 513 |
| :--- | :--- |
| | 3 |
| | 171 |
| | 19 |
| | |
| | 19 |

$$
513=3^{3} \cdot 19
$$

44. $1 3 \longdiv { \frac { 1 3 1 3 } { 1 0 1 } }$
$1313=13 \cdot 101$

$$
\text { 42. } \begin{array}{rc}
3 & \begin{array}{l}
\frac{663}{} \\
13 \\
\hline 663
\end{array} \\
=3 \cdot 13 \cdot 17
\end{array}
$$

$$
\text { 45. } \quad 3 \begin{aligned}
& 23 \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
2001=3 \cdot 23 \cdot 29
$$

47. The prime factors of 15 and 18 are: $6=3 \cdot 2, \quad 15=3 \cdot 5$
a) The common factor is 3 , thus, the $\mathrm{GCD}=3$.
b) The factors with the greatest exponent that appear in either are $2,3,5$. Thus, the $\mathrm{LCM}=2 \cdot 3 \cdot 5=30$.
48. The prime factors of 22 and 231 are: $22=2 \cdot 11$, $231=3 \cdot 7 \cdot 11$
a) The common factor is: 11 ; thus, the GCD $=11$.
b) The factors with the greatest exponent that appear in either are: $2,3,7,11$; thus, the $\mathrm{LCM}=2 \bullet 3 \bullet 7 \bullet 11=462$
49. The prime factors of 96 and 212 are: $96=2^{5} \cdot 3$, $212=2^{2} \cdot 53$
a) The common factors are: 2^{2}; thus, the GCD $=2^{2}=4$.
b) The factors with the greatest exponent that appear in either are: $2^{5}, 3,53$; thus, the $\mathrm{LCM}=2^{5} \cdot 3 \cdot 53=5088$
50. The prime factors of 20 and 36 are: $20=2^{2} \cdot 5$ and $36=$ $2^{2} \cdot 3^{2}$
a) The common factor is 2^{2}; thus, the GCD $=4$.
b) The factors with the greatest exponent that appear in either is $2^{2}, 3^{2}$; the $\mathrm{LCM}=$ $2^{2} \cdot 3^{2} \cdot 5=180$.
51. The prime factors of 40 and 900 are: $40=2^{3} \cdot 5$, $900=2^{2} \cdot 3^{2} \cdot 5^{2}$
a) The common factors are: $2^{2}, 5$; thus, the GCD $=2^{2} \cdot 5=20$.
b) The factors with the greatest exponent that appear in either are: $2^{3}, 3^{2}, 5^{2}$; thus, the
$\mathrm{LCM}=2^{2} \cdot 3^{2} \cdot 5^{2}=1800$
52. The prime factors of 24,48 , and 128 are: $24=2^{3} \cdot 3$, $48=2^{4} \cdot 3,128=2^{7}$
a) The common factors are: 2^{3}; thus, the GCD $=2^{3}=8$.
b) The factors with the greatest exponent that appear in either are: $2^{7}, 3$; thus, $\mathrm{LCM}=$ $2^{7} \cdot 3=384$

53. 2 | | 2190 |
| :--- | :--- |
| | 5 |
| | 1595 |
| | 319 |
| | |
| | |
| | 29 |

$3190=2 \cdot 5 \cdot 11 \cdot 29$
49. The prime factors of 48 and 54 are: $48=2^{4} \cdot 3$, $54=2 \cdot 3^{3}$
a) The common factors are: 2,3 ; thus, the GCD $=2 \cdot 3=6$.
b) The factors with the greatest exponent that appear in either are: $2^{4}, 3^{3}$; thus, the $\mathrm{LCM}=$ $2^{4} \cdot 3^{3}=432$
52. The prime factors of 120 and 240 are: $120=$ $2^{3} \cdot 3 \cdot 5,240=2^{4} \cdot 3 \cdot 5$
a) The common factors are: 2^{3}, 3 , 5 ; thus, the GCD $=$ $2^{3} \cdot 3 \cdot 5=120$.
b) The factors with the greatest exponent that appear in either are: $2^{4}, 3,5$; thus, the LCM $=2^{4} \cdot 3 \cdot 5=240$
56. The prime factors of 18,78 , and 198 are: $18=2 \cdot 3^{2}$, $78=2 \cdot 3 \cdot 13$, $198=2 \cdot 3^{2} \cdot 11$
a) The common factors are: 2,3 ; thus, the GCD $=2 \sqcup 3=6$.
b) The factors with the greatest exponent that appear in either are: $2,3^{2}, 11,13$; thus, the $\mathrm{LCM}=2 \cdot 3^{2} \cdot 11 \cdot 13=2574$
57. Use the list of primes generated in exercise 13. The next two sets of twin primes are: $17,19,29,31$.
58. No. Any other two consecutive natural numbers will include an even number, and even numbers greater than two are composite.
59. (a) 14,15 Yes; (b) $21,30 \mathrm{No}$; (c) $24,25 \mathrm{Yes;} \mathrm{(d)} 119,143$ Yes
60. Fermat number $=2^{2^{n}}+1$, where n is a natural number. $2^{2^{1}}+1=5,2^{2^{2}}+1=2^{4}+1=17$, $2^{2^{3}}+1=2^{8}+1=257$. These numbers are prime.
61. $4=2+2,6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,16=3+13,18=5+13,20=3+17$
62. Use the formula $2^{\mathrm{n}}-1$, where n is a prime number. $2^{2}-1=3,2^{3}-1=7,2^{5}-1=31,2^{7}-1=127$, $2^{13}-1=8191$.
63. The gcd of 350 and 140 is 70 dolls.
65. The gcd of 432 and 360 is 72 cards.
67. The lcm of 45 and 60 is 180 mins.
64. The gcd of 288 and 192 is 96 cars.

66 The gcd of 150 and 180 is 30 trees.
68. The lcm of 3500 and 6000 is 42000 miles.
69. The least common multiple of 5 and 6 is 30 . Thus, it will be 30 days before they both have the same night off again.
70. The least common multiple of 15 and 18 is 90 . Thus, it will be 90 days before he visits both on the same day again.
71. a) The possible committee sizes are: $4,5,10,20$, or 25. b) The number of committees possible are: 25 committees of 4,20 committees of 5, 10 committees of 10,5 committees of 20 , or 4 committees of 25 .
72. a) $5=6-1 \quad 7=6+1 \quad$ b) Conjecture: Every prime number greater than $11=12-1 \quad 13=12+1$ 3 differs by 1 from a multiple of the number $6 . \quad 17=18-1 \quad 19=18+1 \quad 23=24-1$ $29=30-1 \quad$ c) The conjecture appears to be correct.
73. A number is divisible by 15 if both 3 and 5 divide the number.
74. A number is divisible by 22 if both 2 and 11 divide the number.
75. $35 \div 15=2$ with rem. $=5$.
$15 \div 5=3$ with rem. $=0$.
Thus, gcd of 35 and 15 is 5 .
78. $240 \div 76=3$ with rem. $=12$.
$76 \div 12=6$ with rem. $=4$.
$12 \div 4=3$ with rem. $=0$. Thus, gcd of 240 and 76 is 4 .
81. The proper factors of 12 are: $1,2,3,4$, and 6 . $1+2+3+4+6=16 \neq 12$ Thus, 12 is not a perfect \#.
84. The proper factors of 48 are: $1,2,3,4,6,8,12,16$, and 24 .
76. $28 \div 16=1$ with rem. $=12$.
$16 \div 12=1$ with rem. $=4$. $12 \div 4=3$ with rem. $=0$. Thus, gcd of 28 and 16 is 4 .
79. $180 \div 150=1$ with rem. $=30$.
$150 \div 30=5$ with rem. $=0$.
Thus, the gcd of 150 and 180 is 30 .
82. The proper factors of 28 are:
$1,2,4,7$, and 14 .
$1+2+4+7+14=28$
Thus, 28 is a perfect number.
$1+2+3+4+6+8+12+16+24=76$
Thus, 48 is not a perfect \#
77. $108 \div 36=3$ with rem. $=0$.
$36 \div 3=12$ with rem. $=0$.
Thus, gcd of 108 and 36 is 36 .
80. $560 \div 210=2 \mathrm{w} / \mathrm{rem} .=140$.
$210 \div 140=1 \mathrm{w} / \mathrm{rem} .=70$.
$140 \div 70=2 \mathrm{w} / \mathrm{rem} .=0$.
Thus, gcd of 210 and 560 is 70 .
83. The proper factors of 496 are: $1,2,4,8,16,31,62,124$, and $248 . \quad 1+2+4+8+16$ $+31+62+124+248=496$ Thus, 496 is a perfect \#
85. a) $60=2^{2} \cdot 3^{1} \cdot 5^{1}$ Adding 1 to each exponent and then multiplying these numbers, we get $(2+1)(1+1)(1+1)=3 \cdot 2 \cdot 2=12$ divisors of 60 .
86. No, 2 and 4 are not unique prime factors since $4=2 \cdot 2$. Any number that 4 divides, 2 will also divide, but 8 does not divide all numbers that are divisible by 4 . Some examples are: 4, 12, and 20 .
87. The sum of the digits will be a number divisible by 3 , thus the number is divisible by 6 .
88. The sum of the groups which have the same three digits will always be divisible by three.
(i.e. $d+d+d=3 d$ and $3 \mid 3 d$)
89. $36,018=(36,000+18) ; 36,000 \div 18=2,000$ and $18 \div 18=1$

Thus, since 18 | 36000 and $18|18,18| 36018$.
90. $2^{2}-1=3,2^{3}-1=7,2^{5}-1=31,2^{7}-1=127$ are prime numbers, but $2^{11}-1=2,048-1=2,047$; and since $23 \bullet 89=2,047,2047$ is not prime.
91. $8=2+3+3,9=3+3+3,10=2+3+5,11=2+2+7,12=2+5+5,13=3+3+7,14=2+5+7,15=3+5+7$, $16=2+7+7,17=5+5+7,18=2+5+11,19=3+5+11,20=2+7+11$.
92. (a) $1000=3+997 ;$ (b) $2000=3+1997 ;$ (c) $3000=29+2971$

Exercise Set 5.2

1. Begin at zero, draw an arrow to the value of the first number. From the tip of that arrow draw another arrow by moving a number of spaces equal to the value of the second number. Be sure to move left if the number is negative and move right if the number is positive. The sum of the two numbers is at the tip of the second arrow.
2. -n ; Additive Inverse $=$ that number when added to n yields the Additive Identity $(=0) ; \mathrm{n}+(-\mathrm{n})=0$
3. To rewrite a subtraction problem as an addition problem, rewrite the subtraction sign as an addition sign and change the second number to its additive inverse.
4. The product of two numbers with like signs is a positive number, and the product of two numbers with unlike signs is a negative number.
5. The quotient of two numbers with like signs is a positive number, and the quotient of two numbers with unlike signs is a negative number.
6. If we set $5 \div 0=x$ and we cross multiply, we get the equation $0 x=5$. Since $0 \bullet x=0$, we get $5=0$, which is a false statement, which means that there is no such number x. Therefore, division by 0 is not allowed.
7. $-6+9=3$
8. $4+(-5)=-1$
9. $(-7)+9=2$
10. $(-3)+(-3)=-6$
11. $[6+(-11)]+0=-5+0=-5$
12. $(2+5)+(-4)=7+(-4)=3$
13. $[(-3)+(-4)]+9=-7+9=2$
14. $[8+(-3)]+(-2)=[5]+(-2)=3$
15. $[(-23)+(-9)]+11=$
$[-32]+11=-21$
16. $[5+(-13)]+18=[-8]+18=10$
17. $3-6=-3$
18. $-3-7=-10$
19. $-4-6=-10$
20. $7-(-1)=8$
21. $-5-(-3)=-5+3=-2$
22. $-4-4=-4+(-4)=-8$
23. $14-20=14+(-20)=-6$
24. $8-(-3)=8+3=11$
25. $[5+(-3)]-4=2-4=2+(-4)=-2$
26. $4(-3)=-12$
27. $[(-8)(-2)] \cdot 6=16 \cdot 6=96$
28. $(-9)(-1)(-2)=(9)(-2)=-18$
29. $-26 \div(-13)=2$
30. $-64 \div 16=-4$
31. $\frac{-210}{14}=-15$
32. $(-900) \div(-4)=225$
33. False; the difference of two negative integers may be positive, negative, or zero.
34. False; the difference of a positive integer and a neg. integer may be + , - or zero.
35. False; the sum of a positive integer and a negative integer could be pos., neg., or zero.
36. $(-4) \div[14 \div(-7)]=$ $(-4) \div[-2]=2$
37. $(4-8)(3)=(-4)(3)=-12$
38. $(5-9) \div(-4)=(-4) \div(-4)=1$
39. $-15,-10,-5,0,5,10$
40. $-108,-76,-47,33,72,106$
41. $6-(8+6)=6-14=6+(-14)=-8$
42. $(-12)(-12)=144$
43. $(4)(-5)(-6)=(-20)(-6)=120$
44. $[(-3)(-6)] \cdot[(-5)(8)]=$ $(18)(-40)=-720$
45. $-56 \div 8=-7$
46. $\frac{56}{-8}=-7$
47. $\frac{186}{-6}=-31$
48. True; every whole number is an integer.
49. True.
50. True; the quotient of two integers with unlike signs is a negative number.
51. False; the product of two integers with unlike signs is always a negative integer.
52. $[6(-2)]-5=-12+(-5)=-17$
53. $[18 \div(-2)](-3)=(-9)(-3)=27$
54. $[(-22)(-3)] \div(2-13)=$ $66 \div(2+(-13))=66 \div(-11)$ $=-6$
55. $-40,-20,-10,0,10,2040$
56. $134-(-79.8)=$ $134+79.8=213.8^{\circ} \mathrm{F}$.
57. $-4 \cdot 5=-20$
58. $5(-5)=-25$
59. $(5 \cdot 6)(-2)=(30)(-2)=-60$
60. $[(-8)(4)(5)](-2)=$ $[(-32)(5)](-2)=[-160](-2)=320$
61. $23 \div(-23)=-1$
62. $\frac{-75}{15}=-5$
63. $144 \div(-3)=-48$
64. False; Negative numbers are not natural numbers.
65. True; the product of two integers with like signs is a positive integer.
66. False; the quotient of any two integers with like signs is a positive number.
67. $(5+7) \div 2=12 \div 2=6$
68. $[(-5)(-6)]-3=30+(-3)=27$
69. $[2+(-17)] \div 3=[-15] \div 3=-5$
70. $[15(-4)] \div(-6)=$
$(-60) \div(-6)=10$
71. $-6,-5,-4,-3,-2,-1$
72. $1347-33+22-21=$ $1314+22-21=1315 \mathrm{pts}$.
73. $0+100-40+90-20+80=$ $60+90-20+80=210$ pts.
74. $8-5+3+4=3+3+4=$ $6+4=10$. The Texans did make a first down.
75.

$$
\begin{aligned}
& \frac{-1+2-3+4-5+\ldots 99+100}{1-2+3-4+5 \ldots+99-100}= \\
& \frac{50}{-50}=-1
\end{aligned}
$$

74. $14,495-(-282)=$
$14,495+282=14,777$ feet
75. a) $+1-(-8)=+1+8=9$.

There is a 9 hr .time diff.
b) $-5-(-7)=-5+7=2$.

There is a 2 hr . time diff.
80. a) The next 3 pentagonal numbers are 35,51 , and 70. The $\mathrm{n}^{\text {th }}$ pentagonal.
b) The number is obtained by adding the $\mathrm{n}^{\text {th }}$ triangular \# (see section 1.1) to the $\mathrm{n}^{\text {th }}$ square number (see section 1.1) and subtracting n. For example, if $\mathrm{n}=4$, the $4^{\text {th }}$ triangular number is 10
75. $842-(-927)=842+927=$ 1,769 feet
78. $\frac{-a}{-b}=\frac{-1}{-1} \cdot \frac{a}{b}=\frac{a}{b}$
80. b) continued: and the $4^{\text {th }}$ square number is 16 . The sum of 10 and 16 is 26 and $26-\mathrm{n}=26-4=22$, which is the $4{ }^{\text {th }}$ pentagonal \#. The next 5 pentagonal numbers are $92,117,145,176$, and 210.
c) Since 70 is the 7 th pentagonal number and 92 is the 8 th pentagonal number, 72 cannot be a pentagonal number.
81. $0+1-2+3+4-5+6-7-8+9=1$ (other answers are possible)
82. (a) $\frac{4+4}{4+4}=1 \quad$ (b) $4\left(4-\frac{4}{4}\right)=12 \quad 4 \cdot 4-\frac{4}{4}=15 \quad \frac{4 \cdot 4 \cdot 4}{4}=16 \quad 4 \cdot 4-\frac{4}{4}=17 \quad$ (c) $\frac{44-4}{4}=10$

Exercise Set 5.3

1. Rational numbers is the set of all numbers of the form p / q, where p and q are integers, and $\mathrm{q} \neq 0$.
2. a) Multiply and divide the number by the position value of the last nonzero digit to the right of the decimal point.
b) $0.397=\frac{1000(0.397)}{1000}=\frac{397}{1000}$
3. a) Divide both the numerator and the denominator by their greatest common divisor.
b) $\frac{15}{27}=\frac{5 \div 3}{9 \div 3}=\frac{5}{9}$
4. Divide the numerator by the denominator. The quotient is the integer part of the mixed number. The fraction part of the mixed number is the remainder divided by the divisor.
5. For positive mixed numbers, multiply the denominator of the fraction by the integer preceding it. Add this product to the numerator. This sum is the numerator of the improper fraction; the denominator is the same as the denominator of the mixed number. For negative mixed numbers, you can temporarily ignore the negative sign, perform the conversion described above, and then reattach the negative sign.
6. a) The product of two fractions is found by multiplying the numerators and multiplying the denominators.
b) $\frac{15}{16} \cdot \frac{24}{25}=\frac{360}{400}=\frac{360 \div 40}{400 \div 40}=\frac{9}{10}$
7. a) The reciprocal of a number is 1 divided by the number.
b) The reciprocal of -2 is $\frac{1}{-2}=-\frac{1}{2}$
8. a) To divide two fractions, multiply the first fraction by the reciprocal of the second fraction.
b) $\frac{4}{15} \div \frac{16}{55}=\frac{4}{15} \cdot \frac{55}{16}=\frac{220}{240}=\frac{220 \div 20}{240 \div 20}=\frac{11}{12}$
9. a) To add or subtract two fractions with a common denominator, we add or subtract their numerators and keep the common denominator.
b) $\frac{11}{36}+\frac{13}{36}=\frac{24}{36}=\frac{24 \div 12}{36 \div 12}=\frac{2}{3}$
c) $\frac{37}{48}-\frac{13}{48}=\frac{24}{48}=\frac{24 \div 24}{48 \div 24}=\frac{1}{2}$
10. a) First rewrite each fraction with a common denominator. Then add or subtract the fractions.
b) $\frac{5}{12}+\frac{4}{9}=\frac{3}{3} \cdot \frac{5}{12}+\frac{4}{4} \cdot \frac{4}{9}=\frac{15}{36}+\frac{16}{36}=\frac{31}{36}$
c) $\frac{5}{6}-\frac{2}{15}=\frac{5}{5} \cdot \frac{5}{6}-\frac{2}{2} \cdot \frac{2}{15}=\frac{25}{30}-\frac{4}{30}=\frac{21}{30}=\frac{7}{10}$
11. We can multiply a fraction by the number one in the form of c / c (where c is a nonzero integer) and the number will maintain the same value.
12. Yes. $\frac{20}{35}=\frac{20 \div 5}{35 \div 5}=\frac{4}{7}$
13. GCD of 14 and 21 is 7 .
$\frac{14}{21}=\frac{14 \div 7}{21 \div 7}=\frac{2}{3}$
14. GCD of 36 and 56 is 4 .

$$
\frac{36}{56}=\frac{36 \div 4}{56 \div 4}=\frac{9}{14}
$$

19. GCD of 112 and 176 is 16 .

$$
\frac{112}{176}=\frac{112 \div 16}{176 \div 16}=\frac{7}{11}
$$

22. GCD of 124 and 148 is 4 .

$$
\frac{124}{148}=\frac{124 \div 4}{148 \div 4}=\frac{31}{37}
$$

25. $-1 \frac{15}{16}=-\frac{-((1)(16)+15)}{16}$

$$
=-\frac{16+15}{16}=-\frac{31}{16}
$$

24. $4 \frac{5}{6}=\frac{(4)(6)+5}{6}=\frac{24+5}{6}=\frac{29}{6}$
25. GCD of 21 and 35 is 7 .
$\frac{21}{35}=\frac{21 \div 7}{35 \div 7}=\frac{3}{5}$
26. GCD of 525 and 800 is 25 .

$$
\frac{525}{800}=\frac{525 \div 25}{800 \div 25}=\frac{21}{32}
$$

20. GCD of 120 and 135 is 15 .

$$
\frac{120}{135}=\frac{120 \div 15}{135 \div 15}=\frac{8}{9}
$$

23.

$$
3 \frac{4}{7}=\frac{(3)(7)+4}{7}=\frac{21+4}{7}=\frac{25}{7}
$$

26. $-7 \frac{1}{5}=-\frac{(7)(5)+1}{5}$

$$
=-\frac{35+1}{5}=-\frac{36}{5}
$$

27. $-4 \frac{15}{16}=-\frac{(4)(16)+15}{16}$
28. $11 \frac{9}{16}=\frac{(11)(16)+9}{16}$

$$
=-\frac{64+15}{16}=-\frac{79}{16}
$$

$$
=\frac{176+9}{16}=\frac{185}{16}
$$

29.

$2 \frac{1}{8}=\frac{(2)(8)+1}{8}=\frac{16+1}{8}=\frac{17}{8}$
30. $2 \frac{3}{4}=\frac{(2)(4)+3}{4}=\frac{8+3}{4}=\frac{11}{4} \quad$ 31. $1 \frac{7}{8}=\frac{(1)(8)+7}{8}=\frac{8+7}{8}=\frac{15}{8}$
32. $1 \frac{1}{2}=\frac{(1)(2)+1}{2}=\frac{2+1}{2}=\frac{3}{2}$
33. $\frac{11}{8}=\frac{8+3}{8}=\frac{(1)(8)+3}{8}=1 \frac{3}{8}$
34. $\frac{23}{4}=\frac{20+3}{4}=\frac{(5)(4)+3}{4}=5 \frac{3}{4}$
35. $-\frac{73}{6}=\frac{-(72+1)}{6}$

$$
=\frac{-(12 \llbracket 6+1)}{6}=-12 \frac{1}{6}
$$

36. $-\frac{457}{11}=-\frac{451+6}{11}$
37. $-\frac{878}{15}=-\frac{870+8}{15}$
38. $\frac{1028}{21}=\frac{1008+20}{21}$
$=-\frac{(41)(11)+6}{11}=$
$=-\frac{(58)(15)+8}{15}=-58 \frac{8}{15}$
$-41 \frac{6}{11}$
39. $\frac{3}{5}=.60$
40. $\frac{15}{16}=.9375$
41. $\frac{2}{9}=. \overline{2}$
$=\frac{(48)(21)+20}{21}=48 \frac{20}{21}$
42. $3 \div 8=0.375$
43. $23 \div 7=0 . \overline{285714}$
44. $13 \div 3=4 . \overline{3}$
45. $115 \div 15=7 . \overline{6}$
46. $85 \div 15=5 . \overline{6}$
47. $1002 \div 11=91 . \overline{09}$
48. 0.6

$$
0.25=\frac{25}{100}=\frac{25 \div 25}{100 \div 25}=\frac{1}{4}
$$

50. $0.29=\frac{29}{100}$
51.

$$
0.045=\frac{45}{1000}=\frac{45 \div 5}{1000 \div 5}=\frac{9}{200}
$$

52. $0.0125=\frac{125}{10000}=\frac{1}{80}$
53. $0.2=\frac{2}{10}=\frac{1}{5}$
54. $.251=\frac{251}{1000}$
55. $.452=\frac{452}{1000}=\frac{113}{250}$
56. $.2345=\frac{2345}{10000}=\frac{469}{2000}$
57. $.0001=\frac{1}{10000}$
58. . $2535=\frac{2535}{10000}=\frac{507}{2000}$
59. Let $n=0 . \overline{3}, \quad 10 n=3 . \overline{3}$

$$
\begin{aligned}
& 10 n=6 . \overline{6} \\
& \frac{-n}{}=0 . \overline{6} \\
& 9 n=6.0
\end{aligned} \quad \frac{9 n}{9}=\frac{6}{9}=\frac{2}{3}=n
$$

60. Let $n=0 . \overline{5}, \quad 10 n=5 . \overline{5}$

$$
\begin{aligned}
& 10 n=5 . \overline{5} \\
& \frac{-n}{-n .5} \\
& 9 n=5.0
\end{aligned} \quad \frac{9 n}{9}=\frac{5}{9}=n
$$

61. Let $n=1 . \overline{9}, \quad 10 n=19 . \overline{9}$

$$
\begin{aligned}
& 10 n=19 . \overline{9} \\
& \frac{-n=1 . \overline{9}}{9 n}=18.0 \\
& \frac{9 n}{9}=\frac{18}{9}=2=n
\end{aligned}
$$

62. Let $n=0 . \overline{51}, \quad 100 n=51 . \overline{51}$
$100 n=51 . \overline{51}$

$-n=0 . \overline{51}$
$99 n=51.0$

$\frac{99 n}{99}=\frac{51}{99}=\frac{17}{33}=n$
65. Let $n=1.0 \overline{2}, \quad 100 n=102 . \overline{2}$
$100 n=102 . \overline{2}$

$-10 n=10 . \overline{2}$
$90 n=92.0$

$\frac{90 n}{90}=\frac{92}{90}=\frac{46}{45}=n$
63. Let $n=1 . \overline{36}, \quad 100 n=136 . \overline{36}$
$100 n=136 . \overline{36}$
$-n=1 . \overline{36}$
$99 n=135.0$
$\frac{99 n}{99}=\frac{135}{99}=\frac{15}{11}=n$
66. Let $n=2.4 \overline{9}, \quad 100 n=249 . \overline{9}$
$100 n=249 . \overline{9}$
$-10 n=24 . \overline{9}$
$90 n=225.0$
$\frac{90 n}{90}=\frac{245}{90}=\frac{5}{2}=n$
64. Let $n=\overline{135}, 1000 n=135 . \overline{135}$
$1000 n=135 . \overline{135}$
$-n=. \overline{135}$
$999 n=135.0$
$\frac{999 n}{999}=\frac{135}{999}=\frac{5}{37}=n$
67. Let $n=3.4 \overline{78}$,

$$
\begin{array}{r}
1000 n=3478 . \overline{78} \\
1000 n=3478 . \overline{78} \\
-10 n=34 . \overline{78}
\end{array}
$$

$$
990 n=3444.0
$$

$$
\frac{990 n}{990}=\frac{3444}{990}=\frac{574}{165}=n
$$

71. $\frac{-3}{8} \cdot \frac{-16}{15}=\frac{48}{120}=\frac{2}{5}$
72.
73.

$\frac{3}{5} \div \frac{6}{7}=\frac{3}{5} \cdot \frac{7}{6}=\frac{21}{30}=\frac{21 \div 3}{30 \div 3}=\frac{7}{10}$
75.
$\left(\frac{3}{5} \cdot \frac{4}{7}\right) \div \frac{1}{3}=\frac{12}{35} \div \frac{1}{3}=\frac{12}{35} \cdot \frac{3}{1}=\frac{36}{35}$
76. $\left(\frac{4}{7} \div \frac{4}{5}\right) \cdot \frac{1}{7}=\left(\frac{4}{7} \cdot \frac{5}{4}\right) \cdot \frac{1}{7}=\frac{5}{7} \cdot \frac{1}{7}=\frac{5}{49}$
77. $\left[\left(\frac{-3}{4}\right)\left(\frac{-2}{7}\right)\right] \div \frac{3}{5}=\left(\frac{6}{28}\right) \div \frac{3}{5}=\frac{3}{14} \cdot \frac{5}{3}=\frac{15}{42}=\frac{5}{14}$
78. $\left(\frac{3}{8} \cdot \frac{5}{9}\right) \cdot\left(\frac{4}{7} \div \frac{5}{8}\right)=\left(\frac{15}{72}\right) \cdot\left(\frac{4}{7} \cdot \frac{8}{5}\right)=\frac{5}{24} \cdot \frac{32}{35}=\frac{160}{840}=\frac{4}{21}$
79. The lcm of 3 and 5 is 15 .

$$
\frac{2}{3}+\frac{1}{5}=\left(\frac{2}{3} \cdot \frac{5}{5}\right)+\left(\frac{1}{5} \cdot \frac{3}{3}\right)=\frac{10}{15}+\frac{3}{15}=\frac{13}{15}
$$

80. The lcm of 6 and 8 is 24 .

$$
\frac{5}{6}-\frac{1}{8}=\left(\frac{5}{6} \cdot \frac{4}{4}\right)-\left(\frac{1}{8} \cdot \frac{3}{3}\right)=\frac{20}{24}-\frac{3}{24}=\frac{17}{24}
$$

82. The lcm of 12 and 36 is 36 .

$$
\frac{5}{12}+\frac{7}{36}=\left(\frac{5}{12} \cdot \frac{3}{3}\right)+\frac{7}{36}=\frac{15}{36}+\frac{7}{36}=\frac{22}{36}=\frac{22 \div 2}{36 \div 2}=\frac{11}{18}
$$

81. The lcm of 13 and 26is 26.

$$
\frac{5}{13}+\frac{11}{26}=\left(\frac{5}{13} \cdot \frac{2}{2}\right)+\frac{11}{26}=\frac{10}{26}+\frac{11}{26}=\frac{21}{26}
$$

83. The lcm of 9 and 54 is 54 .

$$
\frac{5}{9}-\frac{7}{54}=\left(\frac{5}{9} \cdot \frac{6}{6}\right)-\frac{7}{54}=\frac{30}{54}-\frac{7}{54}=\frac{23}{54}
$$

84. The 1 cm of 30 and 120 is 120 .
$\frac{13}{30}-\frac{17}{120}=\left(\frac{13}{30} \cdot \frac{4}{4}\right)-\frac{17}{120}=\frac{52}{120}-\frac{17}{120}=\frac{35}{120}$ $=\frac{35 \div 5}{120 \div 5}=\frac{7}{24}$
85. The lcm of 5,15 , and 75 is 75 .
$\frac{3}{5}+\frac{7}{15}+\frac{9}{75}=\left(\frac{3}{5} \cdot \frac{15}{15}\right)+\left(\frac{7}{15} \cdot \frac{5}{5}\right)+\frac{9}{75}$
$=\frac{45}{75}+\frac{35}{75}+\frac{9}{75}=\frac{89}{75}$
86. The 1 cm of 25,100 , and 40 is 200.
$\frac{4}{25}-\frac{9}{100}-\frac{7}{40}=\left(\frac{4}{25} \cdot \frac{8}{8}\right)\left(\frac{9}{100} \cdot \frac{2}{2}\right)\left(\frac{7}{40} \cdot \frac{5}{5}\right)$
$=\frac{32}{200}-\frac{18}{200}-\frac{35}{200}=-\frac{21}{200}$
87. $\frac{5}{6}-\frac{7}{8}=\frac{5 \cdot 4-7 \cdot 3}{24}=\frac{20-21}{24}=\frac{-1}{24}$
88. $\frac{3}{8}+\frac{5}{12}=\frac{3 \cdot 12+8 \cdot 5}{8 \cdot 12}=\frac{36+40}{96}=\frac{76}{96}=\frac{19}{24}$
89. $\left(\frac{2}{3} \cdot \frac{9}{10}\right)+\frac{2}{5}=\frac{18}{30}+\frac{2}{5}=\frac{18}{30}+\left(\frac{2}{5} \cdot \frac{6}{6}\right)=$
$=\frac{18}{30}+\frac{12}{30}=\frac{30}{30}=1$
90. The lcm of 12,48 , and 72 is 144 .

$$
\begin{aligned}
& \frac{1}{12}+\frac{1}{48}+\frac{1}{72}=\left(\frac{1}{12} \cdot \frac{12}{12}\right)+\left(\frac{1}{48} \cdot \frac{3}{3}\right)+\left(\frac{1}{72} \cdot \frac{2}{2}\right) \\
& =\frac{12}{144}+\frac{3}{144}+\frac{2}{144}=\frac{17}{144}
\end{aligned}
$$

87. The lcm of 30,40 , and 50 is 600 .

$$
\begin{aligned}
& \frac{1}{30}-\frac{3}{40}-\frac{7}{50}=\left(\frac{1}{30} \cdot \frac{20}{20}\right)\left(\frac{3}{40} \cdot \frac{15}{15}\right)\left(\frac{7}{50} \cdot \frac{12}{12}\right) \\
& =\frac{20}{600}-\frac{45}{600}-\frac{84}{600}=-\frac{109}{600}
\end{aligned}
$$

89. $\frac{2}{5}+\frac{7}{8}=\frac{2 \cdot 8+7 \cdot 5}{8 \cdot 5}=\frac{16+35}{40}=\frac{51}{40}$
90. $\frac{3}{4}+\frac{2}{9}=\frac{3 \cdot 9+2 \cdot 4}{9 \cdot 4}=\frac{27+8}{36}=\frac{35}{36}$
91. $\frac{7}{3}-\frac{5}{12}=\frac{7 \cdot 12-3 \cdot 5}{3 \cdot 12}=\frac{84-15}{36}=\frac{69}{36}=\frac{23}{12}$
92. $\left(\frac{2}{3}+\frac{1}{4}\right)-\frac{3}{5}=\left(\frac{2 \cdot 4+3 \cdot 1}{3 \cdot 4}\right)-\frac{3}{5}=\frac{8+3}{12}-\frac{3}{5}$
$=\frac{11}{12}-\frac{3}{5}=\frac{11 \cdot 5-12 \cdot 3}{12 \cdot 5}=\frac{55-36}{60}=\frac{19}{60}$
93. $\left(\frac{7}{6} \div \frac{4}{3}\right)-\frac{11}{12}=\left(\frac{7}{6} \cdot \frac{3}{4}\right)-\frac{11}{12}=\frac{21}{24}-\left(\frac{11}{12} \cdot \frac{2}{2}\right)=$
$=\frac{21}{24}-\frac{22}{24}=\frac{-1}{24}$
94. $\left(\frac{1}{2}+\frac{3}{10}\right) \div\left(\frac{1}{5}+2\right)=\left(\frac{1}{2} \cdot \frac{5}{5}+\frac{3}{10}\right) \div\left(\frac{1}{5}+\frac{2}{1} \cdot \frac{5}{5}\right)=\left(\frac{5}{10}+\frac{3}{10}\right) \div\left(\frac{1}{5}+\frac{10}{5}\right)=\frac{8}{10} \div \frac{11}{5}=\frac{4}{5} \cdot \frac{5}{11}=\frac{20}{55}=\frac{4}{11}$
95. $\left(\frac{1}{9} \cdot \frac{3}{5}\right)+\left(\frac{2}{3} \cdot \frac{1}{5}\right)=\frac{3}{45}+\frac{2}{15}=\frac{1}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}$
96. $\left(3 \frac{4}{9}\right) \div\left(4+\frac{2}{3}\right)=\left(\frac{3}{1} \cdot \frac{9}{9}-\frac{4}{9}\right) \div\left(\frac{4}{1} \cdot \frac{3}{3}+\frac{2}{3}\right)=\left(\frac{27}{9}-\frac{4}{9}\right) \div\left(\frac{12}{3}+\frac{2}{3}\right)=\frac{23}{9} \div \frac{14}{3}=\frac{23}{9} \cdot \frac{3}{14}=\frac{69}{126}=\frac{23}{42}$
97. $\left(\frac{2}{5} \div \frac{4}{9}\right)\left(\frac{3}{5} \cdot 6\right)=\left(\frac{2}{5} \cdot \frac{9}{4}\right)\left(\frac{3}{5} \cdot \frac{6}{1}\right)=\frac{18}{20} \cdot \frac{18}{5}=\frac{9}{10} \cdot \frac{18}{5}=\frac{162}{50}=\frac{81}{25}$
98. The LCM of $2,4,6$ is 12 . $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\left(\frac{1}{2} \cdot \frac{6}{6}\right)+\left(\frac{1}{4} \cdot \frac{3}{3}\right)+\left(\frac{1}{6} \cdot \frac{2}{2}\right)=\frac{6}{12}+\frac{3}{12}+\frac{2}{12}=\frac{11}{12}$ musk thistles
99.

$$
\begin{aligned}
73 \frac{1}{4} & \rightarrow 72 \frac{5}{4} \\
-69 \frac{3}{4} & \rightarrow-69 \frac{3}{4} \\
3 \frac{2}{4} & \rightarrow 3 \frac{1}{2} \text { inches }
\end{aligned}
$$

103.

$14\left(8 \frac{5}{8}\right)=14\left(\frac{69}{8}\right)=\frac{966}{8}=\frac{966 \div 2}{8 \div 2}=\frac{483}{4}=120.75^{\prime \prime}$
104.
$67\left(\frac{5}{8}\right) \div 6=\frac{67 \cdot 8+5}{8} \cdot \frac{1}{6}=\frac{541}{48}=11.27 \mathrm{oz} .=11 \frac{13}{48} \mathrm{oz}$
106.
$1-\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{2}\right) 2 \frac{1}{4}+3 \frac{7}{8}+4 \frac{1}{4}=2 \frac{4}{16}+3 \frac{14}{16}+4 \frac{4}{16}$
$=9 \frac{22}{16}=10 \frac{6}{16}$
$20 \frac{5}{16}-10 \frac{6}{16}=19 \frac{21}{16}-10 \frac{6}{16}=9 \frac{15}{16}$ "
107. The LCM of $4,5,3$ is 60 .

$$
\begin{aligned}
\frac{1}{4}+\frac{2}{5}+\frac{1}{3} & =\left(\frac{1}{4}\right)\left(\frac{15}{15}\right)+\left(\frac{2}{5}\right)\left(\frac{12}{12}\right)+\left(\frac{1}{3}\right)\left(\frac{20}{20}\right) \\
& =\frac{15}{60}+\frac{24}{60}+\frac{20}{60}=\frac{59}{60}
\end{aligned}
$$

108.

$1-\left(\frac{1}{2}+\frac{2}{5}\right)=1-\left(\frac{5}{10}+\frac{4}{10}\right)=1-\frac{9}{10}=\frac{10}{10}-\frac{9}{10}=\frac{1}{10}$
Student tutors represent 0.1 of the budget.
109.

$$
\begin{aligned}
& 1-\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{2}\right)=1-\left(\frac{5}{20}+\frac{4}{20}+\frac{10}{20}\right) \\
& =1-\frac{19}{20}=\frac{20}{20}-\frac{19}{20}=\frac{1}{20}
\end{aligned}
$$

She must proofread .05 of the book or $=27$ pages.
110. $\left(1 \frac{1}{4}\right)(15)=\left(\frac{5}{4}\right)\left(\frac{15}{1}\right)=\frac{75}{4}=18 \frac{3}{4} \mathrm{cups}$
111.
$4 \frac{1}{2}+30 \frac{1}{4}+24 \frac{1}{8}=4 \frac{4}{8}+30 \frac{2}{8}+24 \frac{1}{8}=58 \frac{7}{8}$ inches
113. $\left(24 \frac{7}{8}\right) \div 2=\frac{199}{8} \cdot \frac{1}{2}=\frac{199}{16}=12 \frac{7}{16} \mathrm{in}$.
114.
$26 \frac{1}{2}+105 \frac{1}{4}+53 \frac{1}{4}+106 \frac{5}{16}=290+\frac{21}{16}=291 \frac{5}{16} "$

$$
\begin{aligned}
& \text { а) }\left(15 \frac{3}{8} \cdot \frac{1}{2}\right)=\left(\frac{15 \cdot 8+3}{8}\right) \cdot\left(\frac{1}{2}\right)=\left(\frac{123}{8} \cdot \frac{1}{2}\right) \\
& =\frac{123}{16}=7 \frac{11}{16} \text { inches }
\end{aligned}
$$

b) $7 \frac{11}{16}-\frac{1}{16}=\frac{7 \cdot 16+11}{16}-\frac{1}{16}=\frac{123-1}{16}=\frac{122}{16}=7 \frac{5}{8}$ "
117. width $=8 \mathrm{ft} .3 \mathrm{in} .=96 \mathrm{in} .+3 \mathrm{in} .=99 \mathrm{in} . ;$ length $=10 \mathrm{ft} .8 \mathrm{in} .=120 \mathrm{in} .+8 \mathrm{in} .=128 \mathrm{in}$.
a) perimeter $=2 \mathrm{~L}+2 \mathrm{~W}=2(128)+2(99)=454$ in $\frac{454^{\prime \prime}}{12 " / \mathrm{ft}}=37 \frac{10}{12} \mathrm{ft} .=37 \mathrm{ft} .10 \mathrm{in}$.
b) width $=8 \mathrm{ft} .3$ in. $=8 \frac{3}{12} \mathrm{ft} .=8 \frac{1}{4} \mathrm{ft} .=\frac{33}{4} \mathrm{ft} . ;$ length $=10 \mathrm{ft} .8 \mathrm{in} .=10 \frac{8}{12} \mathrm{ft} .=10 \frac{2}{3} \mathrm{ft} .=\frac{32}{3} \mathrm{ft}$ Area $=\mathrm{L} \times \mathrm{w}=\frac{32}{3} \times \frac{33}{4}=\frac{1056}{12}=88$ sq.ft
117. c) Volume $=\mathrm{L} \cdot \mathrm{W} \cdot \mathrm{H}=\frac{32}{3} \times \frac{33}{4} \times \frac{55}{6}=\frac{58080}{72}=806.7 \mathrm{cu} . \mathrm{ft}$.
118. a) $20+18 \frac{3}{8} \div 2=20+9 \frac{3}{16}=29 \frac{3}{16} \mathrm{in}$.
119. $\frac{0.10+0.11}{2}=\frac{0.21}{2}=0.105$
b) $26 \frac{1}{4}+6 \frac{3}{4}=33 \mathrm{in}$.
c) $26 \frac{1}{4}+\left(6 \frac{3}{4}-\frac{1}{4}\right)=26 \frac{1}{4}+6 \frac{2}{4}=32 \frac{3}{4} \mathrm{in}$.
120. $\frac{5.03+5.003}{2}=\frac{10.033}{2}=5.0165$
121. $\frac{-2.176+(-2.175)}{2}=\frac{-4.351}{2}=-2.1755$
122. $\frac{1.3457+1.34571}{2}=\frac{2.69141}{2}=1.345705$
123. $\frac{3.12345+3.123451}{2}=\frac{6.246901}{2}=3.1234505$
124. $\frac{0.4105+0.4106}{2}=\frac{0.8211}{2}=0.41055$
125. $\frac{4.872+4.873}{2}=\frac{9.745}{2}=4.8725$
126. $\frac{3.7896+(3.7895)}{2}=\frac{7.5791}{2}=3.78955$
127. $\left(\frac{1}{3}+\frac{2}{3}\right) \div 2=\frac{3}{3} \cdot \frac{1}{2}=\frac{3}{6}=\frac{1}{2}$
128. $\left(\frac{2}{7}+\frac{3}{7}\right) \div 2=\frac{5}{7} \cdot \frac{1}{2}=\frac{5}{14}$
129. $\left(\frac{1}{100}+\frac{1}{10}\right) \div 2=\frac{11}{100} \cdot \frac{1}{2}=\frac{11}{200}$
130. $\left(\frac{7}{13}+\frac{8}{13}\right) \div 2=\frac{15}{13} \cdot \frac{1}{2}=\frac{15}{26}$
131. $\left(\frac{1}{4}+\frac{1}{5}\right) \div 2=\left(\frac{5}{20}+\frac{4}{20}\right) \cdot \frac{1}{2}=\frac{9}{20} \cdot \frac{1}{2}=\frac{9}{40}$
132. $\left(\frac{1}{3}+\frac{2}{3}\right) \div 2=\frac{3}{3} \cdot \frac{1}{2}=\frac{1}{1} \cdot \frac{1}{2}=\frac{1}{2}$
133.

$$
\left(\frac{1}{10}+\frac{1}{100}\right) \div 2=\left(\frac{10}{100}+\frac{1}{100}\right) \cdot \frac{1}{2}=\frac{11}{100} \cdot \frac{1}{2}=\frac{11}{200}
$$

134. $\left(\frac{1}{2}+\frac{2}{3}\right) \div 2=\left(\frac{3}{6}+\frac{4}{6}\right) \cdot \frac{1}{2}=\frac{7}{6} \cdot \frac{1}{2}=\frac{7}{12}$
135. a) Water (or milk): $\left(1+1 \frac{3}{4}\right) \div 2=\left(\frac{4}{4}+\frac{7}{4}\right) \cdot \frac{1}{2}=\frac{11}{4} \cdot \frac{1}{2}=\frac{11}{8}=1 \frac{3}{8}$ cup;

Oats: $\left(\frac{1}{2}+1\right) \div 2=\frac{3}{2} \cdot \frac{1}{2}=\frac{3}{4}$ cup
b) $0 . \overline{9}$
c) $\frac{1}{3}=0 . \overline{3}, \frac{2}{3}=0 . \overline{6}, \frac{1}{3}+\frac{2}{3}=\frac{3}{3}=1,0 . \overline{3}+0 . \overline{6}=1$
d) $0 . \overline{9}=1$
136. a) $\frac{1}{8}$
b) $\frac{1}{16}$
c) 5 times
d) 5 times

Exercise Set 5.4

1. A rational number can be written as a ratio of two integers, p / q, with q not equal to zero. Numbers that cannot be written as the ratio of two integers are called irrational numbers.
2. The principal square root of a number n written \sqrt{n}, is the positive number that when multiplied by itself gives n.
3. A perfect square number is any number that is the square of a natural number.
4. The product rule for radical numbers: $\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b} \quad a \geq 0, b \geq 0$

The quotient rule for radical numbers: $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \quad a \geq 0, b \geq 0$
5. a) To add or subtract two or more square roots with the same radicand, add or subtract their coefficients and then multiply by the common radical.
b) $3 \sqrt{6}+5 \sqrt{6}-9 \sqrt{6}=8 \sqrt{6}-9 \sqrt{6}=-1 \sqrt{6}=-\sqrt{6}$
6. A rationalized denominator contains no radical expressions.
7. a) Multiply both the numerator and denominator by the same number that will result in the radicand in the denominator becoming a perfect square.
b) $\frac{7}{\sqrt{3}}=\frac{7}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{7 \sqrt{3}}{\sqrt{9}}=\frac{7 \sqrt{3}}{3}$
10. $\sqrt{18}=\sqrt{2} \sqrt{9}=3 \sqrt{2} \quad$ irrational
12. Irrational; non-terminating, non-repeating decimal
14. Irrational; π is non-terminating, non-repeating.
16. Rational; terminating decimal
8. (a) $[\sqrt{ }][\#][$ Enter $]$
(b) $\sqrt{7}=2.645751311=2.65$
9. $\sqrt{36}=6$ rational
11. $\frac{2}{3}$ rational
13. Irrational; non-terminating, non-repeating decimal
15. Rational; quotient of two integers
17. Irrational; non-terminating, non-repeating decimal
18. Rational; $\frac{\sqrt{5}}{\sqrt{5}}=1 \quad 1$ is an integer.
21. $\sqrt{100}=10$
19. $\sqrt{64}=8$
22. $-\sqrt{144}=-12$
25. $-\sqrt{225}=-15$
28. $\sqrt{256}=16$
30. -5 , rational, integer
33. rational
24. $\sqrt{25}=5$
27. $-\sqrt{100}=-10$
31. $\sqrt{25}=5$, rat'l, integer., nat' 1
34. rational
20. $\sqrt{144}=12$
23. $-\sqrt{169}=-13$
26. $-\sqrt{36}=-6$
29. 1, rational, integer, natural
32. rational
35. rational
36. rational
39. $\sqrt{18}=\sqrt{2} \sqrt{9}=3 \sqrt{2}$
42. $\sqrt{60}=\sqrt{4} \sqrt{15}=2 \sqrt{15}$
45. $\sqrt{80}=\sqrt{16} \sqrt{5}=4 \sqrt{5}$
48. $\sqrt{300}=\sqrt{100} \sqrt{3}=10 \sqrt{3}$
51.

$$
\begin{aligned}
& 5 \sqrt{12}-\sqrt{75}=5 \sqrt{4} \sqrt{3}-\sqrt{25} \sqrt{3} \\
& =5 \cdot 2 \sqrt{3}-5 \sqrt{3}=10 \sqrt{3}-5 \sqrt{3}=5 \sqrt{3}
\end{aligned}
$$

54.

$$
\begin{aligned}
& 2 \sqrt{7}+5 \sqrt{28}=2 \sqrt{7}+5 \cdot 2 \sqrt{7} \\
& =2 \sqrt{7}+10 \sqrt{7}=(2+10) \sqrt{7} \\
& =12 \sqrt{7}
\end{aligned}
$$

57.

$$
\begin{aligned}
& \sqrt{8}-3 \sqrt{50}+9 \sqrt{32} \\
& =2 \sqrt{2}-3 \cdot 5 \sqrt{2}+9 \cdot 4 \sqrt{2} \\
& =2 \sqrt{2}-15 \sqrt{2}+36 \sqrt{2} \\
& =(2-15+36) \sqrt{2}=-19 \sqrt{2}
\end{aligned}
$$

60. $\sqrt{5} \cdot \sqrt{15}=\sqrt{5} \sqrt{5} \sqrt{3}$
$=5 \sqrt{2}$
61. $\sqrt{10} \cdot \sqrt{20}=\sqrt{200}$
$=\sqrt{100} \cdot \sqrt{2}=10 \sqrt{2}$
62. $\frac{\sqrt{125}}{\sqrt{5}}=\sqrt{25}=5$
63. rational
64. $\sqrt{20}=\sqrt{4} \sqrt{5}=2 \sqrt{5}$
65. $\sqrt{63}=\sqrt{9} \sqrt{7}=3 \sqrt{7}$
66. $\sqrt{90}=\sqrt{9} \sqrt{10}=3 \sqrt{10}$
67. $2 \sqrt{6}+5 \sqrt{6}=(2+5) \sqrt{6}=7 \sqrt{6}$
68.

$$
\begin{aligned}
& 2 \sqrt{5}+3 \sqrt{20}=2 \sqrt{5}+3 \square \sqrt{5} \\
& =2 \sqrt{5}+6 \sqrt{5}=8 \sqrt{5}
\end{aligned}
$$

55.

$$
\begin{aligned}
& 5 \sqrt{3}+7 \sqrt{12}-3 \sqrt{75} \\
& =5 \sqrt{3}+7 \cdot 2 \sqrt{3}-3 \cdot 5 \sqrt{3} \\
& =5 \sqrt{3}+14 \sqrt{3}-15 \sqrt{3} \\
& =(5+14-15) \sqrt{3}=4 \sqrt{3}
\end{aligned}
$$

58.

$$
\begin{aligned}
& \sqrt{63}+13 \sqrt{98}-5 \sqrt{112} \\
& =3 \sqrt{7}+13 \cdot 7 \sqrt{2}-5 \cdot 4 \sqrt{7} \\
& =3 \sqrt{7}+91 \sqrt{2}-20 \sqrt{7} \\
& =-17 \sqrt{7}+91 \sqrt{2}
\end{aligned}
$$

61. $\sqrt{6} \cdot \sqrt{10}=\sqrt{2} \sqrt{3} \sqrt{2} \sqrt{5}$
$=\sqrt{4} \sqrt{15}=2 \sqrt{15}$
62. $\sqrt{11} \cdot \sqrt{33}=\sqrt{11} \cdot \sqrt{11} \cdot \sqrt{3}$
$=11 \sqrt{3}$
63. $\frac{\sqrt{72}}{\sqrt{8}}=\sqrt{9}=3$
64. irrational
65. $\sqrt{48}=\sqrt{3} \sqrt{16}=4 \sqrt{3}$
66. $\sqrt{75}=\sqrt{25} \sqrt{3}=5 \sqrt{3}$
67. $\sqrt{162}=\sqrt{81} \sqrt{2}=9 \sqrt{2}$
68. $3 \sqrt{17}+\sqrt{17}=(3+1) \sqrt{17}=4 \sqrt{17}$
69.

$$
4 \sqrt{12}-7 \sqrt{27}=4 \sqrt{4} \sqrt{3}-7 \sqrt{9} \sqrt{3}
$$

$$
=4 \cdot 2 \sqrt{3}-7 \cdot 3 \sqrt{3}=8 \sqrt{3}-21 \sqrt{3}
$$

$$
=-13 \sqrt{3}
$$

56.

$$
\begin{aligned}
& 13 \sqrt{2}+2 \sqrt{18}-5 \sqrt{32} \\
& =13 \sqrt{2}+2 \cdot 3 \sqrt{2}-5 \cdot 4 \sqrt{2} \\
& =13 \sqrt{2}+6 \sqrt{2}-20 \sqrt{2} \\
& =(13+6-20) \sqrt{2}=-\sqrt{2}
\end{aligned}
$$

59.

$$
\begin{aligned}
& \sqrt{2} \cdot \sqrt{8}=\sqrt{2} \sqrt{4} \sqrt{2} \\
& =2 \sqrt{2} \sqrt{2}=2 \sqrt{4} \\
& =2 \cdot 2=4
\end{aligned}
$$

62. $\sqrt{3} \cdot \sqrt{6}=\sqrt{18}$
$=\sqrt{9} \cdot \sqrt{2}=3 \sqrt{2}$
63. $\frac{\sqrt{8}}{\sqrt{4}}=\sqrt{2}$
64. $\frac{\sqrt{136}}{\sqrt{8}}=\sqrt{17}$
65. $\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}=\frac{1 \sqrt{2}}{\sqrt{4}}=\frac{\sqrt{2}}{2}$
66. $\frac{3}{\sqrt{3}}=\frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{3}=\sqrt{3}$
67. $\frac{\sqrt{3}}{\sqrt{10}}=\frac{\sqrt{3}}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}=\frac{\sqrt{30}}{\sqrt{100}}=\frac{\sqrt{30}}{10}$
68. $\frac{\sqrt{20}}{\sqrt{3}}=\frac{\sqrt{20}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{60}}{\sqrt{9}}$
$=\frac{\sqrt{4} \sqrt{15}}{3}=\frac{2 \sqrt{15}}{3}$
69. $\frac{\sqrt{9}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}$
70. $\frac{\sqrt{15}}{\sqrt{3}}=\sqrt{5}$
71. $\frac{\sqrt{3}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} \cdot \frac{\sqrt{21}}{7}$
72. $\frac{\sqrt{50}}{\sqrt{14}}=\sqrt{\frac{50}{14}}=\sqrt{\frac{25}{7}}$
73. $=\frac{\sqrt{25}}{\sqrt{7}} \frac{\sqrt{7}}{\sqrt{7}}=\frac{5 \sqrt{7}}{7}$
74. $\frac{\sqrt{10}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=\frac{\sqrt{60}}{6}$
$=\frac{2 \sqrt{15}}{6}=\frac{\sqrt{15}}{3}$
75. $\frac{8}{\sqrt{8}}=\frac{8}{\sqrt{8}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{8 \sqrt{2}}{\sqrt{16}}=\frac{8 \sqrt{2}}{4}=2 \sqrt{2}$
76. $\sqrt{7}$ is between 2 and 3 since $\sqrt{7}$ is between $\sqrt{4}=2$ and $\sqrt{9}=3 . \sqrt{7}$ is between 2.5 and 3 since 7 is closer to 9 than to 4 . Using a calculator $\sqrt{7} \approx 2.6$.
77. $\sqrt{37}$ is between 6 and 7 since $\sqrt{37}$ is between $\sqrt{36}=6$ and $\sqrt{49}=7 . \sqrt{37}$ is between 6 and 6.5 since 37 is closer to 36 than to 49 . Using a calculator $\sqrt{37} \approx 6.1$.
78. $\sqrt{107}$ is between 10 and 11 since $\sqrt{107}$ is between $\sqrt{100}=10$ and $\sqrt{121}=11 . \sqrt{107}$ is between 10 and 10.5 since 107 is closer to 100 than to 121 . Using a calculator $\sqrt{107} \approx 10.3$.
79. $\sqrt{135}$ is between 11 and 12 since $\sqrt{135}$ is between $\sqrt{121}=11$ and $\sqrt{144}=12 . \sqrt{135}$ is between 11.5 and 12 since 135 is closer to 144 than to 121 . Using a calculator $\sqrt{135} \approx 11.6$.
80. $\sqrt{170}$ is between 13 and 14 since $\sqrt{170}$ is between $\sqrt{169}=13$ and $\sqrt{196}=14 . \sqrt{170}$ is between 13 and 13.5 since 170 is closer to 169 than to 196 . Using a calculator $\sqrt{170} \approx 13.04$.
81. $\sqrt{200}$ is between 14 and 15 since $\sqrt{200}$ is between $\sqrt{196}=14$ and $\sqrt{225}=15 . \sqrt{200}$ is between 14 and 14.5 since 200 is closer to 196 than to 225 . Using a calculator $\sqrt{200} \approx 14.1$.
82. False. \sqrt{p} is an irrational number for any prime number p.
83. False. The result may be a rational number or an irrational number.
84. True 88. True 89. False. The result may be a rational number or an irrational number.
85. False. The result may be a rational number or an irrational number.
86. $\sqrt{2}+(-\sqrt{2})=0$
87. $\sqrt{3}+5 \sqrt{3}=6 \sqrt{3}$
88. $\sqrt{2} \cdot \sqrt{3}=\sqrt{6}$
89. $\sqrt{3} \cdot \sqrt{3}=\sqrt{9}=3 \quad$ 95. No. $\sqrt{3} \neq 1.732$ since $\sqrt{3}$ is an irrational number and 1.732 is a rational number.
90. $\sqrt{14}=\sqrt{7} \sqrt{2} \quad \sqrt{7}$ is irrational and $\sqrt{2}$ is irrational, therefore $\sqrt{14}$ is irrational. Because 3.742 is rational, then $\sqrt{14} \neq 3.742$.

$$
\sqrt{9+16} \neq \sqrt{9}+\sqrt{16}
$$

98. $\sqrt{25} \neq 3+4$
$5 \neq 7$
$T=2 \pi \sqrt{\frac{35}{980}}=2 \pi \frac{\sqrt{35}}{\sqrt{980}}=2 \pi \frac{\sqrt{5} \sqrt{7}}{\sqrt{5} \sqrt{196}}$
$=2 \pi \frac{\sqrt{7}}{14}=\frac{2 \pi \sqrt{7}}{2 \cdot 7}=\frac{\pi \sqrt{7}}{7}$
99. a) $\mathrm{t}=\frac{\sqrt{100}}{4}=\frac{10}{4}=2.5 \mathrm{sec}$
b) $\mathrm{t}=\frac{\sqrt{400}}{4}=\frac{20}{4}=5 \mathrm{sec}$
c) $\mathrm{t}=\frac{\sqrt{900}}{4}=\frac{30}{4}=7.5 \mathrm{sec}$
d) $t=\frac{\sqrt{1600}}{4}=\frac{40}{4}=10 \mathrm{sec}$
100. No. 3.14 and $\frac{22}{7}$ are rational numbers, π is an irrational number.

$$
\sqrt{4 \cdot 16}=\sqrt{4} \sqrt{16}
$$

99. $\sqrt{64}=2 \cdot 4$
$8=8$
100. a) $\mathrm{s}=\sqrt{\frac{4}{0.04}}=\sqrt{100}=10 \mathrm{mph}$
b) $\mathrm{s}=\sqrt{\frac{16}{0.04}}=\sqrt{400}=20 \mathrm{mph}$
c) $\mathrm{s}=\sqrt{\frac{64}{0.04}}=\sqrt{1600}=40 \mathrm{mph}$
d) $\mathrm{s}=\sqrt{\frac{256}{0.04}}=\sqrt{6400}=80 \mathrm{mph}$
101. a) The number is rational if the result on the calculator is a terminating or repeating decimal number. Otherwise, the number is irrational.
b) Using a calculator, $\sqrt{0.04}=0.2$ a terminating decimal and thus it is rational.
c) Using a calculator, $\sqrt{0.07}=0.264575131 \ldots$, thus it is irrational.
102. No. The sum of two irrational numbers may not be irrational. (i.e. $-\sqrt{3}+\sqrt{3}=0$)
103. a) $(44 \div \sqrt{4}) \div \sqrt{4}=(44 \div 2) \div 2=22 \div 2=11$
b) $(44 \div 4)+\sqrt{4}=11+2=13$
c) $4+4+4+\sqrt{4}=12+2=14$
d) $\sqrt{4}(4+4)+\sqrt{4}=2(8)+2=16+2=18$

Exercise Set 5.5

1. The set of real numbers is the union of the rational numbers and the irrational numbers.
2. All real numbers $=R$
3. If the given operation is preformed on any two elements of the set and the result is an element of the set, then the set is closed under the given operation.
4. The order in which two numbers are multiplied does not make a difference in the result. Ex. $2 \cdot 3=3 \cdot 2$
5. The order in which two numbers are added does not make a difference in the result. Ex. $a+b=b+a$
6. The associative property of addition states that when adding three real numbers, parentheses may be placed around any two adjacent numbers. $(a+b)+c=a+(b+c)$
7. The associative property of multiplication states that when multiplying three real numbers, parentheses may be placed around any two adjacent numbers. Ex. $(2 \cdot 3) \cdot 4=2 \cdot(3 \cdot 4)$.
8. The distributive property of multiplication over addition allows you to either add first and then multiply, or multiply first and then add. $a(b+c)=a b+a c$
9. Closed. The sum of two natural numbers is a natural number.
10. Not closed. (i.e. $3-5=-2$ is not a natural number).
11. Not closed. (i.e. $3 \div 5=\frac{3}{5}=0.6$ is not a natural number).
12. Closed. The product of two natural numbers is a natural number.
13. Closed. The difference of two integers is an integer.
14. Closed. The sum of two integers is an integer.
15. Not closed. (i.e. $2 \div 5=\frac{2}{5}=0.4=0.4$ is not an integer).
16. Closed. The product of two integers is an integer.
17. Closed
18. Closed
19. Not closed
20. Not closed
21. Closed
22. Not closed
23. Closed
24. Closed
25. Not closed
26. Not closed
27. Commutative property. The order is changed from $(x)+(3+4)=(3+4)+x$.
28. $4+(5+6)=4+(6+5)$; Commutative because the only thing that has changed is the order of 5 and 6 .
29. $(-4) \cdot(-5)=20=(-5) \cdot(-4)$
30. No. $6 \div 3=2$, but $3 \div 6=\frac{1}{2}$
31. $[(-3) \cdot(-5]) \cdot(-7)=(15) \cdot(-7)=-105$
$(-3) \cdot[(-5]) \cdot(-7)]=(-3) \cdot(35)=-105$
32. No. $(8 \div 4) \div 2=2 \div 2=1$, but $8 \div(4 \div 2)=8 \div 2=4$
33. No. $(8 \div 4) \div 2=2 \div 2=1$, but $8 \div(4 \div 2)=8 \div 2=4$
34. Commutative property of addition
35. $(7 \cdot 4) \cdot 5=7 \cdot(4 \cdot 5)$

Associative property of multiplication
45. $(24+7)+3=24+(7+3)$

Associative property of addition
32. $(-2)+(-3)=-5=(-3)+(-2)$
34. No. $5-3=2$, but $3-5=-2$
36. $[(-3)+(-5])+(-7)=(-8)+(-7)=-15$
$(-3)+[(-5])+(-7)]=(-3)+(-12)=-15$
38. No. $(8-7)-12=1-12=-11$, but $8-(-5)$ $=8+5=13$
40. No. $2+(3 \bullet 4)=2+12=14$, but $(2+3) \cdot(2+4)$ $=5 \cdot 6=30$
46. $5(x+3)=5 x+5 \cdot 3$ Distributive property
44. $v+w=w+v$

Commutative property of addition
46. $4 \cdot(11 \cdot x)=(4 \cdot 11) \cdot x$

Associative property of multiplication
47. $\sqrt{3} \cdot 7=7 \cdot \sqrt{3}$

Commutative property of multiplication
49. $8(7+\sqrt{2})=8 \cdot 7+8 \cdot \sqrt{2}$

Distributive property
51. Commutative property of addition
53. Distributive property
55. Commutative property of addition
57. $2(c+7)=2 c+14$
59. $\frac{2}{3}(x-6)=\frac{2}{3} x-\frac{12}{3}=\frac{2}{3} x-4$
61. $6\left(\frac{x}{2}+\frac{2}{3}\right)=\frac{6 x}{2}+\frac{12}{3}=3 x+4$
63. $32\left(\frac{1}{16} x-\frac{1}{32}\right)=\frac{32 x}{16}-\frac{32}{32}=2 x-1$
65. $3(5-\sqrt{5})=15-3 \sqrt{5}$
67. $\sqrt{2}(\sqrt{2}+\sqrt{3})=\sqrt{4}+\sqrt{6}=2+\sqrt{6}$
69. a) Distributive property
b) Associative property of addition
c) Combine like terms
71. a) Distributive property
b) Associative property of addition;
c) Commutative property of addition
d) Associative property of addition
e) Combine like terms
73. a) Distributive property
b) Commutative property of addition;
c) Associative property of addition
d) Combine like terms
e) Commutative property of addition
75. Yes. You can either lock your door first or put on your seat belt first.
48. $\frac{3}{8}+\left(\frac{1}{8}+\frac{3}{2}\right)=\left(\frac{3}{8}+\frac{1}{8}\right)+\frac{3}{2}$

Associative property of addition
50. $\sqrt{5} \cdot \frac{2}{3}=\frac{2}{3} \cdot \sqrt{5}$

Commutative property of multiplication
52. Commutative property of addition
54. Commutative property of multiplication
56. Commutative property of multiplication
58. $-3(d-1)=-3 d+3$
60. $\frac{-5}{8}(k+8)=\frac{-5}{8} k+\frac{-40}{8}=\frac{-5}{8} k=5$
62. $24\left(\frac{x}{3}-\frac{1}{8}\right)=\frac{24 x}{3}-\frac{24}{8}=8 x-3$
64. $15\left(\frac{2}{3} x-\frac{4}{5}\right)=\frac{30 x}{3}-\frac{60}{5}=10 x-12$
66. $-7(2+\sqrt{11})=-14-2 \sqrt{11}$
68. $\sqrt{3}(\sqrt{15}+\sqrt{21})=\sqrt{45}+\sqrt{63}=\sqrt{9} \sqrt{5}+\sqrt{9} \sqrt{7}$

$$
=3 \sqrt{5}+3 \sqrt{7}
$$

70. a) Distributive property
b) Associative property of addition;
c) Combine like terms
71. a) Distributive property
b) Associative property of addition;
c) Commutative property of addition
d) Associative property of addition
e) Combine like terms
72. a) Distributive property
b) Commutative property of addition;
c) Associative property of addition
d) Combine like terms
e) Commutative property of addition
73. Yes. Can be done independently; no order needed
74. No. The clothes must be washed first before being dryed.
75. Yes. Can be done in either order; either fill the car with gas or wash the windshield
76. Yes. The order of events does not matter.
77. Yes. The order does not matter.
78. Yes. The order does not matter
79. Yes. The final result will be the same regardless of the order of the events.
80. Baking pizzelles: mixing eggs into the batter, or mixing sugar into the batter.; Yard work: mowing the lawn, or trimming the bushes
81. No. The PC must be turned on first before you can type a term paper.
82. No. The lamp must be turned on first before reading a book.
83. No. The book must be read first, then write a report, then make a presentation.
84. Yes. The order does not matter.
85. No. The egg cannot be poured before it is cracked.
86. Yes. The meatloaf will taste the same regardless of the order the items are mixed.
87. Washing siding/washing windows/washing the car Writing letters to spouse, parents or friends
88. No. $0 \div a=0$ but $a \div 0$ is undefined.
89. a) No. (Man eating) tiger is a tiger that eats men, and man (eating tiger) is a man that is eating a tiger.
b) No. (Horse riding) monkey is a monkey that rides a horse, and horse (riding monkey) is a horse that rides a monkey.
c) Answers will vary.

Exercise Set 5.6

1. 2 is the base and 3 is the exponent or power.
2. a) If m and n are natural numbers and a is any real number, then $a^{\mathrm{m}} a^{\mathrm{n}}=a^{\mathrm{m}+\mathrm{n}}$
b) $2^{3} \cdot 2^{4}=2^{3+4}=2^{7}=128$
3. b^{n} is b multiplied by itself n times. $b^{n}=\underbrace{b \cdot b \cdot b \cdots b}_{n \text { factors of } b}$
4. a) If m and n are natural numbers and a is any real number except 0 , then $\frac{a^{m}}{a^{n}}=a^{m-n}$.
b) $\frac{5^{6}}{5^{4}}=5^{6-4}=5^{2}=25$
5. a) If n is a natural number and a is any real number except 0 , then $a^{-n}=\frac{1}{a^{n}}$.
b) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
6. a) If m and n are natural numbers and a is any real number, then $\left(a^{m}\right)^{n}=a^{m \cdot n}$
b) $\left(3^{2}\right)^{4}=3^{2 \cdot 4}=3^{8}=6561$
7. a) Since 1 raised to any exponent equals +1 , then $-1^{500}=(-1)\left(1^{500}\right)=(-1)(1)=1$
b) Since -1 raised to an even exponent equals 1 , then number $(-1)^{500}=\left((-1)^{2}\right)^{250}=(1)^{250}=1$
c) In $-1^{501}-1$ is not raised to the $501^{\text {st }}$ power, but +1 is; so $-1^{501}=(-1)\left(1^{501}\right)=(-1)(1)=-1$
d) Since -1 is raised to a negative exponent is -1 , then $(-1)^{501}=-1$
8. a) Move the decimal point in the original number to the right or left until you obtain a number greater or equal to 1 and less than 10 . Count the number of places the decimal was moved. If it was moved to the left the count is a positive number and if it was moved to the right the count is a negative number. Multiply the number obtained in the first step by 10 raised to the count number.
b) $0.000426=4.26 \times 10^{-4}$. note: the count number is -4
9. a) If the exponent is positive, move the decimal point in the number to the right the same number of places as the exponent adding zeros where necessary. If the exponent is negative, move the decimal point in the number to the left the same number of places as the exponent adding zeros where necessary.
b) $5.76 \times 10^{-4}=0.000576$
10. a) The number is greater than or equal to 10 .
b) The number is greater than or equal 1 but <10.
c) The number is less than 1 .
11. $3^{4}=3 \cdot 3 \cdot 3 \cdot 3=81$
12. $-2^{4}=-(2) \cdot(2) \cdot(2) \cdot(2)=-16$
13. $(-3)^{2}=(-3) \cdot(-3)=9$
14. $\left(\frac{-7}{8}\right)^{2}=\left(\frac{-7}{8}\right)\left(\frac{-7}{8}\right)=\frac{49}{64}$
15. $-(5)^{2}=-(5) \cdot(5)=-25$
16. $2^{3} \cdot 3^{2}=(2) \cdot(2) \cdot(2) \cdot(3) \cdot(3)=72$
17. $5^{2}=5 \cdot 5=25$
18. $(-2)^{4}=(-2) \cdot(-2) \cdot(-2) \cdot(-2)=16$
19. $-3^{2}=-(3) \cdot(3)=-9$
20. $\left(\frac{2}{3}\right)^{2}=\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)=\frac{4}{9}$
21. $(-5)^{2}=(-5) \cdot(-5)=25$
22. $-(5)^{2}=-(5) \cdot(5)=-25$
23. $\frac{15^{2}}{3^{2}}=\frac{15 \cdot 15}{3 \cdot 3}=\frac{225}{9}=25$
24. $\frac{5^{7}}{5^{5}}=5^{7-5}=5^{2}=5 \cdot 5=25$
25. $\frac{7}{7^{3}}=7^{1-3}=7^{-2}=\frac{1}{7^{2}}=\frac{1}{7 \cdot 7}=\frac{1}{49}$
26. $(-13)^{0}=1$
27. $3^{4}=(3)(3)(3)(3)=81$
28. $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
29. $\left(2^{3}\right)^{4}=2^{3 \cdot 4}=2^{12}=4096$
30. $\frac{11^{25}}{11^{23}}=11^{25-23}=11^{2}=121$
31. $(-4)^{2}=(-4) \cdot(-4)=16$
32. $-(4)^{2}=-(4) \cdot(4)=-16$
33. $\left(2^{2}\right)^{-3}=2^{2(-3)}=2^{-6}=\frac{1}{2^{6}}=\frac{1}{64}$
34. $3^{3} \cdot 3^{4}=3^{3+4}=3^{7}=2187$
35. $3^{4} \cdot 7^{0}=(3)(3)(3)(3)(1)=81$
36. $(-3)^{4}=(-3)(-3)(-3)(-3)=81$
37. $-3^{4}=-(3)(3)(3)(3)=-81$
38. $3^{-3}=\frac{1}{3^{3}}=\frac{1}{27}$
39. $\left(1^{12}\right)^{13}=1^{12 \cdot 13}=1^{156}=1$
40. $5^{2} \cdot 5=5^{2+1}=5^{3}=125$
41. $4^{-2}=\frac{1}{4^{2}}=\frac{1}{16}$
42. $\left(4^{3}\right)^{2}=4^{3 \cdot 2}=4^{6}=4096$
43. $231000=2.31 \times 10^{5}$
44. $0.000034=3.4 \times 10^{-5}$
45. $297000000=2.97 \times 10^{8}$
46. $15=1.5 \times 10^{1}$
47. $0.56=5.6 \times 10^{-1}$
48. $0.00467=4.67 \times 10^{-3}$
49. $1260000000=1.26 \times 10^{9}$
50. $0.000186=1.86 \times 10^{-4}$
51. $0.00000423=4.23 \times 10^{-6}$
52. $54000=5.4 \times 10^{4}$
53. $0.02=2.0 \times 10^{-2}$
54. $0.153=1.53 \times 10^{-1}$
55. $8.4 \times 10^{4}=84000$
56. $2.71 \times 10^{-3}=0.00271$
57. $5.19 \times 10^{5}=519000$
58. $2.13 \times 10^{-5}=0.0000213$
59. $3.12 \times 10^{-1}=0.312$
60. $4.6 \times 10^{1}=46$
61. $7.3 \times 10^{4}=73000$
62. $2.31 \times 10^{2}=231$
63. $3.5 \times 10^{4}=35000$
64. $2.17 \times 10^{-6}=0.00000217$
65. $1.04 \times 10^{-2}=0.0104$
66. $1.0 \times 10^{4}=10000$
67. $1.0 \times 10^{-3}=0.001$
68. $\left(2.0 \times 10^{3}\right)\left(4.0 \times 10^{2}\right)=8.0 \times 10^{5}=800000$
69. $\left(5.1 \times 10^{1}\right)\left(3.0 \times 10^{-4}\right)=15.3 \times 10^{-3}=0.0153$
70. $\frac{6.4 \times 10^{5}}{2.0 \times 10^{3}}=3.2 \times 10^{2}=320$
71. $\frac{8.4 \times 10^{-6}}{4.0 \times 10^{-3}}=2.1 \times 10^{-3}=0.0021$
72. $\frac{4.0 \times 10^{5}}{2.0 \times 10^{4}}=2.0 \times 10^{1}=20$
73. $(300000)(2000000)=\left(3.0 \times 10^{5}\right)\left(2.0 \times 10^{6}\right)$ $=6.0 \times 10^{11}$
74. $\left(3.0 \times 10^{-3}\right)\left(1.5 \times 10^{-4}\right)=4.5 \times 10^{-7}$
75. $\frac{1.4 \times 10^{6}}{7.0 \times 10^{2}}=0.2 \times 10^{4}=2.0 \times 10^{3}$
76. $\frac{4.0 \times 10^{-5}}{2.0 \times 10^{2}}=2.0 \times 10^{-7}$
77. $\frac{1.5 \times 10^{5}}{5.0 \times 10^{-4}}=0.3 \times 10^{9}=3.0 \times 10^{8}$
78. $8.3 \times 10^{-4}, 3.2 \times 10^{-1}, 4.6,5.8 \times 10^{5}$
79. $\left(4.1 \times 10^{-3}\right)\left(2.0 \times 10^{3}\right)=8.2 \times 10^{0}=8.2$
80. $\left(1.6 \times 10^{-2}\right)\left(4.0 \times 10^{-3}\right)=6.4 \times 10^{-}=0.000064$
81. $\frac{8.0 \times 10^{-3}}{2.0 \times 10^{1}}=4.0 \times 10^{-4}=0.0004$
82. $\frac{25.0 \times 10^{3}}{5.0 \times 10^{-2}}=5.0 \times 10^{5}=500000$
83. $\frac{16.0 \times 10^{3}}{8.0 \times 10^{-3}}=2.0 \times 10^{6}=2000000$
84. $\left(4.1 \times 10^{-5}\right)\left(3.0 \times 10^{3}\right)=12.3 \times 10^{-2}$
$=1.23 \times 10^{-1}$
85. $\left(2.3 \times 10^{5}\right)\left(3.0 \times 10^{3}\right)=6.9 \times 10^{8}$
86. $\frac{2.0 \times 10^{4}}{5.0 \times 10^{-4}}=0.4 \times 10^{8}=4.0 \times 10^{7}$
87. $\frac{1.2 \times 10^{-3}}{6 \times 10^{-6}}=0.2 \times 10^{3}=2.0 \times 10^{2}$
88. $\frac{2.4 \times 10^{4}}{8.0 \times 10^{6}}=0.3 \times 10^{-2}=3.0 \times 10^{-3}$
89. $8.5 \times 10^{-5}, 1.3 \times 10^{-1}, 8.2 \times 10^{3}, 6.2 \times 10^{4}$
90. $8.3 \times 10^{-5} ; 0.00079 ; 4.1 \times 10^{3} ; 40,000 ;$ Note: $0.00079=7.9 \times 10^{-4}, 40,000=4 \times 10^{4}$
91. $1,962,000 ; 4.79 \times 10^{6} ; 3.14 \times 10^{7} ; 267,000,000$
92. $\frac{\$ 10.1432 \times 10^{12}}{285.0 \times 10^{6}}=0.3559017548 \times 10^{6} \quad$ a) $\$ 35,590.18 \quad$ b) 3.559018×10^{4} GDP/person
93. $\frac{\$ 4.1468 \times 10^{12}}{127.0 \times 10^{6}}=0.0326514685 \times 10^{6}$
a) $\$ 32,651.97 \quad$ b) $\$ 3.2652 \times 10^{4} \mathrm{GDP} /$ person
94. $\frac{7.69 \times 10^{33}}{36.6 \times 10^{12}}=0.2101092896 \times 10^{21} \quad$ a) $\$ 210,109,000,000,000,000,000 \quad$ b) $\$ 2.1011 \times 10^{20}$ seconds
95. $6.251 \times 10^{9}-1.283 \times 10^{9}=4.968 \times 10^{9}$ people
96. $\mathrm{t}=\frac{\mathrm{d}}{\mathrm{r}}=\frac{4.5 \times 10^{8}}{2.5 \times 10^{4}}=1.8 \times 10^{4} \quad$ a) $18,000 \mathrm{hrs}$. b) $1.8 \times 10^{4} \mathrm{hrs}$
97. $\mathrm{t}=\frac{\mathrm{d}}{\mathrm{r}}=\frac{239000 \mathrm{mi}}{20000 \mathrm{mph}}=11.95$
a) $11.95 \mathrm{hrs} \quad$ b) $1.195 \times 10^{1} \mathrm{hrs}$
98. $(500,000)(40,000,000,000)=\left(5 \times 10^{5}\right)\left(4 \times 10^{10}\right)=20 \times 10^{15}=2 \times 10^{16}$
a) $20,000,000,000,000,000$ drops
b) $2.0 \times 10^{16} \mathrm{drops}$
99. $(50)(5,800,000)=\left(5 \times 10^{1}\right)\left(5.8 \times 10^{6}\right)=29 \times 10^{7}=2.9 \times 10^{8}$
a) $290,000,000 \mathrm{cells}$
b) 2.9×10^{8} cells
100. $\frac{4.5 \times 10^{9}}{2.5 \times 10^{5}}=1.8 \times 10^{4}$
a) 18,000 times
b) 1.8×10^{4} times
101. a) $(100,000 \mathrm{cu} . \mathrm{ft} . / \mathrm{sec})(60 \mathrm{sec} / \mathrm{min})(60 \mathrm{~min} / \mathrm{hr})(24 \mathrm{hr})=8,640,000,000 \mathrm{ft}^{3}$
b) $8.64 \times 10^{9} \mathrm{cu} \mathrm{ft}$
102. $\frac{\$ 4.65 \times 10^{12}}{257.0 \times 10^{6}}=0.0180933852 \times 10^{6}$
a) $\$ 32,651.97-18,093.00=\$ 3,434.78$
103. a) 18 billion $=18,000,000,000=1.8 \times 10^{10}$ diapers
b) $(14)(2.38)\left(10^{5}\right)=33.32 \times 10^{5}=3.332 \times 10^{6}$ or $3,332,000$ miles
$\begin{aligned} \text { 113. a) }(0.60)(1,200,000,000) & =\$ 720,000,000 \\ \text { b) }(0.25)(1,200,000,000) & =\$ 300,000,000 \\ \text { c) }(0.10)(1,200,000,000) & =\$ 120,000,000 \\ \text { d })(0.05)(1,200,000,000) & =\$ 60,000,000\end{aligned}$
$\begin{aligned} & \text { 114. a) }(0.40)(3,400,000,000)=\$ 1,360,000,000 \\ & \text { c) } \text { b) }(0.40)(3,400,000,000)=\$ 1,360,000,000 \\ & \text { c. }(3,400,000,000)=\$ 340,000,000 \\ &\text { d })(0.10)(3,400,000,000)=\$ 340,000,000\end{aligned}$
104. 1,000 times, since 1 meter $=10^{3}$ millimeters $=1,000$ millimeters
105. Since 1 gram $=10^{3}$ milligrams and 1 gram $=10^{-3}$ kilograms, $\quad 10^{-3}$ kilograms $=10^{3}$ milligrams $\frac{10^{-3} \text { Kilograms }}{10^{-3}}=\frac{10^{3} \text { milligrams }}{10^{-3}}$, Thus, 1 kilogram $=10^{6}$ milligrams
106. $\frac{2 \times 10^{30}}{6 \times 10^{24}}=0 . \overline{3} \times 10^{6}=333,333$ times
107. a) $(2)(6$ billion $)=12$ billion $=12,000,000,000$ people
b) $\frac{6,000,000,000}{(35)(365)}=\frac{6,000,000,000}{12775}=469,667$ people per day
108. $\frac{897,000,000,000,000,000}{3,900,000,000,000}=\frac{8.97 \times 10^{17}}{3.9 \times 1012}=2.3 \times 10^{5}=230,000$ seconds or about 2.66 days
109. a) $1,000,000=1.0 \times 10^{6} ; 1,000,000,000=1.0 \times 10^{9} ; 1,000,000,000,000=1.0 \times 10^{12}$
b) $\frac{1.0 \times 10^{6}}{1.0 \times 10^{3}}=1.0 \times 10^{3}$ days or 1,000 days $=2.74$ years
c) $\frac{1.0 \times 10^{9}}{1.0 \times 10^{3}}=1.0 \times 10^{6}$ days or $1,000,000$ days $=2,739.73$ years
d) $\frac{1.0 \times 10^{12}}{1.0 \times 10^{3}}=1.0 \times 10^{9}$ days or $1,000,000,000$ days $=2,739,726.03$ years
e) $\frac{1 \text { billion }}{1 \text { million }}=\frac{1.0 \times 10^{9}}{1.0 \times 10^{6}}=1.0 \times 10^{3}=1,000$ times greater
110. a) $\left(1.86 \times 10^{5} \mathrm{mi} / \mathrm{sec}\right)(60 \mathrm{sec} / \mathrm{min})(60 \mathrm{~min} / \mathrm{hr})(24 \mathrm{hr} / \mathrm{day})(365$ days $/ \mathrm{yr})(1 \mathrm{yr})$

$$
=\left(1.86 \times 10^{5}\right)\left(6 \times 10^{1}\right)\left(6 \times 10^{1}\right)\left(2.4 \times 10^{1}\right)\left(3.65 \times 10^{2}\right)=586.5696 \times 10^{10}=5.865696 \times 10^{12} \text { miles }
$$

b) $\mathrm{t}=\frac{\mathrm{d}}{\mathrm{r}}=\frac{9.3 \times 10^{7}}{1.86 \times 10^{5}}=5.0 \times 10^{2}=500$ seconds or 8 min .20 sec .
122. a) $\mathrm{E}(0)=2^{10} \times 2^{0}=2^{10} \times 1=1024$ bacteria b) $\mathrm{E}(1 / 2)=2^{10} \times 2^{1 / 2}=2^{10.5}=1448.2$ bacteria

Exercise Set 5.7

1. A sequence is a list of numbers that are related to each other by a given rule. One example is $2,4,6,8 \ldots$.
2. The terms of the sequence.
3. a) An arithmetic sequence is a sequence in which each term differs from the preceding term by a constant amount. One example is $1,4,7,10, \ldots$.
b) A geometric sequence is one in which the ratio of any term to the term that directly precedes it is a constant. One example is $1,3,9,27, \ldots$.
4. a) $\mathrm{d}=+3, \quad$ b) $\mathrm{r}=\frac{2}{1}$
5. a) $a_{n}=n^{\text {st }}$ term of the sequence b) $a_{1}=1^{\text {st }}$ term of a sequence c) $d=$ common difference in a sequence
d) $\mathrm{s}_{\mathrm{n}}=$ the sum of the $1^{\text {st }} \mathrm{n}$ terms of the arithmetic sequence
6. a) $a_{n}=n^{\text {st }}$ term of the sequence b) $a_{1}=1^{\text {st }}$ term of a sequence c) $r=$ common ratio between consecutive terms d) $s_{n}=$ the sum of the $1^{\text {st }} n$ terms of the arithmetic sequence
7. $a_{1}=3, d=2$
$3,5,7,9,11$
8. $a_{1}=1, d=3 \quad 1,4,7,10,13$
9. $a_{1}=-5, d=-3 \quad-5,-2,1,4,7$
10. $a_{1}=-11, d=-6 \quad-11,-6,-1,4,9$
11. $5,3,1,-1,-3$
12. $-3,-7,-11,-15,-19$
13. $1 / 2,1,3 / 2,2,5 / 2$
14. $5 / 2,1,-1 / 2,-2,-7 / 2$
15. $a_{6}, a_{1}=2, d=3,2,5,8,11,17 \quad a_{6}=17$
16. $a_{9}, a_{1}=3, d=-2,3,1,-1,-3,-5,-7,-9$,

$$
-11,-13 \quad a_{9}=-13
$$

17. $a_{10}, a_{1}=-5, d=2,-5,-3,-1,1,3,5,7,9$, $11,13 \quad a_{10}=13$
18. $\mathrm{a}_{20}=\frac{4}{5}+(19)(-1)=\frac{4}{5}-19=\frac{4}{5}-\frac{95}{5}=-\frac{91}{5}$
19. $\mathrm{a}_{11}=4+(10)\left(\frac{1}{2}\right)=4+5=9$
20. $\mathrm{a}_{\mathrm{n}}=\mathrm{n} \quad \mathrm{a}_{\mathrm{n}}=1+(\mathrm{n}-1) 1=1+\mathrm{n}-1=\mathrm{n}$
21. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n} \quad \mathrm{a}_{\mathrm{n}}=2+(\mathrm{n}-1) 2=2+2 \mathrm{n}-2=2 \mathrm{n}$
22. $\mathrm{a}_{\mathrm{n}}=\frac{-5}{3}+(n-1)\left(\frac{1}{3}\right)=\frac{-5}{3}+\frac{1}{3} n-\frac{1}{3}=\frac{1}{3} n-2$
23. $\mathrm{a}_{\mathrm{n}}=-3+(n-1)\left(\frac{3}{2}\right)=-3+\frac{3}{2} n-\frac{3}{2}=\frac{3}{2} n-\frac{9}{2}$
24. $\mathrm{s}_{\mathrm{n}}=\frac{n\left(a_{1}+a_{n}\right)}{2}=\frac{50(1+50)}{2}=\frac{50(51)}{2}$
$=(25)(51)=1275$
25. $\mathrm{s}_{\mathrm{n}}=\frac{50(1+99)}{2}=\frac{50(100)}{2}=(25)(100)=2500$
26. $\mathrm{s}_{8}=\frac{8(11+(-24))}{2}=\frac{8 \bullet(-13)}{2}=-52$
27. $\mathrm{s}_{8}=\frac{8\left(\frac{1}{2}+\frac{29}{2}\right)}{2}=\frac{8 \cdot\left(\frac{30}{2}\right)}{2}=\frac{8 \cdot 15}{2}=60$
28. $\mathrm{a}_{1}=3, \mathrm{r}=2, \mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=3(2)^{n-1}$
$3,6,12,24,48$
29. $\mathrm{a}_{1}=2, \mathrm{r}=-2, \quad \mathrm{a}_{5}=2(-2)^{4}=2(16)=32$

$$
2,-4,8,-16,32
$$

43. $-3,3,-3,3,-3$
44. $-16,8,-4,2,-1$
45. $\mathrm{a}_{6}=3(4)^{5}=(3)(1024)=3072$
46. $\mathrm{a}_{12}=7+(12-1)(-3)=7+(11)(-3)$

$$
=7-33=-26
$$

20. $\frac{-1}{2}+(14)(-2)=\frac{-1}{2}-28=\frac{-1}{2}-\frac{56}{2}=-\frac{57}{2}$
21. $\mathrm{a}_{15}=\frac{4}{3}+(14)\left(\frac{1}{3}\right)=\frac{4}{3}+\frac{14}{3}=\frac{18}{3}=6$
22. $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1 \quad \mathrm{a}_{\mathrm{n}}=1+(\mathrm{n}-1) 2=1+2 \mathrm{n}-2=2 \mathrm{n}-1$
23. $3,1,-1,-3 \quad \begin{aligned} & a_{n}=3+(n-1)(-2)=3-2 n+2 \\ & a_{n}=5-2 n\end{aligned}$
24. $a_{n}=-15+(n-1)(5)=5 n-20$
25. $a_{n}=-5+(n-1)(3)=3 n-8$
26. $\mathrm{s}_{\mathrm{n}}=\frac{50(2+100)}{2}=\frac{50(102)}{2}=(25)(102)=2550$
27. $\mathrm{s}_{9}=\frac{9(-4+(-28))}{2}=\frac{9 \cdot(-32)}{2}=-144$
28. $\mathrm{s}_{18}=\frac{18\left(-9+\left(\frac{-1}{2}\right)\right)}{2}=\frac{18 \cdot\left(\frac{-19}{2}\right)}{2}=-\frac{171}{2}=-85.5$
29. $\mathrm{s}_{18}=\frac{18\left(\frac{3}{5}+4\right)}{2}=\frac{18 \cdot\left(\frac{23}{5}\right)}{2}=\frac{207}{5}=41.4$
30. $\mathrm{a}_{1}=6, \mathrm{r}=3, \quad \mathrm{a}_{5}=6(3)^{4}=6(81)=486$
$6,18,54,162,486$
31. $8,4,2,1, \frac{1}{2}$
32. $-6,12,-24,48,-96$
33. $5,3,9 / 5,27 / 25,81 / 125 \frac{9}{5}, \frac{27}{25}, \frac{81}{125}$
34. $a_{5}=2(2)^{4}=(2)(16)=32$
35. $a_{3}=3\left(\frac{1}{2}\right)^{2}=3\left(\frac{1}{4}\right)=\frac{3}{4}$
36. $\mathrm{a}_{5}=\left(\frac{1}{2}\right) \cdot 2^{4}=\left(\frac{1}{2}\right)(16)=8$
37. $\mathrm{a}_{10}=(-2)(3)^{9}=-39,366$
38. $1,2,4,8 \quad a_{\mathrm{n}}=1(2)^{n-1}=2^{n-1}$
39. $3,-3,3,-3 \quad a_{\mathrm{n}}=3(-1)^{n-1}$
40. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \mathrm{r}^{n-1}=\left(\frac{1}{4}\right)(2)^{n-1}$
41. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \mathrm{r}^{n-1}=(9)\left(\frac{1}{3}\right)^{n-1}$
42. $\mathrm{s}_{4}=\frac{a_{1}\left(1-r^{4}\right)}{1-r}=\frac{3\left(1-2^{4}\right)}{1-2}=\frac{3(-15)}{-1}=45$
43. $\begin{aligned} \mathrm{s}_{7} & =\frac{a_{1}\left(1-r^{7}\right)}{1-r}=\frac{5\left(1-4^{7}\right)}{1-4}=\frac{5(-16383)}{-3} \\ & =27,305\end{aligned}$
44. $\mathrm{s}_{11}=\frac{a_{1}\left(1-r^{11}\right)}{1-r}=\frac{-7\left(1-3^{11}\right)}{1-3}=\frac{-7(-177146)}{-2}$ $=-620,011$
45. $\mathrm{n}=15, \mathrm{a}_{1}=-1, \mathrm{r}=-2$

$$
\begin{aligned}
\mathrm{s}_{13} & =\frac{(-1)\left(1-(-2)^{15}\right)}{1-(-2)}=\frac{(-1)(1+32768)}{3} \\
& =\frac{(-1)(32769)}{3}=-10923
\end{aligned}
$$

71.

$$
\mathrm{s}_{100}=\frac{(100)(1+100)}{2}=\frac{(100)(101)}{2}=50(101)=5050
$$

73.

$\mathrm{s}_{100}=\frac{(100)(1+199)}{2}=\frac{(100)(200)}{2}=50(200)=10000$
50. $\mathrm{a}_{7}=-3(-3)^{6}=-3(729)=-2187$
52. $\mathrm{a}_{25} \mathrm{a}_{1}=2, \mathrm{r}=2, \mathrm{a}_{25}=1(2)^{24}=16,777,216$
54. $\mathrm{a}_{18} \quad \mathrm{a}_{1}=-5, \mathrm{r}=-2, \quad \mathrm{a}_{18}=(-5)(-2)^{17}=655,360$
56. $3,6,12,24 \quad a_{n}=3(2)^{n-1}$
58. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \mathrm{r}^{n-1}=-16\left(\frac{1}{2}\right)^{n-1}$
60. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \mathrm{r}^{n-1}=(-3)(-2)^{n-1}$
62. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \mathrm{r}^{n-1}=(-4)\left(\frac{2}{3}\right)^{n-1}$
64. $\mathrm{s}_{5}=\frac{a_{1}\left(1-r^{5}\right)}{1-r}=\frac{2\left(1-3^{5}\right)}{1-3}=\frac{2(-242)}{-2}=242$
66. $\begin{aligned} \mathrm{s}_{9}\end{aligned} \begin{aligned} \mathrm{s}_{9} & =\frac{a_{1}\left(1-r^{9}\right)}{1-r}=\frac{-3\left(1-5^{9}\right)}{1-5}=\frac{-3(-1953124)}{-4} \\ & =-1,464,843\end{aligned}$
68. $\mathrm{n}=15, \mathrm{a}_{1}=-1, \mathrm{r}=2$

$$
\begin{aligned}
\mathrm{S}_{15} & =\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{-1\left(1-(2)^{15}\right)}{1-2}=\frac{(-1)(-32768)}{-1} \\
& =1-32768=-32767
\end{aligned}
$$

70. $\mathrm{n}=10, \mathrm{a}_{1}=512, \mathrm{r}=1 / 2$

$$
\begin{aligned}
\mathrm{s}_{10} & =\frac{(512)\left(1-\left(\frac{1}{2}\right)^{10}\right)}{1-\frac{1}{2}}=\frac{(1024)\left(1-\frac{1}{1024}\right)}{\frac{1}{2}} \\
& =1024-1=1023
\end{aligned}
$$

72.

$\mathrm{s}_{100}=\frac{(100)(2+200)}{2}=\frac{(100)(202)}{2}=50(202)=10100$
74.
$\mathrm{S}_{50}=\frac{(50)(3+150)}{2}=\frac{(50)(153)}{2}=25(153)=3825$
75. a) Using the formula $a_{n}=a_{1}+(n-1) d$, we get
$\mathrm{a}_{8}=20,200+(8-1)(1200)=\$ 28,600$
b) $\frac{8(20200+28600)}{2}=\frac{8(48800)}{2}=\$ 195,200$
76. a) $\mathrm{a}_{12}=96+(11)(-3)=96-33=63 \mathrm{in}$.
b) $\frac{[12(96+63)]}{2}=\frac{(12)(159)}{2}=(6)(159)=954 \mathrm{in}$.
77. $\mathrm{a}_{11}=72+(10)(-6)=72-60=12 \mathrm{in}$.
78. $\mathrm{s}_{12}=\frac{12(1+12)}{2}=\frac{12(13)}{2}=\frac{156}{2}=78$ times
79. $1,2,3, \ldots . \quad \mathrm{n}=31$
$\mathrm{s}_{31}=\frac{31(1+31)}{2}=\frac{31(32)}{2}=31(16)=496 \mathrm{PCs}$
80. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1} \mathrm{r}^{n-1} \quad \mathrm{a}_{10}=(8000)(1.08)^{9}=15992$ students
81. $\mathrm{a}_{6}=200(0.8)^{6}=200(0.262144)^{1}=52.4288 \mathrm{~g}$
82. $\mathrm{a}_{15}=\mathrm{a}_{1} \mathrm{r}^{15}=1(2)^{15}=32,768$ layers
83. $a_{15}=20,000(1.06)^{14}=\$ 45,218$
84. $\mathrm{a}_{5}=30(0.8)^{4}=12.288 \mathrm{ft}$.
85. This is a geometric sequence where $\mathrm{a}_{1}=2000$ and $\mathrm{r}=3$. In ten years the stock will triple its value 5 times. $a_{6}=a_{1} r^{6-1}=2000(3)^{5}=\$ 486,000$
86. The sequence of bets during a losing streak is geometric.
a) $\mathrm{a}_{6}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=1(2)^{6-1}=1(32)=\$ 32 \quad \mathrm{~s}_{5}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{1\left(1-2^{5}\right)}{1-2}=\frac{-31}{-1}=\$ 31$
b) $\mathrm{a}_{6}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=10(2)^{6-1}=10(32)=\$ 320$

$$
\mathrm{s}_{5}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{10\left(1-2^{5}\right)}{1-2}=\frac{10(-31)}{-1}=\$ 310
$$

c) $\mathrm{a}_{11}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=1(2)^{11-1}=1(1024)=\$ 1,024$ $\mathrm{s}_{10}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{1\left(1-2^{10}\right)}{1-2}=\frac{1(-1023)}{-1}=\$ 1,023$
d) $\mathrm{a}_{11}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=10(2)^{11-1}=10(1024)=\$ 10,240 \quad \mathrm{~s}_{10}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{10\left(1-2^{10}\right)}{1-2}=\frac{10(-1023)}{-1}=\$ 10,230$
e) If you lose too many times in a row, then you will run out of money.
87. $\frac{82\left[1-(1 / 2)^{6}\right]}{1-(1 / 2)}=\frac{82[1-(1 / 64)]}{1 / 2}=\frac{82}{1} \bullet \frac{63}{64} \bullet \frac{2}{1}=161.4375$
88. The arithmetic sequence $180^{\circ}, 360^{\circ}, 540^{\circ}, 720^{\circ}, \ldots$ has a common difference of 180 .

Thus, $a_{n}=180(n-2)=180 n-360, n \geq 3$
89. $12,18,24, \ldots, 1608$ is an arithmetic sequence with $\mathrm{a}_{1}=12$ and $\mathrm{d}=6$. Using the expression for the $\mathrm{n}^{\text {th }}$ term of an arithmetic sequence $a_{n}=a_{1}+(n-1) d$ or $1608=12+(n-1) 6$ and dividing both sides by 6 gives $268=2+\mathrm{n}-1$ or $\mathrm{n}=267$
90. Since $a_{5}=a_{1} r^{4}$ and $a_{2}=a_{1} r, a_{5} / a_{2}=r^{3}$. Thus $r^{3}=648 / 24=27$ or $r=3$.

Then $24=a_{2}=a_{1} r=a_{1}(3)$ or $a_{1}=24 / 3=8$.
91. The total distance is 30 plus twice the sum of the terms of the geometric sequence having $a_{1}=(30)(0.8)=24$ and $\mathrm{r}=0.8 . \quad$ Thus $\mathrm{s}_{5}=\frac{24\left[1-(0.8)^{5}\right]}{(1-0.8)}=\frac{24[1-0.32768]}{0.2}=\frac{24(0.67232)}{0.2}=80.6784$.
So the total distance is $30+2(80.6784)=191.3568 \mathrm{ft}$.
92. The sequence of bets during a losing streak is geometric.
a) $\mathrm{a}_{6}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=1(2)^{6-1}=1(32)=\$ 32 \quad \mathrm{~s}_{5}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{1\left(1-2^{5}\right)}{1-2}=\frac{-31}{-1}=\$ 31$
b) $\mathrm{a}_{6}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=10(2)^{6-1}=10(32)=\$ 320 \quad \mathrm{~s}_{5}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{10\left(1-2^{5}\right)}{1-2}=\frac{10(-31)}{-1}=\$ 310$
c) $\mathrm{a}_{11}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=1(2)^{11-1}=1(1024)=\$ 1,024 \quad \mathrm{~s}_{10}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{1\left(1-2^{10}\right)}{1-2}=\frac{1(-1023)}{-1}=\$ 1,023$
d) $\mathrm{a}_{11}=\mathrm{a}_{1} \mathrm{r}^{\mathrm{n}-1}=10(2)^{11-1}=10(1024)=\$ 10,240 \quad \mathrm{~s}_{10}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}=\frac{10\left(1-2^{10}\right)}{1-2}=\frac{10(-1023)}{-1}=\$ 10,230$
e) If you lose too many times in a row, then you will run out of money.

Exercise Set 5.8

1. Begin with the numbers 1,1 , then add 1 and 1 to get 2 and continue to add the previous two numbers in the sequence to get the next number in the sequence.
2. a) $1,2,3,5,8,13,21,34,55,89$
b) $\frac{55}{34}=1.61764 \rightarrow 1.619$
c) $\frac{89}{55}=1.61818 \rightarrow 1.618$
d) $\frac{8}{5}=1.6 \rightarrow 1.600$
e) $\frac{5}{3}=1 . \overline{6} \rightarrow 1.667$
f) $\frac{21}{13}=1.61538 \rightarrow 1.615$
3. a) Golden number $=\frac{\sqrt{5}+1}{2}$
b) $1.618=$ golden ratio When a line segment AB is divided at a point C , such that the ratio of the whole, AB , to the larger part, AC , is equal to the ratio of the larger part, AC , to the smaller part, CB , then each of the ratios $\frac{A B}{A C}$ and $\frac{A C}{C B}$ is known as the golden ratio.
c) The golden proportion is: $\frac{A B}{A C}=\frac{A C}{C B}$
d) The golden rectangle: $\frac{L}{W}=\frac{a+b}{a}=\frac{a}{b}=\frac{\sqrt{5}+1}{2}=$ golden number
4. All are essentially the same number when rounded. 5. a) Flowering head of a sunflower b) Great Pyramid
5. a) Petals on daisies b) Parthenon in Athens
6. a) $\frac{\sqrt{5}+1}{2}=1.618033989$ b) $\frac{\sqrt{5}-1}{2}=.6180339887$
c) Differ by 1
7. $89, \frac{1}{89}=.0112359551$, part of Fibonacci sequence
8. $1 / 1=1,2 / 1=2,3 / 2=1.5,5 / 3=1.6,8 / 5=1.6,13 / 8=1.625,21 / 13=1.6154,34 / 21=1.619,55 / 34=1.6176$ $89 / 55=1.61818$. The consecutive ratios alternate increasing then decreasing about the golden ratio.
9. The ratio of the second to the first and the fourth to the third estimates the golden ratio.

11. Fib. No.	prime factors	Fib. No.	prime factors
1	-------	34	$2 \cdot 17$
1	-----	55	$5 \cdot 11$
2	prime	89	prime
3	prime	144	$2^{4} \cdot 3^{2}$
5	prime	233	prime
8	2^{3}	377	$13 \cdot 29$
13	prime	610	$2 \cdot 5 \cdot 61$

12. If the first ten are selected; $\frac{1+1+2+3+5+8+13+21+34+55}{11}=\frac{143}{11}=13$
13. If 5 is selected the result is $2(5)-8=10-8=2$ which is the second number preceding 5 .
14. If $2,3,5$, and 8 are selected the result is $5^{2}-3^{2}=2 \bullet 8 \rightarrow 25-9=16 \rightarrow 16=16$
15. Answers will vary.
16. $6 / 4=1.5$ which is a little <1.6. 17. Answers will vary.
17. Answers will vary.
18. Answers will vary.
19. Answers will vary.
20. Answers will vary.
21. Answers will vary.
22. Fibonacci type; $11+18=29 \quad 18+29=47$
23. Not Fibonacci. Each term is not the sum of the two preceding terms.
24. Not Fibonacci. Each term is not the sum of the two preceding terms.
25. Fibonacci type: $1+2=3,2+3=5$ Each term is the sum of the two preceding terms.
26. Fibonacci type; $40+65=105 ; \quad 65+105=170$
27. Fibonacci type; $1 \frac{1}{4}+2=3 \frac{1}{4} ; \quad 2+3 \frac{1}{4}=5 \frac{1}{4}$
28. Fibonacci type; $-1+0=-1 ; \quad 0+(-1)=-1$
29. Fibonacci type; $7+13=20 ; \quad 13+20=33$
30. a) If 6 and 10 are selected the sequence is $6,10,16,26,42,68,110, \ldots$
b) $10 / 6=1.666,16 / 10=1.600,26 / 16=1.625,42 / 26=1.615,68 / 42=1.619,110 / 68=1.618, \ldots$
31. a) If 5 and 7 are selected the sequence is $5,7,12,19,31,50,81, \ldots$
b) $7 / 5=1.4,12 / 7=1.714,19 / 12=1.583,31 / 19=1.623,50 / 31=1.613,81 / 50=1.62, \ldots$
32. a) If 5,8 , and 13 are selected the result is $8^{2}-(5)(13)=64-65=-1$.
b) If 21,34 , and 55 are selected the result is $34^{2}-(21)(55)=1156-1155=1$.
c) The square of the middle term of three consecutive terms in a Fibonacci sequence differs from the product of the $1^{\text {st }}$ and $2^{\text {nd }}$ term by 1 .
33. The sum of the numbers along the diagonals parallel to the one shown is a Fibonacci number.
34. a) Lucas sequence: $1,3,4,7,11,18,29,47, \ldots$
b) $8+21=29 ; \quad 13+34=47$
c) The first column is a Fibonacci-type sequence.
35. $-10, \mathrm{x},-10+\mathrm{x},-10+2 \mathrm{x},-20+3 \mathrm{x},-30+5 \mathrm{x},-50+8 \mathrm{x},-80+13 \mathrm{x},-130+21 \mathrm{x},-210+34 \mathrm{x}$
a) $-10,4,-6,-2,-8,-10,-18,-28,-46,-74$
b) $-10,5,-5,0,-5,-5,-10,-15,-25,-40$
c) $-10,6,-4,2,-2,0,-2,-2,-4,-6$
d) $-10,7,-3,4,1,5,6,11,17,28$
e) $-10,8,-2,6,4,10,14,24,38,62$
f) Yes, because each multiple causes the x term to be greater than the number term.
36. $\frac{(\mathrm{a}+\mathrm{b})}{\mathrm{a}}=\frac{\mathrm{a}}{\mathrm{b}} \quad$ Let $\mathrm{x}=\frac{\mathrm{a}}{\mathrm{b}} \quad \frac{\mathrm{b}}{\mathrm{a}}=\frac{1}{\mathrm{x}} \quad 1+\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{a}}{\mathrm{b}} \quad 1+\frac{1}{\mathrm{x}}=\mathrm{x} \quad$ multiply by $\mathrm{x} \quad \mathrm{x}\left(1+\frac{1}{\mathrm{x}}\right)=\mathrm{x}(\mathrm{x})$
$x+1=x^{2} \quad x^{2}-x-1=0 \quad a=1, b=-1, c=-1$
Solve for x using the quadratic formula, $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{1 \pm \sqrt{1-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{5}}{2}$
37. $\frac{5-\mathrm{x}}{5}=\frac{5}{\mathrm{x}} \quad \mathrm{x}(5-\mathrm{x})=25 \quad 5 \mathrm{x}-\mathrm{x}^{2}=25 \quad \mathrm{x}^{2}-5 \mathrm{x}+25=0 \quad \mathrm{a}=1, \mathrm{~b}=-5, \mathrm{c}=25$

Solve for x using the quadratic formula, $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{5 \pm \sqrt{25-4(1)(25)}}{2(1)}=\frac{5 \pm \sqrt{-75}}{2}=\frac{5 \pm 5 \sqrt{3 i}}{2}$
39. Answers will vary. $\{5,12,13] \quad\{16,30,34] \quad\{105,208,233\} \quad\{272,546,610\}$
40. a) 3 reflections, 5 paths
b) 4 reflections, 8 paths
c) 5 reflections, 13 paths

Review Exercises

1. Use the divisibility rules in section 5.1. 670,920 is divisible by $2,3,4,5,6$, and 9 .
2. Use the divisibility rules in section 5.1. 400,644 is divisible by $2,3,4,6$, and 9

$882=2 \bullet 3^{2} \cdot 7^{2}$
3. | | 2 | 1452 |
| ---: | :--- | :--- |
| | 2 | 726 |
| | 3 | 363 |
| | 1121 | |
| | 11 | |

$1452=2^{2} \cdot 3 \cdot 11^{2}$
8. $15=3 \cdot 5,60=2^{2} \cdot 3 \cdot 5$ $\operatorname{gcd}=15 \quad \mathrm{lcm}=60$
9. $63=3 \cdot 3 \cdot 5,108=3 \bullet 4 \bullet 9$ $\operatorname{gcd}=9 ; \quad \mathrm{lcm}=756$
10. $45=3^{2} \cdot 5,250=2 \cdot 5^{3} ; \operatorname{gcd}=5 ; \operatorname{lcm}=2 \cdot 3^{2} \cdot 5^{3}=2250$
11. $840=2^{3} \cdot 3 \cdot 5 \cdot 7,320=2^{6} \cdot 5 ; \operatorname{gcd}=2^{3} \cdot 5=40 ; \mathrm{lcm}=2^{6} \cdot 3 \cdot 5 \cdot 7=6720$
12. $60=2^{2} \cdot 3^{\bullet} 5,40=2^{3} \cdot 5,96=2^{5} \cdot 3 ; \operatorname{gcd}=2^{2}=4 ; 1 \mathrm{~cm}=2^{5} \cdot 3 \cdot 5=480$
13. $36=2^{2} \cdot 3^{2}, 108=2^{2} \cdot 3^{3}, 144=2^{4} \cdot 3^{2} ; \operatorname{gcd}=2^{2} \cdot 3^{2}=36 ; \mathrm{lcm}=2^{4} \cdot 3^{3}=432$
14. $15=3 \cdot 5,9=3^{2} ; 1 \mathrm{~cm}=3^{2} \cdot 5=45$. In 45 days the train will stop in both cities.
15. $-2+5=3$
16. $4+(-7)=-3$
17. $4-8=4+(-8)=-4$
18. $(-2)+(-4)=-6$
20. $-3-(-6)=-3+6=3$
22. $-1+(9-4)=-1+5=4$
24. $(-4)(9)=-36$
26. $-35 /-7=5$
28. $[8 \div(-4)](-3)=(-2)(-3)=6$
30. $[-30 \div(10)] \div-1)=-3 \div(-1)=3$
32. $3 / 5=0.6$
34. $13 / 4=3.25$
36. $7 / 12=0.58 \overline{3}$
38. $7 / 8=0.875$
40. $0.225=\frac{225}{1000}=\frac{45}{200}=\frac{9}{40}$
41. $4.5=4 \frac{5}{10}=\frac{45}{10}=\frac{9}{2}$

$$
\begin{array}{rlr}
10 \mathrm{n}=6 . \overline{6} & \frac{9 \mathrm{n}}{9}=\frac{6}{9} \\
-\mathrm{n}=0 . \overline{6} & \mathrm{n}=\frac{2}{3}
\end{array}
$$

43. $2.373737 \quad 100 \mathrm{n}=237.373737 \ldots$

$$
100 \mathrm{n}=237 . \overline{37}
$$

44. $0.083=\frac{83}{1000}$

$$
-\mathrm{n}=2 . \overline{37} \quad \frac{99 \mathrm{n}}{99}=\frac{235}{99}=\mathrm{n}
$$

$$
99 \mathrm{n}=235.00
$$

46. $2.344444 \quad 100 \mathrm{n}=234.444444 \ldots$

$$
\begin{aligned}
& 100 \mathrm{n}=234 . \overline{4} \\
& \frac{-10 \mathrm{n}=23 . \overline{4}}{90 \mathrm{n}=211.00}
\end{aligned} \quad \frac{90 \mathrm{n}}{90}=\frac{211}{90}=\mathrm{n}
$$

45. $0.0042=\frac{42}{10000}=\frac{21}{5000}$
46. $2 \frac{5}{7}=\frac{19}{7}$
47. $4 \frac{1}{6}=\frac{25}{6}$
48. $-311 / 4=\frac{((-3)(4))-1}{4}=\frac{-13}{4}$
49. $\frac{11}{5}=\frac{2 \cdot 5+1}{5}=2 \frac{1}{5}$
50. $\frac{-12}{7}=\frac{(-1)(7)-5}{7}=-15 / 7$
51. $\frac{1}{2}+\frac{4}{5}=\frac{1}{2} \cdot \frac{5}{5}+\frac{4}{5} \cdot \frac{2}{2}=\frac{5}{10}+\frac{8}{10}=\frac{13}{10}$
52. $\frac{1}{6}+\frac{5}{4}=\frac{1}{6} \cdot \frac{2}{2}+\frac{5}{4} \cdot \frac{3}{3}=\frac{2}{12}+\frac{15}{12}=\frac{17}{12}$
53. $\frac{5}{9} \div \frac{6}{7}=\frac{5}{9} \div \frac{7}{6}=\frac{35}{54}$
54. $\left(\frac{2}{3} \square \frac{1}{7}\right) \div \frac{4}{7}=\frac{2}{21} \sqcup \frac{7}{4}=\frac{1}{6}$
55. $\left(\frac{1}{5}\right)\left(\frac{2}{3}\right)+\left(\frac{1}{5} \div \frac{1}{2}\right)=\frac{2}{15}+\left(\frac{1}{5}\right)\left(\frac{2}{1}\right)=\frac{2}{15}+\frac{2}{5}$ $=\frac{2}{15}+\frac{6}{15}=\frac{8}{15}$
56. $\sqrt{50}=\sqrt{25 \cdot 2}=\sqrt{25} \cdot \sqrt{2}=5 \sqrt{2}$
57. $\sqrt{5}+7 \sqrt{5}=8 \sqrt{5}$
58. $\sqrt{8}+6 \sqrt{2}=2 \sqrt{2}+6 \sqrt{2}=8 \sqrt{2}$
59. $\sqrt{75}+\sqrt{27}=5 \sqrt{3}+3 \sqrt{3}=8 \sqrt{3}$
60. $\sqrt{8} \cdot \sqrt{6}=\sqrt{48}=\sqrt{16 \cdot 3}=\sqrt{16} \cdot \sqrt{3}=4 \sqrt{3}$
61. $\frac{\sqrt{56}}{\sqrt{2}}=\sqrt{\frac{56}{2}}=\sqrt{28}=2 \sqrt{7}$
62. $\frac{\sqrt{3}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{15}}{5}$
63. $\sqrt{3}(4+\sqrt{6})=4 \sqrt{3}+\sqrt{18}=4 \sqrt{3}+3 \sqrt{2}$
64. $\mathrm{x}+2=2+\mathrm{x}$ Commutative property of addition
65. $-353 / 8=\frac{((-35)(8))-3}{8}=\frac{-283}{8}$
66. $\frac{27}{15}=\frac{1 \cdot 15+12}{15}=1 \frac{12}{15}=1 \frac{4}{5}$
67. $\frac{-136}{5}=\frac{(-27)(5)-1}{5}=-271 / 5$
68. $\frac{7}{8}-\frac{3}{4}=\frac{7}{8}-\frac{3}{4} \cdot \frac{2}{2}=\frac{7}{8}-\frac{6}{8}=\frac{1}{8}$
69. $\frac{4}{5} \cdot \frac{15}{16}=\frac{60}{80}=\frac{6}{8}=\frac{3}{4}$
70. $\left(\frac{4}{5}+\frac{5}{7}\right) \div \frac{4}{5}=\frac{28+25}{35} \cdot \frac{5}{4}=\frac{53}{35} \bullet \frac{5}{4}=\frac{53}{28}$
71. $\left(\frac{1}{5}+\frac{2}{3}\right) \cdot \frac{3}{8}=\frac{3+10}{15} \cdot \frac{3}{8}=\frac{13}{15} \cdot \frac{3}{8}=\frac{13}{40}$
72. $\left(\frac{1}{8}\right)(173 / 4)=\left(\frac{1}{8}\right)\left(\frac{71}{4}\right)=\frac{71}{32}=27 / 32$ teaspoons
73. $\sqrt{200}=\sqrt{100 \cdot 2}=\sqrt{100} \cdot \sqrt{2}=10 \sqrt{2}$
74. $\sqrt{3}-4 \sqrt{3}=-3 \sqrt{3}$
75. $\sqrt{3}-7 \sqrt{27}=\sqrt{3}-21 \sqrt{3}=-20 \sqrt{3}$
76. $\sqrt{3} \cdot \sqrt{6}=\sqrt{18}=\sqrt{9 \cdot 2}=\sqrt{9} \cdot \sqrt{2}=3 \sqrt{2}$
77. $\frac{\sqrt{18}}{\sqrt{2}}=\sqrt{\frac{18}{2}}=\sqrt{9}=3$
78. $\frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{4 \sqrt{3}}{3}$
79. $3(2+\sqrt{7})=6+3 \sqrt{7}$
80. $\sqrt{3}(\sqrt{6}+\sqrt{15})=\sqrt{18}+\sqrt{45}=3 \sqrt{2}+3 \sqrt{5}$
81. $5-\mathrm{m}=\mathrm{m}-5$ Commutative property of multiplication
82. Associative property of addition
83. Commutative property of addition
84. Associative property of multiplication
85. Distributive property
86. Natural numbers - closed for addition $3+4=7$
87. Distributive property
88. Commutative property of addition
89. Commutative property of multiplication
90. Commutative property of multiplication
91. Whole numbers - not closed for subtraction $3-2=2-3 \quad 1 \neq-1$
92. Closed
93. Not closed; $1 \div 0$ is undefined
94. Not closed; $1 \div 2$ is not an integer
95. Not closed; $\sqrt{2} \cdot \sqrt{2}=2$ is not irrational
96. $33^{-2}=\frac{1}{3^{2}}=\frac{1}{3 \cdot 3}=\frac{1}{9}$
97. $\frac{9^{5}}{9^{3}}=9^{5-3}=9^{2}=81$
98. $5^{2} \cdot 5^{1}=5^{3}=125$
99. $7^{0}=1$
100. $\left(3^{2}\right)^{2}=3^{2 \bullet 2}=3^{4}=81$
101. $0.00275=2.75 \times 10^{-3}$
102. $4,950,000=4.95 \times 10^{6}$
103. $1.39 \times 10^{-4}=0.000139$
104. $1.75 \times 10^{-4}=0.000175$
105. a) $\left(4 \times 10^{2}\right)\left(2.5 \times 10^{2}\right)$

$$
(4)(2.5) \times\left(10^{2} \sqcup 10^{2}\right)
$$

$$
10.0 \times 10^{4}=1.0 \times 10^{5}
$$

115. $\frac{8.4 \times 10^{3}}{4 \times 10^{2}}=\frac{8.4}{4} \times \frac{10^{3}}{10^{2}}=2.1 \times 10^{1}$
116. a) $(4,000,000)(2,000)=\left(4.0 \times 10^{6}\right)\left(2.0 \times 10^{3}\right)$ $=(4)(2) \times 10^{6} \bullet 10^{3}=8.0 \times 10^{9}$
b) 8.0 E 09
117. $\frac{9600000}{3000}=\frac{9.6 \times 10^{6}}{3 \times 10^{3}}=3.2 \times 10^{3}=3,200$
118. $\frac{1.49 \times 10^{11}}{3.84 \times 10^{8}}=.3880208333 \times 10^{3}=388.02$ 388 times
119. Arithmetic 14,17
120. Arithmetic $-15,-18$
121. Arithmetic 16,19
122. $3,7,11,15 \quad a_{4}=15$
123. $-4,-10,-14,-18,-22,-26,-30,-34 a_{8}=-34$
124. $\frac{1.5 \times 10^{-3}}{5 \times 10^{-4}}=\frac{1.5}{5} \times \frac{10^{-3}}{10^{-4}}=0.3 \times 10^{1}=3.0 \times 10^{0}$
125. a) $(35,000)(0.00002)=\left(3.5 \times 10^{4}\right)\left(2.0 \times 10^{-5}\right)$ $=(3.5)(2) \times 10^{4} \bullet 10^{-5}=7.0 \times 10^{-1}=0.7$
b) $7.0 \mathrm{E}-01$
126. $\frac{0.000002}{0.0000004}=\frac{2 \times 10^{-6}}{4 \times 10^{-7}}=0.5 \times 10^{1}=5.0$
127. $\frac{20,000,000}{3,600}=\frac{2.0 \times 10^{7}}{3.6 \times 10^{3}}$
$\approx 0.555556 \times 10^{4}=\$ 5,555.56$
128. Geometric 8, 16
129. Geometric $1 / 32,1 / 64$
130. Geometric -2,2
131. $3,6,12,24,48 \quad a_{4}=48$
132. $a_{5}=4(1 / 2)^{5-1}=4(1 / 2)^{4}=4(1 / 16)=1 / 4$
133. $\mathrm{s}_{30}=\frac{30(2+89)}{2}=(15)(91)=1365$
134. $\mathrm{s}_{8}=\frac{8(100+58)}{2}=\frac{(8)(158)}{2}=632$
135. $\mathrm{s}_{3}=\frac{5\left(1-3^{4}\right)}{1-3}=\frac{(5)(1-81)}{-2}=\frac{(5)(-80)}{-2}=200$
136. $\mathrm{s}_{5}=\frac{3\left(1-(-2)^{5}\right)}{1-(-2)}=\frac{(3)(1+32)}{3}=\frac{(3)(33)}{3}=33$
137. Arithmetic: $a_{n}=-3 n+10$
138. Arithmetic: $a_{n}=-(3 / 2) n+(11 / 2)$
139. Geometric: $a_{n}=2(-1)^{n-1}$
140. Yes; 13, 21
141. Yes; 17,28

都
134. $\mathrm{a}_{4}=-6(2)^{4-1}=-6(2)^{3}=-6(8)=-48$
136. $\mathrm{s}_{8}=\frac{8(-4+(-21 / 4)}{2}=\frac{(8)(-61 / 4)}{2}=-25$
138. $\mathrm{s}_{20}=\frac{20(0.5+5.25)}{2}=\frac{(20)(5.75)}{2}=57.5$
140. $\mathrm{s}_{4}=\frac{2\left(1-3^{4}\right)}{1-3}=\frac{(2)(1-81)}{-2}=\frac{(2)(-80)}{-2}=80$
142. $\mathrm{s}_{6}=\frac{1\left(1-(-2)^{6}\right)}{1-(-2)}=\frac{(1)(1-64)}{3}=\frac{(1)(-63)}{3}=-21$
144. Arithmetic: $a_{n}=3+(n-1) 3=3+3 n-3=3 n$
146. Geometric: $a_{n}=3(2)^{n-1}$
148. Geometric: $a_{n}=5(1 / 3)^{n-1}$
151. No; 1,4,3,-1,-4,-5 152. No

Chapter Test

1. 38,610 is divisible by: $2,3,5,6,9,10$
2. | | 2 |
| ---: | :--- |
| | 240 |
| | 420 |
| | 210 |
| | 105 |
| | 35 |
| | |

$$
840=2^{3} \bullet 3 \bullet 5 \bullet 7
$$

4. $-7-13=-20$
5. $45 / 8=\frac{(8)(4)+5}{8}=\frac{32+5}{8}=\frac{37}{8}$
6. $\frac{5}{8}=0.625$
7. $6.45=\frac{645}{100}=\frac{129}{20}$
8. $\left(\frac{5}{16} \div 3\right)+\left(\frac{4}{5} \cdot \frac{1}{2}\right)=\left(\frac{5}{16} \cdot \frac{1}{3}\right)+\frac{4}{10}$

$$
=\frac{5}{48}+\frac{4}{10}=\frac{50}{480}+\frac{192}{480}=\frac{242}{480}=\frac{141}{240}
$$

11. $\frac{11}{12}-\frac{3}{8}=\left(\frac{11}{12}\right)\left(\frac{2}{2}\right)-\left(\frac{3}{8}\right)\left(\frac{3}{3}\right)=\frac{22}{24}-\frac{9}{24}=\frac{13}{24}$
12. $\sqrt{75}+\sqrt{48}=\sqrt{25} \sqrt{3}+\sqrt{16} \sqrt{3}=5 \sqrt{3}+4 \sqrt{3}=9 \sqrt{3}$
13. $\frac{\sqrt{2}}{\sqrt{7}}=\frac{\sqrt{2}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{14}}{\sqrt{49}}=\frac{\sqrt{14}}{7}$
14. The integers are closed under multiplication since the product of two integers is always an integer.
15. Associative property of addition
16. Distributive property
17. $\frac{4^{5}}{4^{2}}=4^{5-2}=4^{3}=64$
18. $4^{3} \bullet 4^{2}=4^{5}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=1024$
19. $3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}$
20. $\frac{7.2 \times 10^{6}}{9.0 \times 10^{-6}}=0.8 \times 10^{12}=8.0 \times 10^{11}$
21. $a_{n}=-4 n+2$
22. $\frac{11[-2+(-32)]}{2}=\frac{11(-34)}{2}=-187$
23. $a 5=3(3)^{4}=3^{5}=243$
24. $\mathrm{a}_{\mathrm{n}}=3 \bullet(2)^{\mathrm{n}-1}$
25. $\frac{3\left(1-4^{5}\right)}{1-4}=\frac{3(1-1024)}{-3}=1023$
26. $1,1,2,3,5,8,13,21,34,55$

Group Projects

1. In this exercise, you may obtain different answers depending upon how you work the problem.
1) a) 2 servings Rice: $2 / 3$ cup, Salt: $1 / 4$ tsp., Butter: 1 tsp.
b) 1 serving Rice: $1 / 3$ cup, Salt: $1 / 8$ tsp., Butter: $1 / 2$ tsp.
c) 29 servings Rice: 5 cup, Salt: $17 / 8$ tsp., Butter: $71 / 2$ tsp.
2. a) Area of triangle $1=A_{1}=\frac{1}{2} b h=\frac{1}{2}(5)(2 \sqrt{5})=5 \sqrt{5}$

Area of triangle $2=A_{1}=\frac{1}{2} b h=\frac{1}{2}(5)(2 \sqrt{5})=5 \sqrt{5}$
Area of rectangle $=A_{R}=b h=(10)(2 \sqrt{5})=20 \sqrt{5}$
b) Area of trapezoid $=A_{T}=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(2 \sqrt{5})(10+21)=31 \sqrt{5}$
c) Yes, same
3. Co-pay for prescriptions $=50 \% \quad$ Co=pay for office visits $=\$ 10 \quad$ Co-pay for medical tests $=20 \%$ $01 / 10: \quad \$ 10+.50(\$ 44)=\$ 32.00$
$02 / 27: \quad \$ 10+.20(348)=\$ 47.60$
$04 / 19: \quad \$ 10+.20(348)+.50(76)=\$ 117.60$
a) Total $=\$ 197.20$
b) $.50(44)+.80(188)+.80(348)+, 50(76)=\$ 488.80$
c) $\$ 500.00-197.20=\$ 302.80$
4. a) 1 branch
b) 8 branches
c) 512 branches
d) Yes

CHAPTER SIX

ALGEBRA, GRAPHS, AND FUNCTIONS

Exercise Set 6.1

1. Variables are letters of the alphabet used to represent numbers.
2. A symbol that represents a specific quantity is called a constant.
3. The solution to an equation is the number or numbers that replace the variable to make the equation a true statement.
4. An algebraic expression is a collection of variables, numbers, parentheses, and operation symbols.

An example is $5 x^{2} y-11$.
5. a) Base: 4 , exponent: 5
b) Multiply 4 by itself 5 times.
6. First: Perform all operations within parentheses or other grouping symbols.

Next: Perform all exponential operations. Next: Perform all multiplication and division from left to right.
Finally: Perform all addition and subtraction from left to right.
7. $8+16 \div 4=8+4=12$
9. $x=7, x^{2}=(7)^{2}=49$
11. $x=-3,-x^{2}=-(-3)^{2}=-9$
13. $x=-7,-2 x^{3}=-2(-7)^{3}=-2(-343)=686$
15. $x=4, x-7=4-7=-3$
17. $x=-2,-7 x+4=-7(-2)+4=14+4=18$
19. $x=-2,-x^{2}+5 x-13=-(-2)^{2}+5(-2)-13$

$$
=-4-10-13=-27
$$

21. $x=\frac{2}{3}, \frac{1}{2} x^{2}-5 x+2=\frac{1}{2}\left(\frac{2}{3}\right)^{2}-5\left(\frac{2}{3}\right)+2$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{4}{9}\right)-\frac{10}{3}+2 \\
& =\frac{4}{18}-\frac{10}{3}+2 \\
& =\frac{4}{18}-\frac{60}{18}+\frac{36}{18}=-\frac{20}{18}=-\frac{10}{9}
\end{aligned}
$$

8. $9+6 \cdot 3=9+18=27$
9. $x=-8, x^{2}=(-8)^{2}=64$
10. $x=-5,-x^{2}=-(-5)^{2}=-25$
11. $x=-4,-x^{3}=-(-4)^{3}=-(-64)=64$
12. $x=\frac{5}{2}, 8 x-3=8\left(\frac{5}{2}\right)-3=20-3=17$
13. $x=5, x^{2}-3 x+8=(5)^{2}-3(5)+8=25-15+8=18$
14. $x=-1,5 x^{2}+7 x-11=5(-1)^{2}+7(-1)-11$
$=5-7-11=-13$
15. $x=\frac{1}{2}, \frac{2}{3} x^{2}+x-1=\frac{2}{3}\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1$

$$
=\frac{2}{3}\left(\frac{1}{4}\right)+\frac{1}{2}-1
$$

$$
=\frac{2}{12}+\frac{1}{2}-1
$$

$$
=\frac{2}{12}+\frac{6}{12}-\frac{12}{12}=-\frac{4}{12}=-\frac{1}{3}
$$

23. $x=\frac{1}{2}, 8 x^{3}-4 x^{2}+7=8\left(\frac{1}{2}\right)^{3}-4\left(\frac{1}{2}\right)^{2}+7$

$$
\begin{aligned}
& =8\left(\frac{1}{8}\right)-4\left(\frac{1}{4}\right)+7 \\
& =1-1+7=7
\end{aligned}
$$

25. $x=-2, y=1,2 x^{2}+x y+3 y^{2}$
$=2(-2)^{2}+(-2)(1)+3(1)^{2}=8-2+3=9$
26. $x=3, y=2,4 x^{2}-12 x y+9 y^{2}$
$=4(3)^{2}-12(3)(2)+9(2)^{2}=36-72+36=0$
27. $7 x+3=23, x=3$
$7(3)+3=21+3=24$
$24 \neq 23, x=3$ is not a solution.
28. $x-3 y=0, x=6, y=3$
$6-3(3)=6-9=-3$
$-3 \neq 0, x=6, y=3$ is not a solution.
29. $x^{2}+3 x-4=5, x=2$
$(2)^{2}+3(2)-4=4+6-4=6$
$6 \neq 5, x=2$ is not a solution.
30. $2 x^{2}+x=28, x=-4$
$2(-4)^{2}+(-4)=2(16)-4=32-4=28$
$28=28, x=-4$ is a solution.
31. $y=-x^{2}+3 x-1, x=3, \quad y=-1$
$-(3)^{2}+3(3)-1=-9+9-1=-1$
$-1=-1, x=3, y=-1$ is a solution.
32. $d=\$ 175,0.07 d=0.07(\$ 175)=\$ 12.25$
33. $x=75,220+2.75 x=220+2.75(75)$

$$
=220+206.25=\$ 426.25
$$

24. $x=2, y=3,-x^{2}+4 x y=-(2)^{2}+4(2)(3)$

$$
=-4+24=20
$$

26. $x=2, y=5,3 x^{2}+\frac{2}{5} x y-\frac{1}{5} y^{2}$
$=3(2)^{2}+\frac{2}{5}(2)(5)-\frac{1}{5}(5)^{2}$
$=12+4-5=11$
27. $x=4, y=-3,(x+3 y)^{2}=[4+3(-3)]^{2}$

$$
=(-5)^{2}=25
$$

30. $5 x-7=-27, x=-4$
$5(-4)-7=-20-7=-27$
$-27=-27, x=-4$ is a solution.
31. $4 x+2 y=-2, x=-2, y=3$
$4(-2)+2(3)=-8+6=-2$
$-2=-2, x=-2, y=3$ is a solution.
32. $2 x^{2}-x-5=0, x=3$
$2(3)^{2}-3-5=2(9)-3-5=10$
$10 \neq 0, x=3$ is not a solution.
33. $y=x^{2}+3 x-5, x=1, y=-1$
$(1)^{2}+3(1)-5=1+3-5=-1$
$-1=-1, x=1, y=-1$ is a solution.
34. $y=x^{3}-3 x^{2}+1, x=2, y=-3$
$(2)^{3}-3(2)^{2}+1=8-12+1=-3$ $-3=-3, x=2, y=-3$ is a solution.
35. $t=3,0.5 t=0.5(3)=1.5 \mathrm{ft}$
36. $x=60,25 x-0.2 x^{2}=25(60)-0.2(60)^{2}$
$=1500-0.2(3600)$
$=1500-720$
$=780$ baskets of oranges
37. $n=8,000,000,000,000$

$$
\begin{aligned}
0.000002 n & =0.000002(8,000,000,000,000) \\
& =16,000,000 \mathrm{sec}
\end{aligned}
$$

$$
\text { 44. } \begin{aligned}
h=0.60,2 h^{2}+80 h+40 & =2(0.60)^{2}+80(0.60)+40 \\
& =2(0.36)+48+40 \\
& =0.72+48+40 \\
& =88.72 \mathrm{~min}
\end{aligned}
$$

45. $R=2, T=70,0.2 R^{2}+0.003 R T+0.0001 T^{2}=0.2(2)^{2}+0.003(2)(70)+0.0001(70)^{2}=0.8+0.42+0.49=1.71 \mathrm{in}$.
46. $(-1)^{n}=1$ for any even number, n, since there will be an even number of factors of (-1), and when these are multiplied, the product will always be 1 .
47. | x | y | $(x+y)^{2}$ | $x^{2}+y^{2}$ |
| ---: | ---: | ---: | :---: | :---: |
| 2 | 3 | $5^{2}=25$ | $4+9=13$ |
| -2 | -3 | $(-5)^{2}=25$ | $4+9=13$ |
| -2 | 3 | $1^{2}=1$ | $4+9=13$ |
| 2 | -3 | $(-1)^{2}=1$ | $4+9=13$ |

The two expressions are not equal.
48. $1^{n}=1$ for all natural numbers since 1 multiplied by itself any number of times will always be 1 .

Exercise Set 6.2

1. The parts that are added or subtracted in an algebraic expression are called terms.

In $3 x-2 y$, the $3 x$ and $-2 y$ are terms.
2. Like terms are terms that have the same variables with the same exponents on the variables.
$3 x^{2}$ and $4 x^{2}$ are like terms.
3. The numerical part of a term is called its numerical coefficient.

For the term $3 x, 3$ is the numerical coefficient.
4. A linear equation is one in which the exponent on the variable is 1 . Example: $4 x+6=10$
5. To simplify an expression means to combine like terms by using the commutative, associative, and distributive properties. Example: $12+x+7-3 x=x-3 x+12+7=-2 x+19$
6. If $a=b$, then $a+c=b+c$ for all real numbers a, b, and c. Example: If $x-5=2$, then $x-5+5=2+5$.
7. If $a=b$, then $a-c=b-c$ for all real numbers a, b, and c. Example: If $2 x+3=5$, then $2 x+3-3=5-3$.
8. If $a=b$, then $a \cdot c=b \cdot c$ for all real numbers a, b, and c, where $c \neq 0$. Example: If $\frac{x}{3}=2$, then $3\left(\frac{x}{3}\right)=3(2)$.
9. If $a=b$, then $\frac{a}{c}=\frac{b}{c}$ for all real numbers a, b, and c, where $c \neq 0$. Example: If $4 x=8$ then $\frac{4 x}{4}=\frac{8}{4}$.
10. An algorithm is a general procedure for accomplishing a task.
11. A ratio is a quotient of two quantities. Example: $\frac{7}{9}$
12. A proportion is a statement of equality between two ratios. Example: $\frac{3}{7}=\frac{x}{10}$
13. Yes. They have the same variable and the same exponent on the variable.
14. No. They do not have the same variable.
15. $2 x+9 x=11 x$
16. $-4 x-7 x=-11 x$
17. $5 x-3 x+12=2 x+12$
18. $-6 x+3 x+21=-3 x+21$
19. $7 x+3 y-4 x+8 y=3 x+11 y$
21. $-3 x+2-5 x=-8 x+2$
23. $2-3 x-2 x+1=-5 x+3$
25. $6.2 x-8.3+7.1 x=13.3 x-8.3$
20. $x-4 x+3=-3 x+3$
22. $-3 x+4 x-2+5=x+3$
24. $-0.2 x+1.7 x-4=1.5 x-4$
26. $\frac{2}{3} x+\frac{1}{6} x-5=\frac{4}{6} x+\frac{1}{6} x-5=\frac{5}{6} x-5$
28. $7 t+5 s+9-3 t-2 s-12=4 t+3 s-3$
30. $3(p+2)-4(p+3)=3 p+6-4 p-12=-p-6$
32. $6(r-3)-2(r+5)+10=6 r-18-2 r-10+10$

$$
=4 r-18
$$

34. $\frac{1}{5}(x+2)-\frac{1}{10} x=\frac{1}{5} x+\frac{2}{5}-\frac{1}{10} x$ $=\frac{2}{10} x-\frac{1}{10} x+\frac{2}{5}=\frac{1}{10} x+\frac{2}{5}$
35. $\frac{2}{3} x+\frac{3}{7}-\frac{1}{4} x=\frac{8}{12} x-\frac{3}{12} x+\frac{3}{7}=\frac{5}{12} x+\frac{3}{7}$
36. $0.5(2.6 x-4)+2.3(1.4 x-5)=1.3 x-2+3.22-11.5$ $=4.52 x-13.5$
37. $n-\frac{3}{4}+\frac{5}{9} n-\frac{1}{6}=\frac{9}{9} n+\frac{5}{9} n-\frac{9}{12}-\frac{2}{12}=\frac{14}{9} n-\frac{11}{12}$
38. $\frac{2}{3}(3 x+9)-\frac{1}{4}(2 x+5)=2 x+6-\frac{1}{2} x-\frac{5}{4}$
$=\frac{4}{2} x-\frac{1}{2} x+\frac{24}{4}-\frac{5}{4}=\frac{3}{2} x+\frac{19}{4}$
39.

$$
\begin{aligned}
y+8 & =13 \\
y+8-8 & =13-8 \\
y & =5
\end{aligned}
$$

Subtract 8 from both sides of the equation.
40.

$$
\begin{aligned}
2 y-7 & =17 & & \\
2 y-7+7 & =17+7 & & \text { Add } 7 \text { to both sides of the equation. } \\
2 y & =24 & & \\
\frac{2 y}{2} & =\frac{24}{2} & & \text { Divide both sides of the equation by } 2 . \\
y & =12 & &
\end{aligned}
$$

41.

$$
\begin{aligned}
9 & =12-3 x & & \\
9-12 & =12-12-3 x & & \text { Subtract } 12 \text { from both sides of the equation. } \\
-3 & =-3 x & & \\
\frac{-3}{-3} & =\frac{-3 x}{-3} & & \text { Divide both sides of the equation by }-3 . \\
1 & =x & &
\end{aligned}
$$

42.

$$
\begin{array}{rlrl}
14 & =3 x+5 & \\
14-5 & =3 x+5-5 & & \\
9 & =3 x & & \\
\frac{9}{3} & =\frac{3 x}{3} & & \\
3 & =x & & \\
& \text { Divide both sides of the equation by } 3 . \\
& &
\end{array}
$$

43.

$$
\begin{aligned}
\frac{3}{x} & =\frac{7}{8} \\
3(8) & =7 x \\
24 & =7 x \\
\frac{24}{7} & =\frac{7 x}{7} \\
\frac{24}{7} & =x
\end{aligned}
$$

Cross multiplication

Divide both sides of the equation by 7 .
44. $\quad \frac{x-1}{5}=\frac{x+5}{15}$

$$
\begin{aligned}
15(x-1) & =5(x+5) & & \text { Cross multiplication } \\
15 x-15 & =5 x+25 & & \text { Distributive Property } \\
15 x-5 x-15 & =5 x-5 x+25 & & \text { Subtract } 5 x \text { from both sides of the equation. } \\
10 x-15 & =25 & & \\
10 x-15+15 & =25+15 & & \text { Add } 15 \text { to both sides of the equation. } \\
10 x & =40 & & \text { Divide both sides of the equation by } 10 . \\
\frac{10 x}{10} & =\frac{40}{10} & & \\
x & =4 & &
\end{aligned}
$$

45. $\quad \frac{1}{2} x+\frac{1}{3}=\frac{2}{3}$

$$
\begin{aligned}
6\left(\frac{1}{2} x+\frac{1}{3}\right) & =6\left(\frac{2}{3}\right) & & \text { Multiply both sides of the equation by the LCD. } \\
3 x+2 & =4 & & \text { Distributive Property } \\
3 x+2-2 & =4-2 & & \text { Subtract } 2 \text { from both sides of the equation. } \\
3 x & =2 & & \text { Divide both sides of the equation by } 3 . \\
\frac{3 x}{3} & =\frac{2}{3} & &
\end{aligned}
$$

46. $\quad \frac{1}{2} y+\frac{1}{3}=\frac{1}{4}$

$$
\begin{aligned}
12\left(\frac{1}{2} y+\frac{1}{3}\right) & =12\left(\frac{1}{4}\right) & & \text { Multiply both sides of the equation by the LCD. } \\
6 y+4 & =3 & & \text { Distributive Property } \\
6 y+4-4 & =3-4 & & \text { Subtract } 4 \text { from both sides of the equation. } \\
6 y & =-1 & & \\
\frac{6 y}{6} & =\frac{-1}{6} & & \text { Divide both sides of the equation by } 6 . \\
y & =-\frac{1}{6} & &
\end{aligned}
$$

47.

$$
\begin{aligned}
0.7 x-0.3 & =1.8 \\
0.7 x-0.3+0.3 & =1.8+0.3 \\
0.7 x & =2.1 \\
\frac{0.7 x}{0.7} & =\frac{2.1}{0.7} \\
x & =3
\end{aligned}
$$

48.

$$
\begin{aligned}
5 x+0.050 & =-0.732 \\
5 x+0.050-0.050 & =-0.732-0.050 \\
5 x & =-0.782 \\
\frac{5 x}{5} & =\frac{-0.782}{5} \\
x & =-0.1564
\end{aligned}
$$

49.

$$
\begin{aligned}
6 t-8 & =4 t-2 \\
6 t-4 t-8 & =4 t-4 t-2 \\
2 t-8 & =-2 \\
2 t-8+8 & =-2+8 \\
2 t & =6 \\
\frac{2 t}{2} & =\frac{6}{2} \\
t & =3
\end{aligned}
$$

50. $\quad \frac{x}{4}+2 x=\frac{1}{3}$

$$
\begin{aligned}
12\left(\frac{x}{4}+2 x\right) & =12\left(\frac{1}{3}\right) & & \text { Mulitply both sides of the equation by the LCD. } \\
3 x+24 x & =4 & & \text { Distributive Property } \\
27 x & =4 & & \\
\frac{27 x}{27} & =\frac{4}{27} & & \text { Divide both sides of the equation by } 27 . \\
x & =\frac{4}{27} & &
\end{aligned}
$$

51. $\quad \frac{x-3}{2}=\frac{x+4}{3}$

$$
3(x-3)=2(x+4)
$$

$$
3 x-9=2 x+8
$$

$$
3 x-2 x-9=2 x-2 x+8
$$

$$
x-9=8
$$

$$
x-9+9=8+9
$$

Subtract $4 t$ from both sides of the equation.

Add 8 to both sides of the equation.

Divide both sides of the equation by 2 .
Add 0.3 to both sides of the equation.

Divide both sides of the equation by 0.7 .

Subtract 0.050 from both sides of the equation.

Divide both sides of the equation by 5 .

Add 8 to both sides of the equation.

Cross multiplication
Distributive Property
Subtract $2 x$ from both sides of the equation.

Add 9 to both sides of the equation.

$$
x=17
$$

52.

$$
\begin{aligned}
\frac{x-5}{4} & =\frac{x-9}{3} \\
3(x-5) & =4(x-9) \\
3 x-15 & =4 x-36 \\
3 x-3 x-15 & =4 x-3 x-36 \\
-15 & =x-36 \\
-15+36 & =x-36+36 \\
21 & =x
\end{aligned}
$$

53.

$$
\begin{aligned}
6 t-7 & =8 t+9 \\
6 t-6 t-7 & =8 t-6 t+9 \\
-7 & =2 t+9 \\
-7-9 & =2 t+9-9 \\
-16 & =2 t \\
\frac{-16}{2} & =\frac{2 t}{2} \\
-8 & =t
\end{aligned}
$$

54.

$$
\begin{aligned}
12 x-1.2 & =3 x+1.5 \\
12 x-3 x-1.2 & =3 x-3 x+1.5 \\
9 x-1.2 & =1.5 \\
9 x-1.2+1.2 & =1.5+1.2 \\
9 x & =2.7 \\
\frac{9 x}{9} & =\frac{2.7}{9} \\
x & =0.3
\end{aligned}
$$

55. $2(x+3)-4=2(x-4)$

$$
2 x+6-4=2 x-8
$$

$$
2 x+2=2 x-8
$$

$$
2 x-2 x+2=2 x-2 x-8
$$

$$
2=-8
$$

No solution
56. $3(x+2)+2(x-1)=5 x-7$

$$
\begin{aligned}
3 x+6+2 x-2 & =5 x-7 \\
5 x+4 & =5 x-7 \\
5 x-5 x+4 & =5 x-5 x-7 \\
4 & =-7
\end{aligned}
$$

Distributive Property

Subtract $5 x$ from both sides of the equation. False

No solution
57.

$$
\begin{array}{rlr}
4(x-4)+12 & =4(x-1) \\
4 x-16+12 & =4 x-4 \\
4 x-4 & =4 x-4
\end{array} \quad \text { Distributive Property }
$$

This equation is an identity. Therefore, the solution is all real numbers.
58. $\quad \frac{x}{3}+4=\frac{2 x}{5}-6$

$$
\begin{aligned}
15\left(\frac{x}{3}+4\right) & =15\left(\frac{2 x}{5}-6\right) & & \text { Multiply both sides of the equation by the LCD. } \\
5 x+60 & =6 x-90 & & \text { Distributive Property } \\
5 x-5 x+60 & =6 x-5 x-90 & & \text { Subtract } 5 x \text { from both sides of the equation. } \\
60 & =x-90 & & \text { Add } 90 \text { to both sides of the equation. } \\
60+90 & =x-90+90 & &
\end{aligned}
$$

59. $\quad \frac{1}{4}(x+4)=\frac{2}{5}(x+2)$
$20\left(\frac{1}{4}\right)(x+4)=20\left(\frac{2}{5}\right)(x+2) \quad$ Multiply both sides of the equation by the LCD.

$$
5(x+4)=8(x+2)
$$

$$
5 x+20=8 x+16
$$

Distributive Property

$$
5 x-8 x+20=8 x-8 x+16
$$

Subtract $8 x$ from both sides of the equation.

Subtract 20 from both sides of the equation.

Divide both sides of the equation by -3 . $x=\frac{4}{3}$
60.

$$
\begin{aligned}
\frac{2}{3}(x+5) & =\frac{1}{4}(x+2) & & \\
12\left(\frac{2}{3}\right)(x+5) & =12\left(\frac{1}{4}\right)(x+2) & & \text { Multiply both sides of the equation by the LCD. } \\
8(x+5) & =3(x+2) & & \\
8 x+40 & =3 x+6 & & \text { Distributive Property } \\
8 x-3 x+40 & =3 x-3 x+6 & & \text { Subtract } 3 x \text { from both sides of the equation. } \\
5 x+40 & =6 & & \text { Subtract } 40 \text { from both sides of the equation. } \\
5 x+40-40 & =6-40 & & \text { Divide both sides of the equation by } 5 . \\
5 x & =-34 & & \\
\frac{5 x}{5} & =\frac{-34}{5} & &
\end{aligned}
$$

61.

$$
\begin{aligned}
3 x+2-6 x & =-x-15+8-5 x & & \\
-3 x+2 & =-6 x-7 & & \\
-3 x+6 x+2 & =-6 x+6 x-7 & & \text { Add } 6 x \text { to both sides of the equation. } \\
3 x+2 & =-7 & & \\
3 x+2-2 & =-7-2 & & \\
3 x & =-9 & & \\
\frac{3 x}{3} & =\frac{-9}{3} & & \text { Divide both sides of the equation by } 3 . \\
x & =-3 & &
\end{aligned}
$$

62.

$$
\begin{aligned}
6 x+8-22 x & =28+14 x-10+12 x & & \\
-16 x+8 & =26 x+18 & & \\
-16 x-26 x+8 & =26 x-26 x+18 & & \text { Subtract } 26 x \text { from both sides of the equation. } \\
-42 x+8 & =18 & & \\
-42 x+8-8 & =18-8 & & \\
-42 x & =10 & & \\
\frac{-42 x}{-42} & =\frac{10}{-42} & & \\
x & =-\frac{10}{42}=-\frac{5}{21} & &
\end{aligned}
$$

63.

$$
\begin{aligned}
2(x-3)+2 & =2(2 x-6) & & \\
2 x-6+2 & =4 x-12 & & \text { Distributive Property } \\
2 x-4 & =4 x-12 & & \text { Subtract } 4 x \text { from both sides of the equation. } \\
2 x-4 x-4 & =4 x-4 x-12 & & \\
-2 x-4 & =-12 & & \text { Add } 4 \text { to both sides of the equation. } \\
-2 x-4+4 & =-12+4 & & \\
-2 x & =-8 & & \text { Divide both sides of the equation by }-2 . \\
\frac{-2 x}{-2} & =\frac{-8}{-2} & & \\
x & =4 & &
\end{aligned}
$$

64. $5.7 x-3.1(x+5)=7.3$

$$
\begin{array}{rlrl}
5.7 x-3.1 x-15.5 & =7.3 & & \text { Distributive Property } \\
2.6 x-15.5 & =7.3 & & \\
2.6 x-15.5+15.5 & =7.3+15.5 & & \text { Add } 15.5 \text { to both sides of the equation. } \\
2.6 x & =22.8 & & \\
\frac{2.6 x}{2.6} & =\frac{22.8}{2.6} & & \text { Divide both sides of the equation by } 2.6 . \\
x & =\frac{22.8}{2.6}=\frac{228}{26}=\frac{114}{13} \text { or } x \approx 8.7692
\end{array}
$$

$$
\text { 65. } \begin{aligned}
\frac{2.05}{1000} & =\frac{x}{35,300} \\
2.05(35,300) & =1000 x \\
72,365 & =1000 x \\
\frac{72,365}{1000} & =\frac{1000 x}{1000} \\
x & =72.365 \approx \$ 72.37
\end{aligned}
$$

67. $\quad \frac{x}{354}=\frac{1}{6}$
$6 x=354$
$\frac{6 x}{6}=\frac{354}{6}$
$x=59$ times
68. $\frac{1}{1,022,000}=\frac{20.3}{x}$
$x=1,022,000(20.3)$
$x=20,746,600$ households
69. a) $\quad \frac{50}{80}=\frac{1}{x}$
$50 x=80$
$\frac{50 x}{50}=\frac{80}{50}$
$x=1.6 \mathrm{kph}$
b) $\quad \frac{50}{80}=\frac{x}{90}$

$$
80 x=50(90)
$$

$$
80 x=4500
$$

$\frac{80 x}{80}=\frac{4500}{80}$
$x=56.25 \mathrm{mph}$
66. $\frac{2.05}{1000}=\frac{40.68}{x}$

$$
2.05 x=40.68(1000)
$$

$$
2.05 x=40,680
$$

$$
\frac{2.05 x}{2.05}=\frac{40,680}{2.05}
$$

$$
x=19,843.90244 \approx 19,844 \mathrm{gal}
$$

68. a) $\frac{6}{9}=\frac{16}{x}$

$$
6 x=9(16)
$$

$$
6 x=144
$$

$$
\frac{6 x}{6}=\frac{144}{6}
$$

$$
x=24 \mathrm{oz}
$$

b) $\quad \frac{x}{32}=\frac{6}{16}$

$$
16 x=32(6)
$$

$$
16 x=192
$$

$$
\frac{16 x}{16}=\frac{192}{16}
$$

$$
x=12 \text { servings }
$$

70. a)

$$
\begin{aligned}
\frac{20}{10,000} & =\frac{x}{140,000} \\
20(140,000) & =10,000 x \\
2,800,000 & =10,000 x \\
\frac{2,800,000}{10,000} & =\frac{10,000 x}{10,000} \\
x & =280 \mathrm{lb}
\end{aligned}
$$

b) $\quad \frac{280}{20}=14$ bags
72. $\frac{40}{0.6}=\frac{250}{x}$

$$
40 x=0.6(250)
$$

$$
40 x=150
$$

$$
\frac{40 x}{40}=\frac{150}{40}
$$

$$
x=3.75 \mathrm{~mm}
$$

73. $\frac{40}{1}=\frac{12}{x}$
$40 x=12$
74. $\frac{40}{1}=\frac{35}{x}$

$$
\frac{40 x}{40}=\frac{12}{40}
$$

$$
x=0.3 \mathrm{cc}
$$

$$
\begin{aligned}
40 x & =35 \\
\frac{40 x}{40} & =\frac{35}{40} \\
x & =0.875 \mathrm{cc}
\end{aligned}
$$

75. a) Answers will vary.
b) $2(x+3)=4 x+3-5 x$

$$
\begin{aligned}
2 x+6 & =-x+3 & & \text { Distributive Property } \\
2 x+x+6 & =-x+x+3 & & \text { Add } x \text { to both sides of the equation. } \\
3 x+6 & =3 & & \\
3 x+6-6 & =3-6 & & \text { Subtract } 6 \text { from both sides of the equation. } \\
3 x & =-3 & & \\
\frac{3 x}{3} & =\frac{-3}{3} & & \text { Divide both sides of the equation by } 3 . \\
x & =-1 & &
\end{aligned}
$$

76. a) An identity is an equation that has an infinite number of solutions.
b) When solving an equation, if you have the same expressions on both sides of the equal sign, the equation is an identity.
77. a) An inconsistent equation is an equation that has no solution.
b) When solving an equation, if you obtain a false statement, then the equation is inconsistent.
78. a)

$$
\begin{array}{rlrl}
P & =14.70+0.43 x & & \\
148 & =14.70+0.43 x & & \text { Given } P=148, \text { find } x . \\
148-14.70 & =14.70-14.70+0.43 x & & \text { Subtract } 14.70 \text { from both sides of the equation. } \\
133.3 & =0.43 x & & \\
\frac{133.3}{0.43} & =\frac{0.43 x}{0.43} & & \text { Divide both sides of the equation by } 0.43 . \\
x & =310 \mathrm{ft} & & \\
P & =14.70+0.43 x & & \text { Given } P=128.65, \text { find } x . \\
128.65 & =14.70+0.43 x & & \text { Subtract } 14.70 \text { from both sides of the equation. } \\
128.65-14.70 & =14.70-14.70+0.43 x & & \\
\frac{113.95}{}=0.43 x & & \text { Divide both sides of the equation by } 0.43 . \\
x & =\frac{0.43 x}{0.43} & &
\end{array}
$$

b)
79. a) $2: 5$; There are 2 males and a total of $2+3=5$ students.
b) $m: m+n$

Exercise Set 6.3

1.A formula is an equation that typically has a real-life application.
2.To evaluate a formula, substitute the given values for their respective variables, then evaluate.
3.Subscripts are numbers (or letters) placed below and to the right of variables. They are used to help clarify a formula.
4. $i=p r t$
5. An exponential equation is of the form $y=a^{x}, a>0, a \neq 1$.
6. a) $a>0, a \neq 1$
b) P_{0} represents the original amount present.
7. $P=4 s=4(5)=20$
9. $P=2 l+2 w$
$P=2(12)+2(16)=24+32=56$
11. $E=m c^{2}$
$400=m(4)^{2}$
$400=16 \mathrm{~m}$
$\frac{400}{16}=\frac{16 m}{16}$
$25=m$
13. $A=\pi\left(R^{2}-r^{2}\right)$
$A=3.14\left((6)^{2}-(4)^{2}\right)$
$A=3.14(36-16)$
$A=3.14(20)$
$A=62.8$
15. $z=\frac{x-\mu}{\sigma}$

$$
\begin{aligned}
\frac{2.5}{1} & =\frac{42.1-\mu}{2} \\
2.5(2) & =42.1-\mu \\
5 & =42.1-\mu \\
5-42.1 & =42.1-42.1-\mu \\
-37.1 & =-\mu \\
\frac{-37.1}{-1} & =\frac{-\mu}{-1} \\
37.1 & =\mu
\end{aligned}
$$

17. $T=\frac{P V}{k}$

$$
\begin{aligned}
\frac{80}{1} & =\frac{P(20)}{0.5} \\
80(0.5) & =20 P \\
40 & =20 P \\
\frac{40}{20} & =\frac{20 P}{20} \\
2 & =P
\end{aligned}
$$

8. $P=a+b+c=25+53+32=110$
9. $F=M A$

$$
40=M(5)
$$

$$
\frac{40}{5}=\frac{5 M}{5}
$$

$$
8=M
$$

12. $p=i^{2} r$
$62,500=(5)^{2} r$
$62,500=25 r$
$\frac{62,500}{25}=\frac{25 r}{25}$
$2500=r$
13. $B=\frac{703 w}{h^{2}}$

$$
\begin{aligned}
& B=\frac{703(130)}{(67)^{2}} \\
& B=\frac{91,390}{4489}=20.35865449 \approx 20.36
\end{aligned}
$$

16. $S=B+\frac{1}{2} P s$

$$
\begin{aligned}
300 & =100+\frac{1}{2} P(10) \\
300 & =100+5 P \\
300-100 & =100-100+5 P \\
200 & =5 P \\
\frac{200}{5} & =\frac{5 P}{5} \\
40 & =P
\end{aligned}
$$

18. $m=\frac{a+b+c}{3}$
$70=\frac{a+60+90}{3}$
$\frac{70}{1}=\frac{a+150}{3}$
$70(3)=a+150$
$210=a+150$
$210-150=a+150-150$

$$
60=a
$$

$$
\text { 19. } \begin{aligned}
& A=P(1+r t) \\
& 3600=P(1+0.04(5)) \\
& 3600=P(1+0.2) \\
& 3600=1.2 P \\
& \frac{3600}{1.2}=\frac{1.2 P}{1.2} \\
& 3000=P \\
& \text { 21. } \quad \begin{aligned}
V & =\frac{1}{2} a t^{2} \\
576 & =\frac{1}{2} a(12)^{2} \\
\frac{576}{1} & =\frac{144 a}{2} \\
576(2) & =144 a \\
1152 & =144 a \\
\frac{1152}{144} & =\frac{144 a}{144} \\
8 & =a
\end{aligned}
\end{aligned}
$$

23. $C=\frac{5}{9}(F-32)$

$$
\begin{aligned}
C & =\frac{5}{9}(77-32) \\
C & =\frac{5}{9}(45)=25
\end{aligned}
$$

25. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& m=\frac{8-(-4)}{-3-(-5)} \\
& m=\frac{8+4}{-3+5}=\frac{12}{2}=6
\end{aligned}
$$

$$
\text { 27. } \begin{aligned}
S & =R-r R \\
186 & =1 R-0.07 R \\
186 & =0.93 R \\
\frac{186}{0.93} & =\frac{0.93 R}{0.93} \\
200 & =R
\end{aligned}
$$

20. $\quad m=\frac{a+b}{2}$

$$
70=\frac{a+77}{2}
$$

$$
70(2)=a+77
$$

$$
140=a+77
$$

$$
140-77=a+77-77
$$

$$
63=a
$$

22. $F=\frac{9}{5} C+32$

$$
F=\frac{9}{5}(7)+32
$$

$$
F=\frac{63}{5}+32=12.6+32=44.6
$$

24. $K=\frac{F-32}{1.8}+273.1$

$$
K=\frac{100-32}{1.8}+273.1
$$

$$
K=\frac{68}{1.8}+273.1
$$

$$
K=37 . \overline{7}+273.1=310.8 \overline{7} \approx 310.88
$$

26. $z=\frac{\bar{x}-\mu}{\sigma}$

$$
\sqrt{\sqrt{n}}
$$

$$
z=\frac{66-60}{\frac{15}{\sqrt{25}}}
$$

$$
z=\frac{6}{\frac{15}{5}}=\frac{6}{3}=2
$$

28. $S=C+r C$
$115=1 C+0.15 C$
$115=1.15 C$
$\frac{115}{1.15}=\frac{1.15 C}{1.15}$
$100=C$
29. $E=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}$
$E=5(0.2)+7(0.6)+10(0.2)$
$E=1+4.2+2=7.2$
30. $s=-16 t^{2}+v_{0} t+s_{0}$
$s=-16(4)^{2}+30(4)+150$
$s=-16(16)+120+150$
$s=-256+120+150=14$
31. $P=\frac{f}{1+i}$

$$
3000=\frac{f}{1+0.08}
$$

$$
\frac{3000}{1}=\frac{f}{1.08}
$$

$3000(1.08)=f$

$$
3240=f
$$

35. $F=\frac{G m_{1} m_{2}}{r^{2}}$
$625=\frac{G(100)(200)}{(4)^{2}}$
$625=1250 G$
$\frac{625}{1250}=\frac{1250 G}{1250}$
$0.5=G$
36. $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
$S_{n}=\frac{8\left(1-\left(\frac{1}{2}\right)^{3}\right)}{1-\frac{1}{2}}$
$S_{n}=\frac{8\left(1-\frac{1}{8}\right)}{1-\frac{1}{2}}$
$S_{n}=\frac{8\left(\frac{7}{8}\right)}{\frac{1}{2}}=\frac{7}{\frac{1}{2}}=7(2)=14$
37. $x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

$$
x=\frac{-(-5)+\sqrt{(-5)^{2}-4(2)(-12)}}{2(2)}
$$

$$
x=\frac{5+\sqrt{25+96}}{4}
$$

$$
x=\frac{5+\sqrt{121}}{4}=\frac{5+11}{4}=\frac{16}{4}=4
$$

32. $R=O+(V-D) r$
$670=O+(100-10)(4)$
$670=O+360$
$670-360=O+360-360$
$310=O$
33. $c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{(5)^{2}+(12)^{2}}$
$c=\sqrt{25+144}$
$c=\sqrt{169}=13$
34. $P=\frac{n R T}{V}$

$$
12=\frac{(10)(60)(8)}{V}
$$

$$
\frac{12}{1}=\frac{4800}{V}
$$

$$
12 \mathrm{~V}=4800
$$

$$
\frac{12 \mathrm{~V}}{12}=\frac{4800}{12}
$$

$$
V=400
$$

38. $A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=100\left(1+\frac{0.06}{1}\right)^{1(3)}$
$A=100(1+0.06)^{3}$
$A=100(1.06)^{3}$
$A=100(1.191016)$
$A=119.1016 \approx 119.10$
39.

$$
\begin{array}{rlrl}
10 x-4 y & =13 \\
10 x-10 x-4 y & =-10 x+13 \\
-4 y & =-10 x+13 \\
\frac{-4 y}{-4} & =\frac{-10 x+13}{-4} \\
y & =\frac{-10 x+13}{-4}=\frac{-(-10 x+13)}{4} \\
& =\frac{10 x-13}{4}=\frac{10 x}{4}-\frac{13}{4}=\frac{5}{2} x-\frac{13}{4} & \text { Subtract } 10 x \text { from both sides of the equa }
\end{array} \quad \begin{aligned}
& \text { Divide both sides of the equation by }-4 .
\end{aligned}
$$

40. $8 x-6 y=21$
$\begin{aligned} 8 x-8 x-6 y & =-8 x+21 \quad \text { Subtract } 8 x \text { from both sides of the equation. } \\ -6 y & =-8 x+21\end{aligned}$
$\frac{-6 y}{-6}=\frac{-8 x+21}{-6}$
Divide both sides of the equation by -6 .
$y=\frac{-8 x+21}{-6}=\frac{-(-8 x+21)}{6}=\frac{8 x-21}{6}=\frac{8 x}{6}-\frac{21}{6}=\frac{4}{3} x-\frac{7}{2}$
41.

$$
\begin{array}{rlrl}
4 x+7 y & =14 & \\
-4 x+4 x+7 y & =-4 x+14 \\
7 y & =-4 x+14 \\
\frac{7 y}{7} & =\frac{-4 x+14}{7} \\
y & =\frac{-4 x+14}{7}=\frac{-4 x}{7}+\frac{14}{7}=-\frac{4}{7} x+2 & &
\end{array}
$$

42. $-2 x+4 y=9$
$-2 x+2 x+4 y=2 x+9$
$4 y=2 x+9$
$\frac{4 y}{4}=\frac{2 x+9}{4}$

$$
y=\frac{2 x+9}{4}=\frac{2 x}{4}+\frac{9}{4}=\frac{1}{2} x+\frac{9}{4}
$$

43.

$$
\begin{array}{rlrl}
2 x-3 y+6 & =0 & & \\
2 x-3 y+6-6 & =0-6 & & \\
2 x-3 y & =-6 & & \\
-2 x+2 x-3 y & =-2 x-6 & & \\
-3 y & =-2 x-6 \\
\frac{-3 y}{-3} & =\frac{-2 x-6}{-3} & & \text { Dubtract } 2 x \text { from from both sides of the sides of the equatio } \\
y & =\frac{-2 x-6}{-3}=\frac{-(-2 x-6)}{3}=\frac{2 x+6}{3}=\frac{2 x}{3}+\frac{6}{3}=\frac{2}{3} x+2
\end{array}
$$

44.

$$
\begin{aligned}
3 x+4 y & =0 \\
-3 x+3 x+4 y & =-3 x+0 \\
4 y & =-3 x \\
\frac{4 y}{4} & =\frac{-3 x}{4} \\
y & =-\frac{3}{4} x
\end{aligned}
$$

45. $-2 x+3 y+z=15$

$$
-2 x+2 x+3 y+z=2 x+15
$$

$$
3 y+z=2 x+15
$$

$$
3 y+z-z=2 x-z+15
$$

$$
3 y=2 x-z+15
$$

$$
\frac{3 y}{3}=\frac{2 x-z+15}{3}
$$

$$
y=\frac{2 x-z+15}{3}=\frac{2}{3} x-\frac{1}{3} z+5
$$

46. $\quad 5 x+3 y-2 z=22$

$$
5 x-5 x+3 y-2 z=-5 x+22
$$

$$
3 y-2 z=-5 x+22
$$

$$
3 y-2 z+2 z=-5 x+2 z+22
$$

$$
3 y=-5 x+2 z+22
$$

$$
\frac{3 y}{3}=\frac{-5 x+2 z+22}{3}
$$

$$
y=\frac{-5 x+2 z+22}{3}=-\frac{5}{3} x+\frac{2}{3} z+\frac{22}{3}
$$

47. $9 x+4 z=7+8 y$

$$
9 x+4 z-7=7-7+8 y
$$

$$
9 x+4 z-7=8 y
$$

$$
\frac{9 x+4 z-7}{8}=\frac{8 y}{8}
$$

$$
y=\frac{9 x+4 z-7}{8}=\frac{9}{8} x+\frac{1}{2} z-\frac{7}{8}
$$

48.

$$
\begin{aligned}
2 x-3 y+5 z & =0 \\
2 x-3 y+3 y+5 z & =0+3 y \\
2 x+5 z & =3 y \\
\frac{2 x+5 z}{3} & =\frac{3 y}{3} \\
y & =\frac{2 x+5 z}{3}=\frac{2}{3} x+\frac{5}{3} z
\end{aligned}
$$

Subtract $3 x$ from boths sides of the equation.

Divide both sides of the equation by 4 .

Add $2 x$ to both sides of the equation.

Subtract z from both sides of the equation.

Divide both sides of the equation by 3 .

Subtract $5 x$ from both sides of the equation.

Add $2 z$ to both sides of the equation.

Divide both sides of the equation by 3 .

Subtract 7 from both sides of the equation.

Divide both sides of the equation by 8 .

Add $3 y$ to both sides of the equation.

Divide both sides of the equation by 3 .
49. $E=I R$

$$
\begin{aligned}
& \frac{E}{I}=\frac{I R}{I} \\
& R=\frac{E}{I}
\end{aligned}
$$

Divide both sides of the equation by I.

Divide both sides of the equation by i.

Divide both sides of the equation by r.

Subtract b from both sides of the equation.

Subtract c from both sides of the equation.

Subtract a from both sides of the equation.

Subtract b from both sides of the equation.

Subtract s_{2} from both sides of the equation.

Multiply both sides of the equation by 3 .

Divide both sides of the equation by h.
54. $\quad V=\pi r^{2} h$

$$
\frac{V}{\pi}=\frac{\pi r^{2} h}{\pi}
$$

Divide both sides of the equation by π.

$$
\frac{V}{\pi}=r^{2} h
$$

$$
\frac{V}{\pi r^{2}}=\frac{r^{2} h}{r^{2}}
$$

Divide both sides of the equation by r^{2}.

$$
h=\frac{V}{\pi r^{2}}
$$

55. $\quad C=2 \pi r$

$$
\frac{C}{2}=\frac{2 \pi r}{2}
$$

Divide both sides of the equation by 2 .

$$
\frac{C}{2}=\pi r
$$

$$
\frac{C}{2 \pi}=\frac{\pi r}{\pi}
$$

Divide both sides of the equation by π.

$$
r=\frac{C}{2 \pi}
$$

56. $r=\frac{2 g m}{c^{2}}$
$r c^{2}=\left(\frac{2 g m}{c^{2 .}}\right) c^{2}$
$r c^{2}=2 g m$
$\frac{r c^{2}}{2}=\frac{2 g m}{2}$
$\frac{r c^{2}}{2}=g m$
$\frac{r c^{2}}{2 g}=\frac{g m}{g}$

$$
m=\frac{r c^{2}}{2 g}
$$

$$
\text { 57. } \begin{aligned}
y & =m x+b \\
y-m x & =m x-m x+b \\
b & =y-m x
\end{aligned}
$$

58.

$$
\begin{aligned}
y & =m x+b \\
y-b & =m x+b-b \\
y-b & =m x \\
\frac{y-b}{x} & =\frac{m x}{x} \\
m & =\frac{y-b}{x}
\end{aligned}
$$

Divide both sides of the equation by 2 .

Divide both sides of the equation by g.

Subtract $m x$ from both sides of the equation.

Subtract b from both sides of the equation.

Divide both sides of the equation by x.
59.

$$
\begin{aligned}
P & =2 l+2 w \\
P-2 l & =2 l-2 l+2 w \\
P-2 l & =2 w \\
\frac{P-2 l}{2} & =\frac{2 w}{2} \\
w & =\frac{P-2 l}{2}
\end{aligned}
$$

Subtract $2 l$ from both sides of the equation.

Divide both sides of the equation by 2 .

Multiply both sides of the equation by 2 .

Divide both sides of the equation by d_{1}.

Multiply both sides of the equation by 3 .

Subtract a from both sides of the equation.

Subtract b from both sides of the equation.

Multiply both sides of the equation by 2.

Divide both sides of the equation by h.
63. $P=\frac{K T}{V}$

$$
\begin{aligned}
P V & =\left(\frac{K T}{V}\right) V \\
P V & =K T \\
\frac{P V}{K} & =\frac{K T}{K} \\
T & =\frac{P V}{K}
\end{aligned}
$$

Multiply both sides of the equation by V.

Divide both sides of the equation by K.
64. $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

$$
P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}
$$

$$
\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{P_{2} V_{2}}{P_{2}}
$$

Cross multiplication

$$
\frac{P_{1} V_{1} T_{2}}{T_{1}}=\frac{P_{2} V_{2} T_{1}}{T_{1}}
$$

Divide both sides of the equation by T_{1}.

$$
\frac{P_{1} V_{1} T_{2}}{T_{1}}=P_{2} V_{2}
$$

Divide both sides of the equation by P_{2}.

$$
V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}
$$

65. $\quad F=\frac{9}{5} C+32$

$$
F-32=\frac{9}{5} C+32-32 \quad \text { Subtract } 32 \text { from both sides of the equation. }
$$

$$
F-32=\frac{9}{5} C
$$

$$
\frac{5}{9}(F-32)=\frac{5}{9}\left(\frac{9}{5} C\right)
$$

Multiply both sides of the equation by $\frac{5}{9}$.

$$
C=\frac{5}{9}(F-32)
$$

Multiply both sides of the equation by $\frac{9}{5}$.

Add 32 to both sides of the equation.
67.

$$
\begin{aligned}
S & =\pi r^{2}+\pi r s \\
S-\pi r^{2} & =\pi r^{2}-\pi r^{2}+\pi r s
\end{aligned}
$$

$$
S-\pi r^{2}=\pi r s
$$

$$
\frac{S-\pi r^{2}}{\pi}=\frac{\pi r s}{\pi}
$$

$$
\frac{S-\pi r^{2}}{\pi}=r s
$$

$$
\frac{S-\pi r^{2}}{\pi r}=\frac{r s}{r}
$$

$$
s=\frac{S-\pi r^{2}}{\pi r}
$$

68.

$$
\begin{aligned}
A & =\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
2 A & =2\left(\frac{1}{2} h\left(b_{1}+b_{2}\right)\right) \\
2 A & =h\left(b_{1}+b_{2}\right) \\
\frac{2 A}{h} & =\frac{h\left(b_{1}+b_{2}\right)}{h} \\
\frac{2 A}{h} & =b_{1}+b_{2} \\
\frac{2 A}{h}-b_{1} & =b_{1}-b_{1}+b_{2} \\
b_{2} & =\frac{2 A}{h}-b_{1}
\end{aligned}
$$

69. a) $i=p r t$
$i=600(0.02)(1)=\$ 12$
b) $\$ 600+\$ 12=\$ 612$

Subtract πr^{2} from both sides of the equation.

Divide both sides of the equation by π.

Divide both sides of the equation by r.

Multiply both sides of the equation by 2.

Divide both sides of the equation by h.

Subtract b_{1} from both sides of the equation.

$$
\text { 70. } \begin{aligned}
i & =p r t \\
128 & =800(r)(2) \\
128 & =1600 r \\
\frac{128}{1600} & =\frac{1600 r}{1600} \\
r & =0.08=8 \%
\end{aligned}
$$

71. Radius $=\frac{2.5}{2}=1.25 \mathrm{in}$.

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi(1.25)^{2}(3.75) \\
& V=\pi(1.5625)(3.75) \\
& V=18.40776945 \mathrm{in}^{3} .^{3} \approx 18.4 \mathrm{in} .^{3}
\end{aligned}
$$

72. a) $6 \mathrm{ft}=6(12)=72 \mathrm{in}$.

$$
\begin{aligned}
B & =\frac{703 w}{h^{2}} \\
B & =\frac{703(200)}{(72)^{2}} \\
B & =\frac{140,600}{5184}=27.12191358 \approx 27.12 \\
B & =\frac{703 w}{h^{2}} \\
26 & =\frac{703 w}{(72)^{2}} \\
26 & =\frac{703 w}{5184} \\
134,784 & =703 w \\
\frac{134,784}{703} & =\frac{703 w}{703} \\
w & =191.7268848 \mathrm{lb}
\end{aligned}
$$

He would have to lose 200-191.7268848

$$
=8.2731152 \approx 8.27 \mathrm{lb}
$$

73. $y=2000(3)^{x}$
$y=2000(3)^{5}$
$y=2000(243)$
$y=486,000$ bacteria
74. $V=24 e^{0.08 t}$
$V=24 e^{0.08(377)}$
$V=24 e^{30.16}$
$V=\$ 300,976,658,300,000$
75. $V=l w h-\pi r^{2} h$
$V=12(8)(12)-\pi(2)^{2}(8)$
$V=1152-100.5309649$
$V=1051.469035$ in. $^{3} \approx 1051.47 \mathrm{in} .^{3}$
76. $\quad P_{n}=P(1+r)^{n}$
$P_{n}=8(1+0.03)^{10}$
$P_{n}=8(1.03)^{10}$
$P_{n}=8(1.343916379)$
$P_{n}=\$ 10.75133103 \approx \$ 10.75$
77. $S=S_{0} e^{-0.028 t}$
$S=1000 e^{-0.028(30)}$
$S=1000 e^{-0.84}$
$S=1000(0.4317105234)$
$S=431.7105234 \mathrm{~g} \approx 431.71 \mathrm{~g}$
78.

S F A R R L I D G R T P
$\begin{array}{llll}C & C & J & O \\ A & N & Y & E\end{array} \begin{array}{llllll}B & O & L & F\end{array}$

F S E R G H T L Y Z M T

Exercise Set 6.4

1. A mathematical expression is a collection of variables, numbers, parentheses, and operation symbols. An equation is two algebraic expressions joined by an equal sign.
2. Expression: $2 x+3 y$; equation: $2 x+3 y=16$
3. $4+3 x$
4. $6 r+5$
5. $15-2 r$
6. $2 m+9$
7. $\frac{18-s}{4}$
8. $(5 y-6)+3$
9. Let $x=$ the number

$$
\begin{aligned}
x-6 & =\text { the number decreased by } 6 \\
x-6 & =5 \\
x-6+6 & =5+6 \\
x & =11
\end{aligned}
$$

17. Let $x=$ the number
$x-4=$ the difference between the number and 4
$x-4=20$
$x-4+4=20+4$

$$
x=24
$$

19.

$$
\begin{aligned}
\text { Let } x & =\text { the number } \\
12+5 x & =12 \text { increased by } 5 \text { times the number } \\
12+5 x & =47 \\
12-12+5 x & =47-12 \\
5 x & =35 \\
\frac{5 x}{5} & =\frac{35}{5} \\
x & =7
\end{aligned}
$$

21.

$$
\begin{aligned}
\text { Let } x & =\text { the number } \\
8 x+16 & =16 \text { more than } 8 \text { times the number } \\
8 x+16 & =88 \\
8 x+16-16 & =88-16 \\
8 x & =72 \\
\frac{8 x}{8} & =\frac{72}{8} \\
x & =9
\end{aligned}
$$

4. $6 x-2$
5. $10 s-13$
6. $x+6$
7. $8+5 x$
8. $\frac{8+t}{2}$
9. $\frac{8}{y}-3 x$
10. Let $x=$ the number
$x+7=$ the sum of the number and 7
$x+7=15$
$x+7-7=15-7$
$x=8$
11. Let $x=$ the number

$$
\begin{aligned}
7 x & =\text { the number multiplied by } 7 \\
7 x & =42 \\
\frac{7 x}{7} & =\frac{42}{7} \\
x & =6
\end{aligned}
$$

20. Let $x=$ the number
$4 x-10=4$ times the number decreased by 10
$4 x-10=42$
$4 x-10+10=42+10$
$4 x=52$
$\frac{4 x}{4}=\frac{52}{4}$
$x=13$
21. Let $x=$ the number
$5 x+6=6$ more than 5 times the number
$7 x-18=7$ times the number decreased by 18

$$
\begin{aligned}
5 x+6 & =7 x-18 \\
5 x-7 x+6 & =7 x-7 x-18 \\
-2 x+6 & =-18 \\
-2 x+6-6 & =-18-6 \\
-2 x & =-24 \\
\frac{-2 x}{-2} & =\frac{-24}{-2} \\
x & =12
\end{aligned}
$$

23.

$$
\begin{aligned}
\text { Let } x & =\text { the number } \\
x+11 & =\text { the number increased by } 11 \\
3 x+1 & =1 \text { more than } 3 \text { times the number } \\
x+11 & =3 x+1 \\
x-x+11 & =3 x-x+1 \\
11 & =2 x+1 \\
11-1 & =2 x+1-1 \\
10 & =2 x \\
\frac{10}{2} & =\frac{2 x}{2} \\
5 & =x
\end{aligned}
$$

25. Let $x=$ the number
$x+10=$ the number increased by 10
$2(x+3)=2$ times the sum of the number and 3
$x+10=2(x+3)$
$x+10=2 x+6$
$x-x+10=2 x-x+6$

$$
10=x+6
$$

$10-6=x+6-6$
$4=x$
27. Let $x=$ the number of tickets sold to nonstudents $3 x=$ the number of tickets sold to students

$$
x+3 x=600
$$

$4 x=600$
$\frac{4 x}{4}=\frac{600}{4}$
$x=150$ tickets to nonstudents
$3 x=3(150)=450$ tickets to students
24. Let $x=$ the number $\frac{x}{3}=$ the number divided by 3 $x-4=4$ less than the number $\frac{x}{3}=x-4$ $3\left(\frac{x}{3}\right)=3(x-4)$
$x=3 x-12$
$x-3 x=3 x-3 x-12$
$-2 x=-12$
$\frac{-2 x}{-2}=\frac{-12}{-2}$
$x=6$
26. Let $x=$ the number

$$
\begin{aligned}
& 2 x= \text { the product of } 2 \text { and the number } \\
& 2 x-3= \text { the product of } 2 \text { and the number, } \\
& \text { decreased by } 3 \\
& x+4= 4 \text { more than the number } \\
& 2 x-3= x+4 \\
& 2 x-x-3= x-x+4 \\
& x-3=4 \\
& x-3+3=4+3 \\
& x=7
\end{aligned}
$$

28. Let $x=$ cost of cheaper pair

$$
x+10=\text { cost of more expensive pair }
$$

$$
x+(x+10)=60
$$

$$
2 x+10=60
$$

$$
2 x+10-10=60-10
$$

$$
2 x=50
$$

$$
\frac{2 x}{2}=\frac{50}{2}
$$

$x=\$ 25$ for the cheaper pair
$x+10=25+10$
$=\$ 35$ for the more expensive pair
29. Let $x=$ the number filing electronically in 1999
$0.116 x=$ the amount of the increase
$x+0.116 x=34.20$
$1.116 x=34.20$
$\frac{1.116 x}{1.116}=\frac{34.20}{1.116}$
$x=30.64516129$
≈ 30.65 million taxpayers
31. Let $x=$ the original price before tax
$0.10 x=$ the amount saved on
spending x dollars
$x-0.10 x=15.72$
$0.9 x=15.72$
$\frac{0.9 x}{0.9}=\frac{15.72}{0.9}$
$x=17.4 \overline{6} \approx \$ 17.47$
33. Let $x=$ the number of compact discs
for Samantha
$3 x=$ the number of compact discs
for Josie
$x+3 x=12$
$4 x=12$
$\frac{4 x}{4}=\frac{12}{4}$
$x=3$ compact discs for Samantha
$3 x=3(3)=9$ compact discs for Josie
35. Let $x=$ the amount charged to each homeowner $50 x=$ the total amount charged to homeowners
$2000+50 x=$ the total cost for
the repairs
$2000+50 x=13,350$
$2000-2000+50 x=13,350-2000$

$$
50 x=11,350
$$

$$
\frac{50 x}{50}=\frac{11,350}{50}
$$

$x=\$ 227$
30.

$$
\begin{aligned}
\text { Let } x= & \text { Vinny's dollar sales } \\
0.06 x= & \text { the amount Vinny made } \\
& \quad \text { on commission } \\
400+0.06 x= & 790 \\
400-400+0.06 x= & 790-400 \\
0.06 x= & 390 \\
\frac{0.06 x}{0.06}= & \frac{390}{0.06} \\
x= & \$ 6500
\end{aligned}
$$

32. Let $x=$ the number of copies Ronnie must make
$0.08 x=$ the amount spent on x copies
$0.08 x=250$
$\frac{0.08 x}{0.08}=\frac{250}{0.08}$
$x=3125$ copies
33. Let $x=$ the amount donated for Business $3 x=$ the amount donated for

Liberal Arts
$x+3 x=1000$
$4 x=1000$
$\frac{4 x}{4}=\frac{1000}{4}$

$$
x=\$ 250 \text { for Business }
$$

$3 x=3(250)=\$ 750$ for Liberal Arts
36.

Let $w=$ the width
$w+3=$ the length
$2 w+2(w+3)=P$
$2 w+2(w+3)=54$

$$
2 w+2 w+6=54
$$

$$
4 w+6=54
$$

$$
4 w+6-6=54-6
$$

$$
4 w=48
$$

$$
\frac{4 w}{4}=\frac{48}{4}
$$

$$
\text { width }=12 \mathrm{ft}
$$

$$
\text { length }=w+3=12+3=15 \mathrm{ft}
$$

37. a) Let $x=$ area of smaller ones
$3 x=$ area of largest one

$$
x+x+3 x=45,000
$$

$5 x=45,000$
$\frac{5 x}{5}=\frac{45,000}{5}$
$x=9000 \mathrm{ft}^{2}$ for the two smaller barns
$3 x=3(9000)$
$=27,000 \mathrm{ft}^{2}$ for the largest barn
b) Yes

$$
=21,000 \text { it ror the largest barn }
$$

b)
43. Let $x=$ the number of months

$$
\begin{aligned}
70 x & =\text { cost of laundry for } x \text { months } \\
70 x & =760 \\
\frac{70 x}{70} & =\frac{760}{70} \\
x & =10.85714286 \text { months } \approx 11 \text { months }
\end{aligned}
$$

45. Let $r=$ regular fare

$$
\begin{aligned}
\frac{r}{2} & =\text { half off regular fare } \\
0.07 r & =\text { tax on regular fare } \\
\frac{r}{2}+0.07 r & =257 \\
2\left(\frac{r}{2}+0.07 r\right) & =2(257) \\
r+0.14 r & =514 \\
1.14 r & =514 \\
\frac{1.14 r}{1.14} & =\frac{514}{1.14} \\
r & =\$ 450.877193 \\
& \approx \$ 450.88
\end{aligned}
$$

47. Let $x=$ amount of tax reduction to be deducted from Mr. McAdam's income
$3640-x=$ amount of tax reduction to be deducted from Mrs. McAdam's income

$$
\begin{aligned}
24,200-x & =26,400-(3640-x) \\
24,200-x & =26,400-3640+x \\
24,200-x & =22,760+x \\
24,200-x+x & =22,760+x+x \\
24,200 & =22,760+2 x \\
24,200-22,760 & =22,760-22,760+2 x \\
1440 & =2 x \\
\frac{1440}{2} & =\frac{2 x}{2} \\
x & =\$ 720 \text { deducted from }
\end{aligned}
$$

Mr. McAdam's income
$3640-x=3640-720=\$ 2920$ deducted
from Mrs. McAdam's income
44. Let $x=$ the number of visits per month
$56=$ the cost of Plan A for 1 month
$3 x+20=$ the cost of Plan B for 1 month
$3 x+20=56$
$3 x+20-20=56-20$
$3 x=36$
$\frac{3 x}{3}=\frac{36}{3}$
$x=12$ visits per month
46. Let $x=$ the number of miles in one day $35+0.20 x=$ U-Haul charge per day $25+0.32 x=$ Ryder charge per day $35+0.20 x=25+0.32 x$
$35+0.20 x-25=25-25+0.32 x$
$10+0.20 x=0.32 x$
$10+0.20 x-0.20 x=0.32 x-0.20 x$
$10=0.12 x$
$\frac{10}{0.12}=\frac{0.12 x}{0.12}$
$x=83 . \overline{3} \mathrm{mi}=83 \frac{1}{3} \mathrm{mi}$
48. a) A number increased by 3 is 13 .
b) 3 times a number increased by 5 is 8 .
c) 3 times a number decreased by 8 is 7 .
49. Let $x=$ the first integer
$x+1=$ the second integer
$x+2=$ the third integer (the largest)
$x+(x+1)+(x+2)=3(x+2)-3$
$3 x+3=3 x+6-3$
$3 x+3=3 x+3$
50. a)
Let $x=$ the number of years for the amount saved to equal the price of the course

$$
\begin{aligned}
0.10(600) & =\$ 60 \text { saved per year } \\
60 x & =45 \\
\frac{60 x}{60} & =\frac{45}{60} \\
x & =\frac{3}{4} \text { year }=\frac{3}{4}(12)=9 \text { months } \\
\text { b) } 25-18 & =7 \text { years } \\
7(60) & =\$ 420 \text { saved before paying for course } \\
\$ 420-\$ 45 & =\$ 375 \text { total savings }
\end{aligned}
$$

51. $F=\frac{9}{5} C+32$

The thermometers will read the same when $F=C$.
Substitute C for F in the above equation.

$$
\begin{aligned}
C & =\frac{9}{5} C+32 \\
5 C & =5\left(\frac{9}{5} C+32\right) \\
5 C & =9 C+160 \\
5 C-9 C & =9 C-9 C+160 \\
-4 C & =160 \\
\frac{-4 C}{-4} & =\frac{160}{-4} \\
C & =-40^{\circ}
\end{aligned}
$$

Exercise Set 6.5

1. Inverse variation - As one variable increases, the other decreases and vice versa.
2. Direct variation - As one variable increases, so does the other, and as one variable decreases, so does the other.
3. Joint variation - One quantity varies directly as the product of two or more other quantities.
4. Combined variation uses at least two forms of variation.
5. Direct
6. Inverse
7. Inverse
8. Direct
9. Direct
10. Direct
11. Inverse
12. Direct
13. Direct
14. Inverse
15. Inverse
16. Inverse
17. Direct
18. Direct
19. Direct
20. Inverse
21. Answers will vary.
22. a) $y=k x$
b) $y=3(5)=15$
23. Answers will vary.
24. a) $x=\frac{k}{y}$
b) $x=\frac{15}{12}=1.25$
25. a) $m=\frac{k}{n^{2}}$
b) $m=\frac{16}{(8)^{2}}=\frac{16}{64}=0.25$
26. a) $R=\frac{k}{W}$
b) $R=\frac{8}{160}=0.05$
27. a) $F=k D E$
b) $F=7(3)(10)=210$
28. a) $t=\frac{k d^{2}}{f}$
b) $192=\frac{k(8)^{2}}{4}$

$$
192=\frac{64 k}{4}
$$

$$
768=64 k
$$

$$
\frac{768}{64}=\frac{64 k}{64}
$$

$$
k=12
$$

$$
t=\frac{12 d^{2}}{f}
$$

$$
t=\frac{12(10)^{2}}{6}=\frac{12(100)}{6}=\frac{1200}{6}=200
$$

33. a) $Z=k W Y$

$$
\text { b) } \begin{aligned}
12 & =k(9)(4) \\
12 & =36 k \\
\frac{12}{36} & =\frac{36 k}{36} \\
k & =\frac{1}{3} \\
Z & =\frac{1}{3} W Y \\
Z & =\frac{1}{3}(50)(6)=\frac{300}{3}=100
\end{aligned}
$$

26. a) $r=k s^{2}$
b) $r=13(2)^{2}=13(4)=52$
27. a) $D=\frac{k J}{C}$
b) $D=\frac{5(10)}{25}=\frac{50}{25}=2$
28. a) $A=\frac{k R_{1} R_{2}}{L^{2}}$
b) $A=\frac{\frac{3}{2}(120)(8)}{(5)^{2}}=\frac{(1.5)(120)(8)}{25}=\frac{1440}{25}=57.6$
29. a) $y=\frac{k \sqrt{t}}{s}$
b) $12=\frac{k \sqrt{36}}{2}$

$$
12=\frac{6 k}{2}
$$

$$
24=6 k
$$

$$
\frac{24}{6}=\frac{6 k}{6}
$$

$$
k=4
$$

$$
y=\frac{4 \sqrt{t}}{s}
$$

$$
y=\frac{4 \sqrt{81}}{4}=\frac{4(9)}{4}=\frac{36}{4}=9
$$

34. a) $y=k R^{2}$
b) $4=k(4)^{2}$

$$
4=16 k
$$

$$
\frac{4}{16}=\frac{16 k}{16}
$$

$$
k=0.25
$$

$$
y=0.25 R^{2}
$$

$$
y=0.25(8)^{2}=0.25(64)=16
$$

35. a) $H=k L$
b) $15=k(50)$

$$
\begin{aligned}
\frac{15}{50} & =\frac{50 k}{50} \\
k & =0.3 \\
H & =0.3 L \\
H & =0.3(10)=3
\end{aligned}
$$

37. a) $A=k B^{2}$
b) $245=k(7)^{2}$

$$
245=49 k
$$

$$
\frac{245}{49}=\frac{49 k}{49}
$$

$$
k=5
$$

$$
A=5 B^{2}
$$

$$
A=5(12)^{2}=5(144)=720
$$

39. a) $F=\frac{k q_{1} q_{2}}{d^{2}}$
b) $8=\frac{k(2)(8)}{(4)^{2}}$

$$
\begin{aligned}
8 & =\frac{16 k}{16} \\
k & =8 \\
F & =\frac{8 q_{1} q_{2}}{d^{2}} \\
F & =\frac{8(28)(12)}{(2)^{2}}=\frac{2688}{4}=672
\end{aligned}
$$

41. a) $R=k L$
b) $0.24=k(30)$

$$
\begin{aligned}
\frac{0.24}{30} & =\frac{30 k}{30} \\
k & =0.008 \\
R & =0.008 L \\
R & =0.008(40)=0.32 \mathrm{ohm}
\end{aligned}
$$

36. a) $C=\frac{k}{J}$
b) $7=\frac{k}{0.7}$

$$
\begin{aligned}
k & =7(0.7)=4.9 \\
C & =\frac{4.9}{J} \\
C & =\frac{4.9}{12}=0.408 \overline{3} \approx 0.41
\end{aligned}
$$

38. a) $F=\frac{k M_{1} M_{2}}{d^{2}}$
b) $20=\frac{k(5)(10)}{(0.2)^{2}}$
$20=\frac{50 k}{0.04}$
$50 k=0.8$
$k=\frac{0.8}{50}=0.016$
$F=\frac{0.016 M_{1} M_{2}}{d^{2}}$
$F=\frac{0.016(10)(20)}{(0.4)^{2}}=\frac{3.2}{0.16}=20$
39. a) $S=k I T^{2}$
b) $8=k(20)(4)^{2}$
$8=320 k$
$k=\frac{8}{320}=0.025$
$S=0.025 I T^{2}$
$S=0.025(2)(2)^{2}=0.025(2)(4)=0.2$
40. a) $I=k r$
b) $40=k(0.04)$
$k=\frac{40}{0.04}=1000$
$I=1000 r$
$I=1000(0.06)=\$ 60$
41. a) $l=\frac{k}{d^{2}}$
b) $20=\frac{k}{(6)^{2}}$
$k=20(36)=720$
$l=\frac{720}{d^{2}}$

$$
l=\frac{720}{(3)^{2}}=\frac{720}{9}=80 \mathrm{~dB}
$$

45. a) $R=\frac{k A}{P}$
b) $4800=\frac{k(600)}{3}$

$$
\begin{aligned}
600 k & =14,400 \\
k & =\frac{14,400}{600}=24 \\
R & =\frac{24 A}{P} \\
R & =\frac{24(700)}{3.50}=\frac{16,800}{3.50}=4800 \text { tapes }
\end{aligned}
$$

47. a) $s=k w d^{2}$
b) $2250=k(2)(10)^{2}$

$$
\begin{aligned}
2250 & =200 k \\
\frac{2250}{200} & =\frac{200 k}{200} \\
k & =\frac{2250}{200}=11.25 \\
s & =11.25 w d^{2} \\
s & =11.25(4)(12)^{2}=11.25(4)(144) \\
& =6480 \text { pounds per square inch }
\end{aligned}
$$

44. a) $t=\frac{k}{n}$
b) $16=\frac{k}{2}$

$$
k=16(2)=32
$$

$$
t=\frac{32}{n}
$$

$$
t=\frac{32}{4}=8 \text { hours }
$$

46. a) $a=k d^{2}$
b) $100=k(25)^{2}$
$100=625 k$
$\frac{100}{625}=\frac{625 k}{625}$
$k=\frac{100}{625}=0.16$
$a=0.16 d^{2}$
$a=0.16(40)^{2}=0.16(1600)$
$=256$ square feet
47. a) $R=\frac{k L}{A}$
b) $0.2=\frac{k(200)}{0.05}$

$$
200 k=0.01
$$

$$
k=\frac{0.01}{200}=0.00005
$$

$$
R=\frac{0.00005 L}{A}
$$

$$
R=\frac{0.00005(5000)}{0.01}=\frac{0.25}{0.01}=25 \mathrm{ohms}
$$

49. a) $N=\frac{k p_{1} p_{2}}{d}$
b) $100,000=\frac{k(60,000)(200,000)}{300}$
$12,000,000,000 k=30,000,000$

$$
\begin{aligned}
k & =\frac{30,000,000}{12,000,000,000}=0.0025 \\
N & =\frac{0.0025 p_{1} p_{2}}{d} \\
N & =\frac{0.0025(125,000)(175,000)}{450} \\
N & =\frac{54,687,500}{450} \\
& =121,527.7778 \approx 121,528 \text { calls }
\end{aligned}
$$

51. a) $y=\frac{k}{x}$

$$
y=\frac{0.3}{x}
$$

$$
x y=0.3
$$

$$
\frac{x y}{y}=\frac{0.3}{y}
$$

$$
x=\frac{0.3}{y}
$$

Inversely
b) k stays 0.3
53. $W=\frac{k T A \sqrt{F}}{R}$

$$
72=\frac{k(78)(1000) \sqrt{4}}{5.6}
$$

$$
156,000 k=403.2
$$

$$
k=\frac{403.2}{156,000}=0.0025846154
$$

$W=\frac{0.0025846154 T A \sqrt{F}}{R}$
$W=\frac{0.0025846154(78)(1500) \sqrt{6}}{5.6}$
$W=\frac{740.7256982}{5.6}=132.2724461 \approx \$ 132.27$
50. a) $y=k x$

$$
y=2 x
$$

$$
\frac{y}{2}=\frac{2 x}{2}
$$

$$
x=\frac{y}{2}=0.5 y
$$

Directly
b) $k=0.5$
52. $I=\frac{k}{d^{2}}$
$\frac{1}{16}=\frac{k}{(4)^{2}}$
$\frac{1}{16}=\frac{k}{16}$
$k=1$
$I=\frac{1}{d^{2}}$
$I=\frac{1}{(3)^{2}}=\frac{1}{9}$

Exercise Set 6.6

1. $a<b$ means that a is less than $b, a \leq b$ means that a is less than or equal to $b, a>b$ means that a is greater than $b, a \geq b$ means that a is greater than or equal to b.
2. a) An inequality consists of two (or more) expressions joined by an inequality sign.
b) $2<7,3>-1,5 x+2 \geq 9$
3. When both sides of an inequality are multiplied or divided by a negative number, the direction of the inequality symbol must be reversed.
4. Yes, the inequality symbol points to the x in both cases.
5. Yes, the inequality symbol points to the -3 in both cases.
6. You should use an open circle if the solution does not include the number. You should use a closed circle if the solution includes the number.
7. $x>6$

8. $x+4 \geq 7$

$$
x+4-4 \geq 7-4
$$

$$
x \geq 3
$$

11. $-3 x \leq 18$
$\frac{-3 x}{-3} \geq \frac{18}{-3}$

$$
x \geq-6
$$

13.

$$
\begin{aligned}
& \frac{x}{6}<-2 \\
& 6\left(\frac{x}{6}\right)<6(-2) \\
& x<-12
\end{aligned}
$$

15. \(\frac{-x}{3} \geq 3\)
 $-3\left(\frac{-x}{3}\right) \leq-3(3)$
$x \leq-9$

16. $x \leq 9$

17. $3 x>9$
$\frac{3 x}{3}>\frac{9}{3}$
$x>3$

18. $-4 x<12$
$\frac{-4 x}{-4}>\frac{12}{-4}$
$x>-3$

19. $\frac{x}{2}>4$
$2\left(\frac{x}{2}\right)>2(4)$
$x>8$

20. $\frac{x}{2} \geq-4$
$2\left(\frac{x}{2}\right) \geq 2(-4)$

$$
x \geq-8
$$

17.

$$
\begin{aligned}
2 x+6 & \geq 14 \\
2 x+6-6 & \geq 14-6 \\
2 x & \geq 8 \\
\frac{2 x}{2} & \geq \frac{8}{2} \\
x & \geq 4
\end{aligned}
$$

19.

$$
\begin{aligned}
4(x-1) & <6 \\
4 x-4 & <6 \\
4 x-4+4 & <6+4 \\
4 x & <10 \\
\frac{4 x}{4} & <\frac{10}{4} \\
x & <\frac{5}{2} \\
\ll \mid & 1
\end{aligned}
$$

21. $3(x+4)-2<3 x+10$
$3 x+12-2<3 x+10$ $3 x+10<3 x+10$
False, no solution

22.

$$
\begin{aligned}
3 & <x-7 \leq 6 \\
3+7 & <x-7+7 \leq 6+7 \\
10 & <x \leq 13
\end{aligned}
$$

25. $x \geq 2$

18. $\quad 3 x+12<5 x+14$

$$
3 x-5 x+12<5 x-5 x+14
$$

$$
-2 x+12<14
$$

$$
-2 x+12-12<14-12
$$

$$
-2 x<2
$$

$$
\frac{-2 x}{-2}>\frac{2}{-2}
$$

$$
x>-1
$$

20.

$$
\begin{aligned}
-5(x+1)+2 x & >-3 x+6 \\
-5 x-5+2 x & >-3 x+6 \\
-3 x-5 & >-3 x+6 \\
-3 x+3 x-5 & >-3 x+3 x+6 \\
-5 & >6
\end{aligned}
$$

False, no solution

22. $-2 \leq x \leq 1$
24. $\frac{1}{2}<\frac{x+4}{2} \leq 4$

$$
2\left(\frac{1}{2}\right)<2\left(\frac{x+4}{2}\right) \leq 2(4)
$$

$$
1<x+4 \leq 8
$$

$$
1-4<x+4-4 \leq 8-4
$$

$$
-3<x \leq 4
$$

26. $-3<x$
$x>-3$

27.

$$
\begin{aligned}
\frac{-3 x}{-3} & \geq \frac{27}{-3} \\
x & \geq-9
\end{aligned}
$$

29.

$$
\begin{aligned}
x-2 & <4 \\
x-2+2 & <4+2 \\
x & <6
\end{aligned}
$$

31.

$$
\begin{aligned}
\begin{aligned}
\frac{x}{3} & \leq-2 \\
3\left(\frac{x}{3}\right) & \leq 3(-2) \\
x & \leq-6 \\
< & 1
\end{aligned}+e_{-9}
\end{aligned}
$$

33.

$$
\begin{aligned}
\frac{-x}{6} & \geq 3 \\
-6\left(\frac{-x}{6}\right) & \leq-6(3)
\end{aligned}
$$

$$
x \leq-18
$$

35.

$$
\begin{aligned}
-11 & <-5 x+4 \\
-11-4 & <-5 x+4-4 \\
-15 & <-5 x \\
\frac{-15}{-5} & >\frac{-5 x}{-5} \\
3 & >x \\
x & <3
\end{aligned}
$$

28. $3 x \geq 27$
$\frac{3 x}{3} \geq \frac{27}{3}$
$x \geq 9$

30. $-5 x \leq 15$
$\frac{-5 x}{-5} \geq \frac{15}{-5}$
$x \geq-3$

32. $\frac{x}{4} \geq-3$
$4\left(\frac{x}{4}\right) \geq 4(-3)$
$x \geq-12$

34. $\quad \frac{2 x}{3} \leq 4$
$\frac{3}{2}\left(\frac{2 x}{3}\right) \leq \frac{3}{2}(4)$
$x \leq 6$

36. $2 x+5<-3+6 x$
$2 x-6 x+5<-3+6 x-6 x$

$$
-4 x+5<-3
$$

$-4 x+5-5<-3-5$

$$
-4 x<-8
$$

$$
\frac{-4 x}{-4}>\frac{-8}{-4}
$$

$$
x>2
$$

$$
\text { 37. } \begin{aligned}
3(x+4) & \geq 4 x+13 \\
3 x+12 & \geq 4 x+13 \\
3 x-4 x+12 & \geq 4 x-4 x+13 \\
-x+12 & \geq 13 \\
-x+12-12 & \geq 13-12 \\
-x & \geq 1 \\
\frac{-x}{-1} & \leq \frac{1}{-1} \\
x & \leq-1
\end{aligned}
$$

39. $\begin{aligned} 5(x+4)-6 & \leq 2 x+8 \\ 5 x+20-6 & \leq 2 x+8 \\ 5 x+14 & \leq 2 x+8 \\ 5 x-2 x+14 & \leq 2 x-2 x+8 \\ 3 x+14 & \leq 8 \\ 3 x+14-14 & \leq 8-14 \\ 3 x & \leq-6 \\ \frac{3 x}{3} & \leq \frac{-6}{3} \\ x & \leq-2\end{aligned}$

$$
\text { 41. } \begin{aligned}
1 & >-x>-5 \\
\frac{1}{-1} & <\frac{-x}{-1}<\frac{-5}{-1} \\
-1 & <x<5
\end{aligned}
$$

38. $-2(x-1)<3(x-4)+5$

$$
-2 x+2<3 x-12+5
$$

$$
-2 x+2<3 x-7
$$

$$
-2 x-3 x+2<3 x-3 x-7
$$

$$
-5 x+2<-7
$$

$$
-5 x+2-2<-7-2
$$

$$
-5 x<-9
$$

$$
\frac{-5 x}{-5}>\frac{-9}{-5}
$$

$$
x>\frac{9}{5}
$$

40. $-3 \leq x<5$

42. $-2<2 x+3<6$
$-2-3<2 x+3-3<6-3$

$$
-5<2 x<3
$$

$$
\frac{-5}{2}<\frac{2 x}{2}<\frac{3}{2}
$$

$$
-\frac{5}{2}<x<\frac{3}{2}
$$

43.

$$
\begin{aligned}
0.2 & \leq \frac{x-4}{10} \leq 0.4 \\
10(0.2) & \leq 10\left(\frac{x-4}{10}\right) \leq 10(0.4) \\
2 & \leq x-4 \leq 4 \\
2+4 & \leq x-4+4 \leq 4+4 \\
6 & \leq x \leq 8
\end{aligned}
$$

45. a) 2000,2001
b) 1997,1998
c) $1997,1998,1999,2000$
d) $1998,1999,2000,2001$
46. Let $x=$ the number of videos

No Fee Plan cost: $2.99 x$
Annual Fee Plan: $30+1.49 x$

$$
\begin{aligned}
2.99 x & <30+1.49 x \\
2.99 x-1.49 x & <30+1.49 x-1.49 x \\
1.50 x & <30 \\
\frac{1.50 x}{1.50} & <\frac{30}{1.50} \\
x & <20
\end{aligned}
$$

The maximum number of videos that can be rented for the No Fee Plan to cost less than the Annual Fee Plan is 19.
49. Let $x=$ the number of miles

$$
\begin{aligned}
& 110+0.25 x=\text { cost of renting from Fred's } \\
& 110+0.25 x<200 \\
& 110-110+0.25 x<200-110 \\
& 0.25 x<90 \\
& \frac{0.25 x}{0.25}<\frac{90}{0.25} \\
& x<360 \mathrm{mi}
\end{aligned}
$$

51. Let $x=$ the cost of the meal
$0.07 x=$ the tax on the meal
$0.15 x=$ the tip on the meal
$x+0.07 x+0.15 x \leq 19$
$1.22 x \leq 19$

$$
\frac{1.22 x}{1.22} \leq \frac{19}{1.22}
$$

$$
x \leq 15.57377049
$$

Mrs. Franklin can select a meal for $x \leq \$ 15.57$.
44. $-\frac{1}{3}<\frac{x-2}{12} \leq \frac{1}{4}$
$12\left(-\frac{1}{3}\right)<12\left(\frac{x-2}{12}\right) \leq 12\left(\frac{1}{4}\right)$
$-4<x-2 \leq 3$
$-4+2<x-2+2 \leq 3+2$
$-2<x \leq 5$

46. a) 1990,2000
b) $1890,1910,1950,1970$
c) 2000
d) 2000
48. Let $x=$ the dollar amount of weekly sales

Plan A: $500+0.06 x$
Plan B: $400+0.08 x$

$$
\begin{aligned}
400+0.08 x & >500+0.06 x \\
400+0.08 x-0.06 x & >500+0.06 x-0.06 x \\
400+0.02 x & >500 \\
400-400+0.02 x & >500-400 \\
0.02 x & >100 \\
\frac{0.02 x}{0.02} & >\frac{100}{0.02} \\
x & >5000
\end{aligned}
$$

The dollar amount of weekly sales that would result in Bobby earning more by Plan B than by Plan A is more than $\$ 5000$.
50. a) Let $x=$ the number of boxes of books $60 x=$ the weight of x boxes of books $180+60 x \leq 1200$
b) $180-180+60 x \leq 1200-180$
$60 x \leq 1020$
$\frac{60 x}{60} \leq \frac{1020}{60}$
$x \leq 17$
The maximum number of boxes is 17 .
52. $12 x>2 x+2000$

$$
12 x-2 x>2 x-2 x+2000
$$

$$
10 x>2000
$$

$$
\frac{10 x}{10}>\frac{2000}{10}
$$

$$
x>200
$$

More than 200 books must be sold weekly to make a profit.
53.

$$
\begin{gathered}
36<84-32 t<68 \\
36-84<84-84-32 t<68-84 \\
-48<-32 t<-16 \\
\frac{-48}{-32}>\frac{-32 t}{-32}>\frac{-16}{-32} \\
1.5>t>0.5 \\
0.5<t<1.5
\end{gathered}
$$

The velocity will be between $36 \frac{\mathrm{ft}}{\mathrm{sec}}$ and $68 \frac{\mathrm{ft}}{\mathrm{sec}}$ when t is between 0.5 sec and 1.5 sec .
55. Let $x=$ Devon's grade on the fifth test

$$
\begin{gathered}
80 \leq \frac{78+64+88+76+x}{5}<90 \\
80 \leq \frac{306+x}{5}<90 \\
5(80) \leq 5\left(\frac{306+x}{5}\right)<5(90) \\
400 \leq 306+x<450 \\
400-306 \leq 306-306+x<450-306 \\
94 \leq x<144
\end{gathered}
$$

Devon must have a score of $94 \leq x \leq 100$, assuming 100 is the highest grade possible.
57. Let $x=$ the number of gallons
$250 x=2750$ and $400 x=2750$
$x=\frac{2750}{250}, x=\frac{2750}{400}$
$x=11, x=6.875$
$6.875 \leq x \leq 11$
54. Let $x=$ the number of miles
distance $=$ rate \times time
$40(4) \leq x \leq 55(4)$ $160 \leq x \leq 220$
56. Let $x=$ the number of tents rented

$$
\begin{aligned}
950 & \leq 325+125 x \leq 1200 \\
950-325 & \leq 325-325+125 x \leq 1200-325 \\
625 & \leq 125 x \leq 875 \\
\frac{625}{125} & \leq \frac{125 x}{125} \leq \frac{875}{125} \\
5 & \leq x \leq 7
\end{aligned}
$$

Minimum: $5 \quad$ Maximum: 7
58. Let $x=$ the final exam grade

The semester average $=\frac{86+74+68+96+72}{5}=\frac{396}{5}=79.2$
The final grade is found by taking $\frac{2}{3}$ of the semester average and adding this to $\frac{1}{3}$ of the final exam. The final grade is $\frac{2}{3}(79.2)+\frac{1}{3} x=52.8+\frac{1}{3} x$. In order for Teresa to receive a final grade of B in the course, she must have an average greater than or equal to 80 and less than 90 .

$$
\begin{gathered}
80 \leq 52.8+\frac{1}{3} x<90 \\
80-52.8 \leq 52.8-52.8+\frac{1}{3} x<90-52.8 \\
27.2 \leq \frac{1}{3} x<37.2 \\
3(27.2) \leq 3\left(\frac{1}{3} x\right)<3(37.2) \\
81.6 \leq x<111.6
\end{gathered}
$$

Thus, Teresa must receive $81.6 \leq x \leq 100$, assuming that 100 is the highest grade possible.
59. Student's answer: $-\frac{1}{3} x \leq 4$

$$
\begin{aligned}
-3\left(-\frac{1}{3} x\right) & \leq-3(4) \\
x & \leq-12
\end{aligned}
$$

Correct answer: $\quad-\frac{1}{3} x \leq 4$

$$
\begin{aligned}
-3\left(-\frac{1}{3} x\right) & \geq-3(4) \\
x & \geq-12
\end{aligned}
$$

Yes, -12 is in both solution sets.

Exercise Set 6.7

1. A graph is an illustration of all the points whose coordinates satisfy an equation.
2. To find the \mathbf{x}-intercept, set $y=0$ and solve the equation for x.
3. To find the \mathbf{y}-intercept, set $x=0$ and solve the equation for y.
4. The slope of a line is a ratio of the vertical change to the horizontal change for any two points on the line.
5. a) Divide the difference between the y-coordinates by the difference between the x-coordinates.
b) $m=\frac{5-2}{-3-6}=\frac{3}{-9}=-\frac{1}{3}$
6. Plotting points, using intercepts, and using the slope and y-intercept
7. a) First
b) Second
8. Two
9. - 16.

17. - 24.

27. $(-2,0)$
32. $(4,0)$
28. $(-3,1)$
33. $(2,2)$
29. $(-5,-3)$
34. $(4,3)$
35. Substituting $(1,3)$ into $3 x+y=7$, we have

$$
\begin{array}{r}
3(1)+3=7 \\
3+3=7 \\
6 \neq 7
\end{array}
$$

Therefore, $(1,3)$ does not satisfy $3 x+y=7$.
Substituting $(1,4)$ into $3 x+y=7$, we have

$$
\begin{aligned}
3(1)+4 & =7 \\
3+4 & =7 \\
7 & =7
\end{aligned}
$$

Therefore, $(1,4)$ satisfies $3 x+y=7$.
Substituting $(-1,10)$ into $3 x+y=7$, we have

$$
\begin{gathered}
3(-1)+10=7 \\
-3+10=7 \\
7=7
\end{gathered}
$$

Therefore, $(-1,10)$ satisfies $3 x+y=7$.
36. Substituting $(0,-4)$ into $4 x-y=4$, we have

$$
\begin{aligned}
4(0)-(-4) & =4 \\
0+4 & =4 \\
4 & =4
\end{aligned}
$$

Therefore, $(0,-4)$ satisfies $4 x-y=4$.
Substituting $(1,0)$ into $4 x-y=4$, we have

$$
\begin{aligned}
4(1)-0 & =4 \\
4-0 & =4 \\
4 & =4
\end{aligned}
$$

Therefore, $(1,0)$ satisfies $4 x-y=4$.
Substituting $(2,-3)$ into $4 x-y=4$, we have

$$
\begin{array}{r}
4(2)-(-3)=4 \\
8+3=4 \\
11 \neq 4
\end{array}
$$

Therefore, (2, -3) does not satisfy $4 x-y=4$.
37. Substituting $(5,0)$ into $2 x-3 y=10$, we have

$$
\begin{aligned}
2(5)-3(0) & =10 \\
10-0 & =10 \\
10 & =10
\end{aligned}
$$

Therefore, $(5,0)$ satisfies $2 x-3 y=10$.
Substituting (0,3) into $2 x-3 y=10$, we have

$$
\begin{aligned}
2(0)-3(3) & =10 \\
0-9 & =10 \\
-9 & \neq 10
\end{aligned}
$$

Therefore, $(0,3)$ does not satisfy $2 x-3 y=10$.
Substituting $\left(0,-\frac{10}{3}\right)$ into $2 x-3 y=10$, we have

$$
\begin{gathered}
2(0)-3\left(-\frac{10}{3}\right)=10 \\
0+10=10 \\
10=10
\end{gathered}
$$

Therefore, $\left(0,-\frac{10}{3}\right)$ satisfies $2 x-3 y=10$.
39. Substituting $(1,-1)$ into $7 y=3 x-5$, we have

$$
\begin{aligned}
7(-1) & =3(1)-5 \\
-7 & =3-5 \\
-7 & \neq-2
\end{aligned}
$$

Therefore, $(1,-1)$ does not satisfy $7 y=3 x-5$.

Substituting $(-3,-2)$ into $7 y=3 x-5$, we have

$$
\begin{aligned}
7(-2) & =3(-3)-5 \\
-14 & =-9-5 \\
-14 & =-14
\end{aligned}
$$

Therefore, $(-3,-2)$ satisfies $7 y=3 x-5$.

Substituting $(2,5)$ into $7 y=3 x-5$, we have

$$
\begin{aligned}
7(5) & =3(2)-5 \\
35 & =6-5 \\
35 & \neq 1
\end{aligned}
$$

Therefore, $(2,5)$ does not satisfy $7 y=3 x-5$.
38. Substituting $(2,1)$ into $3 y=4 x+2$, we have

$$
\begin{aligned}
3(1) & =4(2)+2 \\
3 & =8+2 \\
3 & \neq 10
\end{aligned}
$$

Therefore, $(2,1)$ does not satisfy $3 y=4 x+2$.
Substituting $(1,2)$ into $3 y=4 x+2$, we have

$$
\begin{aligned}
3(2) & =4(1)+2 \\
6 & =4+2 \\
6 & =6
\end{aligned}
$$

Therefore, $(1,2)$ satisfies $3 y=4 x+2$.
Substituting $\left(0, \frac{2}{3}\right)$ into $3 y=4 x+2$, we have

$$
\begin{aligned}
3\left(\frac{2}{3}\right) & =4(0)+2 \\
2 & =0+2 \\
2 & =2
\end{aligned}
$$

Therefore, $\left(0, \frac{2}{3}\right)$ satisfies $3 y=4 x+2$.
40. Substituting $\left(0, \frac{4}{3}\right)$ into $\frac{x}{2}+3 y=4$, we have

$$
\begin{aligned}
\frac{0}{2}+3\left(\frac{4}{3}\right) & =4 \\
0+4 & =4 \\
4 & =4
\end{aligned}
$$

Therefore, $\left(0, \frac{4}{3}\right)$ satisfies $\frac{x}{2}+3 y=4$.
Substituting $(8,0)$ into $\frac{x}{2}+3 y=4$, we have

$$
\begin{aligned}
\frac{8}{2}+3(0) & =4 \\
4+0 & =4 \\
4 & =4
\end{aligned}
$$

Therefore, $(8,0)$ satisfies $\frac{x}{2}+3 y=4$.
Substituting (10, -2) into $\frac{x}{2}+3 y=4$, we have

$$
\begin{aligned}
\frac{10}{2}+3(-2) & =4 \\
5-6 & =4 \\
-1 & \neq 4
\end{aligned}
$$

Therefore, $(10,-2)$ does not satisfy $\frac{x}{2}+3 y=4$.
41. Substituting $\left(0, \frac{8}{3}\right)$ into $\frac{x}{2}+\frac{3 y}{4}=2$, we have

$$
\begin{aligned}
\frac{0}{2}+\frac{8}{4} & =2 \\
0+2 & =2 \\
2 & =2
\end{aligned}
$$

Therefore, $\left(0, \frac{8}{3}\right)$ satisfies $\frac{x}{2}+\frac{3 y}{4}=2$.
Substituting $\left(1, \frac{11}{4}\right)$ into $\frac{x}{2}+\frac{3 y}{4}=2$, we have

$$
\begin{aligned}
\frac{1}{2}+\frac{33}{16} & =2 \\
\frac{8}{16}+\frac{33}{16} & =2 \\
\frac{41}{16} & \neq 2
\end{aligned}
$$

Therefore, $\left(1, \frac{11}{4}\right)$ does not satisfy $\frac{x}{2}+\frac{3 y}{4}=2$.
Substituting (4, 0) into $\frac{x}{2}+\frac{3 y}{4}=2$, we have

$$
\begin{aligned}
\frac{4}{2}+\frac{0}{4} & =2 \\
2+0 & =2 \\
2 & =2
\end{aligned}
$$

Therefore, $(4,0)$ satisfies $\frac{x}{2}+\frac{3 y}{4}=2$.
43. Since the line is vertical, its slope is undefined.

42. Substituting $(2,1)$ into $2 x-5 y=-7$, we have

$$
\begin{aligned}
2(2)-5(1) & =-7 \\
4-5 & =-7 \\
-1 & \neq-7
\end{aligned}
$$

Therefore, $(2,1)$ does not satisfy $2 x-5 y=-7$.

Substituting $(-1,1)$ into $2 x-5 y=-7$, we have

$$
\begin{aligned}
2(-1)-5(1) & =-7 \\
-2-5 & =-7 \\
-7 & =-7
\end{aligned}
$$

Therefore, $(-1,1)$ satisfies $2 x-5 y=-7$.

Substituting $(4,3)$ into $2 x-5 y=-7$, we have

$$
\begin{aligned}
2(4)-5(3) & =-7 \\
8-15 & =-7 \\
-7 & =-7
\end{aligned}
$$

Therefore, $(4,3)$ satisfies $2 x-5 y=-7$.
44. Since the line is vertical, its slope is undefined.

45. Since the line is horizontal, its slope is 0 .

47.

49.

46. Since the line is horizontal, its slope is 0 .

48.

50.

53.

55.

54.

56.

58.

60.

67. $(3,7),(10,21) \quad m=\frac{21-7}{10-3}=\frac{14}{7}=2$
69. $(2,6),(-5,-9) \quad m=\frac{-9-6}{-5-2}=\frac{-15}{-7}=\frac{15}{7}$
71.

$$
(5,2),(-3,2) \quad m=\frac{2-2}{-3-5}=\frac{0}{-8}=0
$$

73. $(8,-3),(8,3) \quad m=\frac{3-(-3)}{8-8}=\frac{6}{0}$ Undefined
74. $(-2,3),(1,-1) \quad m=\frac{-1-3}{1-(-2)}=\frac{-4}{3}=-\frac{4}{3}$
75.

68. $(4,1),(1,4) \quad m=\frac{4-1}{1-4}=\frac{3}{-3}=-1$
70. $(-5,6),(7,-9) \quad m=\frac{-9-6}{7-(-5)}=\frac{-15}{12}=-\frac{5}{4}$
72. $(-3,-5),(-1,-2) m=\frac{-2-(-5)}{-1-(-3)}=\frac{3}{2}$
74. $(2,6),(2,-3) \quad m=\frac{-3-6}{2-2}=\frac{-9}{0}$ Undefined
76. $(-7,-5),(5,-6) \quad m=\frac{-6-(-5)}{5-(-7)}=\frac{-1}{12}=-\frac{1}{12}$
78.

79.

81.

83.

80.

82.

84.

85.

87. The y-intercept is 3 ; thus $b=3$. The slope is negative since the graph falls from left to right. The change in y is 3 , while the change in x is 4 . Thus m, the slope, is $-\frac{3}{4}$. The equation is $y=-\frac{3}{4} x+3$.
88. The y-intercept is 3 ; thus $b=3$. The slope is positive since the graph rises from left to right. The change in y is 3 , while the change in x is 2 . Thus m, the slope, is $\frac{3}{2}$. The equation is $y=\frac{3}{2} x+3$.
89. The y-intercept is 2 ; thus $b=2$. The slope is positive since the graph rises from left to right. The change in y is 3 , while the change in x is 1 . Thus m, the slope, is $\frac{3}{1}=3$. The equation is $y=3 x+2$.
90. The y-intercept is 1 ; thus $b=1$. The slope is negative since the graph falls from left to right. The change in y is 2 , while the change in x is 1 . Thus m, the slope, is -2 . The equation is $y=-2 x+1$.

b) $A=l w=5(2)=10$ square units
93.

95. For the line joining points P and Q to be parallel to the x-axis, both ordered pairs must have the same y-value. Thus, $b=3$.
97. For the line joining points P and Q to be parallel to the x-axis, both ordered pairs must have the same y-value.

$$
2 b+1=7
$$

$2 b+1-1=7-1$
$2 b=6$
$b=3$
92. a)

b) $A=l w=11(6)=66$ square units
94.

96. For the line joining points P and Q to be parallel to the y-axis, both ordered pairs must have the same x-value. Thus, $b=5$.
98. For the line joining points P and Q to be parallel to the x-axis, both ordered pairs must have the same y-value.

$$
\begin{aligned}
2 b+3 & =-1 \\
2 b+3-3 & =-1-3 \\
2 b & =-4 \\
b & =-2
\end{aligned}
$$

99. a)

b) $\$ 300$
c) To break even, profit must equal zero.
$15 n-300=0$
$15 n-300+300=0+300$

$$
15 n=300
$$

$n=20$ dozens of chocolates
101. a)

b) $8.95+0.33(20)=\$ 15.55$
c) $8.95+0.33 n=20.83$

$$
\begin{aligned}
0.33 n & =11.88 \\
n & =36 \text { pictures }
\end{aligned}
$$

103.

a) $m=\frac{96-53}{4-0}=\frac{43}{4}=10.75$
b) $y=10.75 x+53$
c) $y=10.75(3)+53=32.25+53=85.25$
d) $80=10.75 x+53$

$$
27=10.75 x
$$

$$
x=2.511627907 \approx 2.5 \text { hours }
$$

100. a)

b) $\$ 130$
c) $\begin{aligned} 70 & =40+0.3 s \\ 70-40 & =40-40+0.3 s\end{aligned}$
$30=0.3 s$
$s=100$ square feet
101. a)

b) $i=1000(0.04)=\$ 40$
c) $i=1000(0.06)=\$ 60$
102.

a) $m=\frac{19-9}{5-0}=\frac{10}{5}=2$
b) $y=2 x+9$
c) $y=2(3)+9=6+9=15$ defects
d) $17=2 x+9$

$$
\begin{aligned}
17-9 & =2 x+9-9 \\
8 & =2 x \\
x & =4 \text { workers }
\end{aligned}
$$

105. a) $m=\frac{24-40}{30-0}=\frac{-16}{30}=-\frac{8}{15}$
b) $y=-\frac{8}{15} x+40$
c) $y=-\frac{8}{15}(15)+40=-8+40$
$=32 \%$
d) $30=-\frac{8}{15} x+40$
$30-40=-\frac{8}{15} x+40-40$
$-10=-\frac{8}{15} x$
$-10\left(-\frac{15}{8}\right)=-\frac{8}{15} x\left(-\frac{15}{8}\right)$
$x=\frac{150}{8}$
$=18.75$ years after 1970, or in 1988
106. a) $m=\frac{25,000-17,000}{9-0}=\frac{8000}{9}=888 . \overline{8} \approx 888.89$ million
b) $y=888.89 x+17,000$ (numbers in millions)
c) $y=888.89(4)+17,000=20,555.56 \approx \$ 20,556$ million
d) $20,000=888.89 x+17,000$
$3000=888.89 x$
$x=3.374995781$
≈ 3.37 years after 1994 , or in 1997
107. a) Solve the equations for y to put them in slope-intercept form. Then compare the slopes and y-intercepts. If the slopes are equal but the y-intercepts are different, then the lines are parallel.

$$
\text { b) } \begin{aligned}
2 x-3 y & =6 \\
2 x-2 x-3 y & =-2 x+6 \\
-3 y & =-2 x+6 \\
\frac{-3 y}{-3} & =\frac{-2 x}{-3}+\frac{6}{-3} \\
y & =\frac{2}{3} x-2
\end{aligned}
$$

$$
\begin{aligned}
4 x & =6 y+6 \\
4 x-6 & =6 y+6-6 \\
4 x-6 & =6 y \\
\frac{4 x}{6}-\frac{6}{6} & =\frac{6 y}{6} \\
\frac{2}{3} x-1 & =y
\end{aligned}
$$

Since the two equations have the same slope, $m=\frac{2}{3}$, the graphs of the equations are parallel lines.
108. Quadrants 1,2 , and 4. The graph of the line $x+y=1$ is in quadrants 1,2 , and 4 ; therefore, the set of points that satisfy the equation is in these quadrants.

Exercise Set 6.8

1. (1) Mentally substitute the equal sign for the inequality sign and plot points as if you were graphing the equation. (2) If the inequality is < or >, draw a dashed line through the points. If the inequality is \leq or \geq, draw a solid line through the points. (3) Select a test point not on the line and substitute the x - and y-coordinates into the inequality. If the substitution results in a true statement, shade in the area on the same side of the line as the test point. If the substitution results in a false statement, shade in the area on the opposite side of the line as the test point.
2. To indicate that the line is part of the solution set, we draw a solid line. To indicate that the line is not part of the solution set, we draw a dashed line.
3. Graph $x=1$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $x \leq 1$, all points on the line and in the half-plane to the left of the line $x=1$ are in the solution set.

4. Graph $y=x+3$. Since the original statement is strictly greater than, a dashed line is drawn. Since the point $(0,0)$ does not satisfy the inequality $y>x+3$, all points in the half-plane above the line $y=x+3$ are in the solution set.

5. Graph $y=2 x-6$. Since the original statement is greater than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $y \geq 2 x-6$, all points on the line and in the halfplane above the line $y=2 x-6$ are in the solution set.

6. Graph $y=-2$. Since the original statement is greater than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $y \geq-2$, all points on the line and in the half-plane above the line $y=-2$ are in the solution set.

7. Graph $y=x-5$. Since the original statement is strictly less than, a dashed line is drawn. Since the point $(0,0)$ does not satisfy the inequality $y<x-5$, all points in the half-plane below the line $y=x-5$ are in the solution set.

8. Graph $y=-2 x+2$. Since the original statement is strictly less than, a dashed line is drawn. Since the point $(0,0)$ satisfies the inequality $y<-2 x+2$, all points in the half-plane below the line $y=-2 x+2$ are in the solution set.

9. Graph $3 x-4 y=12$. Since the original statement is strictly greater than, a dashed line is drawn.
Since the point $(0,0)$ does not satisfy the inequality $3 x-4 y>12$, all points in the half-plane below the line $3 x-4 y=12$ are in the solution set.

10. Graph $3 x-4 y=9$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $3 x-4 y \leq 9$, all points on the line and in the half-plane above the line $3 x-4 y=9$ are in the solution set.

11. Graph $3 x+2 y=6$. Since the original statement is strictly less than, a dashed line is drawn. Since the point $(0,0)$ satisfies the inequality $3 x+2 y<6$, all points in the half-plane to the left of the line $3 x+2 y=6$ are in the solution set.

12. Graph $x+2 y=4$. Since the original statement is strictly greater than, a dashed line is drawn. Since the point $(0,0)$ does not satisfy the inequality $x+2 y>4$, all points in the half-plane above the line $x+2 y=4$ are in the solution set.

13. Graph $4 y-3 x=9$. Since the original statement is greater than or equal to, a solid line is drawn.
Since the point $(0,0)$ does not satisfy the inequality $4 y-3 x \geq 9$, all points on the line and in the half-
plane above the line $4 y-3 x=9$ are in the solution set.

14. Graph $-x+2 y=2$. Since the original statement is strictly less than, a dashed line is drawn. Since the point $(0,0)$ satisfies the inequality $-x+2 y<2$, all points in the half-plane below the line $-x+2 y=2$ are in the solution set.

15. Graph $x+y=0$. Since the original statement is strictly greater than, a dashed line is drawn. Since the point $(1,1)$ satisfies the inequality $x+y>0$, all points in the half-plane above the line $x+y=0$ are in the solution set.

16. Graph $5 x-2 y=10$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $5 x-2 y \leq 10$, all points on the line and in the halfplane above the line $5 x-2 y=10$ are in the solution set.

17. Graph $3 x+2 y=12$. Since the original statement is strictly greater than, a dashed line is drawn. Since the point $(0,0)$ does not satisfy the inequality $3 x+2 y>12$, all points in the half-plane above the line $3 x+2 y=12$ are in the solution set.

18. Graph $x+2 y=0$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(1,1)$ does not satisfy the inequality $x+2 y \leq 0$, all points on the line $x+2 y=0$ and in the half-plane below the line are in the solution set.

19. Graph $y=-2 x+1$. Since the original statement is greater than or equal to, a solid line is drawn. Since the point $(0,0)$ does not satisfy the inequality $y \geq-2 x+1$, all points on the line and in the halfplane above the line $y=-2 x+1$ are in the solution set.

20. Graph $y=3 x-4$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(0,0)$ does not satisfy the inequality $y \leq 3 x-4$, all points on the line and in the halfplane below the line $y=3 x-4$ are in the solution set.

21. Graph $\frac{2}{5} x-\frac{1}{2} y=1$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $\frac{2}{5} x-\frac{1}{2} y \leq 1$, all points on the line and in the half-plane above the line $\frac{2}{5} x-\frac{1}{2} y=1$ are in the solution set.

22. Graph $0.2 x+0.5 y=0.3$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $0.2 x+0.5 y \leq 0.3$, all points on the line and in the half-plane below the line $0.2 x+0.5 y=0.3$ are in the solution set.

23.

a) $x+y \leq 300$
b)

22. Graph $0.1 x+0.3 y=0.4$. Since the original statement is less than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $0.1 x+0.3 y \leq 0.4$, all points on the line and in the half-plane below the line $0.1 x+0.3 y=0.4$ are in the solution set.

24. Graph $\frac{1}{3} x+\frac{3}{4} y=1$. Since the original statement is greater than or equal to, a solid line is drawn. Since the point $(0,0)$ does not satisfy the inequality $\frac{1}{3} x+\frac{3}{4} y \geq 1$, all points on the line and in the half-plane above the line $\frac{1}{3} x+\frac{3}{4} y=1$ are in the solution set.

26. a) $2 l+2 w \leq 40,0 \leq l \leq 20,0 \leq w \leq 20$
b)

27. a) $x=$ the number of acres of land, $y=$ the number of square feet in the house
b)

c) $1500 x+75(1950)=150,000$

$$
1500 x+146,250=150,000
$$

$$
1500 x=3750
$$

$$
x=2.5 \text { acres or less }
$$

d) $1500(5)+75 y=150,000$

$$
7500+75 y=150,000
$$

$$
75 y=142,500
$$

$$
y=1900 \mathrm{ft}^{2} \text { or less }
$$

28. a) No, you cannot have a negative number of shirts.
b)

c) Answers will vary.
29. a)

$$
\begin{aligned}
3 x-y & <6 \\
3 x-3 x-y & <-3 x+6 \\
-y & <-3 x+6 \\
\frac{-y}{-1} & >\frac{-3 x}{-1}+\frac{6}{-1} \\
y & >3 x-6
\end{aligned}
$$

b) $\quad-3 x+y>-6$

$$
\begin{aligned}
-3 x+3 x+y & >3 x-6 \\
y & >3 x-6
\end{aligned}
$$

c) $\quad 3 x-2 y<12$

$$
3 x-3 x-2 y<-3 x+12
$$

$$
-2 y<-3 x+12
$$

$$
\frac{-2 y}{-2}>\frac{-3 x}{-2}+\frac{12}{-2}
$$

$$
y>\frac{3}{2} x-6
$$

d) $y>3 x-6$
a, b, and d

Review Exercises

1. $x=3, x^{2}+12=(3)^{2}+12=9+12=21$
2. $x=2,4 x^{2}-2 x+5=4(2)^{2}-2(2)+5$
$=16-4+5=17$
3. $x=-2,4 x^{3}-7 x^{2}+3 x+1$

$$
\begin{aligned}
& =4(-2)^{3}-7(-2)^{2}+3(-2)+1 \\
& =-32-28-6+1=-65
\end{aligned}
$$

7. $3 x-4+x+5=4 x+1$
8. $4(x-1)+\frac{1}{3}(9 x+3)=4 x-4+3 x+1=7 x-3$

$$
\text { 11. } 3 t+8=6 t-13
$$

$$
\begin{aligned}
3 t-3 t+8 & =6 t-3 t-13 \\
8 & =3 t-13 \\
8+13 & =3 t-13+13 \\
21 & =3 t \\
\frac{21}{3} & =\frac{3 t}{3} \\
7 & =t
\end{aligned}
$$

13. $4(x-2)=3+5(x+4)$

$$
4 x-8=3+5 x+20
$$

$$
4 x-8=5 x+23
$$

$$
4 x-4 x-8=5 x-4 x+23
$$

$$
-8=x+23
$$

$$
-8-23=x+23-23
$$

$$
-31=x
$$

2. $x=-1,-x^{2}-9=-(-1)^{2}-9=-1-9=-10$
3. $x=\frac{1}{2}, \quad-x^{2}+7 x-3=-\left(\frac{1}{2}\right)^{2}+7\left(\frac{1}{2}\right)-3$

$$
=-\frac{1}{4}+\frac{14}{4}-\frac{12}{4}=\frac{1}{4}
$$

6. $x=1, y=-2, \quad 3 x^{2}-x y+2 y^{2}$

$$
=3(1)^{2}-1(-2)+2(-2)^{2}
$$

$$
=3+2+8=13
$$

8. $3 x+4(x-2)+6 x=3 x+4 x-8+6 x=13 x-8$
9. $4 s+10=-30$

$$
4 s+10-10=-30-10
$$

$$
4 s=-40
$$

$$
\frac{4 s}{4}=\frac{-40}{4}
$$

$$
s=-10
$$

12. $\frac{x+5}{6}=\frac{x-3}{3}$

$$
\begin{aligned}
3(x+5) & =6(x-3) \\
3 x+15 & =6 x-18 \\
3 x-3 x+15 & =6 x-3 x-18 \\
15 & =3 x-18 \\
15+18 & =3 x-18+18 \\
33 & =3 x \\
\frac{33}{3} & =\frac{3 x}{3} \\
11 & =x
\end{aligned}
$$

14. $\frac{x}{4}+\frac{3}{5}=7$

$$
20\left(\frac{x}{4}+\frac{3}{5}\right)=20(7)
$$

$$
5 x+12=140
$$

$$
5 x+12-12=140-12
$$

$$
5 x=128
$$

$$
\frac{5 x}{5}=\frac{128}{5}
$$

$$
x=\frac{128}{5}
$$

15. $\frac{2}{\frac{1}{3}}=\frac{3}{x}$
$2 x=3\left(\frac{1}{3}\right)$
$2 x=1$
$\frac{2 x}{2}=\frac{1}{2}$

$$
x=\frac{1}{2} \text { cup }
$$

17. $A=b h$

$$
A=12(4)=48
$$

19. $Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$

$$
2=\frac{\bar{x}-100}{\frac{3}{\sqrt{16}}}
$$

$$
\frac{2}{1}=\frac{\bar{x}-100}{\frac{3}{4}}
$$

$$
2\left(\frac{3}{4}\right)=1(\bar{x}-100)
$$

$$
\frac{3}{2}=\bar{x}-100
$$

$$
\frac{3}{2}+100=\bar{x}-100+100
$$

$$
\frac{3}{2}+\frac{200}{2}=\bar{x}
$$

$$
\frac{203}{2}=\bar{x}
$$

$$
101.5=\bar{x}
$$

16. $1 \mathrm{hr} 40 \mathrm{~min}=60 \mathrm{~min}+40 \mathrm{~min}=100 \mathrm{~min}$

$$
\begin{aligned}
\frac{120}{100} & =\frac{300}{x} \\
120 x & =100(300) \\
120 x & =30,000 \\
\frac{120 x}{120} & =\frac{30,000}{120} \\
x & =250 \mathrm{~min}, \text { or } 4 \mathrm{hr} 10 \mathrm{~min}
\end{aligned}
$$

18. $V=2 \pi R^{2} r^{2}$

$$
\begin{aligned}
& V=2(3.14)(3)^{2}(1.75)^{2} \\
& V=2(3.14)(9)(3.0625) \\
& V=173.0925 \approx 173.1
\end{aligned}
$$

20. $K=\frac{1}{2} m v^{2}$
$4500=\frac{1}{2} m(30)^{2}$
$4500=450 \mathrm{~m}$
$\frac{4500}{450}=\frac{450 \mathrm{~m}}{450}$
$10=m$
21. $3 x-9 y=18$

$$
\begin{aligned}
3 x-3 x-9 y & =-3 x+18 \\
-9 y & =-3 x+18 \\
\frac{-9 y}{-9} & =\frac{-3 x+18}{-9} \\
y & =\frac{-3 x+18}{-9}=\frac{-(-3 x+18)}{9} \\
& =\frac{3 x-18}{9}=\frac{3 x}{9}-\frac{18}{9}=\frac{1}{3} x-2
\end{aligned}
$$

23. $2 x-3 y+52=30$

$$
2 x-2 x-3 y+52=-2 x+30
$$

$$
-3 y+52=-2 x+30
$$

$$
-3 y+52-52=-2 x+30-52
$$

$$
-3 y=-2 x-22
$$

$$
\frac{-3 y}{-3}=\frac{-2 x-22}{-3}
$$

$$
y=\frac{-2 x-22}{-3}=\frac{2 x+22}{3}=\frac{2}{3} x+\frac{22}{3}
$$

25. $A=l w$

$$
\begin{aligned}
& \frac{A}{l}=\frac{l w}{l} \\
& \frac{A}{l}=w
\end{aligned}
$$

27. $L=2(w h+l h)$

$$
\begin{aligned}
L & =2 w h+2 l h \\
L-2 w h & =2 w h-2 w h+2 l h \\
L-2 w h & =2 l h \\
\frac{L-2 w h}{2 h} & =\frac{2 l h}{2 h} \\
\frac{L-2 w h}{2 h} & =l \text { or } l=\frac{L}{2 h}-\frac{2 w h}{2 h}=\frac{L}{2 h}-w
\end{aligned}
$$

22. $2 x+5 y=12$

$$
2 x-2 x+5 y=-2 x+12
$$

$$
5 y=-2 x+12
$$

$$
\frac{5 y}{5}=\frac{-2 x+12}{5}=-\frac{2}{5} x+\frac{12}{5}
$$

24. $-3 x-4 y+5 z=4$ $-3 x+3 x-4 y+5 z=3 x+4$

$$
-4 y+5 z=3 x+4
$$

$$
-4 y+5 z-5 z=3 x-5 z+4
$$

$$
-4 y=3 x-5 z+4
$$

$$
\frac{-4 y}{-4}=\frac{3 x-5 z+4}{-4}
$$

$$
y=\frac{3 x-5 z+4}{-4}
$$

$$
=\frac{-(3 x-5 z+4)}{4}
$$

$$
=\frac{-3 x+5 z-4}{4}
$$

$$
=-\frac{3}{4} x+\frac{5}{4} z-1
$$

26. $P=2 l+2 w$
$P-2 l=2 l-2 l+2 w$
$P-2 l=2 w$
$\frac{P-2 l}{2}=\frac{2 w}{2}$
$\frac{P-2 l}{2}=w$
27. $a_{n}=a_{1}+(n-1) d$
$a_{n}-a_{1}=a_{1}-a_{1}+(n-1) d$
$a_{n}-a_{1}=(n-1) d$
$\frac{a_{n}-a_{1}}{n-1}=\frac{(n-1) d}{n-1}$
$\frac{a_{n}-a_{1}}{n-1}=d$
28. $8+2 x$
29. $3 y-7$
30. $10+3 r$
31. $\frac{8}{q}-11$
32.

$$
\begin{aligned}
\text { Let } x & =\text { the number } \\
3 x & =3 \text { times the number } \\
4+3 x & =4 \text { increased by } 3 \text { times the number } \\
4+3 x & =22 \\
4-4+3 x & =22-4 \\
3 x & =18 \\
\frac{3 x}{3} & =\frac{18}{3} \\
x & =6
\end{aligned}
$$

35. Let $x=$ the number
$x-4=$ the difference of a number and 4
$5(x-4)=5$ times the difference of a number
and 4
$5(x-4)=45$
$5 x-20=45$
$5 x-20+20=45+20$
$5 x=65$
$\frac{5 x}{5}=\frac{65}{5}$
$x=13$
36. Let $x=$ the amount invested in bonds
$2 x=$ the amount invested in mutual funds
$x+2 x=15,000$
$3 x=15,000$
$\frac{3 x}{3}=\frac{15,000}{3}$
$x=\$ 5000$ in bonds
$2 x=2(5000)=\$ 10,000$ in mutual funds
37. Let $x=$ the number
$3 x=$ the product of 3 and a number
$3 x+8=$ the product of 3 and a number increased by 8
$x-6=6$ less than the number
$3 x+8=x-6$
$3 x-x+8=x-x-6$

$$
2 x+8=-6
$$

$2 x+8-8=-6-8$
$2 x=-14$
$\frac{2 x}{2}=\frac{-14}{2}$

$$
x=-7
$$

36. Let $x=$ the number
$10 x=10$ times a number
$10 x+14=14$ more than 10 times a number
$x+12=$ the sum of a number and 12
$8(x+12)=8$ times the sum of a number and 12

$$
\begin{aligned}
10 x+14 & =8(x+12) \\
10 x+14 & =8 x+96 \\
10 x-8 x+14 & =8 x-8 x+96 \\
2 x+14 & =96 \\
2 x+14-14 & =96-14 \\
2 x & =82 \\
\frac{2 x}{2} & =\frac{82}{2} \\
x & =41
\end{aligned}
$$

38. Let $x=$ number of lawn chairs
$9.50 x=$ variable cost per lawn chair

$$
\begin{aligned}
9.50 x+15,000 & =95,000 \\
9.50 x+15,000-15,000 & =95,000-15,000 \\
9.50 x & =80,000 \\
\frac{9.50 x}{9.50} & =\frac{80,000}{9.50}
\end{aligned}
$$

$$
x=8421.052632 \approx 8421 \text { lawn chairs }
$$

39. Let $x=$ the number of species at the Philadelphia Zoo
$2 x+140=$ the number of species at the
San Diego Zoo

$$
\begin{aligned}
x+2 x+140= & 1130 \\
3 x+140= & 1130 \\
3 x+140-140= & 1130-140 \\
3 x= & 990 \\
\frac{3 x}{3}= & \frac{990}{3} \\
x= & 330 \text { species at the } \\
& \text { Philadelphia Zoo } \\
2 x+140= & 2(330)+140=660+140 \\
& =800 \text { species at the San Diego Zoo }
\end{aligned}
$$

41. $s=\frac{k}{t}$

$$
10=\frac{k}{3}
$$

$$
k=10(3)=30
$$

$$
s=\frac{30}{t}
$$

$$
s=\frac{30}{5}=6
$$

43. $W=\frac{k L}{A}$

$$
80=\frac{k(100)}{20}
$$

$100 k=1600$
$\frac{100 k}{100}=\frac{1600}{100}$

$$
k=16
$$

$W=\frac{16 L}{A}$
$W=\frac{16(50)}{40}=\frac{800}{40}=20$
40. Let $x=$ profit at restaurant B

$$
x+12,000=\text { profit at restaurant } \mathrm{A}
$$

$$
x+(x+12,000)=68,000
$$

$$
2 x+12,000=68,000
$$

$$
2 x+12,000-12,000=68,000-12,000
$$

$$
2 x=56,000
$$

$$
\frac{2 x}{2}=\frac{56,000}{2}
$$

$$
x=\$ 28,000 \text { for restaurant B }
$$

$x+12,000=28,000+12,000=\$ 40,000$ for restaurant A
42. $J=k A^{2}$
$32=k(4)^{2}$
$32=16 k$
$\frac{32}{16}=\frac{16 k}{16}$
$k=2$
$J=2 A^{2}$
$J=2(7)^{2}=2(49)=98$
44. $z=\frac{k x y}{r^{2}}$

$$
12=\frac{k(20)(8)}{(8)^{2}}
$$

$$
160 k=768
$$

$$
\frac{160 k}{160}=\frac{768}{160}
$$

$$
k=4.8
$$

$$
z=\frac{4.8 x y}{r^{2}}
$$

$$
z=\frac{4.8(10)(80)}{(3)^{2}}=\frac{3840}{9}=426 . \overline{6} \approx 426.7
$$

45. a) $\quad \frac{30 \mathrm{lb}}{2500 \mathrm{ft}^{2}}=\frac{x \mathrm{lb}}{12,500 \mathrm{ft}^{2}}$

$$
\begin{aligned}
30(12,500) & =2500 x \\
375,000 & =2500 x \\
\frac{375,000}{2500} & =\frac{2500 x}{2500} \\
x & =150 \mathrm{lb}
\end{aligned}
$$

b) $\frac{150}{30}=5$ bags
47. $\frac{1 \mathrm{kWh}}{\$ 0.162}=\frac{740 \mathrm{kWh}}{x}$

$$
x=\$ 119.88
$$

46. $\frac{1 \mathrm{in} .}{30 \mathrm{mi}}=\frac{x \mathrm{in} .}{120 \mathrm{mi}}$
$30 x=120$
$\frac{30 x}{30}=\frac{120}{30}$
$x=4 \mathrm{in}$.
47. $d=k t^{2}$

$$
\begin{aligned}
16 & =k(1)^{2} \\
k & =16 \\
d & =16 t^{2} \\
d & =16(5)^{2}=16(25)=400 \mathrm{ft}
\end{aligned}
$$

50. $2 x+8 \geq 4 x+10$

$$
2 x-4 x+8 \geq 4 x-4 x+10
$$

$$
-2 x+8 \geq 10
$$

$$
-2 x+8-8 \geq 10-8
$$

$$
-2 x \geq 2
$$

$$
\frac{-2 x}{-2} \leq \frac{2}{-2}
$$

$$
x \leq-1
$$

51. $3(x+9) \leq 4 x+11$

$$
3 x+27 \leq 4 x+11
$$

$$
3 x-4 x+27 \leq 4 x-4 x+11
$$

$$
-x+27 \leq 11
$$

$$
-x+27-27 \leq 11-27
$$

$$
-x \leq-16
$$

$$
\frac{-x}{-1} \geq \frac{-16}{-1}
$$

$$
x \geq 16
$$

53. $2+5 x>-8$

$$
2-2+5 x>-8-2
$$

$$
5 x>-10
$$

$$
\frac{5 x}{5}>\frac{-10}{5}
$$

$$
x>-2
$$

55. $-1<x \leq 9$

57. - 60 .

62.

Area $=l w=7(3)=21$ square units
54. $5 x+13 \geq-22$
$5 x+13-13 \geq-22-13$ $5 x \geq-35$

$$
\frac{5 x}{5} \geq \frac{-35}{5}
$$

$$
x \geq-7
$$

56. $-8 \leq x+2 \leq 7$
$-8-2 \leq x+2-2 \leq 7-2$ $-10 \leq x \leq 5$
$\left.<{ }_{-10} \phi_{-} \phi-\phi \phi-\phi-\phi-\phi \phi-\phi-\phi-\phi-\phi \phi\right\rangle$
61.

Area $=l w=5(4)=20$ square units
63.

64.

66.

68.

65.

67.

69.

70.

71. $m=\frac{5-3}{6-1}=\frac{2}{5}$
73. $m=\frac{3-(-4)}{2-(-1)}=\frac{3+4}{2+1}=\frac{7}{3}$
75.

72. $m=\frac{-4-(-1)}{5-3}=\frac{-4+1}{5-3}=-\frac{3}{2}$
74. $m=\frac{-2-2}{6-6}=\frac{-4}{0}$ Undefined
76.

77.

78.

79. The y-intercept is 4 , thus $b=4$. Since the graph rises from left to right, the slope is positive. The change in y is 4 units while the change in x is 2 . Thus, m, the slope is $\frac{4}{2}$ or 2 . The equation is $y=2 x+4$.
80. The y-intercept is 1 , thus $b=1$. Since the graph falls from left to right, the slope is negative. The change in y is 3 units while the change in x is 3 . Thus, m, the slope is $\frac{-3}{3}$ or -1 . The equation is $y=-x+1$.
81. a)

b) About $\$ 160$
c) About $\$ 160$
83. Graph $4 x+3 y=12$. Since the original inequality is less than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $4 x+3 y \leq 12$, all points on the line and in the half-plane below the line $4 x+3 y=12$ are in the solution set.

85. Graph $2 x-3 y=12$. Since the original inequality is strictly greater than, a dashed line is drawn. Since the point $(0,0)$ does not satisfy the inequality $2 x-3 y>12$, all points in the half-plane below the line $2 x-3 y=12$ are in the solution set.

87. $x^{2}+9 x+18=(x+3)(x+6)$
89. $x^{2}-10 x+24=(x-6)(x-4)$
91. $6 x^{2}+7 x-3=(3 x-1)(2 x+3)$
82. a)

b) About $\$ 6400$
c) About $4120 \mathrm{ft}^{2}$
84. Graph $3 x+2 y=12$. Since the original inequality is greater than or equal to, a solid line is drawn. Since the point $(0,0)$ does not satisfy the inequality $3 x+2 y \geq 12$, all points in the half plane above the line $3 x+2 y=12$ are in the solution set.

86. Graph $-7 x-2 y=14$. Since the original inequality is strictly less than, a dashed line is drawn. Since the point $(0,0)$ satisfies the inequality $-7 x-2 y<14$, all points in the half-plane to the right of the line $-7 x-2 y=14$ are in the solution set.

88. $x^{2}+x-20=(x+5)(x-4)$
90. $x^{2}-9 x+20=(x-5)(x-4)$
92. $2 x^{2}+13 x-7=(2 x-1)(x+7)$
93. $x^{2}+3 x+2=0$
$(x+1)(x+2)=0$
$x+1=0$ or $x+2=0$
$x=-1 \quad x=-2$
95. $3 x^{2}-17 x+10=0$

$$
\begin{aligned}
& (3 x-2)(x-5)=0 \\
& 3 x-2=0 \text { or } x-5=0 \\
& 3 x=2 \quad x=5 \\
& x=\frac{2}{3}
\end{aligned}
$$

97. $x^{2}-4 x-1=0$
$a=1, \quad b=-4, \quad c=-1$
$x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-1)}}{2(1)}$
$x=\frac{4 \pm \sqrt{16+4}}{2}=\frac{4 \pm \sqrt{20}}{2}=\frac{4 \pm 2 \sqrt{5}}{2}=2 \pm \sqrt{5}$
98. $2 x^{2}-3 x+4=0$
$a=2, b=-3, c=4$
$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(2)(4)}}{2(2)}$
$x=\frac{3 \pm \sqrt{9-32}}{4}=\frac{3 \pm \sqrt{-23}}{4}$
No real solution
99. Function since each value of x is paired with a unique value of y.
D: $x=-2,-1,2,3$
$\mathrm{R}: ~ y=-1,0,2$
100. Not a function since it is possible to draw a vertical line that intersects the graph at more than one point.
101. $f(x)=5 x-2, \quad x=4$
$f(4)=5(4)-2=20-2=18$
102. $x^{2}-5 x=-4$
$x^{2}-5 x+4=0$
$(x-1)(x-4)=0$
$x-1=0$ or $x-4=0$
$x=1 \quad x=4$
103. $3 x^{2}=-7 x-2$
$3 x^{2}+7 x+2=0$
$(x+2)(3 x+1)=0$
$x+2=0$ or $3 x+1=0$
$x=-2 \quad 3 x=-1$

$$
x=-\frac{1}{3}
$$

98. $x^{2}-3 x+2=0$
$a=1, b=-3, c=2$
$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(2)}}{2(1)}$
$x=\frac{3 \pm \sqrt{9-8}}{2}=\frac{3 \pm \sqrt{1}}{2}=\frac{3 \pm 1}{2}$
$x=\frac{4}{2}=2$ or $x=\frac{2}{2}=1$
99. $2 x^{2}-x-3=0$
$a=2, b=-1, c=-3$
$x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-3)}}{2(2)}$
$x=\frac{1 \pm \sqrt{1+24}}{4}=\frac{1 \pm \sqrt{25}}{4}=\frac{1 \pm 5}{4}$
$x=\frac{6}{4}=\frac{3}{2}$ or $x=\frac{-4}{4}=-1$
100. Not a function since it is possible to draw a vertical line that intersects the graph at more than one point.
101. Function since each vertical line intersects the graph at only one point.
D: all real numbers
R : all real numbers
102. $f(x)=-2 x+7, \quad x=-3$
$f(-3)=-2(-3)+7=6+7=13$
103. $f(x)=2 x^{2}-3 x+4, x=5$
$f(5)=2(5)^{2}-3(5)+4=50-15+4=39$
104. $y=-x^{2}-4 x+21$
a) $a=-1<0$, opens downward
b) $x=-2$
c) $(-2,25)$
d) $(0,21)$
e) $(-7,0),(3,0)$
f)

$\mathrm{R}: ~ y \leq 25$
105.

D: all real numbers
$\mathrm{R}: ~ y>0$
113. $m=30-0.002 n^{2}, n=60$

$$
\begin{aligned}
m & =30-0.002(60)^{2}=30-0.002(3600) \\
& =30-7.2=22.8 \mathrm{mpg}
\end{aligned}
$$

108. $f(x)=-4 x^{2}+7 x+9, x=4$

$$
f(4)=-4(4)^{2}+7(4)+9=-64+28+9=-27
$$

110. $f(x)=2 x^{2}-8 x+10$
a) $a=2>0$, opens upward
b) $\begin{array}{ll}x=2 & \text { c) }(2,2)\end{array}$
d) $(0,10)$
e) no x-intercepts
f)

g) D: all real numbers
$\mathrm{R}: ~ y \geq 2$
111.

D: all real numbers
$\mathrm{R}: ~ y>0$
114. $n=2 a^{2}-80 a+5000$
a) $a=18$

$$
\begin{aligned}
n & =2(18)^{2}-80(18)+5000 \\
& =648-1440+5000=4208
\end{aligned}
$$

b) $a=25$
$n=2(25)^{2}-80(25)+5000$

$$
=1250-2000+5000=4250
$$

115. $P=100(0.92)^{x}, x=4.5$

$$
P=100(0.92)^{4.5}
$$

$$
=100(0.6871399881)=68.71399881 \approx 68.7 \%
$$

Chapter Test

1. $3 x^{2}+4 x-1, x=-2$

$$
3(-2)^{2}+4(-2)-1=12-8-1=3
$$

2. $3 x+5=2(4 x-7)$

$$
\begin{aligned}
3 x+5 & =8 x-14 \\
3 x-8 x+5 & =8 x-8 x-14 \\
-5 x+5 & =-14 \\
-5 x+5-5 & =-14-5 \\
-5 x & =-19 \\
\frac{-5 x}{-5} & =\frac{-19}{-5} \\
x & =\frac{19}{5}
\end{aligned}
$$

3. $-2(x-3)+6 x=2 x+3(x-4)$

$$
\begin{aligned}
-2 x+6+6 x & =2 x+3 x-12 \\
4 x+6 & =5 x-12 \\
4 x-5 x+6 & =5 x-5 x-12 \\
-x+6 & =-12 \\
-x+6-6 & =-12-6 \\
-x & =-18 \\
\frac{-x}{-1} & =\frac{-18}{-1} \\
x & =18
\end{aligned}
$$

5. Let $x=$ the cost of the car before tax

$$
\begin{aligned}
0.07 x & =\text { the amount of the sales tax } \\
x+0.07 x & =26,750 \\
1.07 x & =26,750 \\
\frac{1.07 x}{1.07} & =\frac{26,750}{1.07} \\
x & =\$ 25,000
\end{aligned}
$$

7. $3 x+5 y=11$

$$
\begin{aligned}
3 x-3 x+5 y & =-3 x+11 \\
5 y & =-3 x+11 \\
\frac{5 y}{5} & =\frac{-3 x+11}{5} \\
y & =\frac{-3 x+11}{5}=-\frac{3}{5} x+\frac{11}{5}
\end{aligned}
$$

8. $L=\frac{k M N}{P}$

$$
12=\frac{k(8)(3)}{2}
$$

$$
24 k=24
$$

$$
k=\frac{24}{24}=1
$$

$$
L=\frac{(1) M N}{P}
$$

$$
L=\frac{(1)(10)(5)}{15}=\frac{50}{15}=3 . \overline{3}=3 \frac{1}{3}
$$

9. $l=\frac{k}{w}$
$15=\frac{k}{9}$
$l=\frac{135}{20}=6.75 \mathrm{ft}$
10. $-3 x+11 \leq 5 x+35$
$-3 x-5 x+11 \leq 5 x-5 x+35$

$$
-8 x+11-11 \leq 35-11
$$

$k=15(9)=135$

$$
-8 x+11 \leq 35
$$

$$
-8 x \leq 24
$$

$l=\frac{135}{w}$

$$
\frac{-8 x}{-8} \geq \frac{24}{-8}
$$

$$
x \geq-3
$$

11. $m=\frac{12-5}{7-(-3)}=\frac{12-5}{7+3}=\frac{7}{10}$
12.

14. Graph $3 y=5 x-12$. Since the original statement is greater than or equal to, a solid line is drawn. Since the point $(0,0)$ satisfies the inequality $3 y \geq 5 x-12$, all points on the line and in the half-plane above the line $3 y=5 x-12$ are in the solution set.

15. $x^{2}-3 x=28$
$x^{2}-3 x-28=0$
$(x-7)(x+4)=0$
$x-7=0$ or $x+4=0$
$x=7 \quad x=-4$
17. Function since each vertical line intersects the graph at only one point.
18. $f(x)=-4 x^{2}-11 x+5, x=-2$
$f(-2)=-4(-2)^{2}-11(-2)+5$
$=-16+22+5=11$
19. $y=x^{2}-2 x+4$
a) $a=1>0$, opens upward
b) $x=1$
c) $(1,3)$
d) $(0,4)$
e) no x-intercepts
f)

g) D: all real numbers
$\mathrm{R}: y \geq 3$

Group Projects

1. a) - b) Answers will vary.
c) $h=3.14 H+64.98=3.14(29.42)+64.98=157.3588 \mathrm{~cm} . \approx 157.36 \mathrm{~cm}$.

Yes
d) $h=2.53 T+72.57$
$167.64=2.53 T+72.57$
$95.07=2.53 T$
$T=37.5770751 \mathrm{~cm} . \approx 37.58 \mathrm{~cm}$.
e) i) $h=3.14 H+64.98$
$168=3.14 H+64.98$
$103.02=3.14 \mathrm{H}$
$H=32.8089172 \approx 32.81 \mathrm{~cm}$.
ii) $H=32.81-0.06(30)=32.81-1.8=31.01 \mathrm{~cm}$.
f) Answers will vary.
2. a) - e) Answers will vary.

CHAPTER SEVEN

SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES

Exercise Set 7.1

1. Two or more linear equations form a system of linear equations.
2. A solution to a system of linear equations is the ordered pair or pairs that satisfy all equations in the system.
3. A consistent system of equations is a system that has a solution.
4. A dependent system of equations is a system that has an infinite number of solutions.
5. An inconsistent system of equations is a system that has no solution.
6. Graph each equation on the same axes. The point(s) of intersection of the graphs is (are) the solution(s) to the system.
7. The graphs of the system of equations are parallel and do not intersect.
8. The graphs of the system of equations intersect at one point.
9. The graphs of the system of equations are in fact the same line.
10. No. If no solution, the graphs are parallel; if they intersect, there is one; or they are the same line.

$$
y=2 x-6 \quad y=-x+3
$$

11. $(3,0)$

$$
\begin{array}{ll}
(0)=2(3)-6 & (0)=-(3)+3 \\
0=6-6 & 0=0 \\
0=0 \\
x+2 y=6 & \text { Therefore, }(3,0) \text { is a solution. } \\
(-2)+2(4)=6 & (-2)-(4)=-6 \\
-2+8=6 & -6=-6 \\
6=6
\end{array}
$$

12. $(-2,4)$
13.

14.

15.

16.

18.

20.

22.

23.

25.

27.

29.

24.

26.

28.

30.

31.

33. a) Two lines with different slopes are not parallel, and therefore have exactly one point of intersection giving one solution.
b) Two lines with the same slope and different y - intercepts are distinct parallel lines and have no solution.
c) Two lines with the same slopes and y-intercepts have infinitely many solutions, each point on the line.
36. $3 x+4 y=8 \quad 8 y=-6 x+4$ same slopes, diff. y -intercepts; no solution
38. $x+3 y=6 \quad 3 x+y=4$ diff. slope, different y-intercepts; 1 solution
40. $x+4 y=12 \quad x=4 y+3$
diff. slopes, diff. y-intercepts; 1 solution
42. $x-2 y=6 \quad x+2 y=4$ diff. slopes, diff. y-intercepts; 1 solution
44. $3 y=6 x+4 \quad-2 x+y=4 / 3$
same slopes, same y-intercepts; infinite number of solutions
46. $4 x+7 y=2 \quad 4 x=6+7 y$ diff. slopes, diff. y-intercepts; 1 solution
48. $4 y-x=6 \quad y=x+8$
slopes are not negative reciprocals, not \nwarrow
50. $6 x+5 y=3 \quad-10 x=2+12 y$
slopes are not negative reciprocals, not \nwarrow
32.

34. a) Consistent; the system has one solution.
b) Inconsistent; the system has no solution.
c) Dependent; the system has infinitely many solutions.
35. $2 x-y=6 \quad y=2 x-6$
same slope, same y-intercept; infinite number of solutions
37. $3 x-4 y=5 \quad y=-3 x+8$ different slopes, different y-intercepts; 1 solution
39. $3 x+y=7 \quad y=-3 x+9$ same slope, diff. y-intercepts; no solution
41. $2 x-3 y=6 \quad x-(3 / 2) y=3$
same slopes, same y-intercepts; infinite number of solutions
43. $3 x=6 y+5 \quad y=(1 / 2) x-3$ same slope, diff. y-intercepts; no solution
45. $12 x-5 y=4 \quad 3 x+4 y=6$
diff. slopes, diff. y-intercepts; 1 solution
47. $5 y-2 x=15 \quad 2 y-5 x=2$ slopes are not negative reciprocals, not perpendicular (\nwarrow)
49. $2 x+y=3 \quad 2 y-x=5$
slopes are negative reciprocals, \nwarrow
51. a) Let $\mathrm{x}=$ rate per hour

$$
y=\operatorname{cost}
$$

Cost for Tom's $\quad y_{T}=60 x+200$
Cost for Lawn Perfect $y_{L P}=25 x+305$
c) $60 x+200=25 x+305$

-25 x	-200	-25 x
35 x	-200	
	105	

$\frac{35 x}{35}=\frac{105}{35} \quad \rightarrow \quad x=3$ hours
52. a) Let $\mathrm{c}=$ cost, $\mathrm{x}=$ number of months

Cost for ABC: $\mathrm{c}_{\mathrm{ABC}}=18 \mathrm{x}+3380$
Cost for Safe Homes: c ${ }_{S}=29 x+2302$
b)

53. a) Let $\mathrm{C}=$ cost, $\mathrm{R}=$ revenue
$C(x)=15 x+400$
$R(x)=25 x$
b)

54. a) $\mathrm{MDA}: \mathrm{M}=.08 \mathrm{~s}+40$

AHA: $\mathrm{A}=.18 \mathrm{~s}+15$
c) $.08 \mathrm{~s}+40=.18 \mathrm{~s}+15$
$-.08 \mathrm{x}-15-.08 \mathrm{x}-15$
$25=.10 \mathrm{x}$
$\frac{.10 x}{.10}=\frac{25}{.10} \quad \rightarrow \quad \mathrm{x}=250$ shares
d) For 300 shares, MDA would be less
expensive. $\quad \mathrm{M}=.08(300)+40=64$

$$
A=.18(300)+15=69
$$

b)

52. c) $18 x+3380=29 x+2302$
$\frac{-18 x-2302-18 x-2302}{1078=11 x}$

$$
\frac{11 x}{11}=\frac{1078}{11} \rightarrow x=98 \text { months }
$$

d) ABC would be less expensive for 10 years.
53. c) $25 x=15 x+400$

$$
\begin{aligned}
& \frac{-15 x-15 x}{10 x}=400 \\
& \frac{10 x}{10}=\frac{400}{10} \quad \rightarrow \quad x=40 \text { backpacks }
\end{aligned}
$$

d) $P=R(x)-C(x)=25 x-(15 x+400)$
$P=10 x-400$
e) $\mathrm{P}=10(30)-400=300-400=-\$ 100$ (loss)
f) $1000=10 x-400 \rightarrow 10 x=1400$ $\mathrm{x}=140 \mathrm{BPs}$
54. b)

55. a) Let $C(x)=$ cost,$R(x)=$ revenue
$C(x)=155 x+8400$
$R(x)=225 x$
b)

55. c) $225 x=155 x+8400$

$$
\begin{aligned}
& \frac{-155 x-155 x}{70 x=8400} \\
& \frac{70 x}{70}=\frac{8400}{70} \quad \rightarrow \quad x=120 \text { units }
\end{aligned}
$$

d) $P=R(x)-C(x)=225 x-(155 x+8400)$
$P=70 x-8400$
e) $\mathrm{P}=70(100)-8400=7000-8400$
$=-\$ 1400$ (loss)
f) $1260=70 x-8400 \rightarrow 70 x=9660$
$x=138$ units
56. Two systems are: consistent if they have different slopes; dependent if they have the same slopes and same y-intercepts; and inconsistent if they have same slopes and different y-intercepts.
57. a) $\mathrm{P}_{1}=.15 \mathrm{x}+300$

$$
\mathrm{P}_{2}=450 \quad \rightarrow \quad .15 \mathrm{x}+300=450
$$

c) $.15 x+300=450$

$$
\begin{array}{rr}
-300-300 \\
.15 x & =150
\end{array} \rightarrow \quad \frac{.15 x}{.15}=\frac{150}{.15}
$$

$$
x=\$ 1000
$$

58. a) Let $x=$ number of minutes

ATT: $\mathrm{y}_{\mathrm{A}}=.07 \mathrm{x}+3.95$
SNAP: $\mathrm{y}_{\mathrm{s}}=.05 \mathrm{x}+8.95$
c) $.07 x+3.95=.05 x+8.95$

$$
\begin{array}{lll}
-.05 x & -3.95 & -.05 x
\end{array}-3.95
$$

b)

59. a) 1 point
b) 3 pts .
C) 6 pts .
d) $\quad 10$ pts. 60.
61. a) 2 lines $\mathrm{n}=21 \mathrm{pt}$. b) 3 lines $\mathrm{n}=32 \mathrm{pts}$.
c) 4 lines $\mathrm{n}=46$ pts. d) 5 lines $\mathrm{n}=510$ pts.

Exercise Set 7.2

1. Write the equations with the variables on one side and the constants on the other side. If necessary multiply one or both equations by a constant(s) so that when the equations are added one of the variables will be eliminated. Solve for the remaining variable and then substitute that value into one of the original equations to solve for the other variable.
2. Solve one of the equations for one of the variables in terms of the other variable. Then substitute that expression into the other equation and solve for the variable. Substitute the value found into one of the original equations and solve for the other variable.
3. The system is dependent if the result is of the form $\mathrm{a}=\mathrm{a}$.
4. The system is inconsistent if the result is a false statement.
5. Solve one equation for the variable that is most readily manipulated, then substitute into the other equation.
$x+3 y=3$
$\begin{aligned} & -3 y-3 y\end{aligned} \rightarrow \quad 3(3-3 y)+4 y=9$
$x=3-3 y$
6. Manipulate the coefficient of one variable to equate it with the negative coefficient of the same variable in the other equation, then add.
7. $y=x-6$
$y=-x+4$
Substitute $(x-6)$ in place of y in the second equation.
$x-6=-x+4$ (solve for x)
$+\mathrm{x}+\mathrm{x}$
$2 x-6=4$
$\frac{+6+6}{2 \mathrm{x} \quad=10}$
$\frac{2 x}{2}=\frac{10}{2} \quad \mathrm{x}=5$
Now substitute 5 for x in an equation
$y=x-6$
$y=(5)-6=-1$
The solution is $(5,-1)$. Consistent
8. $2 x+4 y=8 \quad \rightarrow \quad x=-2 y+4$
$2 x-y=-2$
Substitute $(-2 y+4)$ in place of x in the second equation.

$$
\begin{aligned}
& 2(-2 y+4)-y=-2 \quad(\text { solve for } x) \\
& -4 y+8-y=-2 \\
& -5 y=-10 \quad y=2
\end{aligned}
$$

Now substitute 2 for y in the $1^{\text {st }}$ equation
$2 x+4(2)=8$
$2 \mathrm{x}=0 \quad \mathrm{x}=0$
The solution is $(0,2)$. Consistent
8. $y=3 x+7$
$y=-2 x-3$
Equate both equations.

$$
\begin{aligned}
& 3 x+7=-2 x-3 \quad(\text { solve for } x) \\
& +2 x-7+2 x-7 \\
& 5 x \quad=-10 \\
& \frac{5 x}{5}=\frac{-10}{5} \quad x=-2
\end{aligned}
$$

Now substitute -2 for x in an equation

$$
\begin{aligned}
& y=3(-2)+7 \\
& y=-6+7=1
\end{aligned}
$$

The solution is $(-2,1)$. Consistent

$$
\begin{aligned}
& \text { 10. } \begin{array}{l}
y+3 x=7 \\
2 x+3 y=14
\end{array} \quad \rightarrow \quad y=-3 x+7 \\
& 2
\end{aligned}
$$

Substitute $(-3 x+7)$ in place of y in the second equation.

$$
\begin{aligned}
& 2 x+3(-3 x+7)=14 \quad(\text { solve for } x) \\
& -7 x+21=14 \\
& -7 x=-7 \quad x=1
\end{aligned}
$$

Now substitute 1 for x in the $1^{\text {st }}$ equation
$y+3(1)=7$
$y=4$
The solution is $(1,4)$. Consistent
11. $\mathrm{y}-\mathrm{x}=4$
$x-y=3$
Solve the first equation for y.
$y-x+x=x+4$
$y=x+4$
Substitute $(x+4)$ for y in the second equation. $x-(x+4)=3 \quad$ (combine like terms)

- 43 False

Since -4 does not equal 3 , there is no solution to this system. The equations are inconsistent.
13. $3 y+2 x=4$
$y=6-x$
Solve the second equation for x .
$3 y=6-x$
$3 y-6=6-6-x$
$3 y-6=-x$
$-3 y+6 \quad=x$
Now substitute $(-3 y+6)$ for x in the $1^{\text {st }}$ eq' n.
$3 y+2(6-3 y)=4 \quad($ solve for $y)$
$3 y+12-6 y=4$
$-3 y=-8($ div. by -3$) \quad y=8 / 3$
Substitute $8 / 3$ for y in the $2^{\text {nd }} \mathrm{eq}$ ' n.
$3(8 / 3) n=6-x$
$8=6-x \quad x=-2$

The solution is $(-2,8 / 3)$. Consistent
15. $y-2 x=3$
$2 y=4 x+6$
Solve the first equation for y.
$y-2 x+2 x=2 x+3$
$y=2 x+3$
Now substitute $(2 x+3)$ for y in the $2^{\text {nd }} e q$ ' n.
$2(2 x+3)=4 x+6$
$4 x+6=4 x+6$
$4 x-4 x+6=4 x-4 x+6$
$6=6$
This statement is true for all values of x .
The system is dependent.
12. $x+y=3$
$y+x=5$
Solve the second equation for y.
$y+x-x=-x+5$
$y=-x+5$
Substitute $(-x+5)$ for y in the first equation.
$x+(-x+5)=3$
53 False
Since 5 does not equal 3, there is no solution to this system. The equations are inconsistent.
14. $x=5 y-12$
$x-y=0$
Substitute $(5 y-12)$ for x in the second equation.
$5 y-12-y=0 \quad$ (solve for y)
$4 y-12=0$
$4 y=12($ div. by 4$) \quad y=3$
Now substitute 3 for y in the second equation.
$\mathrm{x}-3=0$
$\mathrm{x}=3$
The solution is $(3,3)$. Consistent
16. $y=2$
$y+x+3=0$
Substitute 2 in place of y in the second equation.
$2+x+3=0$
$\mathrm{x}+5=0$

$$
x+5-5=0-5 \quad x=-5
$$

The solution is $(-5,2)$. Consistent
17. $x=y+3$
$x=-3$
Substitute - 3 in place of x in the first equation.
$-3=y+3$
$-3-3=y+3-3$
$-6=y$

The solution is $(-3,-6)$. Consistent
19. $y+3 x-4=0$
$2 x-y=7$

Solve the first equation for y.
$y+3 x-4=0$
$y=4-3 x$

Substitute $4-3 x$ for y in the second eq.
$2 x-(4-3 x)=7$ (solve for $x)$
$2 \mathrm{x}-4+3 \mathrm{x}=7$
$5 x=11 \quad x=11 / 5$
Substitute $11 / 5$ for x in the second eq' n.
$2(11 / 5)-\mathrm{y}=7$ (solve for y)
$22 / 5-y=7$
$-y=13 / 5 \quad y=-13 / 5$
The solution is $(11 / 5,-13 / 5)$. Consistent
18. $x+2 y=6$
$y=2 x+3$
Substitute $(2 x+3)$ for y in the first equation.
$x+2(2 x+3)=6$
$x+4 x+6=6$
$5 x+6-6=6-6$
$5 \mathrm{x}=0$
$\frac{5 x}{5}=\frac{0}{5} \quad x=0$
Now substitute 0 for x in the second equation.
$y=2(0)+3=0+3=3$

The solution is $(0,3)$. Consistent
20. $x+4 y=7$
$2 x+3 y=5$
Solve the first equation for x .
$x=7-4 y$
Substitute $(7-4 y)$ for x in the second equation.
$2(7-4 y)+3 y=5 \quad($ solve for $y)$
$14-8 y+3 y=5$
$-5 y=-9 \quad y=9 / 5$
Now substitute (9/5) for y in the eq'n. $\mathrm{x}+4 \mathrm{y}=7$.
$x+4(9 / 5)=7$
$x+36 / 5=35 / 5 \quad x=-1 / 5$
The solution is $(-1 / 5,9 / 5)$. Consistent
22. $x+4 y=9$
$2 x-y-6=0$
Solve the first equation for x.
$x+4 y-4 y=9-4 y$
$x=9-4 y$
Substitute $(9-4 y)$ for x in the second equation.
$2(9-4 y)-y-6=0$
$18-8 y-y-6=0$
$12-9 y=0$
$12-9 y+9 y=0+9 y$
$12=9 y \quad 12 / 9=y$
Substitute $(12 / 9)=(4 / 3)$ for y in the equation.
$\mathrm{x}=9-4 \mathrm{y}$
$x=9-4(4 / 3)=27 / 3-16 / 3=11 / 3$
The solution is $(11 / 3,4 / 3)$. Consistent
23. $y=-2 x+3$
$4 x+2 y=12$
Substitute $-2 x+3$ for y in the $2^{\text {nd }}$ equation.
$4 x+2(-2 x+3)=12$
$4 \mathrm{x}-4 \mathrm{x}+6=12$
$6 \quad 12 \quad$ False
Since 6 does not equal 12, there is no solution.
The equations are inconsistent.
25. $3 x+y=10$
$4 x-y=4$
Add the equations to eliminate y.
$7 \mathrm{x}=14 \quad \mathrm{x}=2$
Substitute 2 for x in either eq'n.
$3(2)+y=10 \quad$ (solve for y)
$6+y=10 \quad y=4$

The solution is $(2,4)$ Consistent
27. $x+y=10$
$x-2 y=-2$
Multiply the $1^{\text {st }}$ eq'n. by 2 , then add the eq'ns.
To eliminate y.
$2 x+2 y=20$
$x-2 y=-2$
$3 x=18 \quad x=6$
Substitute 6 for x in either eq'n.
$(6)+y=10 \quad$ (solve for $y) \quad y=4$

The solution is $(6,4)$ Consistent
24. $2 x+y=12$
$x=(-1 / 2) y+6$
Substitute $(-1 / 2) x+6$ for x in the $1^{\text {st }}$ equation.
$2(-1 / 2 y+6)+y=12$
$-y+12+y=12$
$12=12$
This statement is true for all values of x .
The system is dependent.
26. $x+2 y=9$
$x-2 y=-3$
Add the equations to eliminate y.
$2 \mathrm{x}=6 \quad \mathrm{x}=3$
Substitute 3 for x in either eq'n.
(3) $+2 y=9$
$2 y=6 \quad y=3$

The solution is $(3,3)$ Consistent
28. $3 x+y=10$
$-3 x+2 y=-16$
Add the equations to eliminate x.
$3 y=-6 \quad y=-2$
Substitute -2 for y in either eq' n.
$3 x+(-2)=10 \quad$ (solve for x)
$3 x=12 \quad x=4$

The solution is $(4,-2)$ Consistent
30. $x+y=6$
$-2 x+y=-3$
Multiply the second equation by -1 ,
$x+y=6$
$2 x-y=3$ add the equations to eliminate y
$3 x=9 \quad x=3$
Substitute 3 for x in the first equation.
$3+y=6 \quad y=3$

The solution is (3, 3). Consistent

The solution is $(-2,0)$. Consistent
31. $4 x+3 y=-1$
$2 x-y=-13$
Multiply the second equation by 3 ,
$4 x+3 y=-1$
$6 x-3 y=-39$ add the equations to eliminate y
$10 x=-40 \quad x=-4$
Substitute -4 for x in the $2^{\text {nd }}$ equation.
$2(-4)-y=-13$
$-8-y=-13 \quad y=5$
The solution is $(-4,5)$. Consistent
33. $2 x+y=11$
$x+3 y=18$
Multiply the second equation by -2 ,
$2 x+y=11$
$-2 x-6 y=-36$ add the equations to elim. x
$-5 y=-25 \quad y=5$
Substitute 5 for y in the $2^{\text {nd }}$ equation.
$x+3(5)=18$
$x+15=18 \quad x=3$
The solution is $(3,5)$.
35. $3 x-4 y=11$
$3 x+5 y=-7$
Multiply the first equation by (-1),
$-3 x+4 y=-11$
$3 x+5 y=-7 \quad$ add the equations to elim. x
$9 y=-18 \quad y=-2$
Substitute -2 for y in the first equation.
$3 x-4(-2)=11$
$3 \mathrm{x}=3 \quad \mathrm{x}=1$
The solution is $(1,-2)$. Consistent
37. $4 x+y=6$
$-8 x-2 y=13$
Multiply the first equation by 2 ,
$8 x+2 y=12$
$-8 x-2 y=13$ add the equations to elim. y
025 False
Since this statement is not true for any values of x and y, the equations are inconsistent.
32. $2 x+y=6$
$3 x+y=5$
Multiply the first equation by -1 ,
$-2 x-y=-6$
$3 x+y=5 _$add the equations to eliminate y
$\mathrm{x}=-1$
Substitute -1 in place of x in the first equation.
$2(-1)+y=6$
$-2+y=6 \quad y=8$
The solution is $(-1,8)$. Consistent
34. $5 x-2 y=11$
$-3 x+2 y=1$ add the equations to eliminate y
$2 x=12 \quad x=6$
Substitute 6 for x in the second equation.
$-3(6)+2 y=1$
$-18+2 \mathrm{y}=1$
$2 y=19 \quad y=19 / 2$
The solution is $(6,19 / 2)$.
36. $4 x-2 y=6$
$4 y=8 x-12$ or $8 x-4 y=12$
Multiply the first equation by (-2),
$-8 x+4 y=-12$
$8 x-4 y=-12$ add the equations to elim. y
$0=0$ True
This statement is true for all values of x.
This system is dependent.
38. $2 x+3 y=6$
$5 x-4 y=-8$
Multiply the first equation by 5 , and the second equation by (-2),
$10 x+15 y=30$
$-10 x+8 y=16$ add the equations to elim. x
$23 y=46 \quad y=2$
Substitute 2 for y in the first equation.
$2 x+3(2)=6$
$2 \mathrm{x}=0 \quad \mathrm{x}=0$
The solution is $(0,2)$. Consistent
39. $3 x-4 y=10$
$5 x+3 y=7$
Multiply the first equation by 3 , and the second equation by 4 ,
$9 x-12 y=30$
$20 x+12 y=28$ add the equations to elim. y
$29 \mathrm{x}=58 \quad \mathrm{x}=2$
Substitute 2 for x in the second equation.
$5(2)+3 y=7$
$10+3 y=7$
$3 y=-3 \quad y=-1$
The solution is $(2,-1)$. Consistent
40. $6 x+3 y=7$
$5 x+2 y=9$
Multiply the first equation by 2 , and the
second equation by -3 ,
$12 x+6 y=14$
$-15 x-6 y=-27$ add the equations to elim. y
$-3 x=-13 \quad x=13 / 3$
Substitute $13 / 3$ for x in the 1 st equation.
$6(13 / 3)+3 y=7$
$26+3 y=7$
$3 y=-19 \quad y=-19 / 3$
The solution is $(13 / 3,-19 / 3)$. Consistent
42. Let $\mathrm{C}_{1}=780 \mathrm{n}+1600 \quad \mathrm{C}_{2}=980 \mathrm{n}$
a) $980 \mathrm{n}=780 \mathrm{n}+1600$

$$
-780 n \quad-780 n
$$

$$
200 \mathrm{n}=1600 \quad \mathrm{n}=8 \text { months }
$$

b) $\mathrm{C}_{1}=780(60)+1600=48400$
$\mathrm{C}_{2}=980(60)=58800$
The new refinanced mortgage plan would cost less.
44. Let $x=$ no. of 2-pointers $y=$ no. of 3-pointers
$x+y=45 \quad y=-x+45$
$2 x+3 y=101$
Substitute $-x+45$ for y in $2^{\text {nd }}$ eq' n.
$2 x+3(-x+45)=101$
$2 \mathrm{x}-3 \mathrm{x}+135=101$
$-x=-34 \quad x=34$
Substitute 34 for x in $1^{\text {st }} \mathrm{eq}$ 'n.
$34+y=45 \quad y=-34+45=11$
34 two pointers and 11 three pointers
46. Let $\mathrm{b}=$ gallons of milk with butter fat $\mathrm{s}=$ gallons of skim milk
$b+s=100$
$0.05 b+0.0 s=100(0.035)$
$0.05 b=3.5$
$\mathrm{b}=3.5 / 0.05=70$
$\mathrm{s}=100-\mathrm{b}=100-70=30$
Thus, Gina should mix 70 gallons of milk with 5% butter fat with 30 gallons of skim milk.
47. Let $\mathrm{c}=$ monthly cost

$$
x=\text { number of copies }
$$

Eco. Sales: c $=18+0.02 x$
Office Sup.: c $=24+0.015 \mathrm{x}$ set eq'ns.
equal
$18+0.02 x=24+0.015 x$
$0.005 x=6 \quad x=1200$

1200 copies per month
49. Let $x=$ no. of pounds of nuts $y=$ no. of pounds of pretzels
$x+y=20 \quad y=-x+20$
$3 x+1 y=30$
Substitute $(20-x)$ for y in the 2 nd equation.
$3 x+(20-x)=30$
$3 x+20-x=30$
$2 x=10 \quad x=5 \quad$ Solve for y
$y=20-5=15$

Mix 5 lbs. of nuts with 15 lbs . of pretzels
51. Let $x=$ no. of students
$y=$ no. of adults
$x+y=250 \quad x=-y+250$
$2 x+5 y=950$
Substitute $(-y+250)$ for x in the 2 nd equation.
$2(250-y)+5 y=950$
$500-2 y+5 y=950$
$3 y=450 \quad y=150$
Substitute 150 for y in the $1^{\text {st }}$ eq' n.
$x+(150)=250 \quad x=100$

100 students and 150 adults
48. $\mathrm{CHP}=.45 \mathrm{x}+30$

VACP $=.20 \mathrm{x}+35$
a) $.45 \mathrm{x}+30=.20 \mathrm{x}+35$
$-.20 \mathrm{x}-30-.20 \mathrm{x}-30$
$.25 \mathrm{x} \quad=\quad 5$
$\frac{.25 \mathrm{x}}{.25}=\frac{5.00}{.25} \quad \mathrm{x}=20$ minutes $/$ month
b) CHP: . $45(50)+30=22.50+30=52.50$

VACP: . $20(50)+35=10+35=45.00$

Verizon America offers the cheaper plan.
50. Let $\mathrm{a}=$ number of grams of Mix A $b=$ number of grams of Mix B

Protein: $0.10 a+0.20 b=20$
Carbohydrates: $0.06 \mathrm{a}+0.02 \mathrm{~b}=6$
Multiply the $2^{\text {nd }}$ equation by (-10),
$-0.60 a-0.20 b=-60$
$0.10 a+0.20 b=20$ add to eliminate b
$-0.50 a=-40 \quad a=80$
Substitute 80 for a in the first equation.
$0.10(80)+0.20 b=20$
$8+0.20 b=20$
$0.20 \mathrm{~b}=12 \quad \mathrm{~b}=60$
$\mathrm{a}=80$ grams of Mix A
$\mathrm{b}=60$ grams of Mix B
52. Let $\mathrm{c}=$ total cost

$$
\mathrm{r}=\text { no. of rounds of golf. }
$$

Oakwood: $\mathrm{O}=3000+18 \mathrm{r}$
Pinecrest: $P=2500+20 r$
a) $3000+18 \mathrm{r}=2500+20 \mathrm{r}$

$$
500=2 r \quad 250=r
$$

A golfer must play 250 rounds for the cost to be the same at both clubs.
b) Oakwood: $\mathrm{O}=3000+18(30)=\$ 3540$

Pinecrest: $\mathrm{P}=2500+20(30)=\$ 3100$

Ms. Sestini can play 30 rounds cheaper at Pinecrest.
53. $y_{1}=-.58 x+31$
$y_{5}=.32 x+7$
$\begin{array}{r}-.58 x+31=.32 x+7 \\ .58 x-7 \quad .58 x-7 \\ \hline 24=.90 x\end{array}$
$\frac{.90 x}{.90}=\frac{24}{.90} \quad \mathrm{x}=26.666 \ldots \quad 27$ years
$1981+27=2008 \quad$ During 2007
55. $(1 / \mathrm{u})+(2 / \mathrm{v})=8$
$(3 / u)-(1 / v)=3$
Substitute x for $\frac{1}{u}$ and y for $\frac{1}{v}$.
(1) $x+2 y=8$
(2) $3 x-y=3$

Multiply eq' n. (2) by 2 ,
$x+2 y=8$
$6 x-2 y=6$ add to eliminate y
$7 \mathrm{x}=14 \quad \mathrm{x}=2$, thus $\mathrm{u}=1 / 2$
Substitute 2 for x in eq. (1).
(2) $+2 y=8$
$2 y=6 \quad y=3$, thus $v=1 / 3$

Answer: ($1 / 2,1 / 3$)
58. $\begin{aligned} y & =2 x-7 \\ y & =2 x+5\end{aligned}$

The system of equations has no solution because their slopes are equal $(\mathrm{m}=2)$, which means that they never intersect.
56. Determine the equations of two lines that pass through $(6,5)$ and another point.
Example: $\mathrm{y}=5$
$y=(5 / 6) x$
57. a) $(2)+(1)+(4)=7$
$(2)-(1)+2(4)=9$
$7=7$
$9=9$
$-(2)+2(1)+(4)=4$
$4=4$
$(2,1,4)$ is a solution.
b) Add eq'ns. 1 and 2 to yield eq'n. 4

Multiply eq'n. 2 by 2 , then add eq'ns. 2 and 3 to yield eq'n. 5
Combine eq'ns. 4 and 5 to find one variable.
Substitute back into various equations to find the other 2 variables.
59. $y=3 x+3$
$(1 / 3) y=x+1$
If we multiply the $2^{\text {nd }} e q$ ' n. by 3 , we get the eq' n. $\mathrm{y}=3 \mathrm{x}+1$, the same as eq'n. \#1.
2 lines that line on top of on another have an infinite number of solutions.
60. a) $(0,0)$
b) $(1,0)$
c) $(0,1)$
d) $(1,1)$

Exercise Set 7.3

1. A matrix is a rectangular array of elements.
2. The dimensions of a matrix are determined by the number of rows and columns.
3. A square matrix contains the same number of rows as columns.
4. A 4×3 matrix has 4 rows.
5. A 3×2 matrix has 2 columns.
6. They must have the same dimensions (the number of rows must be the same and the number of columns must be the same).
7. a) Add numbers in the same positions to produce an entry in that position.
b) $\left[\begin{array}{ccc}1 & 4 & -1 \\ 3 & 2 & 5\end{array}\right]+\left[\begin{array}{ccc}3 & 5 & -6 \\ -1 & 2 & 4\end{array}\right]=\left[\begin{array}{ccc}1+3 & 4+5 & -1+(-6) \\ 3+(-1) & 2+2 & 5+4\end{array}\right]=\left[\begin{array}{ccc}4 & 9 & -7 \\ 2 & 4 & 9\end{array}\right]$
8. a) Subtract the entry in each position in the 2 nd matrix from the $\#$ in the same position in the $1^{\text {st }}$ matrix.
b) $\left[\begin{array}{ccc}3 & -5 & 6 \\ -2 & 3 & 4\end{array}\right]-\left[\begin{array}{ccc}8 & 4 & 2 \\ 0 & -2 & 4\end{array}\right]=\left[\begin{array}{ccc}3-8 & -5-4 & 6-2 \\ -2-0 & 3-(-2) & 4-4\end{array}\right]=\left[\begin{array}{ccc}-5 & -9 & 4 \\ -2 & 5 & 0\end{array}\right]$
9. a) The number of rows of the first matrix must be the same as the number of columns of the second matrix.
b) The dimensions of the resulting matrix will have the same number of rows as the first matrix and the same number of columns as the second matrix. The product of a 2×2 with a 2×3 matrix will yield a 2×3 matrix.
10. a) The numbers in the first row of the first matrix are multiplied by the numbers in the first column of the second matrix and the results are added together to produce the first entry of the result.
Continue this procedure with each row of the first matrix and each column of the second matrix to obtain all the entries in the result matrix.
b) $\left[\begin{array}{cc}6 & -1 \\ 5 & 0\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 1 & -4\end{array}\right]=\left[\begin{array}{cc}6(2)+(-1)(1) & 6(-3)+(-1)(-4) \\ 5(2)+0(1) & 5(-3)+0(-4)\end{array}\right]=\left[\begin{array}{cc}11 & -14 \\ 10 & -15\end{array}\right]$
11. a) Identity matrix for $2 \times 2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad$ b) Identity matrix for $3 \times 3\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
12. $\left[\begin{array}{llllll}E & 110 & 232 & 103 & 190 & 212 \\ W & 107 & 250 & 135 & 203 & 189 \\ C & 115 & 218 & 122 & 192 & 210\end{array}\right]$
13. $\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}-5 & -1 \\ 7 & 2\end{array}\right] \quad \mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}1+(-5) & 3+(-1) \\ 5+7 & 7+2\end{array}\right]=\left[\begin{array}{cc}-4 & 2 \\ 12 & 9\end{array}\right]$
14. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{lll}2 & 3 & -7 \\ 4 & 0 & -1\end{array}\right]+\left[\begin{array}{ccc}-4 & -3 & 8 \\ 6 & 5 & 0\end{array}\right]=\left[\begin{array}{ccc}2+(-4) & 3+(-3) & -7+8 \\ 4+6 & 0+5 & -1+0\end{array}\right]=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 10 & 5 & -1\end{array}\right]$
15. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}3 & 1 \\ 0 & 4 \\ 6 & 0\end{array}\right]+\left[\begin{array}{cc}-3 & 3 \\ 4 & 0 \\ -1 & -1\end{array}\right]=\left[\begin{array}{cc}3+(-3) & 1+3 \\ 0+4 & 4+0 \\ 6+(-1) & 0+(-1)\end{array}\right]=\left[\begin{array}{cc}0 & 4 \\ 4 & 4 \\ 5 & -1\end{array}\right]$
16. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ccc}2 & 6 & 3 \\ -1 & -6 & 4 \\ 3 & 0 & 5\end{array}\right]+\left[\begin{array}{ccc}-1 & 3 & 1 \\ 7 & -2 & 1 \\ 2 & 3 & 8\end{array}\right]=\left[\begin{array}{ccc}2+(-1) & 6+3 & 3+1 \\ -1+7 & -6+(-2) & 4+1 \\ 3+2 & 0+3 & 5+8\end{array}\right]=\left[\begin{array}{ccc}1 & 9 & 4 \\ 6 & -8 & 5 \\ 5 & 3 & 13\end{array}\right]$
17. $\mathrm{A}-\mathrm{B}=\left[\begin{array}{cc}4 & -2 \\ -3 & 5\end{array}\right]-\left[\begin{array}{cc}-2 & 5 \\ 9 & 1\end{array}\right]=\left[\begin{array}{cc}4-(-2) & -2-(-5) \\ -3-(9) & 5-1\end{array}\right]=\left[\begin{array}{cc}6 & -7 \\ -12 & 4\end{array}\right]$
18. $\mathrm{A}-\mathrm{B}=\left[\begin{array}{cc}8 & 1 \\ 0 & 2 \\ -3 & -9\end{array}\right]-\left[\begin{array}{cc}3 & 3 \\ -4 & 5 \\ -2 & 6\end{array}\right]=\left[\begin{array}{cc}8-3 & 1-3 \\ 0-(-4) & 2-5 \\ -3-(-2) & -9-(6)\end{array}\right]=\left[\begin{array}{cc}5 & -2 \\ 4 & -3 \\ -1 & -15\end{array}\right]$
19. $\mathrm{A}-\mathrm{B}=\left[\begin{array}{cc}-4 & 3 \\ 6 & 2 \\ 1 & -5\end{array}\right]-\left[\begin{array}{cc}-6 & -8 \\ -10 & -11 \\ 3 & -7\end{array}\right]=\left[\begin{array}{cc}-4+6 & 3+8 \\ 6+10 & 2+11 \\ 1-3 & -5+7\end{array}\right]=\left[\begin{array}{cc}2 & 11 \\ 16 & 13 \\ -2 & 2\end{array}\right]$
20. $\mathrm{A}-\mathrm{B}=\left[\begin{array}{ccc}5 & 3 & -1 \\ 7 & 4 & 2 \\ 6 & -1 & -5\end{array}\right]-\left[\begin{array}{ccc}4 & 3 & 6 \\ -2 & -4 & 9 \\ 0 & -2 & 4\end{array}\right]=\left[\begin{array}{ccc}5-4 & 3-3 & -1-6 \\ 7+2 & 4+4 & 2-9 \\ 6-0 & -1+2 & -5-4\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & -7 \\ 9 & 8 & -7 \\ 6 & 1 & -9\end{array}\right]$
21. $2 \mathrm{~B}=2\left[\begin{array}{ll}3 & 2 \\ 5 & 0\end{array}\right]=\left[\begin{array}{ll}2(3) & 2(2) \\ 2(5) & 2(0)\end{array}\right]=\left[\begin{array}{cc}6 & 4 \\ 10 & 0\end{array}\right] \quad$ 22. $3 \mathrm{~B}=-3\left[\begin{array}{ll}3 & 2 \\ 5 & 0\end{array}\right]=\left[\begin{array}{cc}-3(3) & -3(2) \\ -3(5) & -3(0)\end{array}\right]=\left[\begin{array}{cc}-9 & -6 \\ -15 & 0\end{array}\right]$
22. $2 \mathrm{~B}+3 \mathrm{C}=2\left[\begin{array}{ll}3 & 2 \\ 5 & 0\end{array}\right]+3\left[\begin{array}{cc}-2 & 3 \\ 4 & 0\end{array}\right]=\left[\begin{array}{cc}6 & 4 \\ 10 & 0\end{array}\right]+\left[\begin{array}{cc}-6 & 9 \\ 12 & 0\end{array}\right]=\left[\begin{array}{cc}6-6 & 4+9 \\ 10+12 & 0+0\end{array}\right]=\left[\begin{array}{cc}0 & 13 \\ 22 & 0\end{array}\right]$
23. $2 \mathrm{~B}+3 \mathrm{~A}=2\left[\begin{array}{ll}3 & 2 \\ 5 & 0\end{array}\right]+3\left[\begin{array}{ll}1 & 2 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}6 & 4 \\ 10 & 0\end{array}\right]+\left[\begin{array}{cc}3 & 6 \\ 0 & 15\end{array}\right]=\left[\begin{array}{cc}6+3 & 4+6 \\ 10+0 & 0+15\end{array}\right]=\left[\begin{array}{cc}9 & 10 \\ 10 & 15\end{array}\right]$
24. $3 \mathrm{~B}-2 \mathrm{C}=3\left[\begin{array}{ll}3 & 2 \\ 5 & 0\end{array}\right]-2\left[\begin{array}{cc}-2 & 3 \\ 4 & 0\end{array}\right]=\left[\begin{array}{cc}9 & 6 \\ 15 & 0\end{array}\right]-\left[\begin{array}{cc}-4 & 6 \\ 8 & 0\end{array}\right]=\left[\begin{array}{cc}9+4 & 6-6 \\ 15-8 & 0-0\end{array}\right]=\left[\begin{array}{cc}13 & 0 \\ 7 & 0\end{array}\right]$
25. $4 \mathrm{C}-2 \mathrm{~A}=4\left[\begin{array}{cc}-2 & 3 \\ 4 & 0\end{array}\right]-2\left[\begin{array}{ll}1 & 2 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}-8 & 12 \\ 16 & 0\end{array}\right]-\left[\begin{array}{cc}2 & 4 \\ 0 & 10\end{array}\right]=\left[\begin{array}{cc}-8-(2) & 12-(4) \\ 16-(0) & 0-(10)\end{array}\right]=\left[\begin{array}{cc}-10 & 8 \\ 16 & -10\end{array}\right]$
26. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}2 & 6 \\ 8 & 4\end{array}\right]=\left[\begin{array}{cc}2(2)+0(8) & 2(6)+0(4) \\ 3(2)+1(8) & 3(6)+1(4)\end{array}\right]=\left[\begin{array}{cc}4 & 12 \\ 14 & 22\end{array}\right]$
27. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{cc}1 & -1 \\ 2 & 6\end{array}\right]\left[\begin{array}{cc}4 & -2 \\ -3 & -2\end{array}\right]=\left[\begin{array}{cc}1(4)+(-1)(-3) & 1(-2)+(-1)(-2) \\ 2(4)+6(-3) & 2(-2)+6(-2)\end{array}\right]=\left[\begin{array}{cc}7 & 0 \\ -10 & -16\end{array}\right]$
28. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{ccc}2 & 3 & -1 \\ 0 & 4 & 6\end{array}\right]\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]=\left[\begin{array}{c}2(2)+3(4)-1(1) \\ 0(2)+4(4)+6(1)\end{array}\right]=\left[\begin{array}{l}15 \\ 22\end{array}\right]$
29. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1(1)+1(-1) & 1(-1)+1(2) \\ 1(1)+1(-1) & 1(-1)+1(2)\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
30. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{ccc}4 & 7 & 6 \\ -2 & 3 & 1 \\ 5 & 1 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}4+0+0 & 0+7+0 & 0+0+6 \\ -2+0+0 & 0+3+0 & 0+0+1 \\ 5+0+0 & 0+1+0 & 0+0+2\end{array}\right]=\left[\begin{array}{ccc}4 & 7 & 6 \\ -2 & 3 & 1 \\ 5 & 1 & 2\end{array}\right]$
31. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{cc}-3 & 1 \\ 2 & 7\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 1 & 6\end{array}\right]=\left[\begin{array}{cc}-3(4)+1(1) & -3(0)+1(6) \\ 2(4)+7(1) & 2(0)+7(6)\end{array}\right]=\left[\begin{array}{cc}-11 & 6 \\ 15 & 42\end{array}\right]$
32. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ccc}1 & 3 & -2 \\ 4 & 0 & 3\end{array}\right]+\left[\begin{array}{ccc}5 & -1 & 3 \\ 2 & -2 & 1\end{array}\right]=\left[\begin{array}{ccc}1+5 & 3+(-1) & -2+3 \\ 4+2 & 0+(-2) & 3+1\end{array}\right]=\left[\begin{array}{ccc}6 & 2 & 1 \\ 6 & -2 & 4\end{array}\right]$
$A \times B=\left[\begin{array}{ccc}1 & 3 & -2 \\ 4 & 0 & 3\end{array}\right]\left[\begin{array}{lll}5 & -1 & 3 \\ 2 & -2 & 1\end{array}\right]=$ Operation cannot be performed because $\#$ of columns $\neq \#$ of rows
33. $\mathrm{A}=\left[\begin{array}{ccc}6 & 4 & -1 \\ 2 & 3 & 4\end{array}\right] \quad \mathrm{A}+\mathrm{B}$ cannot be performed because the \# of columns \# of columns $B=\left[\begin{array}{rr}1 & 0 \\ 4 & -1\end{array}\right] \quad$ AxB cannot be performed because the \# of columns \quad \# of rows
34. Matrices A and B cannot be added because they do not have the same dimensions.
$A \times B=\left[\begin{array}{lll}4 & 5 & 3 \\ 6 & 2 & 1\end{array}\right] \times\left[\begin{array}{cc}3 & 2 \\ 4 & 6 \\ -2 & 0\end{array}\right]=\left[\begin{array}{ll}4(3)+5(4)+3(-2) & 4(2)+5(6)+3(0) \\ 6(3)+2(4)+1(-2) & 6(2)+2(6)+1(0)\end{array}\right]=\left[\begin{array}{ll}26 & 38 \\ 24 & 24\end{array}\right]$
35. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]=\left[\begin{array}{ll}1+1 & 2+2 \\ 3+3 & 4+4 \\ 5+5 & 6+6\end{array}\right]=\left[\begin{array}{cc}2 & 4 \\ 6 & 8 \\ 10 & 12\end{array}\right]$
A and B cannot be multiplied because the $\#$ of columns in A is not equal to the number of rows in B.
36. A and B cannot be added because they do not have the same dimensions.
$A \times B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}-3 \\ 2\end{array}\right]=\left[\begin{array}{l}1(-3)+2(2) \\ 3(-3)+4(2)\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
37. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}5 & -1 \\ 6 & -2\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}5+1 & -1+2 \\ 6+3 & -2+4\end{array}\right]=\left[\begin{array}{ll}6 & 1 \\ 9 & 2\end{array}\right]$
$A \times B=\left[\begin{array}{ll}5 & -1 \\ 6 & -2\end{array}\right] \times\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}5(1)+(-1)(3) & 5(2)+(-1)(4) \\ 6(1)+(-2)(3) & 6(2)+(-2)(4)\end{array}\right]=\left[\begin{array}{ll}2 & 6 \\ 0 & 4\end{array}\right]$
38. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ 2 & -3\end{array}\right]+\left[\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right]=\left[\begin{array}{cc}1+4 & 2+5 \\ 2+6 & -3+7\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 8 & 4\end{array}\right]$ $\mathrm{B}+\mathrm{A}=\left[\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right]+\left[\begin{array}{cc}1 & 2 \\ 2 & -3\end{array}\right]=\left[\begin{array}{cc}4+1 & 5+2 \\ 6+2 & 7+(-3)\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 8 & 4\end{array}\right] \quad$ Thus A + B = B + A.
39. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}9 & 4 \\ 1 & 7\end{array}\right]+\left[\begin{array}{cc}0 & 6 \\ -1 & 5\end{array}\right]=\left[\begin{array}{cc}9+0 & 4+6 \\ 1+(-1) & 7+5\end{array}\right]=\left[\begin{array}{ll}9 & 10 \\ 0 & 12\end{array}\right]$
$B+A=\left[\begin{array}{cc}0 & 6 \\ -1 & 5\end{array}\right]+\left[\begin{array}{ll}9 & 4 \\ 1 & 7\end{array}\right]=\left[\begin{array}{cc}0+9 & 6+4 \\ -1+1 & 5+7\end{array}\right]=\left[\begin{array}{ll}9 & 10 \\ 0 & 12\end{array}\right] \quad$ Thus A + B = B + A.
40. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}0 & -1 \\ 3 & -4\end{array}\right]+\left[\begin{array}{cc}8 & 1 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}0+8 & -1+1 \\ 3+3 & -4+(-4)\end{array}\right]=\left[\begin{array}{cc}8 & 0 \\ 6 & -8\end{array}\right]$
$B+A=\left[\begin{array}{cc}8 & 1 \\ 3 & -4\end{array}\right]+\left[\begin{array}{ll}0 & -1 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}8+0 & 1+(-1) \\ 3+3 & -4+(-4)\end{array}\right]=\left[\begin{array}{cc}8 & 0 \\ 6 & -8\end{array}\right] \quad$ Thus A + B = B + A.
41. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]+\left[\begin{array}{ll}5 & 6 \\ 6 & 5\end{array}\right]=\left[\begin{array}{ll}1+5 & 2+6 \\ 3+6 & 2+5\end{array}\right]=\left[\begin{array}{ll}6 & 8 \\ 9 & 7\end{array}\right]$ $B+A=\left[\begin{array}{ll}5 & 6 \\ 6 & 5\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}5+1 & 6+2 \\ 6+3 & 5+2\end{array}\right]=\left[\begin{array}{ll}6 & 8 \\ 9 & 7\end{array}\right] \quad$ Thus $A+B=B+A$.
42. $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\left(\left[\begin{array}{ll}5 & 2 \\ 3 & 6\end{array}\right]+\left[\begin{array}{cc}3 & 4 \\ -2 & 7\end{array}\right]\right)+\left[\begin{array}{cc}-1 & 4 \\ 5 & 0\end{array}\right]=\left[\begin{array}{cc}8 & 6 \\ 1 & 13\end{array}\right]+\left[\begin{array}{cc}-1 & 4 \\ 5 & 0\end{array}\right]=\left[\begin{array}{ll}7 & 10 \\ 6 & 13\end{array}\right]$ $A+(B+C)=\left[\begin{array}{ll}5 & 2 \\ 3 & 6\end{array}\right]+\left(\left[\begin{array}{cc}3 & 4 \\ -2 & 7\end{array}\right]+\left[\begin{array}{cc}-1 & 4 \\ 5 & 0\end{array}\right]\right)=\left[\begin{array}{ll}5 & 2 \\ 3 & 6\end{array}\right]+\left[\begin{array}{ll}2 & 8 \\ 3 & 7\end{array}\right]=\left[\begin{array}{ll}7 & 10 \\ 6 & 13\end{array}\right]$
Thus, $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$.
43. $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\left(\left[\begin{array}{ll}4 & 1 \\ 6 & 7\end{array}\right]+\left[\begin{array}{cc}-9 & 1 \\ -7 & 2\end{array}\right]\right)+\left[\begin{array}{cc}-6 & -3 \\ 3 & 6\end{array}\right]=\left[\begin{array}{cc}-5 & 2 \\ -1 & 9\end{array}\right]+\left[\begin{array}{cc}-6 & -3 \\ 3 & 6\end{array}\right]=\left[\begin{array}{cc}-11 & -1 \\ 2 & 15\end{array}\right]$
$A+(B+C)=\left[\begin{array}{ll}4 & 1 \\ 6 & 7\end{array}\right]+\left(\left[\begin{array}{cc}-9 & 1 \\ -7 & 2\end{array}\right]+\left[\begin{array}{cc}-6 & -3 \\ 3 & 6\end{array}\right]\right)=\left[\begin{array}{ll}4 & 1 \\ 6 & 7\end{array}\right]+\left[\begin{array}{cc}-15 & -2 \\ -4 & 8\end{array}\right]=\left[\begin{array}{cc}-11 & -1 \\ 2 & 15\end{array}\right]$
Thus, $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$.
44. $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\left(\left[\begin{array}{cc}7 & 4 \\ 9 & -36\end{array}\right]+\left[\begin{array}{cc}5 & 6 \\ -1 & -4\end{array}\right]\right)+\left[\begin{array}{cc}-7 & -5 \\ -1 & 3\end{array}\right]=\left[\begin{array}{cc}12 & 10 \\ 8 & -40\end{array}\right]+\left[\begin{array}{cc}-7 & -5 \\ -1 & 3\end{array}\right]=\left[\begin{array}{cc}5 & 5 \\ 7 & -37\end{array}\right]$
$A+(B+C)=\left[\begin{array}{cc}7 & 4 \\ 9 & -36\end{array}\right]+\left(\left[\begin{array}{cc}5 & 6 \\ -1 & -4\end{array}\right]+\left[\begin{array}{cc}-7 & -5 \\ -1 & 3\end{array}\right]\right)=\left[\begin{array}{cc}7 & 4 \\ 9 & -36\end{array}\right]+\left[\begin{array}{cc}-2 & 1 \\ -2 & -1\end{array}\right]=\left[\begin{array}{cc}5 & 5 \\ 7 & -37\end{array}\right]$
Thus, $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$.
45. $\mathrm{A}=\left[\begin{array}{l}1 \\ 1\end{array}\right] . . \mathrm{B}=\left[\begin{array}{l}2 \\ 0\end{array}\right] \quad . . \mathrm{C}=\left[\begin{array}{l}3 \\ 3\end{array}\right] \quad$ (Your choices may be different)
$(\mathrm{A}+\mathrm{B})+\mathrm{C}=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{l}2 \\ 0\end{array}\right]\right)+\left[\begin{array}{l}3 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]+\left[\begin{array}{l}3 \\ 3\end{array}\right]=\left[\begin{array}{l}6 \\ 4\end{array}\right]$
$\mathrm{A}+(\mathrm{B}+\mathrm{C})=\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left(\left[\begin{array}{l}2 \\ 0\end{array}\right]+\left[\begin{array}{l}3 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{l}5 \\ 3\end{array}\right]=\left[\begin{array}{l}6 \\ 4\end{array}\right] \quad$ Thus, $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$.
46. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]\left[\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}1(-1)+2(2) & 1(-3)+2(4) \\ 4(-1)+(-3)(2) & 4(-3)+(-3)(4)\end{array}\right]=\left[\begin{array}{cc}3 & 5 \\ -10 & -24\end{array}\right]$
$\mathrm{B} \times \mathrm{A}=\left[\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]=\left[\begin{array}{cc}-1(1)+(-3) 4 & -1(2)+(-3)(-3) \\ 2(1)+4(4) & 2(2)+4(-3)\end{array}\right]=\left[\begin{array}{cc}-13 & 7 \\ 180 & -8\end{array}\right] \quad$ Thus, A x B $\neq \mathrm{B} \times \mathrm{A}$.
47. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{ll}3 & 1 \\ 6 & 6\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}3(1)+1(0) & 3(0)+1(1) \\ 6(1)+6(0) & 6(0)+6(1)\end{array}\right]=\left[\begin{array}{ll}3 & 1 \\ 6 & 6\end{array}\right]$
$B \times A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 6 & 6\end{array}\right]=\left[\begin{array}{ll}1(3)+0(6) & 0(3)+1(1) \\ 1(6)+0(6) & 0(6)+1(6)\end{array}\right]=\left[\begin{array}{ll}3 & 1 \\ 6 & 6\end{array}\right] \quad$ Thus, $A \times B \neq$ B x A.
48. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{cc}4 & 2 \\ 1 & -3\end{array}\right]\left[\begin{array}{cc}2 & 4 \\ -3 & 1\end{array}\right]=\left[\begin{array}{cc}4(2)+2(-3) & 4(4)+2(1) \\ 1(2)+(-3)(-3) & 1(4)+(-3)(1)\end{array}\right]=\left[\begin{array}{cc}2 & 18 \\ 11 & 1\end{array}\right]$

B $\times \mathrm{A}=\left[\begin{array}{cc}2 & 4 \\ -3 & 1\end{array}\right] \times\left[\begin{array}{cc}4 & 2 \\ 1 & -3\end{array}\right]=\left[\begin{array}{cc}2(4)+4(1) & 2(2)+4(-3) \\ -3(4)+1(1) & -3(2)+1(-3)\end{array}\right]=\left[\begin{array}{cc}12 & -8 \\ -11 & -9\end{array}\right] \quad$ Thus, A x B \neq B x A.
50. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{cc}-3 & 2 \\ 6 & -5\end{array}\right] \times\left[\begin{array}{cc}-5 / 3 & -2 / 3 \\ -2 & -1\end{array}\right]=\left[\begin{array}{cc}-3(-5 / 3)+2(-2) & -3(-2 / 3)+2(-1) \\ 6(-5 / 3)-5(-2) & 6(-2 / 3)-5(-1)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{B} \times \mathrm{A}=\left[\begin{array}{cc}-5 / 3 & -2 / 3 \\ -2 & -1\end{array}\right] \times\left[\begin{array}{cc}-3 & 2 \\ 6 & -5\end{array}\right]=\left[\begin{array}{cc}(-5 / 3)(-3)-(2 / 3)(6) & -(5 / 3)(2)-(2 / 3)(5) \\ -2(-3)-1(6) & -2(2)-1(-5)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Thus, $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$
51. Since $\mathrm{B}=\mathrm{I}$, (the identity matrix), and $\mathrm{A} \times \mathrm{I}=\mathrm{I} \times \mathrm{A}=\mathrm{A}$, we can conclude that $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$.
52. $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right] . \quad \mathrm{B}=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right] \quad$ (Your choices may be different) $A \times B=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1(2)+1(2) & 1(3)+1(3) \\ 0(2)+2(2) & 0(3)+2(3)\end{array}\right]=\left[\begin{array}{ll}4 & 6 \\ 4 & 6\end{array}\right]$
$\mathrm{B} \times \mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right] \times\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}2(1)+3(0) & 2(1)+3(2) \\ 2(1)+3(0) & 2(1)+3(2)\end{array}\right]=\left[\begin{array}{ll}2 & 5 \\ 2 & 5\end{array}\right] \quad$ Thus, A x B \neq B x A.
53. $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\left(\left[\begin{array}{ll}1 & 3 \\ 4 & 0\end{array}\right]\left[\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right]\right)\left[\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right]=\left[\begin{array}{ll}13 & 5 \\ 16 & 8\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right]=\left[\begin{array}{ll}41 & 13 \\ 56 & 16\end{array}\right]$ $A \times(B \times C)=\left[\begin{array}{ll}1 & 3 \\ 4 & 0\end{array}\right]\left(\left[\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right]\right)=\left[\begin{array}{ll}1 & 3 \\ 4 & 0\end{array}\right]\left[\begin{array}{cc}14 & 4 \\ 9 & 3\end{array}\right]=\left[\begin{array}{ll}41 & 13 \\ 56 & 16\end{array}\right] \quad$ Thus, $(A \times B) \times C=A \times(B \times C)$.
54. $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\left(\left[\begin{array}{cc}-2 & 3 \\ 0 & 4\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 3 & 5\end{array}\right]\right)\left[\begin{array}{cc}3 & 4 \\ -2 & 5\end{array}\right]=\left[\begin{array}{cc}1 & 15 \\ 12 & 20\end{array}\right]\left[\begin{array}{cc}3 & 4 \\ -2 & 5\end{array}\right]=\left[\begin{array}{cc}-27 & 79 \\ -4 & 148\end{array}\right]$
$A \times(B \times C)=\left[\begin{array}{cc}-2 & 3 \\ 0 & 4\end{array}\right]\left(\left[\begin{array}{ll}4 & 0 \\ 3 & 5\end{array}\right]\left[\begin{array}{cc}3 & 4 \\ -2 & 5\end{array}\right]\right)=\left[\begin{array}{cc}-2 & 3 \\ 0 & 4\end{array}\right]\left[\begin{array}{cc}12 & 16 \\ -1 & 37\end{array}\right]=\left[\begin{array}{cc}-27 & 79 \\ -4 & 148\end{array}\right]$
Thus, $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$.
55. $(\mathrm{A} x \mathrm{~B}) \times \mathrm{C}=\left(\left[\begin{array}{cc}4 & 3 \\ -6 & 2\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right]\right)\left[\begin{array}{cc}4 & 3 \\ 0 & -2\end{array}\right]=\left[\begin{array}{cc}4 & 11 \\ -6 & -10\end{array}\right]\left[\begin{array}{cc}4 & 3 \\ 0 & -2\end{array}\right]=\left[\begin{array}{cc}16 & -10 \\ -24 & 2\end{array}\right]$ $A \times(B \times C)=\left[\begin{array}{cc}4 & 3 \\ -6 & 2\end{array}\right]\left(\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}4 & 3 \\ 0 & -2\end{array}\right]\right)=\left[\begin{array}{cc}4 & 3 \\ -6 & 2\end{array}\right]\left[\begin{array}{cc}4 & -1 \\ 0 & -2\end{array}\right]=\left[\begin{array}{cc}16 & -10 \\ -24 & 2\end{array}\right]$
Thus, $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$.
56. $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=(\mathrm{A} \times \mathrm{I}) \times \mathrm{C}=\mathrm{A} \times \mathrm{C}$, and $\mathrm{A} \times(\mathrm{B} \times \mathrm{C})=\mathrm{A} \times(\mathrm{I} \times \mathrm{C})=\mathrm{A} \times \mathrm{C}$, thus $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$.
57. (A x B) $\times \mathrm{C}=\left(\left[\begin{array}{cc}3 & 4 \\ -1 & -2\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)\left[\begin{array}{ll}2 & 0 \\ 3 & 0\end{array}\right]=\left[\begin{array}{cc}4 & 3 \\ -2 & -1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 3 & 0\end{array}\right]=\left[\begin{array}{cc}17 & 0 \\ -7 & 0\end{array}\right]$
$A \times(B \times C)=\left[\begin{array}{cc}3 & 4 \\ -1 & -2\end{array}\right]\left(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 3 & 0\end{array}\right]\right)=\left[\begin{array}{cc}3 & 4 \\ -1 & -2\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}17 & 0 \\ -7 & 0\end{array}\right]$
Thus, $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$.
58. $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\mathrm{A} \times(\mathrm{B} \times \mathrm{C})$ for any choices of A, B, and C that can be multiplied.

60. a) Let $\mathrm{C}=\left[\begin{array}{llll}40 & 30 & 12 & 20\end{array}\right]$.
b) $\mathrm{C} \times \mathrm{A}=\left[\begin{array}{llll}40 & 30 & 12 & 20\end{array}\right]\left[\begin{array}{llll}2 & 2 & .5 & 1 \\ 3 & 2 & 1 & 2 \\ 0 & 1 & 0 & 3 \\ .5 & 1 & 0 & 0\end{array}\right]=[\underbrace{180}_{\text {sug. }} \underbrace{172}_{\text {flr. }} \underbrace{50}_{\text {mlk. }} \underbrace{136}_{\text {eggs }}]$
61. $\mathrm{C}(\mathrm{A} \times \mathrm{B})=\left[\begin{array}{llll}40 & 30 & 12 & 20\end{array}\right]\left[\begin{array}{ll}38 & 50 \\ 56 & 72 \\ 17 & 26 \\ 10 & 14\end{array}\right]=\left[\begin{array}{ll}36.04 & 47.52\end{array}\right]$ cents \quad small $\$ 36.04$, large $\$ 47.52$
62. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{lll}52 & 50 & 75 \\ 48 & 43 & 60 \\ 62 & 57 & 81\end{array}\right]\left[\begin{array}{ll}.30 & .75 \\ .25 & .50 \\ .15 & .45\end{array}\right]=\left[\begin{array}{ll}39.35 & 97.75 \\ 34.15 & 84.50 \\ 45.00 & 111.45\end{array}\right]$
63. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}6 & 3 \\ 4 & -2\end{array}\right]+\left[\begin{array}{cc}-6 & -3 \\ -2 & -4\end{array}\right]=\left[\begin{array}{cc}6+(-6) & 3+(-3) \\ 4+(-2) & -2+(-4)\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 2 & -6\end{array}\right]$

Since $\mathrm{A}+\mathrm{B} \neq \mathrm{I}$, where I is the additive identity matrix, A and B are not additive inverses.
64. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ccc}4 & 6 & 3 \\ 2 & 3 & -1 \\ -1 & 0 & 6\end{array}\right] \cdot\left[\begin{array}{ccc}-4 & -6 & -3 \\ -2 & -3 & 1 \\ 1 & 0 & -6\end{array}\right]=\left[\begin{array}{ccc}4+(-4) & 6+(-6) & 3+(-3) \\ 2+(-2) & 3+(-3) & -1+(1) \\ -1+(1) & 0+0 & 6+(-6)\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$B+A=\left[\begin{array}{ccc}-4 & -6 & -3 \\ -2 & -3 & 1 \\ 1 & 0 & -6\end{array}\right]\left[\begin{array}{ccc}4 & 6 & 3 \\ 2 & 3 & -1 \\ -1 & 0 & 6\end{array}\right]=\left[\begin{array}{ccc}-4+(4) & -6+(6) & -3+(3) \\ -2+(2) & -3+(3) & 1+(-1) \\ 1+(-1) & 0+(0) & -6+(6)\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Thus, A and B are additive inverses.
65. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]=\left[\begin{array}{cc}5(1)-2(2) & 5(2)-2(5) \\ -2(1)+1(2) & -2(2)+1(5)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{B} \times \mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]\left[\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{ll}1(5)+2(-2) & 1(-2)+2(1) \\ 2(5)+5(-2) & 2(-2)+5(1)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Thus, A and B are multiplicative inverses.
66. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right]=\left[\begin{array}{ll}7(1)+3(-2) & 7(-3)+3(7) \\ 2(1)+1(-2) & 2(-3)+1(7)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{B} \times \mathrm{A}=\left[\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right]\left[\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}1(7)-3(2) & 1(3)-3(1) \\ -2(7)+7(2) & -2(3)+7(1)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Thus, A and B are multiplicative inverses.
67. False. Let $A=\left[\begin{array}{ll}1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1\end{array}\right]$. Then $A-B=[-1,2]$ and $B-A=[1,-2] \quad A-B \neq B-A$.
68. True. For all scalars a and all matrices B and $C, a(B+C)=a B+a C$. As an example, Let $\mathrm{a}=2, \mathrm{~B}=\left[\begin{array}{ll}1 & 3\end{array}\right]$, and $\mathrm{C}=\left[\begin{array}{ll}2 & 1\end{array}\right] . \quad$ Then $\mathrm{a}(\mathrm{B}+\mathrm{C})=2\left(\left[\begin{array}{ll}1 & 3\end{array}\right]+\left[\begin{array}{ll}2 & 1\end{array}\right]\right)=2\left[\begin{array}{ll}3 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 8\end{array}\right]$, and $a B+a C=2\left[\begin{array}{ll}1 & 3\end{array}\right]+2\left[\begin{array}{ll}2 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 6\end{array}\right]+\left[\begin{array}{ll}4 & 2\end{array}\right]=\left[\begin{array}{ll}6 & 8\end{array}\right]=a(B+C)$.

262 CHAPTER 7 Systems of Linear Equations and Inequalities

69. a) $1.4(14)+0.7(10)+0.3(7)=\$ 28.70$
b) $2.7(12)+2.8(9)+0.5(5)=\$ 60.10$

Ames Bay
c) $\mathrm{L} \times \mathrm{C}=\left[\begin{array}{ll}28.7 & 24.6 \\ 41.3 & 35.7 \\ 69.3 & 60.1\end{array}\right] \begin{gathered}\text { small } \\ \text { medium } \\ \text { large }\end{gathered}$

This array shows the total cost of each sofa at each plant.
70. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]+\left[\begin{array}{lll}0 & 1 & 2 \\ 4 & 5 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 3 & 5 \\ 7 & 7 & 2\end{array}\right]$

A x B cannot be calculated because the \# of columns \# of rows.
71. $\mathrm{A}+\mathrm{B}$ cannot be calculated because the \# of columns \# of rows.

$$
A \times B=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 4 \\
1 & 5 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1(0)+2(1)+3(2) & 1(4)+2(5)+3(1) \\
3(0)+2(1)+1(2) & 3(4)+2(5)+1(1)
\end{array}\right]=\left[\begin{array}{ll}
7 & 17 \\
4 & 23
\end{array}\right]
$$

72. Answers will vary.

Exercise Set 7.4

1. a) An augmented matrix is a matrix formed with the coefficients of the variables and the constants. The coefficients are separated from the constants by a vertical bar.
b) $\left[\begin{array}{rr|r}1 & 3 & 7 \\ 2 & -1 & 4\end{array}\right]$
2. 3) Rows of a matrix can be interchanged.
2) All values in a row can be multiplied by a nonzero real number.
3) All the values in a row may be added to the corresponding values in another row.
3. If you obtain an augmented matrix in which one row of numbers on the left side of the vertical line are all zeroes but a zero does not appear in the same row on the other side of the vertical line, the system is inconsistent.
4. If you obtain an augmented matrix in which a 0 appears across an entire row, the system of equations is dependent.
5. 6) Multiply the $2^{\text {nd }}$ row by $-1 / 2 ; 2$) multiply the $2^{\text {nd }}$ row
by -3 and add to the $1^{\text {st }}$ row; and 3) identify the values of x and y.
1) $\left[\begin{array}{rr|r}1 & 3 & 5 \\ 0 & 1 & (-1 / 2)\end{array}\right]$
2) $\left[\begin{array}{rr|r}1+0 & 3+(-3) & 5+(3 / 2) \\ 0 & 1 & (-1 / 2)\end{array}\right]=\left[\begin{array}{ll|r}1 & 0 & 13 / 2 \\ 0 & 1 & -1 / 2\end{array}\right]$
3) $(x, y)=\left(\frac{13}{2}, \frac{-1}{2}\right)$
6. 7) Multiply the $2^{\text {nd }}$ row by 2 and add to the $1^{\text {st }}$ row, and 2) identify the values of x and y.

$$
\left[\begin{array}{rr|r}
1 & -2 & 1 \\
0 & 1 & 3
\end{array}\right] \quad \text { 1) }\left[\begin{array}{rr|r}
1+0 & -2+2 & 1+6 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{ll|r}
1 & 0 & 7 \\
0 & 1 & 3
\end{array}\right] \quad \text { 2) }(x, y)=\left(\frac{13}{2}, \frac{-1}{2}\right)
$$

7. $x+3 y=3 \quad-x+y=-3$
$\left[\begin{array}{rr|r}1 & 3 & 3 \\ -1 & 1 & -3\end{array}\right] \rightarrow\left[\begin{array}{rr|r}1 & 3 & 3 \\ -1+1 & 1+3 & -3+3\end{array}\right]=\left[\begin{array}{ll|r}1 & 3 & 3 \\ 0 & 4 & 0\end{array}\right] \rightarrow\left[\begin{array}{rr|r}1+0 & 3+(-3) & 3+0 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{rr|r}1 & 0 & 3 \\ 0 & 1 & 0\end{array}\right] \rightarrow(3,0)$
8. $x-y=5 \quad 2 x-y=6$
$\left[\begin{array}{rr|r}1 & -1 & 5 \\ 2 & -1 & 6\end{array}\right] \rightarrow\left[\begin{array}{rr|r}1 & -1 & 5 \\ 2-2 & -1+2 & 6-10\end{array}\right]=\left[\begin{array}{rr|r}1 & -1 & 5 \\ 0 & 1 & -4\end{array}\right] \rightarrow\left[\begin{array}{rr|r}1+0 & -1+1 & 5-4 \\ 0 & 1 & -4\end{array}\right]=\left[\begin{array}{rr|r}1 & 0 & 1 \\ 0 & 1 & -4\end{array}\right] \rightarrow(1,-4)$
9. $x-2 y=-1 \quad 2 x+y=8$
$\left[\begin{array}{rr|r}1 & -2 & -1 \\ 2 & 1 & 8\end{array}\right] \rightarrow\left[\begin{array}{rr|r}1 & -2 & -1 \\ 2-2 & 1+4 & 8+2\end{array}\right]=\left[\begin{array}{rr|r}1 & -2 & -1 \\ 0 & 5 & 10\end{array}\right] \rightarrow\left[\begin{array}{rr|r}1+0 & -2+2 & -1+4 \\ 0 & 5 & 10\end{array}\right] \rightarrow$ $\left[\begin{array}{rr|r}1 & 0 & 3 \\ 0 & 5 & 10\end{array}\right]=\left[\begin{array}{ll|l}1 & 0 & 3 \\ 0 & 1 & 2\end{array}\right] \rightarrow(3,2)$
10. $x+y=-1 \quad 2 x+3 y=-5$

$$
\left[\begin{array}{ll|l}
1 & 1 & -1 \\
2 & 3 & -5
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & 1 & -1 \\
2-2 & 3-2 & -5+2
\end{array}\right]=\left[\begin{array}{rr|r}
1 & 1 & -1 \\
0 & 1 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1+0 & 1-1 & -1+3 \\
0 & 1 & -3
\end{array}\right]=\left[\begin{array}{rr|r}
1 & 0 & 2 \\
0 & 1 & -3
\end{array}\right] \rightarrow(2,-3)
$$

11. $\left[\begin{array}{rr|r}2 & -5 & -6 \\ -4 & 10 & 12\end{array}\right]\left(\begin{array}{c}= \\ \left(\mathrm{r}_{2}+2 \mathrm{r}_{1}\right)\end{array}\left[\begin{array}{rr|r}2 & -5 & -6 \\ 0 & 0 & 0\end{array}\right] \Rightarrow\right.$ Dependent system

The solution is all points on the line $2 x-5 y=-6$.
12. $\left[\begin{array}{rr|r}1 & 1 & 5 \\ 3 & -1 & 3\end{array}\right] \underset{\left(\mathrm{r}_{2}-3 \mathrm{r}_{1}\right)}{=}\left[\begin{array}{rr|r}1 & 1 & 5 \\ 0 & -4 & -12\end{array}\right] \underset{\left(\mathrm{r}_{2} \div(-4)\right)}{=}\left[\begin{array}{ll|l}1 & 1 & 5 \\ 0 & 1 & 3\end{array}\right] \stackrel{\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)}{=} \underset{=}{=}\left[\begin{array}{rr|r}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right] \quad$ The solution is (2, 3).
13. $\left[\begin{array}{rr|r}2 & -3 & 10 \\ 2 & 2 & 5\end{array}\right]\binom{\left(\mathrm{r}_{1} \div 2\right)}{\left(\mathrm{r}_{2}-2 \mathrm{r}_{1}\right)}\left[\begin{array}{rr|r}1 & \frac{-3}{2} & 5 \\ 0 & 5 & -5\end{array}\right] \underset{\left(\mathrm{r}_{2} \div(5)\right.}{=}\left[\begin{array}{rr|r}1 & -\frac{3}{2} & 5 \\ 0 & 1 & -1\end{array}\right] \stackrel{\left(\mathrm{r}_{1}+\frac{3}{2} \mathrm{r}_{2}\right)}{=}\left[\begin{array}{rr|r}1 & 0 & \frac{7}{2} \\ 0 & 1 & -1\end{array}\right]$ The solution is $(7 / 2,-1)$.
14. $\left[\begin{array}{rr|r}1 & 3 & 1 \\ -2 & 1 & 5\end{array}\right]\left(\begin{array}{c}= \\ \left(\mathrm{r}_{2}+2 \mathrm{r}_{1}\right)\end{array}\left[\begin{array}{rr|r}1 & 3 & 1 \\ 0 & 7 & 7\end{array}\right] \underset{\left(\mathrm{r}_{2} \div 7\right)}{=}\left[\begin{array}{ll|l}1 & 3 & 1 \\ 0 & 1 & 1\end{array}\right] \stackrel{\left(\mathrm{r}_{1}-3 \mathrm{r}_{2}\right)}{=}\left[\begin{array}{rr|r}1 & 0 & -2 \\ 0 & 1 & 1\end{array}\right] \quad\right.$ The solution is $(-2,1)$.
15. $\left[\begin{array}{rr|r}4 & 2 & -10 \\ -2 & 1 & -7\end{array}\right]\binom{\left(r_{1} \div 2\right)}{\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)}\left[\begin{array}{ll|l}4 & 2 & -10 \\ 0 & 2 & -12\end{array}\right] \underset{\left(\mathrm{r}_{2} \div 4\right)}{=}\left[\begin{array}{rr|r}1 & 1 / 2 & -10 / 4 \\ 0 & 2 & -12\end{array}\right] \underset{\left(\mathrm{r}_{2} \div 2\right)}{=}\left[\begin{array}{rr|r}1 & 1 / 2 & -10 / 4 \\ 0 & 1 & -6\end{array}\right]$ $\left[\begin{array}{rr|r}1 & 1 / 2 & -10 / 4 \\ 0 & 1 & -6\end{array}\right]\binom{\left(r_{2} \div-2\right)}{\left(r_{2}+r_{1}\right)}\left[\begin{array}{rr|r}1 & 0 & 1 / 2 \\ 0 & 1 & -6\end{array}\right] \quad$ The solution is $(1 / 2,-6)$.
16. $\left[\begin{array}{ll|l}4 & 2 & 6 \\ 5 & 4 & 9\end{array}\right] \stackrel{\left(\mathrm{r}_{1} \div 4\right)}{=}\left[\begin{array}{cc|c}1 & \frac{1}{2} & \frac{3}{2} \\ 5 & 4 & 9\end{array}\right] \underset{\left(\mathrm{r}_{2}-5 \mathrm{r}_{1}\right)}{=}\left[\begin{array}{cc|c}1 & \frac{1}{2} & \frac{3}{2} \\ 0 & \frac{3}{2} & \frac{3}{2}\end{array}\right]\left(\begin{array}{c}\left.\frac{2}{3} \mathrm{r}_{2}\right)\end{array}=\left[\begin{array}{cc|c}1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 1\end{array}\right] \underset{\left(\mathrm{r}_{1}-\frac{1}{2} \mathrm{r}_{2}\right)}{=}\left[\begin{array}{cc|c}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]\right.$

The solution is $(1,1)$.
17. $\left.\left[\begin{array}{rr|r}-3 & 6 & 5 \\ 2 & -4 & 8\end{array}\right] \underset{=}{\left(r_{1} \div(-3)\right)} \underset{=}{1} \begin{array}{rr|r}1 & -2 & \frac{-5}{3} \\ 2 & -4 & 8\end{array}\right] \stackrel{\left(r_{2}-2 r_{1}\right)}{=}\left[\begin{array}{rr|r}1 & -2 & \frac{-5}{3} \\ 0 & 0 & \frac{34}{3}\end{array}\right] \Rightarrow$ Inconsistent system No solution.
18. $\left[\begin{array}{rr|r}2 & -5 & 10 \\ 3 & 1 & 15\end{array}\right]=\left[\begin{array}{cc|c}1 & \frac{-5}{2} & 5 \\ 0 & \frac{15}{2} & 0\end{array}\right]=\left[\begin{array}{cc|c}1 & \frac{-5}{2} & 5 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ll|l}1 & 0 & 5 \\ 0 & 1 & 0\end{array}\right] \quad$ The solution is (5, 0).

The solution is $(3,5)$.
20. $\left[\begin{array}{rr|r}4 & -3 & 7 \\ -2 & 5 & 14\end{array}\right] \stackrel{\left(\mathrm{r}_{1} \div 4\right)}{=}\left[\begin{array}{rr|r}1 & -\frac{3}{4} & \frac{7}{4} \\ -2 & 5 & 14\end{array}\right] \underset{\left(\mathrm{r}_{2}+2 \mathrm{r}_{1}\right)}{=}\left[\begin{array}{rr|r}1 & -\frac{3}{4} & \frac{7}{4} \\ 0 & \frac{7}{2} & \frac{35}{2}\end{array}\right]\left(\frac{2}{7} \mathrm{r}_{2}\right)=\left[\begin{array}{rr|r}1 & -\frac{3}{4} & \frac{7}{4} \\ 0 & 1 & 5\end{array}\right] \stackrel{\left(\mathrm{r}_{1}+\frac{3}{4} \mathrm{r}_{2}\right)}{=}\left[\begin{array}{rr|r}1 & 0 & \frac{11}{2} \\ 0 & 1 & 5\end{array}\right]$

The solution is $(11 / 2,5)$.
21. $\mathrm{S}+\mathrm{L}=55 \quad 4 \mathrm{~S}+6 \mathrm{~L}=290$
$\left[\begin{array}{ll|r}1 & 1 & 55 \\ 4 & 6 & 290\end{array}\right]\binom{\left(\mathrm{r}_{1} \bullet-4\right)}{\left(\mathrm{r}_{2}+\mathrm{r}_{1}\right)}\left[\begin{array}{ll|l}1 & 1 & 55 \\ 0 & 2 & 70\end{array}\right]\binom{=}{\left(\mathrm{r}_{2} \div 2\right.}\left[\left.\begin{array}{ll}1 & 1 \\ 55 \\ 0 & 1\end{array} \right\rvert\, 35\right]\binom{\left(\mathrm{r}_{2} \bullet-1\right)}{\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)}\left[\begin{array}{ll|l}1 & 0 & 20 \\ 0 & 1 & 35\end{array}\right] \quad$ The solution is (20, 35).
22. $\mathrm{p}=2 \mathrm{H}+2 \mathrm{~W} \quad 2 \mathrm{H}+2 \mathrm{~W}=124 \quad \mathrm{H}-\mathrm{W}=8$
$\left[\begin{array}{rr|r}2 & 2 & 124 \\ 1 & -1 & 8\end{array}\right]\binom{\left(\mathrm{r}_{2} \cdot 2\right)}{\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)}\left[\begin{array}{rr|r}4 & 0 & 140 \\ 1 & -1 & 8\end{array}\right]\binom{=}{\mathrm{r}_{1} \div 4}\left[\left.\begin{array}{rr}1 & 0 \\ 1 & -1\end{array} \right\rvert\, \begin{array}{r}35\end{array}\right]\binom{\left(\mathrm{r}_{1} \bullet-1\right.}{\left(\mathrm{r}_{2}+\mathrm{r}_{1}\right)}\left[\begin{array}{rr|r}1 & 0 & 35 \\ 0 & -1 & -27\end{array}\right]\left(\mathrm{r}_{2} \cdot-1\right)\left[\begin{array}{rr|r}1 & 0 & 35 \\ 0 & 1 & 27\end{array}\right]$
The solution is $(35,27)$.
23. Let $\mathrm{T}=$ \# of hours for truck driver $\mathrm{L}=$ \# of hours for laborer
$10 \mathrm{~T}+8 \mathrm{~L}=144 \quad \mathrm{~L}=\mathrm{T}+2 \rightarrow \mathrm{~T}=\mathrm{L}-2$
$\left[\begin{array}{rr|r}10 & 8 & 144 \\ 1 & -1 & -2\end{array}\right]\binom{\left(\mathrm{r}_{2} \bullet 8\right)}{\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)}\left[\begin{array}{rr|r}18 & 0 & 128 \\ 1 & -1 & -2\end{array}\right]\left(\mathrm{r}_{1} \div 18\right)\left[\begin{array}{rr|r}1 & 0 & 64 / 9 \\ 1 & -1 & -2\end{array}\right]\binom{\left(\mathrm{r}_{1} \bullet-1\right)}{\left(\mathrm{r}_{2}+\mathrm{r}_{1}\right)}\left[\begin{array}{rr|r}1 & 0 & 64 / 9 \\ 0 & -1 & -82 / 9\end{array}\right]$
$\left[\begin{array}{rr|r}1 & 0 & 64 / 9 \\ 0 & -1 & -82 / 9\end{array}\right]\left(\mathrm{r}_{2} \cdot-1\right)\left[\begin{array}{rr|r}1 & 0 & 64 / 9 \\ 0 & 1 & 82 / 9\end{array}\right] \quad(64 / 9,82 / 9)$
$71 / 9$ hours for the truck driver and $91 / 9$ hours for the laborer.
24. Let $x=$ cost per pound of cherries $y=$ cost per pound of mints

$$
2 x+3 y=23 \quad 1 x+2 y=14
$$

$$
\left[\begin{array}{ll|l}
2 & 3 & 23 \\
1 & 2 & 14
\end{array}\right]=\left[\begin{array}{ll|r}
1 & \frac{3}{2} & \frac{23}{2} \\
1 & 2 & 14
\end{array}\right]=\left[\begin{array}{ll|l}
1 & \frac{3}{2} & \frac{23}{2} \\
0 & \frac{1}{2} & \frac{5}{2}
\end{array}\right]=\left[\begin{array}{cc|c}
1 & \frac{3}{2} & \frac{23}{2} \\
0 & 1 & 5
\end{array}\right]=\left[\begin{array}{ll|l}
1 & 0 & 4 \\
0 & 1 & 5
\end{array}\right]
$$

The cherries are $\$ 4$ per pound and the mints are $\$ 5$ per pound.
25. $1.5 x+2 y=337.5 \quad x+y=200$
$\left[\begin{array}{rr|r}1.5 & 2 & 337.5 \\ 1 & 1 & 200\end{array}\right]=\left[\begin{array}{rr|r}1 & 1 . \overline{33} & 225 \\ 1 & 1 & 200\end{array}\right]=\left[\begin{array}{rr|r}1 & 1 . \overline{33} & 225 \\ 1 & 1 & 200\end{array}\right]=\left[\begin{array}{rr|r}1 & 1 . \overline{33} & 225 \\ 0 & -\overline{33} & -25\end{array}\right]=\left[\begin{array}{rr|r}1 & 1 . \overline{33} & 225 \\ 0 & 1 & 75\end{array}\right]=\left[\begin{array}{rr|r}1 & 0 & 125 \\ 0 & 1 & 75\end{array}\right]$
The solution is 125 non-refillable pencils @ $\$ 1.50$ and 75 refillable pencils @ $\$ 2.00$.

Exercise Set 7.5

1. The solution set of a system of linear inequalities is the set of points that satisfy all inequalities in the system.
2. Graph and shade the solution set to each of the inequalities. The intersection of the shaded areas and any solid lines common to both inequalities is the solution set.
3.

5.

4.

6.

7.

$$
\begin{aligned}
& x-y<4 \\
& x+y<5
\end{aligned}
$$

9.

11.

13.
8.

10.

12.

14.

15.

17.

19. a) Let $\mathrm{P}=$ Panasonic, $\mathrm{S}=$ Sony $600 \mathrm{P}+900 \mathrm{~S} \leq 18000$ $\begin{array}{ll}\mathrm{P} \geq 2 \mathrm{~S} & \mathrm{P} \geq 10 \\ & \mathrm{~S} \geq 5\end{array}$
c) $(15,6)$ means 15 Panasonic models and 6 Sony models.
$600(15)+900(6)=9000+5400$ or \$ 14,400
20. $x<0, y>0$
16.

18.

b)

21. a) No, if the lines are parallel there may not be a solution to the system.
b) Example: $y \geq x \quad y \leq x-2$ This system has no solution.

22. Yes. One example is $\mathrm{x}<0, \mathrm{y}<0, \mathrm{x}>0, \mathrm{y}>0$.
23. No. Every line divides the plane into two halves only one of which can be part of the solution. Therefore, the points in the other half cannot satisfy both inequalities and so do not solve the system.
Example: $\mathrm{y} \geq \mathrm{x} \quad \mathrm{x} \geq 2$

Exercise Set 7.6

1. Constraints are restrictions that are represented as linear inequalities.

3. Vertices

2. The feasible region is formed by graphing the system of inequalities.
3. Objective function: $\mathrm{K}=\mathrm{Ax}+\mathrm{By}$
4. If a linear equation of the form $\mathrm{K}=\mathrm{Ax}+\mathrm{By}$ is evaluated at each point in a closed polygonal region, the maximum and minimum values of the equation occur at a corner.
5. $\operatorname{At}(1,1), P=4(1)+6(1)=10$

At $(1,4), P=4(1)+6(4)=28$
At $(5,1), P=4(5)+6(1)=26$
At $(7,1), P=4(7)+6(1)=34$
The maximum profit is 34 . Determine the value of the profit function at each vertex; the largest profit value is the maximum.
7. At $(0,0), K=6(0)+4(0)=0$

At $(0,4), K=6(0)+4(4)=16$
At $(2,3), K=6(2)+4(3)=24$
$\operatorname{At}(5,0), K=6(5)+4(0)=30$
The maximum value is 30 at $(5,0)$; the minimum value is 0 at $(0,0)$.
8. At $(10,20), \mathrm{K}=2(10)+3(20)=80$
$\operatorname{At}(10,40), \mathrm{K}=2(10)+3(40)=140$
$\operatorname{At}(50,30), \mathrm{K}=2(50)+3(30)=190$

At $(50,10), \mathrm{K}=2(50)+3(10)=130$

At $(20,10), K=2(20)+3(10)=70$

The maximum value is 190 at $(50,30)$; the minimum value is 70 at $(20,10)$.
10. a)

b) $P=2 x+4 y$

At $(0,0), P=2(0)+4(0)=0 \quad$ min. at $(0,0)$
At $(3,2), P=2(3)+4(2)=14$
At $(4,0), P=2(4)+4(0)=8$
At $(0,4), \mathrm{P}=2(0)+4(4)=16$ max. at $(0,4)$
12. a)

9. a)

b) $x+y \leq 5 \quad 2 x+y \leq 8 \quad x \geq 0 \quad y \geq 0$ $P=5 x+4 y$
At $(0,0), \mathrm{P}=5(0)+4(0)=0 \quad \mathrm{~min}$. at $(0,0)$
At $(0,4), \mathrm{P}=5(0)+4(4)=16$
At $(3,2, P=5(3)+4(2)=23$ max. at $(2,3)$
At $(0,5), \mathrm{P}=5(0)+4(5)=20$
11. a)

b) $P=7 x+6 y$

At $(0,0), P=7(0)+6(0)=0 \quad$ min. at $(0,0)$
At $(0,2), \mathrm{P}=7(0)+6(2)=12$
At $(3,1), P=7(3)+6(1)=27$
At $(4,0), P=7(4)+6(0)=28 \quad \max$. at $(4,0)$
13. a)

12. b) $P=20 x+40 y$

At $(0,0), \mathrm{P}=20(0)+40(0)=0$
At $(0,30), \mathrm{P}=20(0+40(30)=120$
At $(30,20), \mathrm{P}=20(30)+40(20)=1400$
At $(50,0), \mathrm{P}=20(50)+40(0)=1000$

Min. $(0,0)$ and Max. at $(20,30)$
14. a)

b) $P=15.13 x+9.35 y$

Max. profit is 170 at $(10,2)$
Min. profit is 61.22 at $(24 / 7,1)$

13 b) $P=2.20 x+1.65 y$

$$
\begin{aligned}
& \operatorname{At}(2,4 / 3), \mathrm{P}=2.20(2)+1.65(4 / 3)=6.60 \\
& \operatorname{At}(2,5), \mathrm{P}=2.20(2)+1.65(5)=12.65 \\
& \operatorname{At}(16 / 3,5), \mathrm{P}=2.20(16 / 3)+1.65(5)=19.98 \\
& \operatorname{At}(32 / 3,1), \mathrm{P}=2.20(32 / 3)+1.65(1)=25.12 \\
& \operatorname{At}(9 / 4,1), \mathrm{P}=2.20(9 / 4)+1.65(1)=6.60
\end{aligned}
$$

Max. at $(32 / 3,1)$ and Min. at $(2,4 / 3),(9 / 4,1)$
15. a) Let $x=$ profit on Eastman Kodak film
$\mathrm{y}=$ profit on Fuji film
$x+y \leq 24 \quad x \geq 8 \quad x \leq 24$
$y \geq 4 \quad y \leq 12$
b) $P=.35 x+.50 y$
c)

d) $\operatorname{At}(8,4), \mathrm{P}=.35(8)+.50(4)=.35$ At $(16,8), \mathrm{P}=.35(16)+.50(8)=9.6 \mathrm{max}$. at $(16,8)$
$\operatorname{At}(20,4), \mathrm{P}=.35(20)+.50(4)=9$
e) 16 rolls of Kodak film and 8 rolls of Fuji film
f) Max. profit $=\$ 9.60$
17. Let $\mathrm{x}=$ gallons of indoor paint
$y=$ gallons of outdoor paint
$x \geq 60 \quad y \geq 100$
c)

16. e) $\operatorname{At}(3,2), \mathrm{P}=25(3)+20(2)=115$

At $(3,17), P=25(3)+20(17)=415$
At $(6,14), \mathrm{P}=25(6)+20(14)=430$
At $(6,2), P=25(6)+20(2)=190$
Six skateboards and 14 pairs of in-line skates.
f) Max. profit $=\$ 430$
18. Let $\mathrm{x}=$ pounds of all-beef hot dogs
$y=$ pounds of regular hot dogs
$\mathrm{x}+(1 / 2) \mathrm{y} \leq 200$
$(1 / 2) y \leq 150 \quad x \geq 0 \quad y \geq 0$

$P=0.30 y+0.40 x$
Maximum profit occurs at $(50,300)$.
Thus the manufacturer should make 50 lb . of the all-beef hot dogs and 300 lb . of the regular hot dogs for a profit of $\$ 110$.
17. a) $3 x+4 y \geq 60 \quad x \geq 0$
$10 x+5 y \geq 100 \quad y \geq 0$
b) $C=28 x+33 y$
d) $\operatorname{At}(0,20), \mathrm{C}=28(0)+33(20)=660$ At $(20,0), \mathrm{C}=28(20)+33(0)=560$ At $(4,12), C=28(4)+33(12)=508$
e) 4 hours on Mach. 1 and 12 hours on Mach. 2
f) Max. profit $=\$ 660.00$
19. Let $x=\#$ of car seats
$y=\#$ of strollers
$\begin{array}{rlr}x \geq 60 & y \geq 100 & \\ x+3 y \leq 24 & 2 x+y \leq 16 & x+y \leq 10\end{array}$
$P=25 x+35 y$

At $(0,8), \mathrm{P}=25(0)+35(8)=280$
At $(3,7), \mathrm{P}=25(3)+35(7)=320$
At $(4,6), \mathrm{P}=25(4)+35(6)=310$
At $(8,0), \mathrm{P}=25(8)+35(0)=200$
3 car seats and 7 strollers
Max. profit $=\$ 320.00$
2.

3.

The solution is $(3,2)$.
5. $\mathrm{y}=(2 / 3) \mathrm{x}+5$
$y=(2 / 3) x+5$
Same slope and y-intercept. Infinite \# of solutions.
7. $6 y-2 x=20$ becomes $y=(1 / 3) x+10 / 3$
$4 y+2 x=10$ becomes $y=-(1 / 2) x+5 / 2$
Different slopes. One solution.
9. (1) $-x+y=12$
(2) $x+2 y=-3$ (add)

$$
3 y=9 \quad y=3
$$

Substitute 3 in place of y in the first equation.
$-\mathrm{x}+3=12$
$-x=9 \quad x=-9$
The solution is $(-9,3)$.
4.

6. $y=2 x+6$
$y=2 x+7.5$
Same slope but different y-intercepts. No solution.
8. $y=(1 / 2) x-2$
$y=2 x+6$
Different slopes. One solution.
10. $x-2 y=9$
$y=2 x-3$
Substitute $(2 x-3)$ in place of y in the $1^{\text {st }}$
equation.
$x-2(2 x-3)=-11 \quad($ solve for $x)$
$x-4 x-6=-11$
$5 x-6=-1$
$5 x=-5 \quad x=-1$

Substitute (-1) in place of x in the $2^{\text {nd }}$ equation.
$y=2(-1)-3=-2-3=-5$
The solution is $(-1,-5)$.
12. $3 x+y=1 \quad y=-3 x+1$
$3 y=-9 x-4$
Substitute $-3 \mathrm{x}+1$ for y in the second equation.
$3(-3 x+1)=-9 x-4$ (solve for x)
$-9 \mathrm{x}+3=-9 \mathrm{x}-4$
$3 \neq 4 \quad$ False \quad There is no solution to this system.
The equations are inconsistent.
$\begin{array}{ll}-4-y=4 & y=-8\end{array}$
The solution is $(-2,-8)$.
13. $x-2 y=1 \quad x=2 y+1$
$2 x+y=7$
Substitute $(2 y+1)$ for x in the 2 nd equation.
$2(2 y+1)+y=7$ (solve for y)
$4 y+2+y=7$
$5 y+2=7$
$5 y=5 \quad y=1$
Substitute 1 in place of y in the equation.
$x=2 y+1$.
$\mathrm{x}=2(1)+1=2+1=3$
The solution is $(3,1)$.
15. (1) $x+y=2$
(2) $x+3 y=-2$

Multiply the first equation by -1 .
$-x-y=-2$
$x+3 y=-2$ (add)
$2 y=-4 \quad y=-2$
Substitute (-2) for y in equation (2).
$x+3(-2)=-2$
$x-6=-2 \quad x=4$
The solution is $(4,-2)$.
17. (1) $3 x+5 y=15$
(2) $2 x+4 y=0$

Multiply the first equation by 2 , and the 2 nd equation by (-3).
$6 x+10 y=30$
$-6 x-12 y=0$ (add)
$-2 y=30 \quad y=-15$
Substitute (-15) for y in the second equation.
$2 x+4(-15)=0$
$2 x-60=0 \quad x=30$
The solution is $(30,-5)$.
14. (1) $2 x+y=2$
(2) $-3 x-y=5$ (add)

$$
-x=7 \quad x=-7
$$

Substitute (-7) in place of x in the 1 st equation.
$2(-7)+y=2$
$-14 y=2 \quad y=16$
The solution is $(-7,16)$.
16. (1) $4 x-8 y=16$
(2) $x-2 y=4 \quad x=2 y+4$

Substitute $2 \mathrm{y}+4$ for x in the first equation.
$4(2 y+4)-8 y=16$
$8 y+16-8 y=16$
$16=16 \quad$ True
There are an infinite number of solutions.
The system is dependent.
18. (1) $3 x+4 y=6$
(2) $2 x-3 y=4$

Multiply the first equation by 2 , and the second equation by -3 .
$6 x+8 y=12$
$-6 x+9 y=-12$ (add)
$17 \mathrm{y}=0 \quad \mathrm{y}=0$
Substitute 0 for y in the first equation.
$3 \mathrm{x}+4(0)=6$
$3 x=6 \quad x=2$
The solution is $(2,0)$.
19. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right]+\left[\begin{array}{cc}-2 & -5 \\ 6 & 3\end{array}\right]=\left[\begin{array}{cc}1+(-2) & -3+(-5) \\ 2+6 & 4+3\end{array}\right]=\left[\begin{array}{cc}-1 & -8 \\ 8 & 7\end{array}\right]$
20. $\mathrm{A}-\mathrm{B}=\left[\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right]-\left[\begin{array}{cc}-2 & -5 \\ 6 & 3\end{array}\right]=\left[\begin{array}{cc}1-(-2) & -3-(-5) \\ 2-6 & 4-3\end{array}\right]=\left[\begin{array}{cc}3 & 2 \\ -4 & 1\end{array}\right]$
21. $2 \mathrm{~A}=2\left[\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}2(1) & 2(-3) \\ 2(2) & 2(4)\end{array}\right]=\left[\begin{array}{cc}2 & -6 \\ 4 & 8\end{array}\right]$
22. $2 \mathrm{~A}-3 \mathrm{~B}=2\left[\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right]-3\left[\begin{array}{cc}-2 & -5 \\ 6 & 3\end{array}\right]=\left[\begin{array}{cc}2 & -6 \\ 4 & 8\end{array}\right]+\left[\begin{array}{cc}6 & 15 \\ -18 & -9\end{array}\right]=\left[\begin{array}{cc}2+6 & -6+15 \\ 4-18 & 8-9\end{array}\right]=\left[\begin{array}{cc}8 & 9 \\ -14 & -1\end{array}\right]$
23. $\mathrm{A} \times \mathrm{B}=\left[\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right] \times\left[\begin{array}{cc}-2 & -5 \\ 6 & 3\end{array}\right]=\left[\begin{array}{cc}1(-2)+(-3) 6 & 1(-5)+(-3) 3 \\ 2(-2)+4(6) & 2(-5)+4(3)\end{array}\right]=\left[\begin{array}{cc}-20 & -14 \\ 20 & 2\end{array}\right]$
24. $\mathrm{B} \times \mathrm{A}=\left[\begin{array}{cc}-2 & -5 \\ 6 & 3\end{array}\right] \times\left[\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}(-2) 1+(-5) 2 & (-2)(-3)+(-5) 4 \\ 6(1)+3(2) & 6(-3)+3(4)\end{array}\right]=\left[\begin{array}{cc}-12 & -14 \\ 12 & -6\end{array}\right]$
25. $\left[\begin{array}{ll|l}1 & 2 & 4 \\ 1 & 1 & 2\end{array}\right]\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)=\left[\begin{array}{rr|r}1 & 2 & 6 \\ 0 & -1 & -2\end{array}\right] \underset{\left(\mathrm{r}_{1}-2 \mathrm{r}_{2}\right)}{2 \mathrm{r}_{2}}=\left[\begin{array}{rr|r}1 & 0 & -2 \\ 0 & 1 & 2\end{array}\right] \quad$ The solution is (2, 2).
26. $\left[\begin{array}{rr|r}-1 & 1 & 4 \\ 1 & 2 & 2\end{array}\right]=\left[\begin{array}{rr|r}1 & -1 & -4 \\ 0 & 3 & 6\end{array}\right]=\left[\begin{array}{rr|r}1 & 0 & -2 \\ 0 & 1 & 2\end{array}\right] \quad$ The solution is (-2, 2).
27. $\left[\begin{array}{rr|r|r}2 & 1 & 3 \\ 3 & -1 & 12\end{array}\right] \stackrel{\left(r_{1} \div 2\right.}{=}\left[\begin{array}{rr|r}1 & \frac{1}{2} & \frac{3}{2} \\ 3 & -1 & 12\end{array}\right] \underset{\left(r_{2}-3 r_{1}\right)}{=}\left[\begin{array}{rr|r}1 & \frac{1}{2} & \frac{3}{2} \\ 0 & -\frac{5}{2} & \frac{15}{2}\end{array}\right] \underset{\left(-\frac{2}{5} r_{2}\right.}{=}\left[\begin{array}{rr|r}1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & -3\end{array}\right] \stackrel{\left(-\frac{1}{2} \mathrm{r}_{2}+\mathrm{r}_{1}\right)}{=}\left[\begin{array}{rr|r}1 & 0 & 3 \\ 0 & 1 & -3\end{array}\right]$

The solution is $(3,-3)$.
28. $\left[\begin{array}{rr|r}2 & 3 & 2 \\ 4 & -9 & 4\end{array}\right]=\left[\begin{array}{rr|r}1 & \frac{3}{2} & 1 \\ 0 & -15 & 0\end{array}\right]=\left[\begin{array}{rr|r}1 & \frac{3}{2} & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ll|r}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \quad$ The solution is (1,0)
29. $\left[\begin{array}{rr|r}1 & 3 & 3 \\ 3 & -2 & 2\end{array}\right]=\left[\begin{array}{rr|r}1 & 3 & 3 \\ 0 & -11 & -7\end{array}\right]=\left[\begin{array}{rr|r}1 & 3 & 3 \\ 0 & 1 & \frac{7}{11}\end{array}\right]=\left[\begin{array}{rr|r}1 & 0 & \frac{12}{11} \\ 0 & 1 & \frac{7}{11}\end{array}\right] \quad$ The solution is $\left(\frac{12}{11}, \frac{7}{11}\right)$
30. $\left[\begin{array}{rr|r}3 & -6 & -9 \\ 4 & 5 & 14\end{array}\right]\left(\mathrm{r}_{1} \bullet-1\right)\left[\begin{array}{rr|r}-3 & 6 & 9 \\ 4 & 5 & 14\end{array}\right]\left(\mathrm{r}_{2}+\mathrm{r}_{1}\right)\left[\begin{array}{rr|r|r}1 & 11 & 23 \\ 4 & 5 & 14\end{array}\right]\binom{\left(\mathrm{r}_{1}-4\right)}{\left(\mathrm{r}_{2}+\mathrm{r}_{1}\right)}\left[\begin{array}{rr|r}1 & 11 & 23 \\ 0 & -39 & -78\end{array}\right]$
$\left[\begin{array}{rr|r}1 & 11 & 23 \\ 0 & -39 & -78\end{array}\right] \stackrel{\left(r_{1} \cdot 11 / 39\right)}{\left(r_{2}+r_{1}\right)}\left[\begin{array}{rr|r}1 & 0 & 1 \\ 0 & -39 & -78\end{array}\right]\left(\mathrm{r}_{2} \div-2\right)\left[\begin{array}{rr|r}1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right] \quad$ The solution is (1, 2).
31. Let $x=$ amount borrowed at $8 \% \quad y=$ amount borrowed at 10%
$.08 x+.10 y=53000 \quad x+y=600000$
$\left[\begin{array}{rr|r}.08 & .10 & 53000 \\ 1 & 1 & 600000\end{array}\right]\left(\begin{array}{c}\left(\mathrm{r}_{2} \bullet-10\right) \\ \left(\mathrm{r}_{2}+\mathrm{r}\right)\end{array}\left[\begin{array}{rr|r}-2 & 0 & -700000 \\ 1 & 1 & 600000\end{array}\right]\left(\begin{array}{l}\left(\mathrm{r}_{1} \bullet-1\right) \\ \left(\mathrm{r}_{2}+\mathrm{r}\right)\end{array}\left[\begin{array}{ll|l}1 & 0 & 350000 \\ 0 & 1 & 250000\end{array}\right]\right.\right.$
$x=\$ 350,000$ and $y=\$ 250,000$
32. Let $\mathrm{s}=$ liters of 80% acid solution
$\mathrm{w}=$ liters of 50% acid solution
$\mathrm{s}+\mathrm{w}=100$
$0.80 \mathrm{~s}+0.50 \mathrm{w}=100(0.75)$
$0.80 \mathrm{~s}+0.50 \mathrm{w}=75$
$\mathrm{s}=100-\mathrm{w}$
$0.80(100-w)+0.50 w=75$
$80-0.80 w+0.50 w=75$
$-0.30 \mathrm{w}=-5$
$\mathrm{w}=-5 /(-0.30)=162 / 3$ liters $\mathrm{s}=100-162 / 3=831 / 3$ liters
34. Let $\mathrm{c}=$ total cost $\mathrm{x}=$ no. of months to operate
a) model 1600A: $\mathrm{c}_{\mathrm{A}}=950+32 \mathrm{x}$
model 6070B: $\mathrm{c}_{\mathrm{B}}=1275+22 \mathrm{x}$
$950+32 x=1275+22 x$
$10 x=325 \quad x=32.5$ months
After 32.5 months of operation the total cost of the units will be equal.
b) After 32.5 months or 2.7 years, the most cost effective unit is the unit with the lower per month to operate cost. Thus, model 6070B is the better deal in the long run.
33. Let $s=$ salary $r=$ commission rate
(1) $s+4000 r=660$
(2) $\underline{s+6000 r=740}$ (subtract 1 from 2) $2000 \mathrm{r}=80$
$r=80 / 2000=0.04$
Substitute 0.04 for r in eq'n. 1 .

$$
\mathrm{s}=660-4000(.04) \quad \mathrm{s}=500
$$

His salary is 500 per week and his commission rate is 4%.
35. a) Let $\mathrm{C}=$ total cost for parking $x=$ number of additional hours
All-Day: $C=5+0.50 x$
Sav-A-Lot: $C=4.25+0.75 x$
$5+0.50 \mathrm{x}=4.25+0.75 \mathrm{x}$
$0.75=0.25 x \quad 3=x$
The total cost will be the same after 3 additional hours or 4 hours total.
b) After 5 hours or $x=4$ additional hours:

All-Day: $\mathrm{C}=5+0.50(4)=\$ 7.00$
Sav-A-Lot: $\mathrm{C}=4.25+0.75(4)=\$ 7.25$
All-Day would be less expensive.
37.

38.

40. $P=6 x+3 y$

At $(0,0), \mathrm{P}=6(0)+3(0)=0$
At $(0,10), \mathrm{P}=6(0)+3(10)=30$
At $(9,0), P=6(9)+3(0)=54$
The maximum profit is $\$ 54$ at $(9,0)$.

Chapter Test

1. If the lines do not intersect (parallel) the system of equations is inconsistent. The system of equations is consistent if the lines intersect only once. If both equations represent the same line then the system of equations is dependent.
2.

The solution is $(2,-7)$.
3. Write each equation in slope intercept form, then
compare slopes and intercepts.

$$
\begin{array}{ll}
4 x+5 y=6 & -3 x+5 y=13 \\
5 y=-4 x+6 & 5 y=3 x+13 \\
y=-(4 / 5) x+6 / 5 & \\
y=(3 / 5) x+13 / 5 &
\end{array}
$$

The slopes are different so there is only one solution.
4. $x-y=5$
$x=y+5$
5. $y=5 x+7 \quad y=2 x+1$
$2 x+3 y \quad=-5$
Substitute $(y+5)$ for x in the second equation.
$2(y+5)+3 y=-5($ solve for $y)$
$2 y+10+3 y=-5$
$5 y+10=-5$
$5 y=-15 \quad y=-3$
Substitute $(5 x+7)$ for y in the second equation.
$5 x+7=2 x+1($ solve for x$)$
$3 x=-6 \quad x=-2$
Substitute -2 for x in the first equation.
$y=5(-2)+7=-10+7=-3$

Substitute (-3) for y in the equation $x=y+5$. $x=-3+5=2 \quad$ The solution is $(2,-3)$.

The solution is $(-2,-3)$.
路
6. $x-y=4$
$\underline{2 x+y=5}$ (add)
$3 x=9 \quad x=3$

Substitute 3 for x in the 2 nd equation.
$2(3)+y=5$
$6+y=5 \quad y=-1 \quad$ The solution is $(3,-1)$.
7. $4 x+3 y=5$
$2 x+4 y=10$
Multiply the second equation by (-2).
$4 x+3 y=5$
$-4 \mathrm{x}-8 \mathrm{y}=-20$ (add)
$-5 y=-15 \quad y=3$
Substitute 3 for y in the first equation.
$4 x+3(3)=5$
$4 \mathrm{x}+9=5$
$4 \mathrm{x}=-4 \quad \mathrm{x}=-1$
The solution is $(-1,3)$.
8. $3 x+4 y=6$
$2 x-3 y=4$
Multiply the $1^{\text {st }}$ eq'n. by 3 and the $2^{\text {nd }}$ eq'n. by 4 .
$9 x+12 y=18$
$\underline{8 x-12 y=16}$
$17 x=34 \quad x=2$
8. Substitute 2 for x in an equation.
$2(2)-3 y=4 \quad$ (solve for y) $-3 y=0 \quad y=0$

The solution is $(2,0)$.
9. $\left[\begin{array}{ll|l}1 & 3 & 4 \\ 5 & 7 & 4\end{array}\right] \underset{\left(-5 \mathrm{r}_{1}+\mathrm{r}_{2}\right)}{=}\left[\begin{array}{rr|r}1 & 3 & 4 \\ 0 & -8 & -16\end{array}\right] \underset{\left(\mathrm{r}_{2} \div(-8)\right)}{=}\left[\begin{array}{ll|l}1 & 3 & 4 \\ 0 & 1 & 2\end{array}\right] \stackrel{\left(\mathrm{r}_{1}-3 \mathrm{r}_{2}\right)}{=}\left[\begin{array}{rr|r}1 & 0 & -2 \\ 0 & 1 & 2\end{array}\right]$

The solution is $(-2,2)$.
10. $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}2 & -5 \\ 1 & 3\end{array}\right]+\left[\begin{array}{cc}-1 & -3 \\ 5 & 2\end{array}\right]=\left[\begin{array}{cc}2+(-1) & -5-3 \\ 1+5 & 3+2\end{array}\right]=\left[\begin{array}{cc}1 & -8 \\ 6 & 5\end{array}\right]$
11. $3 \mathrm{~A}-\mathrm{B}=3\left[\begin{array}{cc}2 & -5 \\ 1 & 3\end{array}\right]-\left[\begin{array}{cc}-1 & -3 \\ 5 & 2\end{array}\right]=\left[\begin{array}{cc}3(2)-(-1) & 3(-5)-(-3) \\ 3(1)-5 & 3(3)-2\end{array}\right]=\left[\begin{array}{cc}7 & -12 \\ -2 & 7\end{array}\right]$
12. $\mathrm{A} x \mathrm{~B}=\left[\begin{array}{cc}2 & -5 \\ 1 & 3\end{array}\right]\left[\begin{array}{cc}-1 & -3 \\ 5 & 2\end{array}\right]=\left[\begin{array}{cc}2(-1)+(-5)(5) & 2(-3)+(-5)(2) \\ 1(-1)+(3)(5) & 1(-3)+3(2)\end{array}\right]=\left[\begin{array}{cc}-27 & -16 \\ 14 & 3\end{array}\right]$
13. $y<-2 x+2 \quad y>3 x+2$

15. Let $x=$ no. of one bedroom units
$y=$ no. of two bedroom units
$x+y=20 \quad x=20-y$
$425 x+500 y=9100$
Substitute $(20-y)$ for x in the second equation.

$$
\begin{aligned}
& 425(20-y)+500 y=9100 \\
& 75 y=600 \quad y=8
\end{aligned}
$$

Substitute 8 for y in the first equation.

$$
x+8=20 \quad x=12
$$

The building has 12 one bedroom and 8 two bedroom apartments.
14. Let $\mathrm{x}=\mathrm{lb}$ of $\$ 6.00$ coffee
$\mathrm{y}=\mathrm{lb}$ of $\$ 7.50$ coffee
$x+y=30 \quad y=30-x$
$6 x+7.5 y=7.00(30)$
Substitute $(30-x)$ for y in the $2^{\text {nd }}$ equation.
$6 x+7.5(30-x)=210$
$6 x+225-7.5 x=210$
$-1.5 x=-15 \quad x=10$
Substitute 10 for x in the equation
$y=30-x$.
$y=30-10=20$
Mix 10 lb of the $\$ 6.00$ coffee with 20 lb of the $\$ 7.50$ coffee.
16. a)

b) $P=5 x+3 y$

$$
\begin{aligned}
& \text { At }(0,0) \mathrm{P}=5(0)+3(0)=0 \\
& \operatorname{At}(0,2) \mathrm{P}=5(0)+3(2)=6 \\
& \operatorname{At}(3,1) \mathrm{P}=5(3)+3(1)=18 \\
& \text { At }(3.75,0) \mathrm{P}=5(3.75)+3(0)=18.75
\end{aligned}
$$

Max. at $(3.75,0)$ and Min. at $(0,0)$

Group Projects

1. Answers will vary.
2. Let $x=\#$ of board feet of oak
$y=\#$ of board feet of walnut
a) $5 x+2 y=75 \quad 4 x+3 y=125$
$x \geq 40 \quad y \geq 50$
b) $P=75 x+125 y$
d) Determine the maximum profit.

At $(40,173) \quad \mathrm{P}=75(40)+125(173)=\$ 24,625$
At $(40,50) \mathrm{P}=75(40)+125(50)=\$ 9,250$
At $(160,50) \quad \mathrm{P}=75(160)+125(50)=\$ 18,250$
At $(86,143)$ P 75(86) $+125(143)=\$ 24,325$
3. Answers will vary.
2. c)

Maximum profit occurs at 40 of model 01 and 173 of model 02 .
e) Maximum profit $=\$ 24,625$

CHAPTER EIGHT

THE METRIC SYSTEM

Exercise Set 8.1

1. The metric system.
2. The U.S. customary system.
3. It is the worldwide accepted standard of measurement. There is only 1 basic unit of measurement for each quantity. It is based on the number 10 which makes many calculations easier.
4. a) meter
b) kilogram
c) liter
d) celsius
5. a) Move the decimal point one place for each change in unit of measure.
b) $714.6 \mathrm{~cm}=\frac{714.6}{10^{5}} \mathrm{~km}=714.6 \times 10^{-5} \mathrm{~km}=0.007146 \mathrm{~km}$
c) $30.8 \mathrm{hm}=(30.8)(1000) \mathrm{dm}=30800 \mathrm{dm}$

6. a) 10,000 times greater
b) $1 \mathrm{~h}=10,000 \mathrm{~cm}$
c) $1 \mathrm{~cm}=0.0001 \mathrm{hm}$
7. a) 100 times greater
b) $1 \mathrm{dam}=100 \mathrm{dm}$
c) $1 \mathrm{dm}=0.01 \mathrm{dam}$
8. a) $0^{\circ} \mathrm{C}$
b) $100^{\circ} \mathrm{C}$
c) $37^{\circ} \mathrm{C}$
9. 2 pounds
10. 1 yard
11. 5 grams
12. $30^{\circ} \mathrm{C}$
13. $22^{\circ} \mathrm{C}$
14. 2 m .
15. kilo d
16. milli b
17. hector c
18. deka e
19. deci f
20. centi a
21. a) 10 liters
b) $1 / 100$ liter
c) $1 / 1000$ liter
d) $1 / 10$ liter
e) 1000 liters
f) 100 liters
22. a) 100 grams
b) 0.001 gram
c) 1000 grams
d) 0.01 gram
e) 10 grams
f) 0.1 gram
23. mg $1 / 1000 \mathrm{gm}$
24. cg $1 / 100 \mathrm{gm}$
25. $\mathrm{dg} \quad 1 / 10 \mathrm{gm}$
26. dag 10 gm
27. hg 100 gm
28. $\mathrm{kg} \quad 1000 \mathrm{gm}$
29. Max. load $320 \mathrm{~kg}=(320 \mathrm{x} 1,000) \mathrm{g}=320000 \mathrm{~g}$
30. $2 \mathrm{~m}=(2 \times 100) \mathrm{cm}=200 \mathrm{~cm}$
31. Max. load $320 \mathrm{~kg}=(320 \times 1,000,000) \mathrm{mg}$ $=320,000,000 \mathrm{mg}$
32. $35.7 \mathrm{hg}=(35.7 \times 100) \mathrm{g}=3,570 \mathrm{~g}$
33. $0.095 \mathrm{hl}=(0.095)(100)=9.5 \mathrm{l}$
34. $242.6 \mathrm{~cm}=(242.6)(0.0001) \mathrm{hm}=0.02426 \mathrm{hm}$
35. $4036 \mathrm{mg}=(4036)(0.00001) \mathrm{hg}=0.04036 \mathrm{hg}$
36. $1.34 \mathrm{hm}=(1.34)(10000) \mathrm{cm}=13,400 \mathrm{~cm}$
37. $92.5 \mathrm{~kg}=92,500 \mathrm{~g}$
38. $895 \mathrm{l}=895,000 \mathrm{ml}$
39. $240 \mathrm{~cm}=0.0240 \mathrm{hm}$
40. $40,302 \mathrm{ml}=4.0302 \mathrm{dal}$
41. $590 \mathrm{~cm}, 5.1 \mathrm{dam}, 0.47 \mathrm{~km}$
42. $2.42 \mathrm{~kg}, 2,400 \mathrm{~g}, 24,300 \mathrm{dg}$
43. $203,000 \mathrm{~mm}, 2.6 \mathrm{~km}, 52.6 \mathrm{hm}$
44. Jim, since a meter is longer than a yard.
45. The pump that removes 1 dal of water per min. 1 dekaliter > 1 deciliter
46. a) Perimeter $=21+2 \mathrm{w}=2(74)+2(99)=346 \mathrm{~cm}$ b) $346 \mathrm{~cm}=(346 \times 10) \mathrm{mm}=3,460 \mathrm{~mm}$
47. a) (4)(27 m) $=108 \mathrm{~m}$
b) $108 \mathrm{~m}=0.108 \mathrm{~km}$
c) $108 \mathrm{~m}=108000 \mathrm{~mm}$
48. $8(400) \mathrm{m}=3,200 \mathrm{~m} ; \quad 3,200 \mathrm{~m}=3.2 \mathrm{~km}$
49. a) $6(360) \mathrm{ml}=2,160 \mathrm{ml}$
b) $2160(1000)=2.16 \mathrm{l}$
c) $2.45 / 2.16=\$ 1.13$ per liter
50. a) $(6.9)(1000)=6,900 \mathrm{gm}$
b) $6,900 / 3=2300 \mathrm{gm} \quad 2300 \mathrm{gm}=23,000 \mathrm{dg}$
51. 7 dam $=(7 \times 10) \mathrm{m}=70 \mathrm{~m}$
52. $1.34 \mathrm{ml}=(1.34)(0.001) \mathrm{l}=0.00134 \mathrm{l}$
53. $14.27 \mathrm{kl}=(14.27)(1000) \mathrm{l}=14270 \mathrm{l}$
54. $0.000062 \mathrm{~kg}=62 \mathrm{mg}$
55. $7.3 \mathrm{~m}=7300 \mathrm{~mm}$
56. $24 \mathrm{dm}=0.0024 \mathrm{~km}$
57. $6,049 \mathrm{~mm}=6.049 \mathrm{~m}$
58. $0.034 \mathrm{ml}=0.00034 \mathrm{l}$
59. $680 \mathrm{~m}, 514 \mathrm{hm}, 62 \mathrm{~km}$
60. $420 \mathrm{cl}, 4.3 \mathrm{l}, 0.045 \mathrm{kl}$
61. $0.032 \mathrm{kl}, 460 \mathrm{dl}, 48,000 \mathrm{cl}$
62. 1 hectometer in 10 min . $1 \mathrm{hm}>1 \mathrm{dm}$
63. The side with the 15 lb . weight would go down. $5 \mathrm{~kg}=5(2.2 \mathrm{lbs})=.11 \mathrm{lbs}$.
64. a) $(2)(250)(7)=3,500 \mathrm{mg} /$ week
b) $3,500 \mathrm{mg} /$ week $=3.5 \mathrm{~g} /$ week
65. a) $1,200 \mathrm{~km} / 187 \mathrm{l}=6.417 \mathrm{~km} / \mathrm{l}$
b) $1,200,00 / 187 \mathrm{l}=6,417 \mathrm{~m} / \mathrm{l}$
66. $360 \mathrm{l}=\left(\begin{array}{ll}360 \mathrm{l}\end{array}\right)\left(\frac{1000 \mathrm{ml}}{11}\right)\left(\frac{1 \mathrm{~min}}{360 \mathrm{ml}}\right)$ $=83.333 \ldots \mathrm{~min}$. or $1 \mathrm{hr} 23.333 \ldots \mathrm{~min}$.
67. $(\$ 1.03)(37.71)=\$ 38.83$
68. $750 \mathrm{~km}=7500 \mathrm{hm} \quad 750-32.5=717.5 \mathrm{~km}$
69. 1 gigameter $=1000$ megameters
70. 1 megagram $=1 \times 10^{15}$ nanogms
71. $195 \mathrm{mg}=0.195 \mathrm{~g}$ $0.8 / 0.195=4.1$ cups
72. $2000 \mathrm{~mm}=2 \mathrm{~m}$
73. $0.02 \mathrm{kl}=2 \mathrm{dal}$
74. migradec decigram
75. terem meter
76. timenceret centimeter
77. 1 nanogram $=.001$ microgram
78. $0.8 / .027=29.6 \quad 30 \mathrm{eggs}$
79. $1.6 \mathrm{mg}=0.0016 \mathrm{~g}$ 0.8/0.016 = 500 $500(49)=24,500 \mathrm{~g}$
80. $0.00006 \mathrm{hg}=6 \mathrm{mg}$
81. $500 \mathrm{~cm}=5 \mathrm{~m}$
82. rteli liter
83. leritililm milliliter
84. greeed sulesic degree celsius
85. 1 teraliter $=1 \times 10^{24}$ picoliters
86. $0.8 / .288=2.777 \ldots \quad 2.8 \mathrm{cups}$
87. $5000 \mathrm{~cm}=5 \mathrm{dam}$
88. $3000 \mathrm{dm}=3 \mathrm{hm}$
89. magr gram
90. raktileed dekaliter
91. reketolim kilometer
92. togmeharc hectogram

Exercise Set 8.2

1. volume	2. length	3. area	4. length
5. volume	6. volume	7. volume	8. volume
9. area	10. volume	11. length	12. area
13. Answers will vary. (AWV)	14. Answers will vary.	15. Answers will vary.	16. Answers will vary.
17. Answers will vary.	18. Answers will vary.	19. 1 cubic decimeter	20. $1000 \mathrm{l}=1$ kiloliter
21. 1 cubic centimeter	22. square kilometers	23. area	24. 2.5 acres
25. centimeters	26. kilometers	27. cm or mm	28. centimeters
29. centimeters	30. millimeters	31. millimeters	32. meters
33. cm or mm	34. cm or mm	35. kilometers	36. cm or m
37. c 27 m	38. a $2 \mathrm{~cm} \times 3 \mathrm{~cm}$	39. c 5 km	40. a 160 cm
41. a 2 cm	42. b 8 cm	43. a 93 dam	44. c 375 m
45. mm AWV	46. cm AWV	47. cm or m AWV	48. mm or cm AWV
49. mm or cm AWV	50. mm AWV	51. cm, km	52. km
53. m	54. m	55. cm	56. km
57. sq. mm. or sq. cm.	58. hectares or sq. km.	59. sq. m.	60. sq. mm. or sq. cm.
61. sq. m. or hectares	62. sq. m. or hectares	63. sq. mm. or sq. cm.	64. sq. cm. or sq. m.
65. hectares or sq. km.	66. sq. m.	67. b 2.2 sq.m.	68. a 5 sq. cm.
69. a 800 sq. m.	70. b $1 / 8 \mathrm{ha}$	71. c 360 sq. cm.	72. a 2.5 sq. cm.
73. c 1200 sq. mm.	74. c $4900 \mathrm{sq} . \mathrm{km}$.	75. AWV	76. AWV
77. AWV	78. AWV	79. AWV	80. AWV
81. kiloliters	82. liters	83. milliliters	84. cubic centimeters
85. liters	86. cubic meters	87. cubic meters	88. cubic meters
89. liters	90. cubic meters	91. c $7780 \mathrm{cu} . \mathrm{cm}$.	92. a $0.5 \mathrm{cu} . \mathrm{m}$.
93. c 55 kl	94. b 355 ml	95. a $550 \mathrm{cu} . \mathrm{m}$.	96. b 120 ml
97. a $24 \mathrm{cu} . \mathrm{m}$.	98. b 14,000 cu. cm.	99. a) $144,000 \mathrm{cc}$	99. b) $152,561 \mathrm{cc}$
100. a) AWV b) (2)(1.5)	25) $=.75 \mathrm{~m}^{3}$	101. a) AWV b) $\mathrm{v} \approx(3.14)(0.25)^{2}(1)=0.20 \mathrm{~m}^{3}$ 103. a) AWV b) $\mathrm{A}=1 \mathrm{w}=(4)(2.2)=8.8 \mathrm{~cm}^{2}$ $\text { 105. }(82)(62)-(50)(42)=5084-2100=2984 \mathrm{~cm}^{2}$	
102. a) AWV b) $v=\pi$	$(3.14)(0.20)^{2}(2)=0.25 \mathrm{~m}^{3}$		
104. $\mathrm{A}=\pi \mathrm{r}^{2}=(3.14)(1$	$4.5216 \mathrm{~cm}^{2}$		
106. a) $(73)(53)=3869 \mathrm{~m}^{2}$		107. a) $(3.75)(1.4)=5.25 \mathrm{~km}$	
b) $3869-(70)(50)=3869-3500=869 \mathrm{~m}^{2}$		b) $(5.25)(100 \mathrm{ha})=525 \mathrm{ha}$	
108. a) $(22.5)(18.3)=411.75 \mathrm{~m}^{2}$		109. a) $(18)(10)(2.5)=450 \mathrm{~m}^{3}$	
b) $(411.75)(0.0001 \mathrm{ha})=0.041175 \mathrm{ha}$		b) $450 \mathrm{~m}^{3}=450 \mathrm{kl}$	

110. Total Surface Area of 4 walls $=2 \mathrm{lh}+2 \mathrm{wh}=2(20)(6)+2(12)(6)=384 \mathrm{~m}^{2}$ Liters for first coat $=\left(384 \mathrm{~m}^{2}\right)\left(\frac{11}{10 \mathrm{~m}^{2}}\right)=38.41 \quad$ Liters for second coat $=\left(384 \mathrm{~m}^{2}\right)\left(\frac{11}{15 \mathrm{~m}^{2}}\right)=25.61$
Total liters $=38.4+25.6=641 \quad$ Total cost $=(64)(\$ 4.75)=\$ 304$
111. a) $\mathrm{V}=\operatorname{lwh}=(70)(40)(20)=56,000 \mathrm{~cm}^{3} \quad$ b) $56,000 \mathrm{~cm}^{3}=56,000 \mathrm{ml} \quad$ c) c) $56000 \mathrm{ml}=\left(\frac{56000}{1000}\right) \mathrm{l}=56 \mathrm{l}$
112. $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} \approx(3.14)(4.0)^{2}(12.5)$ $628 \mathrm{~cm}^{3}$
113. $10^{3}=1000$ times larger
114. $1,000,000,000 \mathrm{~cm}^{2}$
115. $0.000,000,000,1 \mathrm{hm}^{2}$
116. $1 \mathrm{hm}^{3}=0.001 \mathrm{~km}^{3}$
117. $76 \mathrm{kl}=76 \mathrm{~m}^{3}$
118. $(600,000)(100)=$ $60,000,000 \mathrm{ml}=60,000,000 \mathrm{cc}$
119. $10^{2}=100$ times larger
120. $10^{3}=1000$ times larger
121. $100 \mathrm{hm}^{2}$
122. $10,000 \mathrm{~mm}^{2}$
123. $435 \mathrm{~cm}^{3}=435 \mathrm{ml}$
124. $4.2 \mathrm{l}=4,200 \mathrm{~cm}^{3}$
125. AWV
126. $100^{2}=10,000$ times larger
127. $1,000,000 \mathrm{~mm}^{2}$
128. $0.0001 \mathrm{~m}^{2}$
129. $1,000,000 \mathrm{~cm}^{3}$
130. $435 \mathrm{~cm}^{3}=0.435 \mathrm{l}$
131. $\left(6.0 \times 10^{4}\right)(10)=600,000 \mathrm{dl}$
132. AWV
133. $6.7 \mathrm{kl}=6.7 \mathrm{~m}^{3}=\left(6.7 \times 10^{3}\right) \mathrm{dm}^{3}=6,700 \mathrm{dm}^{3}$
134. a) $1 \mathrm{sq} \mathrm{mi}=\left(1 \mathrm{mi}^{2}\right)(5280)^{2} \frac{\mathrm{ft}^{2}}{\mathrm{mi}^{2}}=27,878,400 \mathrm{ft}^{2}$ $27,878,400 \mathrm{ft}^{2} \mathrm{x}(12)^{2} \frac{\mathrm{in}^{2}}{\mathrm{ft}^{2}}=4,014,489,600 \mathrm{in}^{2}$
135. 1.4 ha $=14,000 \mathrm{~m}^{2}=\left(14000 \times 100^{2}\right) \mathrm{cm}^{2}=$ $140,000,000 \mathrm{~cm}^{2}$
136. a) $\left(1 \mathrm{yd}^{3}\right)=(36 \mathrm{in})^{3}=46,656 \mathrm{in}^{3}$ $\left(46,656\right.$ in $\left.^{3}\right)(6)=279,936$ in 3
b) It is easier to convert in the metric system because it is a base 10 system.
b) It is easier to convert in the metric system because it is a base 10 system.
137. Answers will vary.
138. a) $1.5 \mathrm{~m}=150 \mathrm{~cm}$
$150-50=100 \mathrm{~cm}$.
b) $150 / 50=3 \quad 3$ times larger
c) No .
139. a) 5150.7 liters / day
b) 493.2 liters / day

Exercise Set 8.3

1. kilogram	2. 5 gm	3. 2 lb	4. metric tonne
5. approx. $35^{\circ} \mathrm{C}$ AWV	6. approx. $-15^{\circ} \mathrm{C}$	7. Answers will vary	
8. 8.a) Yes; mass is a measure of the amount of matter in an object. b) No; weight is a measure of gravitational force.			
9. kilograms or grams	10. kilograms	11. grams	12. kilograms or grams
13. grams	14. metric tonnes	15. metric tonnes	16. milligrams
17. grams	18. grams	19. b 2.26 kg	20. a 9.1 mg
21. b 1.4 kg	22. c 0.45 kg	23. b 2800 kg	24. c 1.6 t
25. AWV	26. AWV	27. AWV	28. AWV
29. c $0^{\circ} \mathrm{C}$	30. c $90^{\circ} \mathrm{C}$	31. b $27^{\circ} \mathrm{C}$	32. b Dress warmly and walk.

33. b $\quad 5^{\circ} \mathrm{C}$
34. c bathing suit
35. b $-7^{\circ} \mathrm{C}$
36. c $40^{\circ} \mathrm{C}$
37. $\mathrm{F}=\frac{9}{5}(30)+32=54+32=86^{\circ} \mathrm{F}$
38. $\mathrm{C}=-\frac{5}{9}(92-32)=\frac{5}{9}(60)=33.3^{\circ} \mathrm{C}$
39. $\mathrm{C}=\frac{5}{9}(180-32)=\frac{5}{9}(148)=82.2^{\circ} \mathrm{C}$
40. $\mathrm{F}=\frac{9}{5}(37)+32=66.6+32=98.6^{\circ} \mathrm{F}$
41. $\mathrm{C}=\frac{5}{9}(13-32)=\frac{5}{9}(-19)=-10.6^{\circ} \mathrm{C}$
42. $\mathrm{F}=\frac{9}{5}(45)+32=81+32=113^{\circ} \mathrm{F}$
43. $\mathrm{C}=\frac{5}{9}(-20-32)=\frac{5}{9}(-52)=-28.9^{\circ} \mathrm{C}$
44. $\mathrm{F}=\frac{9}{5}(22)+32=39.6+32=71.6^{\circ} \mathrm{F}$
45. $\mathrm{F}=\frac{9}{5}(35.1)+32=63.2+32=95.2^{\circ} \mathrm{F}$
46. low: $\mathrm{F}=\frac{9}{5}(17.8)+32=32+32=64.04^{\circ} \mathrm{F}$ high: $\mathrm{F}=\frac{9}{5}(23.5)+32=42.3+32=74.3^{\circ} \mathrm{F}$ Range $=74.30-64.04=10.26^{\circ} \mathrm{F}$
47. cost $=(6.2)(.70)=\$ 4.34$
48. total mass $=45 \mathrm{~g}+29 \mathrm{~g}+370 \mathrm{ml}=$ $45 \mathrm{~g}+29 \mathrm{~g}+370 \mathrm{~g}=444 \mathrm{~g}$
49. a) $V=1 w h, \quad l=16 \mathrm{~m}, \mathrm{w}=12 \mathrm{~m}, \mathrm{~h}=12 \mathrm{~m}$ $\mathrm{V}=(16)(12)(12)=2304 \mathrm{~m}^{3}$
b) $2304 \mathrm{~m}^{3}=2304 \mathrm{kl}$
c) $2304 \mathrm{kl}=2304 \mathrm{t}$
50. $4.2 \mathrm{~kg}=(4.2 \mathrm{~kg})\left(\frac{1 \mathrm{t}}{1000 \mathrm{~kg}}\right)=0.0042 \mathrm{t}$
51. $17.4 \mathrm{t}=(17.4 \mathrm{t})\left(\frac{1000 \mathrm{~kg}}{1 \mathrm{t}}\right)=17,400 \mathrm{~kg}=$ $17,400,000 \mathrm{~g}$
52. c $177^{\circ} \mathrm{C}$
53. c $1260^{\circ} \mathrm{C}$
54. $\mathrm{F}=\frac{9}{5}(-5)+32=-9+32=23^{\circ} \mathrm{F}$
55. $\mathrm{C}=\frac{5}{9}(-10-32)=\frac{5}{9}(-42)=-23.3^{\circ} \mathrm{C}$
56. $\mathrm{C}=\frac{5}{9}(98-32)=\frac{5}{9}(66)=36.7^{\circ} \mathrm{C}$
57. $\mathrm{F}=\frac{9}{5}(-4)+32=-7.2+32=24.8^{\mathrm{o}} \mathrm{F}$
58. $\mathrm{C}=\frac{5}{9}(75-32)=\frac{5}{9}(43)=23.9^{\circ} \mathrm{C}$
59. $\mathrm{F}=\frac{9}{5}(60)+32=108+32=140^{\circ} \mathrm{F}$
60. $\mathrm{C}=\frac{5}{9}(425-32)=\frac{5}{9}(393)=218.3^{\circ} \mathrm{C}$
61. $\mathrm{F}=\frac{9}{5}(15.6)+32=28.1+32=60.1^{\circ} \mathrm{F}$
62. $\mathrm{F}=\frac{9}{5}(32.3)+32=58.1+32=90.1^{\circ} \mathrm{F}$
63. low: $\mathrm{F}=\frac{9}{5}(22)+32=39.6+32=71.6^{\circ} \mathrm{F}$ high: $\mathrm{F}=\frac{9}{5}(34)+32=61.2+32=93.2^{\circ} \mathrm{F}$ Range $=93.2-71.6=21.6^{\circ} \mathrm{F}$
64. cost $=(1.3)(.80)=\$ 1.04$
65. fuel used $=(4320)(17)=73,440 \mathrm{~kg}$
$73,440 \mathrm{~kg} \sqcup \frac{1 \mathrm{t}}{1000 \mathrm{~kg}}=73.44 \mathrm{t}$
66. a) $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} \quad \mathrm{r}=50 \mathrm{~cm}=0.50 \mathrm{~m}$
$\mathrm{h}=150 \mathrm{~cm}=1.5 \mathrm{~m}$ $\mathrm{V}=(3.14)(0.50)^{2}(1.50)=1.1775 \mathrm{~m}^{3}$
b) $1.1775 \mathrm{~m}^{3}=1.1775 \mathrm{kl}=1177.5 \mathrm{l}$
c) $1177.5 \mathrm{l}=1177.5 \mathrm{~kg}$
67. $9.52 \mathrm{t}=(9.52 \mathrm{t})\left(\frac{1000 \mathrm{~kg}}{1 \mathrm{t}}\right)=9520 \mathrm{~kg}$
68. $1,460,000 \mathrm{mg}=1.46 \mathrm{~kg}=(1.46 \mathrm{~kg})\left(\frac{1 \mathrm{t}}{1000 \mathrm{~kg}}\right)=$ 0.00146 t
69. Yes, $78^{\circ} \mathrm{F}=\frac{5}{9}(78-32) \approx 25.6^{\circ} \mathrm{C}$, not $20^{\circ} \mathrm{C}$
70. $1.2 \mathrm{l}=1200 \mathrm{ml}$
a) 1200 gm
b) $1200 \mathrm{~cm}^{3}$
71.

$=1 \mathrm{yd}=3 \mathrm{ft}$ $\mathrm{w}=15 \mathrm{in}=1.25 \mathrm{ft}$ $\mathrm{h}=1.5 \mathrm{ft}$ $\mathrm{V}=(3)(1.25)(1.5)=5.625$ cubic feet
b) $\left(5.625 \mathrm{ft}^{3}\right)\left(62.5 \frac{\mathrm{lbs}}{\mathrm{ft}^{3}}\right)=351.6 \mathrm{lb}$
72. $-40^{\circ} \mathrm{C}=\frac{9}{5}(-40)+32=-72+32 \approx-40^{\circ} \mathrm{F}$ Maria's temperature is $38.2^{\circ} \mathrm{C}$ which is above normal. She should take an aspirin.
70. Normal body temperature is $98.6^{\circ} \mathrm{F}$ or $37^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& (3)(2)=6=4 x \\
& x=6 / 4=3 / 2=1.5 \quad 1.5 \mathrm{~kg} \\
& 1.5 \mathrm{~kg}=1500 \mathrm{~g}
\end{aligned}
$$

74. 3 kg

75. 3 kg
c) $(351.6 \mathrm{lb})\left(\frac{1 \mathrm{gal}}{8.3 \mathrm{lb}}\right)=42.4 \mathrm{gal}$
76. a) $-62.11^{\circ} \mathrm{C} \quad \mathrm{F}=\frac{9}{5}(-62.11)+32=-111.798+32=-79.798^{\circ} \mathrm{F}$
b) $2.5^{\circ} \mathrm{C} \quad \mathrm{F}=\frac{9}{5}(2.5)+32=4.5+32=36.5^{\circ} \mathrm{F}$
c) $918,000,000^{\circ} \mathrm{F}$

$$
\mathrm{C}=\frac{5}{9}(918,000,000-32)=\frac{5}{9}(917,999,968)=509,999,982.2 \approx 510,000,000^{\circ} \mathrm{C}
$$

CHAPTER THIRTEEN

STATISTICS

Exercise Set 13.1

1. Statistics is the art and science of gathering, analyzing, and making inferences (predictions) from numerical information obtained in an experiment.
2. Descriptive statistics is concerned with the collection, organization, and analysis of data.

Inferential statistics is concerned with making generalizations or predictions from the data collected.
3. Answers will vary.
4. Answers will vary.
5. Insurance companies, sports, airlines, stock market, medical profession
6. Probability is used to compute the chance of occurrence of a particular event when all possible outcomes are known. Statistics is used to draw conclusions about possible outcomes through observations of only a few particular events.
7. a) A population consists of all items or people of interest.
b) A sample is a subset of the population.
8. a) A systematic sample is a sample obtained by selecting every $\mathrm{n}^{\text {th }}$ item on a list or production line.
b) Use a random number table to select the first item, then select every $\mathrm{n}^{\text {th }}$ item after that.
9. a) A random sample is a sample drawn in such a way that each item in the population has an equal chance of being selected.
b) Number each item in the population. Write each number on a piece of paper and put each numbered piece of paper in a hat. Select pieces of paper from the hat and use the numbered items selected as your sample.
10. a) A cluster sample is a random selection of groups of units.
b) Divide a geographic area into sections. Randomly select sections or clusters. Either each member of the selected cluster is included in the sample or a random sample of the members of each selected cluster is used.
11. a) A stratified sample is one that includes items from each part (or strata) of the population.
b) First identify the strata you are interested in. Then select a random sample from each strata.
12. a) A convenience sample uses data that is easily or readily obtained.
b) For example, select the first 20 students entering a classroom.
13. a) An unbiased sample is one that is a small replica of the entire population with regard to income, education, gender, race, religion, political affiliation, age, etc.
14. a) No, the method used to obtain the sample is biased. In classes where students are seated alphabetically, brothers and sisters could be selected from different classes.
b) The mean will be greater. Families with many children are more likely to be selected.
15. Stratified sample
17. Cluster sample
19. Systematic sample
21. Convenience sample
23. Random sample
16. Systematic sample
18. Random sample
20. Stratified sample
22. Cluster sample
24. Convenience sample
25. a) - c) Answers will vary.
26. Biased because the subscribers of Consumer Reports are not necessarily representative of the entire population.
27. President; four out of 42 U.S. presidents have been assassinated (Lincoln, Garfield, McKinley, Kennedy).
28. Answers will vary.

Exercise Set 13.2

1. Answers will vary.
2. Yes, the sum of its parts is 142%. The sum of the parts of a circle graph should be 100%. When the total percent of responses is more than 100%, a circle graph is not an appropriate graph to display the data. A bar graph is more appropriate in this situation.
3. There may have been more car thefts in Baltimore, Maryland than Reno, Nevada because many more people live in Baltimore than in Reno. But, Reno may have more car thefts per capita than Baltimore.
4. Mama Mia's may have more empty spaces and more cars in the parking lot than Shanghi's due to a larger parking lot or because more people may walk to Mama Mia's than to Shanghi's.
5. Although the cookies are fat free, they still contain calories. Eating many of them may still cause you to gain weight.
6. The fact that Morgan's is the largest department store does not imply it is inexpensive.
7. More people drive on Saturday evening. Thus, one might expect more accidents.
8. Most driving is done close to home. Thus, one might expect more accidents close to home.
9. People with asthma may move to Arizona because of its climate. Therefore, more people with asthma may live in Arizona.
10. We don't know how many of each professor's students were surveyed. Perhaps more of Professor Malone's students than Professor Wagner's students were surveyed. Also, because more students prefer a teacher does not mean that he or she is a better teacher. For example, a particular teacher may be an easier grader and that may be why that teacher is preferred.
11. Although milk is less expensive at Star Food Markets than at Price Chopper Food Markets, other items may be more expensive at Star Food Markets.
12. Just because they are the most expensive does not mean they will last the longest.
13. There may be deep sections in the pond, so it may not be safe to go wading.
14. Men may drive more miles than women and men may drive in worse driving conditions (like snow).
15. Half the students in a population are expected to be below average.
16. Not all students who apply to a college will attend that college.
17. a)

Percent of National Expenditures Spent on Hospital Care

17. b)

Percent of National Expenditures Spent

 on Hospital Care
18. a)

U.S. Infant Mortality Rate per 1000 Births

18. b)

U.S. Infant Mortality Rate per 1000 Births

19. a)

19. b)

Median Age at First Marriage for Males

20. a)

Median Age at First Marriage for Females

20. b)

Median Age at First Marriage for Females

21. a)

b) Yes. The new graph gives the impression that the percents are closer together.
22. a) $\frac{394,000,000-275,000,000}{275,000,000}=\frac{119,000,000}{275,000,000}$
b) Radius $=\frac{1}{4}$ in. $=0.25 \mathrm{in}$.
$=0.43 \overline{27} \approx 43.3 \%$ increase
$A=\pi r^{2}=\pi(0.25)^{2}=0.0625 \pi=0.196349541$ $\approx 0.196 \mathrm{in}^{2}{ }^{2}$
c) Radius $=\frac{3}{8}$ in. $=0.375 \mathrm{in}$.
$A=\pi r^{2}=\pi(0.375)^{2}=0.140625 \pi=0.441786467$
d) $\frac{0.442-0.196}{0.196}=\frac{0.246}{0.196}=1.255102041$
$\approx 0.442 \mathrm{in}^{2}$
e) Yes, the percent increase in the size of the area from the first circle to the second is greater than the percent increase in population.
23. A decimal point

Exercise Set 13.3

1. A frequency distribution is a listing of observed values and the corresponding frequency of occurrence of each value.
2. Subtract a lower class limit from the next lower class limit or subtract an upper class limit from the next upper class limit.
3. a) 7
b) 16-22
c) 16
d) 22
4. a) 9
b) $21-29$
c) 21
d) 29
5. The modal class is the class with the greatest frequency.
6. The class mark is another name for the midpoint of a class. Add the lower and upper class limits and divide the sum by 2 .
7. a) Number of observations $=$ sum of frequencies $=18$
b) Width $=16-9=7$
c) $\frac{16+22}{2}=\frac{38}{2}=19$
d) The modal class is the class with the greatest frequency. Thus, the modal class is 16-22.
e) Since the class widths are 7, the next class would be 51-57.
8. a) Number of observations $=$ sum of frequencies $=25$
b) Width $=50-40=10$
c) $\frac{50+59}{2}=\frac{109}{2}=54.5$
d) 40-49 and 80-89 both contain 7 pieces of data. Thus, they are both modal classes.
e) Since the class widths are 10 , the next class would be $100-109$.

412 CHAPTER 13 Statistics
9.

Number Sold	Number of Days
0	3
1	8
2	3
3	5
4	2
5	7
6	2
7	3
8	4
9	1
10	2

10. Number

of Visits	Families
20	3
21	2
22	0
23	3
24	4
25	2
26	6
27	2
28	2
29	1
30	1
31	2
32	2
33	1
34	1

11.

I.Q.	Number of Students
$78-86$	2
$87-95$	15
$96-104$	18
$105-113$	7
$114-122$	6
$123-131$	1
$132-140$	1

12.

I.Q.	Number of Students
$80-88$	4
$89-97$	17
$98-106$	15
$107-115$	8
$116-124$	4
$125-133$	1
$134-142$	1

13.

I.Q.	Number of Students
$80-90$	8
$91-101$	22
$102-112$	11
$113-123$	7
$124-134$	1
$135-145$	1

14.

I.Q.	Number of Students
$80-92$	11
$93-105$	24
$106-118$	9
$119-131$	5
$132-144$	1

Placement test scores	Number of Students	Placement test scores	Number of Students	Placement test scores	Number of Students	Placement test scores	Number of Students
472-492	9	470-486	4	472-487	4	472-496	9
493-513	9	487-503	9	488-503	9	497-521	12
514-534	5	504-520	8	504-519	7	522-546	4
535-555	2	521-537	2	520-535	3	547-571	2
556-576	3	538-554	2	536-551	2	572-596	3
577-597	2	555-571	2	552-567	2		
		572-588	2	568-583	2		
		589-605	1	584-599	1		

19.

Circulation (thousands)	Number of Newspapers
$209-458$	36
$459-708$	8
$709-958$	3
$959-1208$	1
$1209-1458$	0
$1459-1708$	0
$1709-1958$	1
$1959-2208$	1

20. | Circulation
 (thousands) | Number of
 Newspapers |
| :---: | :---: |
| $205-414$ | 35 |
| $415-624$ | 8 |
| $625-834$ | 3 |
| $835-1044$ | 1 |
| $1045-1254$ | 1 |
| $1255-1464$ | 0 |
| $1465-1674$ | 0 |
| $1675-1884$ | 1 |
| $1885-2094$ | 0 |
| $2095-2304$ | 1 |
21. | Circulation
 (thousands) | Number of
 Newspapers |
| :---: | :---: |
| $209-408$ | 34 |
| $409-608$ | 9 |
| $609-808$ | 3 |
| $809-1008$ | 1 |
| $1009-1208$ | 1 |
| $1209-1408$ | 0 |
| $1409-1608$ | 0 |
| $1609-1808$ | 1 |
| $1809-2008$ | 0 |
| $2009-2208$ | 1 |
22. | Circulation
 (thousands) | Number of
 Newspapers |
| :---: | :---: |
| $209-358$ | 30 |
| $359-508$ | 9 |
| $509-658$ | 4 |
| $659-808$ | 3 |
| $809-958$ | 1 |
| $959-1108$ | 0 |
| $1109-1258$ | 1 |
| $1259-1408$ | 0 |
| $1409-1558$ | 0 |
| $1559-1708$ | 0 |
| $1709-1858$ | 1 |
| $1859-2008$ | 0 |
| $2009-2158$ | 1 |
23. | Population
 (millions) | Number of
 Counties |
| ---: | :---: |
| $1.0-2.5$ | 19 |
| $2.6-4.1$ | 4 |
| $4.2-5.7$ | 1 |
| $5.8-7.3$ | 0 |
| $7.4-8.9$ | 0 |
| $9.0-10.5$ | 1 |
| | |
| | |
24. | Population
 (millions) | Number of
 Counties |
| ---: | :---: |
| $1.4-2.9$ | 21 |
| $3.0-4.5$ | 2 |
| $4.6-6.1$ | 1 |
| $6.2-7.7$ | 0 |
| $7.8-9.3$ | 0 |
| $9.4-10.9$ | 1 |
| | |
| | |
| | |
25. | Price
 $(\$)$ | Number of
 States |
| :---: | :---: |
| $0.35-0.44$ | 6 |
| $0.45-0.54$ | 10 |
| $0.55-0.64$ | 11 |
| $0.65-0.74$ | 3 |
| $0.75-0.84$ | 2 |
| $0.85-0.94$ | 4 |
| $0.95-1.04$ | 1 |
| $1.05-1.14$ | 2 |
| $1.15-1.24$ | 2 |
| $1.25-1.34$ | 1 |
| $1.35-1.44$ | 0 |
| $1.45-1.54$ | 1 |
26.

Price $(\$)$	Number of States
$0.35-0.45$	7
$0.46-0.56$	13
$0.57-0.67$	8
$0.68-0.78$	2
$0.79-0.89$	5
$0.90-1.00$	2
$1.01-1.11$	2
$1.12-1.22$	1
$1.23-1.33$	2
$1.34-1.44$	0
$1.45-1.55$	1

29. | Price
 $(\$)$ | Number of
 States |
| :---: | :---: |
| $0.35-0.54$ | 16 |
| $0.55-0.74$ | 14 |
| $0.75-0.94$ | 6 |
| $0.95-1.14$ | 3 |
| $1.15-1.34$ | 3 |
| $1.35-1.54$ | 1 |
| | |
| | |
| | |
30. | Price
 $(\$)$ | Number of
 States |
| :---: | :---: |
| $0.35-0.48$ | 12 |
| $0.49-0.62$ | 12 |
| $0.63-0.76$ | 6 |
| $0.77-0.90$ | 6 |
| $0.91-1.04$ | 1 |
| $1.05-1.18$ | 3 |
| $1.19-1.32$ | 2 |
| $1.33-1.46$ | 1 |
| | |
| | |
31. February, since it has the fewest number of days
32. a) Did You Know?, page 762: There are 6 F's.
b) Answers will vary.

Exercise Set 13.4

1. Answers will vary. 2. a) Observed values
2. Answers will vary.
b) Frequency
3. a) Answers will vary.
b)

Children in Selected Families

6. a) Answers will vary.
b)

Number of Sick Days Taken Last Year

7. a) Answers will vary.
b) Observed Values

ved Values	Frequency
45	3
46	0
47	1
48	0
49	1
50	1
51	2

9. Occasionally: $0.59(500)=295$

Most Times: $0.25(500)=125$
Every Time: $0.07(500)=35$
Never: $0.09(500)=45$
11. Travelocity: $\frac{175}{500}=0.35=35 \%$

Priceline: $\frac{85}{500}=0.17=17 \%$
Expedia: $\frac{125}{500}=0.25=25 \%$
8.

Observed Values	Frequency
16	1
17	2
18	1
19	1
20	0
21	1
22	2
23	1
24	1
25	2

10. Retail: $0.518(700)=362.6 \approx 363$

Services: $0.259(700)=181.3 \approx 181$
Other: $0.223(700)=156.1 \approx 156$
13. a) and b)

Height of Male High School Seniors

14. a) and b)

15. a) and b)

DVDs Owned

16. a) and b)

Annual Salaries of Management at the X-Chek Corp.

17. a) The total number of people surveyed:
$2+7+8+5+4+3+1=30$
b) Four people purchased four soft drinks.
c) The modal class is 2 because more people purchased 2 soft drinks than any other number of soft drinks. 38
d) Two people bought 0 soft drinks 0

Seven people bought 1 soft drink 7
Eight people bought 2 soft drinks 16

e) | Number of Soft Drinks Purchased | Number of People |
| :---: | :---: |
| | 0 |
| 2 | |
| | 1 |
| 7 | 7 |
| ber of soft drinks. | 2 |
| 0 | 4 |
| 7 | 5 |
| 7 | 6 |

Five people bought 3 soft drinks
15
Four people bought 4 soft drinks 16
Three people bought 5 soft drinks 15
One person bought 6 soft drinks $\quad 6$
Total number of soft drinks purchased: 75
18) a) The total number of students surveyed: $2+4+6+8+7+3+1=31$
b) Since there are 51 units between class midpoints, each class width must also be 51 units.

650 is the midpoint of the first class and there must be 25 units below it and 25 units above it.
Therefore, the first class is 625-675. The second class will be 676-726.
c) Six
d) The class mark of the modal class is $\$ 803$ because more students had an annual car insurance premium of \$778-\$828 than any other annual car insurance premium.
e)

Price	Number of Students
$625-675$	2
$676-726$	4
$727-777$	6
$778-828$	8
$829-879$	7
$880-930$	3
$931-981$	0
$982-1032$	1

19. a) 7 calls
b) Adding the number of calls responded to in $6,5,4$, or 3 minutes gives: $4+7+3+2=16$ calls
c) The total number of calls surveyed: $2+3+7+4+3+8+6+3=36$
d) Response Time (min.)

Number of Calls
2
3
7
4
3
8
6
3

e)

Response Time for Selected Emergency Calls in Phoenix

20. a) 8 families
b) At least six times means six or more times. Adding the families that went $6,7,8,9$, or 10 times gives $11+9+3+0+1=24$ families
c) Total number of families surveyed: $4+2+8+8+6+11+9+3+0+1=52$ families
d)

Number of Visits	Number of Families
1	4
2	2
3	8
4	8
5	6
6	11
7	9
8	3
9	0
10	1

e)
Number of Visits Selected Families Have Made to the San Diego Zoo

21.

22.

23. $1 \mid 5$ represents 15

1	0	5	7		
2	4	4			
3	6	0	3		
4	8	5	2	5	8
5	3	4			
6	0	2	0		

24. $1 \mid 2$ represents 12

0	3	8	2	5				
1	2	8	2	5	9	3	7	6
2	5	1	7	2	3			
3	3	4						
4	1							

25. a) Salaries (in \$1000) \quad Number of Companies

27	1
28	7
29	4
30	3
31	2
32	3
33	3
34	2

b) and c)

Starting Salaries for 25 Different Social Workers

d) $2 \mid 3$ represents 23

2	7	8	8	8	8	8	8	8	9	9	9	9	
3	0	0	0	1	1	2	2	2	3	3	3	4	4

26. a)

Age	Number of People
$20-24$	9
$25-29$	6
$30-34$	10
$35-39$	6
$40-44$	5
$45-49$	4

b) and c)

Age of 40 People Attending a Broadway Show

d) $2 \mid 3$ represents 23

2	0	1	1	2	3	3	3	4	4	5	5	6	7	8	8	
3	0	0	0	1	1	2	3	4	4	4	5	5	5	7	8	9
4	0	0	0	2	4	5	5	6	7							

28. a)

Age	Number of Ambassadors
$40-44$	9
$45-49$	6
$50-54$	10
$55-59$	6
$60-64$	5
$65-69$	4

b) and c)

Ages of U.S. Ambassadors

29. a) - e) Answers will vary.
30. a) - e) Answers will vary.

Exercise Set 13.5

1. Ranked data are data listed from the lowest value to the highest value or from the highest value to the lowest value.
2. The mean is the balancing point of a set of data. It is the sum of the data divided by the number of pieces of data.
3. The median is the value in the middle of a set of ranked data. To find the median, rank the data and select the value in the middle.
4. The midrange is the value half way between the lowest and highest values. To find the midrange, add the lowest and highest values and divide the sum by 2.
5. The mode is the most common piece of data. The piece of data that occurs most frequently is the mode.
6. The mode may be used when you are primarily interested in the most popular value, or the one that occurs most often, for example, when buying clothing for a store.
7. The median should be used when there are some values that differ greatly from the rest of the values in the set, for example, salaries.
8. The midrange should be used when the item being studied is constantly fluctuating, for example, daily temperature.
9. The mean is used when each piece of data is to be considered and "weighed" equally, for example, weights of adult males.
10. a) \bar{x}
b) μ
$\begin{array}{lccl}\text { mean } & \text { median } & \text { mode } & \text { midrange } \\ \text { 11. } & \frac{99}{9}=11 & 10 & 10\end{array}$
11. $\frac{550}{10}=55 \quad \frac{15+15}{2}=15$
12. $\frac{485}{7} \approx 69.3$

72
15

$$
\frac{9+370}{2}=189.5
$$

$$
\frac{42+90}{2}=66
$$

14. $\frac{58}{7} \approx 8.3$

8
8

$$
\frac{5+12}{2}=8.5
$$

15. $\frac{64}{8}=8 \quad \frac{7+9}{2}=8$
none $\quad \frac{1+15}{2}=8$
16. $\frac{510}{7} \approx 72.9$

60
none $\quad \frac{30+140}{2}=85$

	mean	median	mode	midrange
17.	$\frac{118}{9} \approx 13.1$	11	1	$\frac{1+36}{2}=18.5$
18.	$\frac{92}{14} \approx 6.6$	$\frac{4+4}{2}=4$	1 and 4	$\frac{1+21}{2}=11$
19.	$\frac{95}{8} \approx 11.9$	$\frac{12+13}{2}=12.5$	13	$\frac{6+17}{2}=11.5$
20.	$\frac{60}{6}=10$	$\frac{5+15}{2}=10$	5 and 15	$\frac{5+15}{2}=10$
21.	$\frac{65}{10}=6.5$	$\frac{5+5}{2}=5$	3 and 5	$\frac{2+19}{2}=10.5$
22.	$\frac{\$ 469}{7}=\$ 67$	\$59	none	$\frac{\$ 25+\$ 140}{2}=\$ 82.50$
23. a)	$\frac{34}{7} \approx 4.9$	5	5	$\frac{1+11}{2}=6$
b)	$\frac{37}{7} \approx 5.3$	5	5	$\frac{1+11}{2}=6$
c)	Only the mean			
d)	$\frac{33}{7} \approx 4.7$	5	5	$\frac{1+10}{2}=5.5$

The mean and the midrange
24. Answers will vary. The National Center for Health uses the median for averages in this exercise.
25. A 79 mean average on 10 quizzes gives a total of 790 points. An 80 mean average on 10 quizzes requires a total of 800 points. Thus, Jim missed a B by 10 points not 1 point.
26. a) Mean: $\frac{\$ 361,000}{10}=\$ 36,100$
b) Median: $\frac{\$ 27,000+\$ 28,000}{2}=\$ 27,500$
c) Mode: $\$ 26,000$
d) Midrange: $\frac{\$ 24,000+\$ 81,000}{2}=\$ 52,500$
e) The median, since it is lower
f) The mean, since it is higher
27. a) Mean: $\frac{87.7}{10} \approx 8.8$ million
b) Median: $\frac{7.8+8.2}{2}=8.0$ million
c) Mode: none
d) Midrange: $\frac{4.6+19.7}{2} \approx 12.2$ million
28. a) Mean: $\frac{\$ 14,810}{12} \approx \$ 1234.17$
b) Median: $\frac{\$ 1230+\$ 1250}{2}=\$ 1240$
c) Mode: $\$ 850$
d) Midrange: $\frac{\$ 850+\$ 1900}{2}=\$ 1375$
29. a) Mean: $\frac{\$ 55.9}{11} \approx \$ 5.1$ billion
c) Mode: $\$ 2.3$ billion and $\$ 1.5$ billion
e) Answers will vary.
30. Let $x=$ the sum of his scores
$\frac{x}{5}=76$
$x=76(5)=380$
b) Median: $\$ 2.3$ billion
d) Midrange: $\frac{\$ 1.5+\$ 26.5}{2}=\$ 14$ billion
31. Let $x=$ the sum of his scores
$\frac{x}{6}=85$
$x=85(6)=510$
32. One example is $1,1,2,5,6$. Mode $=1$, Median $=2$, Mean $=\frac{15}{5}=3$
33. One example is $72,73,74,76,77,78$.

Mean: $\frac{450}{6}=75$, Median: $\frac{74+76}{2}=75$, Midrange: $\frac{72+78}{2}=75$
34. One example is $80,82,84,88,94,100$.

Mean: $\frac{528}{6}=88$
35. a) Yes
b) Cannot be found since we do not know the middle two numbers in the ranked list
c) Cannot be found without knowing all of the numbers
d) Yes
e) Mean: $\frac{24,000}{120}=200$; Midrange: $\frac{50+500}{2}=275$
36. A total of $80 \times 5=400$ points are needed for a grade of B. Jorge earned $73+69+85+80=307$ points on his first four exams. Thus, he needs $400-307=93$ or higher to get a B .
37. a) For a mean average of 60 on 7 exams, she must have a total of $60 \times 7=420$ points. Sheryl presently has $49+72+80+60+57+69=387$ points. Thus, to pass the course, her last exam must be $420-387=33$ or greater. b) A C average requires a total of $70 \times 7=490$ points. Sheryl has 387 . Therefore, she would need 490-387 = 103 on her last exam. If the maximum score she can receive is 100 , she cannot obtain a C.
c) For a mean average of 60 on 6 exams, she must have a total of $60 \times 6=360$ points. If the lowest score on an exam she has already taken is dropped, she will have a total of $72+80+60+57+69=338$ points. Thus, to pass the course, her last exam must be $360-338=22$ or greater.
d) For a mean average of 70 on 6 exams, she must have a total of $70 \times 6=420$ points. If the lowest score on an exam she has already taken is dropped, she will have a total of 338 points. Thus, to obtain a C, her last exam must be $420-338=82$ or greater.
38. The mode is the only measure which must be an actual piece of data since it is the most frequently occurring piece of data.
39. One example is $1,2,3,3,4,5$ changed to $1,2,3,4,4,5$.

First set of data: Mean: $\frac{18}{6}=3$, Median: $\frac{3+3}{2}=3$, Mode: 3
Second set of data: Mean: $\frac{19}{6}=3.1 \overline{6}$, Median: $\frac{3+4}{2}=3.5$, Mode: 4
40. The mean changes from $\frac{9}{6}=1.5$ to $\frac{10}{6}=1 . \overline{6}$. The mode changes from no mode to a mode of 1 .

The midrange changes from $\frac{3}{2}=1.5$ to $\frac{4}{2}=2$.
41. No, by changing only one piece of the six pieces of data you cannot alter both the median and the midrange.
42. Let $x=$ sum of the values
$\frac{x}{12}=85.20$
$x=85.20(12)=\$ 1022.40$
$\$ 1022.40-\$ 47+\$ 74=\$ 1049.40$
$\frac{1049.40}{12}=\$ 87.45$ is the correct mean
43. The data must be arranged in either ascending or descending order.
44. She scored above approximately 73% of all the students who took the test.
45. He is taller than approximately 35% of all kindergarten children.
46. About 25% of the workers earn $\$ 20,750$ or less.
47. a) $Q_{2}=$ Median $=\$ 430$
b) $\$ 290, \$ 300, \$ 300, \$ 330, \$ 350, \$ 350, \$ 350, \$ 350, \$ 350, \$ 400$
$Q_{1}=$ Median of the data listed below $=\frac{\$ 350+\$ 350}{2}=\$ 350$
c) $\$ 450, \$ 450, \$ 500, \$ 600, \$ 650, \$ 650, \$ 700, \$ 700, \$ 750, \$ 800$
$Q_{3}=$ Median of the data listed above $=\frac{\$ 650+\$ 650}{2}=\$ 650$
48. a) $Q_{2}=$ Median $=\frac{27+28}{2}=27.5 ф$
b) $17 \phi, 17 \phi, 20 \phi, 21 \phi, 24 \phi, 25 \phi, 27 \phi, 27 \phi, 27 \phi, 27 \phi$
$Q_{1}=$ Median of the data listed below $=\frac{24+25}{2}=24.5 \varnothing$
c) $28 \phi, 28 \phi, 28 \phi, 28 \phi, 31 \phi, 33 \phi, 38 \phi, 74 \phi, 80 ф, 81 \phi$
$Q_{3}=$ Median of the data listed above $=\frac{31+33}{2}=32 \phi$
49. Second quartile, median
50. a) No, the percentile only indicated relative position of the score and not the value of it.
b) Yes, a higher percentile indicates a higher relative position in the respective population.

Thus, Kendra was in a better relative position.
51. a) $\$ 490$
b) $\$ 500$
c) 25%
d) 25%
e) 17%
f) $100 \times \$ 510=\$ 51,000$
52. a) $\frac{56}{7}=8, \frac{26}{4}=6.5, \frac{10}{5}=2, \frac{50}{5}=10, \frac{396}{6}=66$
b) $\frac{92.5}{5}=18.5$
c) $\frac{538}{27} \approx 19.926$
d) No

424 CHAPTER 13 Statistics

53. a) Ruth: $\approx 0.290,0.359,0.301,0.272,0.315$

Mantle: $\approx 0.300,0.365,0.304,0.275,0.321$
b) Mantle's is greater in every case.
c) Ruth: $\frac{593}{1878} \approx 0.316$; Mantle: $\frac{760}{2440} \approx 0.311$; Ruth's is greater.
d) Answers will vary.
e) Ruth: $\frac{1.537}{5} \approx 0.307$; Mantle: $\frac{1.565}{5}=0.313$; Mantle's is greater.
f) and g) Answers will vary.
54. a) $\frac{707,000}{25}=\$ 28,280$
b) $\$ 21,000$
c) $\$ 17,000$
d) $\frac{17,000+100,000}{2}=\$ 58,500$
e) The median because there are pieces of data that are much greater and much smaller than the rest of the data.
55. $\Sigma x w=84(0.40)+94(0.60)=33.6+56.4=90$
$\Sigma w=0.40+0.60=1.00$
weighted average $=\frac{\Sigma x w}{\Sigma w}=\frac{90}{1.00}=90$
56. $\Sigma x w=3.0(4)+4.0(3)+2.0(3)+4.0(3)=12+12+6+12=42$
$\Sigma w=4+3+3+3=13$
weighted average $=\frac{\Sigma x w}{\Sigma w}=\frac{42}{13}=3.230769231 \approx 3.23$
57. a) - c) Answers will vary.
58. a) Answers will vary. One example is $2,3,5,7,7$.
b) Answers will vary. The answers for the example given in part a) above are as follows:

Mean: $\frac{24}{5}=4.8$, Median $=5$, Mode $=7$

Exercise Set 13.6

1. To find the range, subtract the lowest value in the set of data from the highest value.
2. The standard deviation measures the spread of the data about the mean.
3. Answers will vary.
4. Zero since the mean is the same value as all of the data values. The spread about the mean is 0 .
5. It may be important to determine the consistency of the data.
6. s
7. σ
8. Where one expects to find a large variability such as test scores
9. In manufacturing or anywhere else where a minimum variability is desired
10. The first set of data will have the greater standard deviation because the scores have a greater spread about the mean.
11. They would be the same since the spread of data about each mean is the same.
12. The sum of the values in the (Data -Mean$)^{2}$ column will always be greater than or equal to 0 .
13. a) The grades will be centered about the same number since the mean, 75.2 , is the same for both classes.
b) The spread of the data about the mean is greater for the evening class since the standard deviation is greater for the evening class.
14. Answers will vary.
15. Range $=13-2=11$
$\bar{x}=\frac{35}{5}=7$

$\frac{x}{7}$		$\frac{x-\bar{x}}{0}$	
	0		$(x-\bar{x})^{2}$
5		0	
2			4
8			25
13	$\underline{6}$		$\underline{36}$
	0		66

$$
\frac{66}{4}=16.5, s=\sqrt{16.5} \approx 4.06
$$

17. Range $=126-120=6$
$\bar{x}=\frac{861}{7}=123$

$\frac{x}{2}$		$\frac{x-\bar{x}}{3}$	
120	-3		$(x-\bar{x})^{2}$
121	-2		
122	-1		1
123	0	0	
124	1	1	
125	2	4	
126	$\underline{3}$	$\underline{9}$	
	0	28	

$$
\frac{28}{6} \approx 4.67, s=\sqrt{4.67} \approx 2.16
$$

16. Range $=16-8=8$

$$
\bar{x}=\frac{66}{6}=11
$$

$$
\begin{array}{rrrc}
\frac{x}{10} & & \frac{x-\bar{x}}{-1} & \\
& -1 & & (x-\bar{x})^{2} \\
10 & -1 & & 1 \\
14 & 3 & & 9 \\
16 & 5 & & 25 \\
8 & -3 & 9 \\
8 & -3 & \underline{9} \\
& 0 & 54
\end{array}
$$

$\frac{54}{5}=10.8, s=\sqrt{10.8} \approx 3.29$
18. Range $=12-0=12$
$\bar{x}=\frac{70}{10}=7$

$\frac{x}{x}$		$\frac{x-\bar{x}}{3}$	
7	-4		$(x-\bar{x})^{2}$
7	0	0	
8	1	1	
12	5	25	
0	-7	49	
9	2	4	
11	4		16
12	5	25	
6	-1	1	
2	-5	$\underline{25}$	
	0	162	

$\frac{162}{9}=18, s=\sqrt{18} \approx 4.24$
19. Range $=15-4=11$
$\bar{x}=\frac{60}{6}=10$

$\frac{x}{4}$		$\frac{x-\bar{x}}{2}$	
	-6		$(x-\bar{x})^{2}$
8	-2		4
9	-1		1
11	1	1	
13	3	9	
15	$\underline{5}$	$\underline{25}$	
	0		76

$$
\frac{76}{5}=15.2, \quad s=\sqrt{15.2} \approx 3.90
$$

21. Range $=12-7=5$

$$
\bar{x}=\frac{63}{7}=9
$$

$\frac{x}{7}$	$\frac{x-\bar{x}}{-2}$	
9	0	$(x-\bar{x})^{2}$
7	-2	0
9	0	0
9	0	0
10	1	1
12	$\underline{3}$	$\underline{9}$
	0	18

$$
\frac{18}{6}=3, s=\sqrt{3} \approx 1.73
$$

23. Range $=50-18=\$ 32$

\[

\]

20. Range $=9-9=0$

Since all pieces of data are identical,
the standard deviation is 0 .
22. Range $=64-40=24$
$\bar{x}=\frac{424}{8}=53$
$\frac{x}{52} \quad \frac{x-\bar{x}}{-1} \quad \frac{(x-\bar{x})^{2}}{1}$
$\begin{array}{lrl}50 & -3 & 9 \\ 54 & 1 & 1\end{array}$
$\begin{array}{rrr}54 & 1 & 1 \\ 59 & 6 & 36\end{array}$
$40-13 \quad 169$
$43 \quad-10 \quad 100$
$\begin{array}{rrr}64 & 11 & 121 \\ 62 & \underline{9} & \underline{81} \\ & 0 & 518\end{array}$
$\frac{518}{7}=74, s=\sqrt{74} \approx 8.60$
24. Range $=28-1=27$
$\bar{x}=\frac{84}{7}=12$

$\frac{x}{10}$		$\frac{x-\bar{x}}{}$	
10	-2		$(x-\bar{x})^{2}$
23	11		121
28	16		256
4	-8		64
1	-11		121
6	-6	36	
12	$\underline{0}$		$\underline{0}$
	0	602	

$\frac{602}{6} \approx 100.33, s=\sqrt{100.33} \approx 10.02$
25. Range $=200-50=\$ 150$
$\bar{x}=\frac{1100}{10}=\$ 110$

$\frac{x}{50}$	$\frac{x-\bar{x}}{-60}$	$\frac{(x-\bar{x})^{2}}{3600}$
120	10	100
130	20	400
60	-50	2500
55	-55	3025
75	-35	1225
200	90	8100
110	0	0
125	15	225
175	$\frac{65}{0}$	$\underline{4225}$
$\frac{23,400}{9}=2600, s=\sqrt{2600} \approx \$ 50.99$		

26. Range $=300-35=\$ 265$
$\bar{x}=\frac{980}{7}=\$ 140$

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
60	-80	6400
100	-40	1600
85	-55	3025
35	-105	11,025
250	110	12,100
150	10	100
300	$\underline{160}$	25,600
	0	59,850

$\frac{59,850}{6}=9975, s=\sqrt{9975} \approx \$ 99.87$
27. a) Range $=68-5=\$ 63$

$$
\bar{x}=\frac{204}{6}=\$ 34
$$

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
32	-2	4
60	26	676
14	-20	400
25	-9	81
5	-29	841
68	34	$\underline{1156}$
	0	3158

$$
\frac{3158}{5}=631.6, s=\sqrt{631.6} \approx \$ 25.13
$$

b) New data: 42, 70, 24, 35, 15, 78

The range and standard deviation will be the same. If each piece of data is increased by the same number, the range and standard deviation will remain the same.
c) Range $=78-15=\$ 63$

$$
\bar{x}=\frac{264}{6}=\$ 44
$$

$\frac{x}{42}$	$\frac{x-\bar{x}}{-2}$	$\frac{(x-\bar{x})^{2}}{4}$
70	26	676
24	-20	400
35	-9	81
15	-29	841
78	$\underline{34}$	$\underline{1156}$
	0	3158
$\frac{3158}{5}=631.6, s=\sqrt{631.6} \approx \$ 25.13$		

The answers remain the same.
28. a) - c) Answers will vary.
d) If each piece of data is increased, or decreased, by n, the mean is increased, or decreased, by n. The standard deviation remains the same.
e) The mean of the first set of numbers is $\frac{63}{7}=9$. The mean of the second set is $\frac{4193}{7}=599$.

$\underline{\text { Standard deviation of first set }}$

$\frac{x}{6}$	$\frac{x-\bar{x}}{-3}$	$\frac{(x-\bar{x})^{2}}{9}$
7	-2	4
8	-1	1
9	0	0
10	1	1
11	2	4
12	$\frac{3}{0}$	$\frac{9}{9}$
	0	
$\frac{28}{6}=4.67, s=\sqrt{4.67} \approx 2.16$		

Standard deviation of second set

$\frac{x}{5}$	$\frac{x-\bar{x}}{-3}$		$(x-\bar{x})^{2}$
596	-3	9	
597	-2		
598	-1		1
599	0	0	
600	1	1	
601	2		4
602	$\underline{3}$		9
	0	28	

$$
\frac{28}{6}=4.67, s=\sqrt{4.67} \approx 2.16
$$

29. a) - c) Answers will vary.
d) If each number in a distribution is multiplied by n, both the mean and standard deviation of the new distribution will be n times that of the original distribution.
e) The mean of the second set is $4 \times 5=20$, and the standard deviation of the second set is $2 \times 5=10$.
30. a) Same b) More
31. a) The standard deviation increases. There is a greater spread from the mean as they get older.
b) $\approx 133 \mathrm{lb}$
c) $\frac{175-90}{4}=21.25 \approx 21 \mathrm{lb}$
d) The mean weight is about 100 pounds and the normal range is about 60 to 140 pounds.
e) The mean height is about 62 inches and the normal range is about 53 to 68 inches.
f) $100 \%-95 \%=5 \%$
32. a) and b) Answers will vary.
c) Baseball: $\frac{172}{10}=\$ 17.20$ million

NFL: $\frac{1216}{10}=\$ 12.16$ million
32. d) Baseball Mean $\approx \$ 17.2$ million

NFL Mean $\approx \$ 12.2$ million

Baseball

$\frac{x}{22}$	$\frac{x-\bar{x}}{4.8}$	
20	2.8	$(x-\bar{x})^{2}$
18.7	1.5	23.04
17.2	0	2.25
16	-1.2	0
15.7	-1.5	2.25
15.7	-1.5	2.25
15.6	-1.6	2.56
15.6	-1.6	2.56
15.5	-1.7	$\underline{2.89}$
		47.08
$\frac{47.08}{9} \approx 5.23$,	$s=\sqrt{5.23} \approx \$ 2.29$ million	

33. a)

East Number of oil changes made	
$15-20$	Number of days
$21-26$	2
$27-32$	2
$33-38$	5
$39-44$	7
$45-50$	1
$51-56$	1
$57-62$	2
$63-68$	1

b)
)

NFL

West

Number of oil changes made	Number of days
$15-20$	0
$21-26$	0
$27-32$	6
$33-38$	9
$39-44$	4
$45-50$	6
$51-56$	0
$57-62$	0
$63-68$	0

33. f)

f)	East	
x	$x-\bar{x}$	$(x-\bar{x})^{2}$
33	-5	25
30	-8	64
25	-13	169
27	-11	121
40	2	4
44	6	36
49	11	121
52	14	196
42	4	16
59	21	441
19	-19	361
22	-16	256
57	19	361
67	29	841
15	-23	529
41	3	9
43	5	25
27	-11	121
42	4	16
43	5	25
37	-1	1
38	0	0
31	-7	49
32	-6	36
35	-3	$\underline{9}$
	0	3832
$\frac{3832}{24}$	159.67,	$=\sqrt{159.67}$

West

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
38	0	0
38	0	0
37	-1	1
36	-2	4
30	-8	64
45	7	49
28	-10	100
47	9	81
30	-8	64
46	8	64
38	0	0
39	1	1
40	2	4
34	-4	16
31	-7	49
45	7	49
29	-9	81
38	0	0
38	0	0
39	1	1
37	-1	1
42	4	16
46	8	64
31	-7	49
48	$\underline{10}$	100
	0	858
$\frac{858}{24}=35.75, s=\sqrt{35.75} \approx 5.98$		

34. Answers will vary.
35. $6,6,6,6,6$

Exercise Set 13.7

1. A rectangular distribution is one where all the values have the same frequency.
2. A \mathbf{J}-shaped distribution is one where the frequency is either constantly increasing or constantly decreasing.
3. A bimodal distribution is one where two nonadjacent values occur more frequently than any other values in a set of data.
4. A distribution skewed to the right is one that has "a tail" on its right.
5. A distribution skewed to the left is one that has "a tail" on its left.
6. A normal distribution is a bell-shaped distribution.
7. a) B
b) C
c) A
8. a) Yes, 36
b) B, since curve B is more spread out it has the higher standard deviation.
9. The distribution of outcomes from the roll of a die
10. Skewed left - a listing of test scores where most of the students did well and a few did poorly; Skewed right - number of cans of soda consumed in a day where most people consumed a few cans and a few people consumed many cans
11. J shaped right - consumer price index; \mathbf{J} shaped left - value of the dollar
12. The distribution of heights of an equal number of males and females
13. Normal
14. Rectangular
15. Skewed right
16. Bimodal
17. The mode is the lowest value, the median is greater than the mode, and the mean is greater than the median. The greatest frequency appears on the left side of the curve. Since the mode is the value with the greatest frequency, the mode would appear on the left side of the curve (where the lowest values are). Every value in the set of data is considered in determining the mean. The values on the far right of the curve would increase the value of the mean. Thus, the value of the mean would be farther to the right than the mode. The median would be between the mode and the mean.
18. The mode is the highest value. The median is lower than the mode. The mean is the lowest value.
19. Answers will vary.
20. Answers will vary.
21. In a normal distribution the mean, median, and the mode all have the same value.
22. A z-score measures how far, in terms of standard deviation, a given score is from the mean.
23. A z-score will be negative when the piece of data is less than the mean.
24. Subtract the mean from the value of the piece of data and divide the difference by the standard deviation.
25. 0
26. a) $\approx 68 \%$
b) $\approx 95 \%$
27. 0.500
28. $0.477+0.341=0.818$
29. 0.500
30. $0.455-0.364=0.091$
31. $0.500-0.466=0.034$
32. $0.500+0.383=0.883$
33. $0.500-0.463=0.037$
34. $0.500+0.463=0.963$
35. $0.500-0.481=0.019$
36. $0.500+0.475=0.975$
37. $0.500-0.447=0.053$
38. $0.500-0.316=0.184$
39. $\quad 0.261=26.1 \%$
40. $0.294-0.060=0.234=23.4 \%$
41. $0.410+0.488=0.898=89.8 \%$
42. $0.500-0.471=0.029=2.9 \%$
43. $0.500+0.471=0.971=97.1 \%$
44. $0.500-0.496=0.004=0.4 \%$
45. $0.500+0.475=0.975=97.5 \%$
46. $0.484-0.264=0.22=22.0 \%$
47. $0.466-0.437=0.029=2.9 \%$
48. $0.484+0.500=0.984=98.4 \%$
49. a) Jake, Sarah, and Carol scored above the mean because their z-scores are positive.
b) Marie and Kevin scored at the mean because their z -scores are zero.
c) Omar, Justin, and Kim scored below the mean because their z-scores are negative.
50. a) Sarah had the highest score because she had the highest z-score.
b) Omar had the lowest score because he had the lowest z-score.
51. $0.500=50 \%$
52. $z_{14}=\frac{14-18}{4}=\frac{-4}{4}=-1.00$
$z_{26}=\frac{26-18}{4}=\frac{8}{4}=2.00$
$0.341+0.477=0.818=81.8 \%$
53. $z_{23}=\frac{23-18}{4}=\frac{5}{4}=1.25$
$0.500-0.394=0.106=10.6 \%$
54. 10.6% of college students work at least 23 hours per week. (See Exercise 53.)
$0.106(500)=53$ students
55. $z_{1750}=\frac{1750-1600}{100}=\frac{150}{100}=1.50$
$0.500-0.433=0.067=6.7 \%$
56. $z_{1400}=\frac{1400-1600}{100}=\frac{-200}{100}=-2.00$
$0.500-0.477=0.023=2.3 \%$
57. $\quad z_{1480}=\frac{1480-1600}{100}=\frac{-120}{100}=-1.20$
$0.385+0.500=0.885=88.5 \%$
58. $z_{7.0}=\frac{7.0-7.6}{0.4}=\frac{-0.6}{0.4}=-1.50$
$0.500-0.433=0.067=6.7 \%$
59. The 8 -oz cup will overflow when the machine dispenses more than 8 oz of coffee.
$z_{8.0}=\frac{8.0-7.6}{0.4}=\frac{0.4}{0.4}=1.00$
$0.500-0.341=0.159=15.9 \%$
60. $z_{197}=\frac{197-206}{12}=\frac{-9}{12}=-0.75$
$z_{215}=\frac{215-206}{12}=\frac{9}{12}=0.75$
$0.273+0.273=0.546=54.6 \%$
61. $\quad z_{224}=\frac{224-206}{12}=\frac{18}{12}=1.50$
$0.500-0.433=0.067=6.7 \%$
62. 6.7% of females have a cholesterol level greater than 224. (See Exercise 68.)
$0.067(200)=13.4 \approx 13$ women
63. $z_{1650}=\frac{1650-1600}{100}=\frac{50}{100}=0.50$
$0.500+0.192=0.692=69.2 \%$
64. $z_{1650}=0.50$ and $z_{1750}=1.50$
(See Exercises 55 and 56.)
$0.433-0.192=0.241=24.1 \%$
65. $z_{1500}=\frac{1500-1600}{100}=\frac{-100}{100}=-1.00$
$z_{1625}=\frac{1625-1600}{100}=\frac{25}{100}=0.25$
$0.341=0.099=0.44=44.0 \%$
66. $z_{7.4}=\frac{7.4-7.6}{0.4}=\frac{-0.2}{0.4}=-0.50$
$z_{7.7}=\frac{7.7-7.6}{0.4}=\frac{0.1}{0.4}=0.25$
$0.192+0.099=0.291=29.1 \%$
67. $z_{7.7}=0.25$ (See Exercise 61.)
$0.500+0.099=0.599=59.9 \%$
68. $0.500=50.0 \%$
69. $z_{191}=\frac{191-206}{12}=\frac{-15}{12}=-1.25$
$0.500-0.394=0.106=10.6 \%$
70. 10.6% of females have a cholesterol level less than 191. (See Exercise 67.)
$0.106(200)=21.2 \approx 21$ women
71. $z_{30,750}=\frac{30,750-35,000}{2500}=\frac{-4250}{2500}=-1.70$
$z_{38,300}=\frac{38,300-35,000}{2500}=\frac{3300}{2500}=1.32$
$0.455+0.407=0.862=86.2 \%$
72. At least 39,000 miles means 39,000 miles or more.
$z_{39,000}=\frac{39,000-35,000}{2500}=\frac{4000}{2500}=1.60$
$0.500-0.445=0.055=5.5 \%$
73. 5.5% of tires will last at least 39,000 miles.
(See Exercise 72.)
$0.055(200,000)=11,000$ tires
74. $z_{2.5}=\frac{2.5-3.7}{1.2}=\frac{-1.2}{1.2}=-1.00$
$z_{4.3}=\frac{4.3-3.7}{1.2}=\frac{0.6}{1.2}=0.50$
$0.341+0.192=0.533=53.3 \%$
75. $\quad z_{6.7}=2.50$ (See Exercise 77.)
$0.500+0.494=0.994=99.4 \%$
76. 53.3% of the children are between 2.5 and 4.3 years. (See Exercise 76.)
$0.533(120)=63.96 \approx 64$ children
77. A motor will require repair or replacement if it breaks down in less than 8 years.
$z_{8}=\frac{8-10.2}{1.8}=\frac{-2.2}{1.8} \approx-1.22$
$0.500-0.389=0.111=11.1 \%$
78. The tires that last less than 30,750 miles will fail to live up to the guarantee.
$z_{30,750}=-1.70$ (See Exercise 71.)
$0.500-0.455=0.045=4.5 \%$
79. $z_{3.1}=\frac{3.1-3.7}{1.2}=\frac{-0.6}{1.2}=-0.50$
$0.192+0.500=0.692=69.2 \%$
80. $z_{6.7}=\frac{6.7-3.7}{1.2}=\frac{3.0}{1.2}=2.50$
$0.500-0.494=0.006=0.6 \%$
81. 69.2% of the children are older than 3.1 years.
(See Exercise 75.)
$0.692(120)=83.04 \approx 83$ children
82. Customers will be able to claim a refund if they lose less than 5 lb .
$z_{5}=\frac{5-6.7}{0.81}=\frac{-1.7}{0.81}=-2.10$
$0.500-0.482=0.018=1.8 \%$
83. The standard deviation is too large. There is too much variation.
84. A z-score of 1.8 or higher is required for an A . The area from the mean to 1.8 is 0.464 .

Thus, $0.500-0.464=0.036=3.6 \%$ will receive an A .
A z-score between 1.8 and 1.1 is required for a B. The areas from the mean to these z-scores are 0.464 and 0.364 , respectively. Thus, $0.464-0.364=0.100=10.0 \%$ will receive a B.

A z-score between 1.1 and -1.2 is required for a C . The areas from the mean to these z -scores are 0.364 and 0.385 , respectively. Thus, $0.364+0.385=0.749=74.9 \%$ will receive a C.

A z-score between -1.2 and -1.9 is required for a D . The areas from the mean to these z -scores are 0.385 and 0.471 , respectively. Thus, $0.471-0.385=0.086=8.6 \%$ will receive a D.

A z -score of -1.9 or lower is required for an F . The area from the mean to -1.9 is 0.471 .
Thus, $0.500-0.471=0.029=2.9 \%$ will receive an F.

434 CHAPTER 13 Statistics

85. a) Katie: $z_{28,408}=\frac{28,408-23,200}{2170}=\frac{5208}{2170}=2.4$

Stella: $z_{29,510}=\frac{29,510-25,600}{2300}=\frac{3910}{2300}=1.7$
b) Katie. Her z-score is higher than Stella's z-score. This means her sales are further above the mean than Stella's sales.
86. a) $\bar{x}=\frac{160}{30}=5 . \overline{3} \approx 5.33$
b)

x	$x-\bar{x}$	$(x-\bar{x})^{2}$	x	$x-\bar{x}$	$(x-\bar{x})^{2}$	x	$x-\bar{x}$	$(x-\bar{x})^{2}$
1	-4.33	18.75	4	-1.33	1.77	7	1.67	2.79
1	-4.33	18.75	4	-1.33	1.77	8	2.67	7.13
1	-4.33	18.75	4	-1.33	1.77	8	2.67	7.13
1	-4.33	18.75	5	-0.33	0.11	8	2.67	7.13
2	-3.33	11.09	6	0.67	0.45	8	2.67	7.13
2	-3.33	11.09	6	0.67	0.45	9	3.67	13.47
2	-3.33	11.09	6	0.67	0.45	9	3.67	13.47
2	-3.33	11.09	7	1.67	2.79	9	3.67	13.47
3	-2.33	5.43	7	1.67	2.79	10	4.67	21.81
3	-2.33	5.43	7	1.67	2.79	10	4.67	$\underline{21.81}$
								260.70

$$
\text { c) } \begin{array}{ll}
\bar{x}+1.1 \mathrm{~s}=5.33+1.1(3)=8.63 & \bar{x}-1.1 \mathrm{~s}=5.33-1.1(3)=2.03 \\
\bar{x}+1.5 \mathrm{~s}=5.33+1.5(3)=9.83 & \bar{x}-1.15 \mathrm{~s}=5.33-1.5(3)=0.83 \\
\bar{x}+2.0 \mathrm{~s}=5.33+2.0(3)=11.33 & \bar{x}-2.0 \mathrm{~s}=5.33-2.0(3)=-0.67 \\
\bar{x}+2.5 \mathrm{~s}=5.33+2.5(3)=12.83 & \bar{x}-2.5 \mathrm{~s}=5.33-2.5(3)=-2.17
\end{array}
$$

d) Between -1.1 s and 1.1 s or between scores of 2.03 and 8.63 , there are 17 scores.
$\frac{17}{30}=0.5 \overline{6} \approx 56.7 \%$
Between -1.5 s and 1.5 s , or between scores of 0.83 and 9.83 , there are 28 scores.
$\frac{28}{30}=0.9 \overline{3} \approx 93.3 \%$
Between -2.0 s and 2.0 s , or between scores of -0.67 and 11.33 , there are 30 scores.
$\frac{30}{30}=1=100 \%$
Between -2.5 s and 2.5 s , or between scores of -2.17 and 12.83 , there are 30 scores.
$\frac{30}{30}=1=100 \%$

e)	$\mathrm{Kinimum} \%$	$\mathrm{~K}=1.1$	$\mathrm{~K}=1.5$	$\mathrm{~K}=2.0$
(For any distribution)	17.4%	55.6%	75%	$\mathrm{~K}=2.5$
Normal distribution	72.8%	86.6%	95.4%	99.8%
Given distribution	56.7%	93.3%	100%	100%

f) The percent between -1.1 s and 1.1 s is too low to be considered a normal distribution.
87. Answers will vary.
88. Using Table 13.7, the answer is 1.96 .
89. Using Table 13.7, the answer is -1.18 .
90. Answers will vary.
91. $\frac{0.77}{2}=0.385$

Using the table in Section 13.7, an area of 0.385 has a z -score of 1.20.

$$
\begin{aligned}
z & =\frac{x-\bar{x}}{s} \\
1.20 & =\frac{14.4-12}{s} \\
1.20 & =\frac{2.4}{s} \\
\frac{1.20 s}{1.20} & =\frac{2.4}{1.20} \\
s & =2
\end{aligned}
$$

Exercise Set 13.8

1. The correlation coefficient measures the strength of the relationship between the quantities.
2. The purpose of linear regression is to determine the linear relationship between two variables.
3. 1
4. -1
5. 0
6. A negative correlation indicates that as one quantity increases, the other quantity decreases.
7. A positive correlation indicates that as one quantity increases, the other quantity increases.
8. The line of best fit represents the line such that the sum of the vertical distances between the points and the line is a minimum.
9. The level of significance is used to identify the cutoff between results attributed to chance and results attributed to an actual relationship between the two variables.
10. A scatter diagram is a plot of data points.
11. No correlation
12. Strong positive
13. Yes, $|0.76|>0.684$
14. Yes, $|-0.73|>0.707$
15. No, $|-0.23|<0.254$
16. No, $|0.82|<0.917$
17. Weak negative
18. Strong negative
19. No, $|0.43|<0.537$
20. No, $|-0.49|<0.602$
21. No, $|-0.49|<0.590$
22. Yes, $|0.96|>0.959$

Note: The answers in the remainder of this section may differ slightly from your answers, depending upon how your answers are rounded and which calculator you used.
23. a)

b) | x | y | x^{2} | y^{2} | $x y$ |
| ---: | ---: | ---: | ---: | ---: |
| 4 | 6 | 16 | 36 | 24 |
| 5 | 9 | 25 | 81 | 45 |
| 6 | 11 | 36 | 121 | 66 |
| 7 | 11 | 49 | 121 | 77 |
| | $\underline{10}$ | $\underline{13}$ | $\underline{100}$ | $\underline{169}$ |
| 32 | $\frac{130}{342}$ | 226 | 528 | 37 |

$$
r=\frac{5(342)-32(50)}{\sqrt{5(226)-1024} \sqrt{5(528)-2500}}=\frac{110}{\sqrt{106} \sqrt{140}} \approx 0.903
$$

c) Yes, $|0.903|>0.878$
d) No, $|0.903|<0.959$
24. a)

b) $\begin{array}{llllll}x & y & x^{2} & y^{2} & x y\end{array}$

c) Yes, $|-0.891|>0.878$
d) No, $|-0.891|<0.959$
25. a)

b) | x | y | x^{2} | y^{2} | $x y$ |
| ---: | ---: | ---: | ---: | ---: |
| 23 | 29 | 529 | 841 | 667 |
| 35 | 37 | 1225 | 1369 | 1295 |
| 31 | 26 | 961 | 676 | 806 |
| 43 | 20 | 1849 | 400 | 860 |
| $\underline{49}$ | $\underline{39}$ | $\underline{2401}$ | $\underline{1521}$ | $\underline{1911}$ |
| 181 | 151 | 6965 | 4807 | 5539 |

$$
r=\frac{5(5539)-181(151)}{\sqrt{5(6965)-32,761} \sqrt{5(4807)-22,801}}=\frac{364}{\sqrt{2064} \sqrt{1234}} \approx 0.228
$$

c) No, $|0.228|<0.878$
d) No, $|0.228|<0.959$
26. a)

b) | x | y | x^{2} | y^{2} | $x y$ |
| :---: | :---: | ---: | :---: | ---: |
| 90 | 3 | 8100 | 9 | 270 |
| 80 | 4 | 6400 | 16 | 320 |
| 60 | 6 | 3600 | 36 | 360 |
| 60 | 5 | 3600 | 25 | 300 |
| 40 | 5 | 1600 | 25 | 200 |
| $\underline{20}$ | $\underline{7}$ | $\frac{400}{700}$ | $\underline{49}$ | $\underline{140}$ |
| 350 | 30 | 23,700 | 160 | 1590 |

$r=\frac{6(1590)-350(30)}{\sqrt{6(23,700)-122,500} \sqrt{6(160)-900}}=\frac{-960}{\sqrt{19,700} \sqrt{60}} \approx-0.883$
c) Yes, $|-0.883|>0.811$
27. a)

b) | x | y | x^{2} | y^{2} | $x y$ |
| ---: | ---: | ---: | ---: | ---: |
| 5.3 | 10.3 | 28.09 | 106.09 | 54.59 |
| 4.7 | 9.6 | 22.09 | 92.16 | 45.12 |
| 8.4 | 12.5 | 70.56 | 156.25 | 105 |
| 12.7 | 16.2 | 161.29 | 262.44 | 205.74 |
| | $\underline{4.9}$ | $\underline{9.8}$ | $\underline{24.01}$ | $\underline{96.04}$ |$\underline{\underline{48.02}}$

$$
r=\frac{5(458.47)-36(58.4)}{\sqrt{5(306.04)-1296} \sqrt{5(712.98)-3410.56}}=\frac{189.95}{\sqrt{234.2} \sqrt{154.34}} \approx 0.999
$$

c) Yes, $|0.999|>0.878$
d) Yes, $|0.999|>0.959$
28. a)

b)

c) No, $|0.732|<0.811$
d) No, $|0.732|<0.917$
29. a)

b) | x | y | x^{2} | y^{2} | $x y$ |
| ---: | ---: | ---: | ---: | ---: |
| 100 | 2 | 10,000 | 4 | 200 |
| 80 | 3 | 6400 | 9 | 240 |
| 60 | 5 | 3600 | 25 | 300 |
| 60 | 6 | 3600 | 36 | 360 |
| 40 | 6 | 1600 | 36 | 240 |
| $\underline{20}$ | $\underline{8}$ | $\underline{400}$ | $\underline{64}$ | $\underline{160}$ |
| 360 | 30 | 25,600 | 174 | 1500 |

$$
r=\frac{6(1500)-360(30)}{\sqrt{6(25,600)-129,600} \sqrt{6(174)-900}}=\frac{-1800}{\sqrt{24,000} \sqrt{144}} \approx-0.968
$$

c) Yes, $|-0.968|>0.811$
d) Yes, $|-0.968|>0.917$
30. a)

b) $\begin{array}{lllll}x & y & x^{2} & y^{2} & x y\end{array}$

c) Yes, $|1.00|>0.754$
d) Yes, $|1.00|>0.875$
31. From \# 23: $m=\frac{5(342)-32(50)}{5(226)-1024}=\frac{110}{106} \approx 1.0$

$$
b=\frac{50-\frac{110}{106}(32)}{5} \approx 3.4, \quad y=1.0 x+3.4
$$

32. From \# 24: $m=\frac{5(535)-56(50)}{5(706)-3136}=\frac{-125}{394} \approx-0.3$

$$
b=\frac{50-\frac{-125}{394}(56)}{5} \approx 13.6, \quad y=-0.3 x+13.6
$$

33. From \# 25: $\quad m=\frac{5(5539)-181(151)}{5(6965)-32,761}=\frac{364}{2064} \approx 0.2$

$$
b=\frac{151-\frac{364}{2064}(181)}{5} \approx 23.8, \quad y=0.2 x+23.8
$$

34. From \# 26: $\quad m=\frac{6(1590)-350(30)}{6(23,700)-122,500}=\frac{-960}{19,700} \approx-0.05$

$$
b=\frac{30-\frac{-960}{19,700}(350)}{6} \approx 7.8, \quad y=-0.05 x+7.8
$$

35. From \# 27: $m=\frac{5(458.47)-36(58.4)}{5(306.04)-1296}=\frac{189.95}{234.2} \approx 0.8$

$$
b=\frac{58.4-\frac{189.95}{234.2}(36)}{5} \approx 5.8, \quad y=0.8 x+5.8
$$

36. From \# 28: $\quad m=\frac{6(9189)-215(197)}{6(13,645)-46,225}=\frac{12,779}{35,645} \approx 0.4$

$$
b=\frac{197-\frac{12,779}{35,645}(215)}{6} \approx 20.0, \quad y=0.4 x+20.0
$$

37. From \# 29: $\quad m=\frac{6(1500)-360(30)}{6(25,600)-129,600}=\frac{-1800}{24,000} \approx-0.1$

$$
b=\frac{30-\frac{-1800}{24,000}(360)}{6} \approx 9.5, \quad y=-0.1 x+9.5
$$

38. From \# 30: $\quad m=\frac{7(25,150)-390(390)}{7(25,150)-152,100}=\frac{23,950}{23,950}=1.0$

$$
b=\frac{390-1(390)}{7}=0, \quad y=1.0 x
$$

39. a

b) Yes, $|0.960|>0.811$
c) $m=\frac{6(1693)-70(121)}{6(1030)-4900}=\frac{1688}{1280} \approx 1.3, \quad b=\frac{121-\frac{1688}{1280}(70)}{6} \approx 4.8, \quad y=1.3 x+4.8$
40. a) $\begin{array}{ccccc}x & y & x^{2} & y^{2} & x y\end{array}$

321	13	103,041	169	4173
380	23	144,400	529	8740
350	16	122,500	256	5600
358	14	128,164	196	5012
378	19	142,884	361	7182
$\underline{391}$	$\underline{19}$	$\underline{152,881}$	$\underline{361}$	$\underline{7429}$
2178	104	793,870	1872	38,136

$$
r=\frac{6(38,136)-2178(104)}{\sqrt{6(793,870)-4,743,684} \sqrt{6(1872)-10,816}}=\frac{2304}{\sqrt{19,536} \sqrt{416}} \approx 0.808
$$

b) No, $|0.808|<0.811$
c) $m=\frac{6(38,136)-2178(104)}{6(793,870)-4,743,684}=\frac{2304}{19,536} \approx 0.1, \quad b=\frac{104-\frac{2304}{19,536}(2178)}{6} \approx-25.5, \quad y=0.1 x-25.5$
41. a) $x \quad y \quad x^{2} \quad y^{2} \quad x y$

x	y	x^{2}	y^{2}	$x y$
20	40	400	1600	800
40	45	1600	2025	1800
50	70	2500	4900	3500
60	76	3600	5776	4560
80	92	6400	8464	7360
$\frac{100}{350}$	$\underline{95}$	$\underline{10,000}$	$\underline{9025}$	$\underline{9500}$
18,500	31,790	27,520		

$$
r=\frac{6(27,520)-350(418)}{\sqrt{6(24,500)-122,500} \sqrt{6(31,790)-174,724}}=\frac{18,820}{\sqrt{24,500} \sqrt{16,016}} \approx 0.950
$$

b) Yes, $|0.950|>0.917$
c) $m=\frac{6(27,520)-350(418)}{6(24,500)-122,500}=\frac{18,820}{24,500} \approx 0.8, \quad b=\frac{418-\frac{18,820}{24,500}(350)}{6} \approx 24.9, \quad y=0.8 x+24.9$
42. a) $\begin{array}{llllll}x & y & x^{2} & y^{2} & x y\end{array}$

765	119	585,225	14,161	91,035
926	127	857,476	16,129	117,602
1145	150	$1,311,025$	22,500	171,750
842	119	708,964	14,161	100,198
1485	153	$2,205,225$	23,409	227,205
$\underline{1702}$	$\underline{156}$	$\underline{2,896,804}$	$\underline{24,336}$	$\underline{265,512}$
8865	824	$8,564,719$	114,696	973,302

$$
r=\frac{6(973,302)-6865(824)}{\sqrt{6(8,564,719)-47,128,225} \sqrt{6(114,696)-678,976}}=\frac{183,052}{\sqrt{4,260,089} \sqrt{9200}} \approx 0.925
$$

b) Yes, $|0.925|>0.811$
c) $m=\frac{6(973,302)-6865(824)}{6(8,564,719)-47,128,225}=\frac{183,052}{4,260,089} \approx 0.04, \quad b=\frac{824-\frac{183,052}{4,260,089}(6865)}{6} \approx 88.2, \quad y=0.04 x+88.2$
d) $y=0.04(1500)+88.2=148.2 \approx 148$ mountain lions
43. a

b) Yes, $|-0.782|>0.707$
c) $m=\frac{8(1269)-129(85)}{8(2221)-16,641}=\frac{-813}{1127} \approx-0.7, \quad b=\frac{85-\frac{-813}{1127}(129)}{8} \approx 22.3, \quad y=-0.7 x+22.3$
d) $y=-0.7(14)+22.3=12.5$ muggings
44. a)
b) Yes, $|0.998|>0.811$
c) $m=\frac{6(239.6)-15(94)}{6(55)-225}=\frac{27.6}{105} \approx 0.3, \quad b=\frac{94-\frac{27.6}{105}(15)}{6} \approx 15.0, \quad y=0.3 x+15.0$
d) $y=0.3(8)+15.0=17.4$ million students

444 CHAPTER 13 Statistics

45. a) | | x | y | x^{2} | y^{2} | $x y$ |
| ---: | ---: | ---: | ---: | ---: | :---: |
| | 89 | 22 | 7921 | 484 | 1958 |
| | 110 | 28 | 12,100 | 784 | 3080 |
| 125 | 30 | 15,625 | 900 | 3750 | |
| | 92 | 26 | 8464 | 676 | 2392 |
| 100 | 22 | 10,000 | 484 | 2200 | |
| 95 | 21 | 9025 | 441 | 1995 | |
| | 108 | 28 | 11,664 | 784 | 3024 |
| | $\underline{97}$ | $\underline{\underline{25}}$ | $\underline{9409}$ | $\underline{625}$ | $\underline{2425}$ |
| | 816 | 202 | 84,208 | 5178 | 20,824 |

$$
r=\frac{8(20,824)-816(202)}{\sqrt{8(84,208)-665,856} \sqrt{8(5178)-40,804}}=\frac{1760}{\sqrt{7808} \sqrt{620}} \approx 0.800
$$

b) Yes, $|0.800|>0.707$
c) $m=\frac{8(20,824)-816(202)}{8(84,208)-665,856}=\frac{1760}{7808} \approx 0.2, \quad b=\frac{202-\frac{1760}{7808}(816)}{8} \approx 2.3, \quad y=0.2 x+2.3$
d) $y=0.2(115)+2.3=25.3 \approx 25$ units
46. a)

x	y	x^{2}	y^{2}	$x y$
4	100	16	10,000	400
4	67	16	4489	268
3	80	9	6400	240
2	120	4	14,400	240
1	40	1	1600	40
3	90	9	8100	270
4	60	16	3600	240
2	60	4	3600	120
4	90	16	8100	360
$\frac{1}{1}$	$\underline{100}$	$\frac{1}{807}$	$\frac{10,000}{70,289}$	$\frac{100}{2278}$
$r=\frac{10(2278)-28(807)}{\sqrt{10(92)-784} \sqrt{10(70,289)-651,249}}=\frac{184}{\sqrt{136} \sqrt{51,641}} \approx 0.069$				

b) No, $|0.069|<0.632$
c) $m=\frac{10(2278)-28(807)}{10(92)-784}=\frac{184}{136} \approx 1.4, \quad b=\frac{807-\frac{184}{136}(28)}{10} \approx 76.9, \quad y=1.4 x+76.9$
47. a

b) Yes, $|-0.977|>0.917$
c) $m=\frac{6(914.7)-21(326)}{6(91)-441}=\frac{-1357.8}{105} \approx-12.9, \quad b=\frac{326-\frac{-1357.8}{105}(21)}{6} \approx 99.6, \quad y=-12.9 x+99.6$
d) $y=-12.9(4.5)+99.6=41.55 \approx 41.6 \%$
48. Answers will vary.
49. a) and b) Answers will vary.
c)

$$
\begin{aligned}
& \text { d) } \begin{array}{rcrcr}
x & y & x^{2} & y^{2} & x y \\
60 & 140 & 3600 & 19,600 & 8400 \\
65 & 164 & 4225 & 26,896 & 10,660 \\
70 & 190 & 4900 & 36,100 & 13,300 \\
75 & 218 & 5625 & 47,524 & 16,350 \\
\underline{80} & \underline{247} & \underline{6400} & \underline{61,009} & \underline{19,760} \\
350 & 959 & 24,750 & 191,129 & 68,470
\end{array} \\
& r=\frac{5(68,470)-350(959)}{\sqrt{5(24,750)-122,500} \sqrt{5(191,129)-919,681}}=\frac{6700}{\sqrt{1250} \sqrt{35,964}} \approx 0.999
\end{aligned}
$$

446 CHAPTER 13 Statistics

49. e) $\begin{array}{rrrrrr}x & y & x^{2} & y^{2} & x y \\ 60 & 280 & 3600 & 78,400 & 16,800 \\ 65 & 410 & 4225 & 168,100 & 26,650 \\ 70 & 475 & 4900 & 225,625 & 33,250 \\ & 75 & 545 & 5625 & 297,025 & 40,875 \\ & \underline{80} & \underline{618} & \underline{6400} & \underline{381,924} & \underline{49,440} \\ 350 & 2328 & 24,750 & 1,151,074 & 167,015\end{array}$

$$
r=\frac{5(167,015)-350(2328)}{\sqrt{5(24,750)-122,500} \sqrt{5(1,151,074)-5,419,584}}=\frac{20,275}{\sqrt{1250} \sqrt{335,786}} \approx 0.990
$$

f) Answers will vary.
g) $m=\frac{5(68,470)-350(959)}{5(24,750)-122,500}=\frac{6700}{1250} \approx 5.4, \quad b=\frac{959-\frac{6700}{1250}(350)}{5}=-183.4, \quad y=5.4 x-183.4$
h) $m=\frac{5(167,015)-350(2328)}{5(24,750)-122,500}=\frac{20,275}{1250} \approx 16.2, \quad b=\frac{2328-\frac{20,275}{1250}(350)}{5}=-669.8, \quad y=16.2 x-669.8$
i) Dry: $y=5.4(77)-183.4=232.4 \mathrm{ft}$

Wet: $y=16.2(77)-669.8=577.6 \mathrm{ft}$
50. a) The correlation coefficient will not change because $\sum x y=\sum y x,\left(\sum x\right)\left(\sum y\right)=\left(\sum y\right)\left(\sum x\right)$, and the square roots in the denominator will be the same.
b) Answers will vary.
51. Answers will vary.
52. Answers will vary.

53. a) | x | y | x^{2} | y^{2} | $x y$ | |
| ---: | ---: | ---: | ---: | ---: | :---: |
| 1996 | 157 | $3,984,016$ | 24,649 | 313,372 | |
| 1997 | 161 | $3,988,009$ | 25,921 | 321,517 | |
| 1998 | 163 | $3,992,004$ | 26,569 | 325,674 | |
| 1999 | 167 | $3,996,001$ | 27,889 | 333,833 | |
| 2000 | 172 | $4,000,000$ | 29,584 | 344,000 | |
| $\underline{2001}$ | $\underline{177}$ | $\underline{4,004,001}$ | $\underline{31,329}$ | $\frac{354,177}{1,95,941}$ | $1,992,573$ |
| 11,991 | 997 | $23,964,031$ | 165,941 | | |
| $r=\frac{6(1,992,573)-11,991(997)}{\sqrt{6(23,964,031)-143,784,081} \sqrt{6(165,941)-994,009}}=\frac{411}{\sqrt{105} \sqrt{1637}} \approx 0.991$ | | | | | |

b) Should be the same.
53. c

The values are the same.
54. a) $S S(x y)=\sum x y-\frac{\left(\sum x\right)\left(\sum y\right)}{n}=2335-\frac{108(147)}{8}=350.5$

$$
\begin{aligned}
& S S(x)=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}=1866-\frac{11,664}{8}=408 \\
& S S(y)=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}=3055-\frac{21,609}{8}=353.875 \\
& r=\frac{350.5}{\sqrt{408} \sqrt{353.875}} \approx 0.92
\end{aligned}
$$

b) Should be the same.

Review Exercises

1. a) A population consists of all items or people of interest.
b) A sample is a subset of the population.
2. A random sample is one where every item in the population has the same chance of being selected.
3. The candy bars may have lots of calories, or fat, or sodium. Therefore, it may not be healthy to eat them.
4. Sales may not necessarily be a good indicator of profit. Expenses must also be considered.
5. a)

b)

6. a)

Class	Frequency
35	1
36	3
37	6
38	2
39	3
40	0
41	4
42	1
43	3
44	1
45	1

7. a)

High Temperature	Number of Cities
$30-39$	5
$40-49$	8
$50-59$	5
$60-69$	6
$70-79$	6
$80-89$	10

d) $3 \mid 6$ represents 36

3	0	3	4	5	6					
4	1	2	2	3	4	7	8	8		
5	0	4	4	5	6					
6	5	6	6	7	8	9				
7	3	5	5	7	7	9				
8	0	1	3	3	4	6	6	7	8	9

8. $\bar{x}=\frac{480}{6}=80$
9. None
10. $93-63=30$
b) and c)

b) and c)

Average Daily High Temperature in January for Selected Cities

9. $\frac{79+83}{2}=81$
11. $\frac{63+93}{2}=78$
13.

$\frac{x}{63}$	$\frac{x-\bar{x}}{}$		$(x-\bar{x})^{2}$
	-17		289
76	-4		16
79	-1		1
83	3	9	
86	6	36	
93	$\underline{13}$	$\underline{169}$	
	0	520	

$$
\frac{520}{5}=104, s=\sqrt{104} \approx 10.20
$$

14. $\bar{x}=\frac{156}{12}=13$
15. 12 and 7
16. $23-4=19$
17. $z_{37}=\frac{37-42}{5}=\frac{-5}{5}=-1.00$
$z_{47}=\frac{47-42}{5}=\frac{5}{5}=1.00$
$0.341+0.341=0.682=68.2 \%$
18. $z_{50}=\frac{50-42}{5}=\frac{8}{5}=1.60$
$0.500+0.445=0.945=94.5 \%$
19. $z_{39}=\frac{39-42}{5}=\frac{-3}{5}=-.60$
$0.500+0.226=0.726=72.6 \%$
20. $z_{18}=\frac{18-20}{5}=\frac{-2}{5}=-0.40$

$$
0.500-0.155=0.345=34.5 \%
$$

15. $\frac{12+14}{2}=13$
16. $\frac{4+23}{2}=13.5$
17.

x	$\underline{x-\bar{x}}$	$(x-\bar{x})^{2}$
4	-9	81
5	-8	64
7	-6	36
7	-6	36
12	-1	1
12	-1	1
14	1	1
15	2	4
17	4	16
19	6	36
21	8	64
23	$\underline{10}$	$\underline{100}$
	0	440
$\frac{440}{11}=40, s=\sqrt{40} \approx 6.32$		

21. $z_{32}=\frac{32-42}{5}=\frac{-10}{5}=-2.00$
$z_{52}=\frac{52-42}{5}=\frac{10}{5}=2.00$
$0.477+0.477=0.954=95.4 \%$
22. $z_{50}=\frac{50-42}{5}=\frac{8}{5}=1.60$
$0.500-0.445=0.055=5.5 \%$
23. $z_{20}=\frac{20-20}{5}=\frac{0}{5}=0$
$z_{25}=\frac{25-20}{5}=\frac{5}{5}=1.00$
$0.341=34.1 \%$
24. $z_{22}=\frac{22-20}{5}=\frac{2}{5}=0.40$
$z_{28}=\frac{28-20}{5}=\frac{8}{5}=1.60$
$0.445-0.155=0.29=29.0 \%$
25. $z_{30}=\frac{30-20}{5}=\frac{10}{5}=2.00$
$0.500-0.477=0.023=2.3 \%$

450 CHAPTER 13 Statistics

29. a)

b) Yes; positive because generally as the year increases, the sales increase.

c) | x | y | x^{2} | y^{2} | $x y$ |
| ---: | ---: | :---: | ---: | ---: |
| 0 | 3.9 | 0 | 15.21 | 0 |
| 1 | 3.9 | 1 | 15.21 | 3.9 |
| 2 | 4.1 | 4 | 16.81 | 8.2 |
| 3 | 4.6 | 9 | 21.16 | 13.8 |
| 4 | 4.8 | 16 | 23.04 | 19.2 |
| $\underline{5}$ | $\underline{4.9}$ | $\underline{25}$ | $\underline{24.01}$ | $\underline{\mathbf{2 4 . 5}}$ |
| 15 | $\mathbf{2 6 . 2}$ | $\mathbf{5 5}$ | 115.44 | 69.6 |

$$
r=\frac{6(69.6)-15(26.2)}{\sqrt{6(55)-225} \sqrt{6(115.44)-686.44}}=\frac{24.6}{\sqrt{105} \sqrt{6.2}} \approx 0.964
$$

d) Yes, $|0.964|>0.811$
e) $m=\frac{6(69.6)-15(26.2)}{6(55)-225}=\frac{24.6}{105} \approx 0.2$

$$
b=\frac{26.2-\frac{24.6}{105}(15)}{6} \approx 3.8, \quad y=0.2 x+3.8
$$

30. a)

b) Yes; negative because generally as the year increases, the number of owners decreases.
31.

d) Yes, $|-0.952|>0.811$
e) $m=\frac{6(10,875)-15(4625)}{6(55)-225}=\frac{-4125}{105} \approx-39.3$

$$
b=\frac{4625-\frac{-4125}{105}(15)}{6} \approx 869.0, \quad y=-39.3 x+869.0
$$

31. a)

b) Yes; negative because generally as the price increases, the number sold decreases.

$$
\text { c) }
$$

d) Yes, $|-0.973|>0.811$
31. e) $m=\frac{6(1047.5)-8.25(825)}{6(12.4375)-68.0625}=\frac{-521.25}{6.5625} \approx-79.4$

$$
b=\frac{825-\frac{-521.25}{6.5625}(8.25)}{6} \approx 246.7, \quad y=-79.4 x+246.7
$$

f) $y=-79.4(1.60)+246.7=119.66 \approx 120$ sold
32. Mode $=175 \mathrm{lb}$
33. Median $=180 \mathrm{lb}$
34. 25%
35. 25%
$36100 \%-86 \%=14 \%$
37. $100(187)=18,700 \mathrm{lb}$
38. $187+2(23)=233 \mathrm{lb}$
39. $187-1.8(23)=145.6 \mathrm{lb}$
40. $\bar{x}=\frac{150}{42} \approx 3.57$
41. 2
42. $\frac{3+3}{2}=3$
43. $\frac{0+14}{2}=7$
44. $14-0=14$
45.

x	$\underline{x-\bar{x}}$	$(x-\bar{x})^{2}$	\underline{x}	$x-\bar{x}$	$(x-\bar{x})^{2}$	x	$x-\bar{x}$	$(x-\bar{x})^{2}$
0	-3.6	12.96	2	-1.6	2.56	4	0.4	0.16
0	-3.6	12.96	2	-1.6	2.56	5	1.4	1.96
0	-3.6	12.96	3	-0.6	0.36	5	1.4	1.96
0	-3.6	12.96	3	-0.6	0.36	5	1.4	1.96
0	-3.6	12.96	3	-0.6	0.36	6	2.4	5.76
0	-3.6	12.96	3	-0.6	0.36	6	2.4	5.76
1	-2.6	6.76	3	-0.6	0.36	6	2.4	5.76
1	-2.6	6.76	3	-0.6	0.36	6	2.4	5.76
2	-1.6	2.56	4	0.4	0.16	6	2.4	5.76
2	-1.6	2.56	4	0.4	0.16	7	3.4	11.56
2	-1.6	2.56	4	0.4	0.16	8	4.4	19.36
2	-1.6	2.56	4	0.4	0.16	10	6.4	40.96
2	-1.6	2.56	4	0.4	0.16	14	10.4	$\underline{108.16}$
2	-1.6	2.56	4	0.4	0.16			332.32
2	-1.6	2.56						
$\frac{332.32}{41} \approx 8.105, \quad s=\sqrt{8.105} \approx 2.85$								

46. \# of Child.

0-1
2-3
4-5
6-7
8-9
10-11
12-13
14-15

$$
\# \text { of Presidents } \quad 47 . \text { and } 48
$$

8
15
10
6
1
1
0
1

Number of Children of U.S. Presidents

49. No, it is skewed to the right.
50. No, some families have no children, more have one child, the greatest percent may have two children, fewer have three children, etc.
51. No, the number of children per family has decreased over the years.

Chapter Test

1. $\bar{x}=\frac{180}{5}=36$
2. 37
3. 37
4. $\frac{21+46}{2}=33.5$
5. $46-21=25$
6.

$\frac{x}{21}$	$\frac{x-\bar{x}}{-15}$	$\frac{(x-\bar{x})^{2}}{225}$
37	1	1
37	1	1
39	3	9
46	$\frac{10}{0}$	$\frac{100}{336}$
$\frac{336}{4}=84, s=\sqrt{84} \approx 9.17$		

7. $\begin{array}{r}\text { Class } \\ 25-30 \\ 31-36 \\ 37-42 \\ 43-48 \\ 49-54 \\ 55-60 \\ 61-66\end{array}$
8. Mode $=\$ 695$
9. $100 \%-25 \%=75 \%$
10. $100(700)=\$ 70,000$
11. $\$ 700-1.5(\$ 40)=\$ 640$
12. and 9 .

13. Median $=\$ 670$
14. 79%
15. $\$ 700+1(\$ 40)=\$ 740$
16. $z_{50,000}=\frac{50,000-75,000}{12,000}=\frac{-25,000}{12,000} \approx-2.08$
$z_{70,000}=\frac{70,000-75,000}{12,000}=\frac{-5000}{12,000} \approx-0.42$
$0.481-0.163=0.318=31.8 \%$
17. $z_{60,000}=\frac{60,000-75,000}{12,000}=\frac{-15,000}{12,000}=-1.25$
$0.500+0.394=0.894=89.4 \%$
18. $z_{90,000}=\frac{90,000-75,000}{12,000}=\frac{15,000}{12,000}=1.25$
$0.500-0.394=0.106=10.6 \%$

454 CHAPTER 13 Statistics

20. From \#17 and \#18,
$z_{60,000}=-1.25$ and $z_{70,000} \approx-0.42$
$0.394-0.163=0.231=23.1 \%$
$0.231(300)=69.3 \approx 69 \mathrm{cars}$
21. a)

b) Yes

c) | x | y | x^{2} | y^{2} | $x y$ |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 9.8 | 0 | 96.04 | 0 |
| 10 | 11.3 | 100 | 127.69 | 113 |
| 20 | 12.5 | 400 | 156.25 | 250 |
| 25 | 12.8 | 625 | 163.84 | 320 |
| $\underline{30}$ | $\underline{12.4}$ | $\underline{900}$ | $\underline{153.76}$ | $\underline{372}$ |
| 85 | 58.8 | 2025 | 697.58 | 1055 |

$$
r=\frac{5(1055)-85(58.8)}{\sqrt{5(2025)-7225} \sqrt{5(697.58)-3457.44}}=\frac{277}{\sqrt{2900} \sqrt{30.46}} \approx 0.932
$$

d) Yes, $|0.932|>0.878$
e) $m=\frac{5(1055)-85(58.8)}{5(2025)-7225}=\frac{277}{2900} \approx 0.1$

$$
b=\frac{58.8-\frac{277}{2900}(85)}{5} \approx 10.1, \quad y=0.1 x+10.1
$$

f) $y=0.1(40)+10.1=14.1 \%$

Group Projects

1. a) -j) Answers will vary.
2. $a)-g$) Answers will vary.

CHAPTER FOURTEEN

GRAPH THEORY

Exercise Set 14.1

1. A graph is a finite set of points, called vertices, that are connected with line segments, called edges.
2.

3.

4. The degree of a vertex is the number of edges that connect to that vertex.
5. If the number of edges connected to the vertex is even, the vertex is even. If the number of edges connected to the vertex is odd, the vertex is odd.
6. Answers will vary. In the following graph, the edge $E F$ is a bridge because if it were removed from the graph, the result would be a disconnected graph (i.e., there would be no path from vertices A, B, E, H, and G to vertices C, D, J, I, and F).

7. a) A path is a sequence of adjacent vertices and the edges connecting them.
b) A circuit is a path that begins and ends at the same vertex.
c)

The path A, B, D, C is a path that is not a circuit.
The path A, B, D, C, A is a path that is also a circuit.
8. Answers will vary. In the graphs below, the graph on the right is disconnected since no path connects vertices A, D, and E to vertices B and C.

Connected Graph
9.
A, B, and C are all even.
11.

B and C are even. A and D are odd.
13.

Disconnected Graph
10.

A, B, C, and D are all odd.
12.

14.

15. No. There is no edge connecting vertices B and C. Therefore, A, B, C, D, E is not a path.
16. Edge $A C$ (or $C A$) and edge $C D$ (or $D C$)
17. Yes. One example is A, C, E, D, B.
18. Yes. One example is C, D, E, C.
19. Yes. One example is C, A, B, D, E, C, D.
20. Yes. One example is A, B, D, E, C, A.

22.

23.
24.

25.

26.

27.

28.

30.

31.

33. Disconnected. There is no path that connects A to C.
35. Connected
37. Edge $A B$
39. Edge $E F$
41.

32.

34. Connected
36. Disconnected. There is no path that connects A to B.
38. Edge $E F$
40. Edge $F K$ and edge $H L$
42. Answers will vary.

Other answers are possible.
43. It is impossible to have a graph with an odd number of odd vertices.
44. a) - c) Answers will vary.
d) The sum of the degrees is equal to twice the number of edges. This is true since each edge must connect two vertices. Each edge then contributes two to the sum of the degrees.
45. a) and b) Answers will vary.

$\underline{\text { Exercise Set } 14.2}$

1. a) An Euler path is a path that must include each edge of a graph exactly one time.
b) and c)

2. a) An Euler circuit is a circuit that must include each edge of a graph exactly one time and return to the original vertex.
b) and c)

b) The circuit $A, B, C, G, F, B, D, F, E, D, A$ is an Euler circuit.
c) The path A, B, C, G, F, E, D, A is a circuit but not an Euler circuit.
3. a) Yes, according to Euler's Theorem.
4. a) Yes, according to Euler's Theorem.
b) Yes, according to Euler's Theorem.
b) No, according to Euler's Theorem.
c) No, according to Euler's Theorem.
c) No, according to Euler's Theorem.
5. If all of the vertices are even, the graph has an Euler circuit.
6. a) If all the vertices are even, then start with any vertex. If there are two odd vertices, then start with one of the odd vertices. Move from vertex to vertex without tracing any bridges until you have traced each edge of the graph exactly one time. You will finish at the other odd vertex.
b) If there are any odd vertices, then there is no Euler circuit. If there are all even vertices, then start with any vertex. Move from vertex to vertex without tracing any bridges until you have traced each edge of the graph exactly one time. You will finish at the vertex you started from.
7. $A, B, C, D, E, B, E, D, A, C$; other answers are possible.
8. $C, A, B, E, D, C, B, E, D, A$; other answers are possible.
9. No. This graph has exactly two odd vertices. Each Euler path must begin with an odd vertex. B is an even vertex.
10. No. A graph with exactly two odd vertices has no Euler circuits.
11. $A, B, A, C, B, E, C, D, A, D, E$; other answers are possible.
12. $E, D, A, B, E, C, D, A, B, C, A$; other answers are possible.
13. No. A graph with exactly two odd vertices has no Euler circuits.
14. No. This graph has exactly two odd vertices. Each Euler path must begin with an odd vertex. C is an even vertex.
15. $A, B, C, E, F, D, E, B, D, A$; other answers are possible.
16. $B, D, F, E, B, C, E, D, A, B$; other answers are possible.
17. $C, B, A, D, F, E, D, B, E, C$; other answers are possible.
18. $D, A, B, C, E, B, D, E, F, D$; other answers are possible.
19. $E, F, D, E, B, D, A, B, C, E$; other answers are possible.
20. $F, D, E, C, B, A, D, B, E, F$; other answers are possible.
21. a) Yes. There are zero odd vertices.
b) Yes. There are zero odd vertices.
22. a) No. There are more than two odd vertices.
b) No. There are more than zero odd vertices.
23. a) Yes. There are two or fewer odd vertices.
b) No. There are more than zero odd vertices.
24. a) No. There are more than two odd vertices.
b) No. There are more than zero odd vertices.
25. a) Yes. Each island would correspond to an odd vertex. According to item 2 of Euler's Theorem, a graph with exactly two odd vertices has at least one Euler path, but no Euler circuit.
b) They could start on either island and finish at the other.
26. a) Yes. The land at the top and the island on the left would each correspond to an odd vertex. According to item 2 of Euler's Theorem, a graph with exactly two odd vertices has at least one Euler path, but no Euler circuits.
b) They could start either on the land at the top of the picture or on the island on the left. If they started on the island, then they would end on the land at the top, and vice versa.

In Exercises 27-32, one graph is shown. Other graphs are possible.
27. a)

b) Vertices A and N are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
Yes; A, T, L, C, N, L, A, N
c) No. (See part b) above.)
28. a)

b) Vertices T and C are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
Yes; T, B, L, V, C, L, T, C
c) No. (See part b) above.)
29. a)

b) Vertices J and Q are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
Yes; J, Q, T, N, A, P, N, Q
c) No. (See part b) above.)
30. a)

b) Vertices S and C are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
Yes; $S, I, A, S, G, A, C, G, P, C$
c) No. (See part b) above.)
31. a)

b) Vertices A and S are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
Yes; $A, S, M, N, T, Y, B, A, T, S$
c) No. (See part b) above.)
32. a)

b) Vertices A and P are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
Yes; $P, B, Z, P, A, B, C, A, U, Z, A$
c) No. (See part b) above.)
33. a) No. The graph representing the floor plan:

The wood carver is seeking an Euler path or an Euler circuit. Note that vertices B, C, E, and F are all odd. According to item 3 of Euler's Theorem, since there are more than two odd vertices, no Euler path or Euler circuit can exist.
b) No such path exists.
34. a) Yes. The graph representing the floor plan:

The wood carver is seeking an Euler path or an Euler circuit. Note that there are no odd vertices. According to item 1 of Euler's Theorem, since there are no odd vertices, at least one Euler path (which is also an Euler circuit) must exist.
b) One path (which is also a circuit) is A, D, B, C, E, A.
35. a) Yes. The graph representing the floor plan:

The wood carver is seeking an Euler path or an Euler circuit. Note that vertices A and C are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
b) One path is A, D, B, E, C, B, A, C.
36. a) Yes. The graph representing the floor plan:

The wood carver is seeking an Euler path or an Euler circuit. Note that there are no odd vertices.
According to item 1 of Euler's Theorem, since there are no odd vertices, at least one Euler path (which is also an Euler circuit) must exist.
b) One path is A, C, D, B, E, B.
37. a) Yes. The graph representing the map:

They are seeking an Euler path or an Euler circuit. Note that vertices A and B are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
b) The residents would need to start at the intersection of Maple Cir., Walnut St., and Willow St. or at the intersection of Walnut St. and Oak St.
38. a) Yes. The graph representing the map:

They are seeking an Euler path or an Euler circuit. Note that vertices G and J are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
b) The residents would need to start at the intersection of Spring Blvd. and Lake St. or at the rightmost intersection of Stream Cir. and Ocean Blvd.
39. $F, G, E, F, D, E, B, D, A, B, C, E$; other answers are possible.
40. $H, I, F, C, B, A, D, G, H, F, E, D, H, E, B$; other answers are possible.
41. $H, I, F, C, B, D, G, H, E, D, A, B, E, F$; other answers are possible.
42. $D, A, B, E, I, H, D, C, G, K, L, H, M, I, N, O, J, F, E$; other answers are possible.
43. $A, B, E, F, J, I, E, D, H, G, C, D, A$; other answers are possible.
44. $A, B, C, E, H, G, F, D, B, E, G, D, B, E, G, D, A$; other answers are possible.
45. $A, E, B, F, C, G, D, K, G, J, F, I, E, H, A$; other answers are possible.
46. $A, B, C, D, F, C, B, E, F, H, G, E, A$; other answers are possible.
47. $A, B, C, E, B, D, E, F, I, E, H, D, G, H, I, J, F, C, A$; other answers are possible.
48. $A, B, C, E, B, D, E, F, D, A, C, A$; other answers are possible.
49. $F, C, J, M, P, H, F, M, P$; other answers are possible.
50. $B, A, E, H, I, J, K, D, C, G, G, J, F, C, B, F, I, E, B$; other answers are possible.
51. $B, E, I, F, B, C, F, J, G, G, C, D, K, J, I, H, E, A, B$; other answers are possibe.
52. J, $G, G, C, F, J, K, D, C, B, F, I, E, B, A, E, H, I, J$; other answers are possible.
53. $J, F, C, B, F, I, E, B, A, E, H, I, J, G, G, C, D, K, J$; other answers are possible.
54. a) No.
b) California, Nevada, and Louisiana (and others) have an odd number of states bordering them.

Since a graph of the United States would have more than two odd vertices, no Euler path and no Euler circuit exist.
55. It is not possible to draw a graph with an Euler circuit that has a bridge. Therefore, a graph with an Euler circuit has no bridge.
56. a)
b)
c)

Exercise Set 14.3

1. a) A Hamilton circuit is a path that begins and ends with the same vertex and passes through all other vertices exactly one time.
b) Both Hamilton and Euler circuits begin and end at the same vertex. A Hamilton circuit passes through all other vertices exactly once, while an Euler circuit passes through each edge exactly once.
2. a) A Hamilton path is a path that passes through each vertex exactly one time.
b) A Hamilton path passes through each vertex exactly once; an Euler path passes through each edge exactly once.
3. a) A weighted graph is a graph with a number, or weight, assigned to each edge.
b) A complete graph is a graph in which there is an edge between each pair of vertices.
c) A complete, weighted graph is a graph in which there is an edge between each pair of vertices and each edge has a number, or weight, assigned to it.
4. a) The factorial of a number is computed by multiplying the given number by each natural number less than the given number.
b) $7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$
c) $8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40,320$
d) $10!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=3,628,800$
5. a) The number of unique Hamilton circuits in a complete graph with n vertices is found by computing ($n-1$)!
b) $n=4 ;(n-1)!=(4-1)!=3!=3 \cdot 2 \cdot 1=6$
c) $n=9 ;(n-1)!=(9-1)!=8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40,320$
6. The optimal solution to a traveling salesman problem is the least expensive or shortest way to visit each location exactly one time and return to the starting location.
7. To find the optimal solution using the Brute Force method, write down all possible Hamilton circuits and then compute the cost or distance associated with each Hamilton circuit. The one with the lowest cost or shortest distance is the optimal solution to the traveling salesman problem.
8. Starting from your current position, choose the cheapest or shortest route to get to the next location. From there choose the cheapest or shortest route to a location you have not already visited.
Continue this process until you have visited each location. The path found is the path found using the
Nearest Neighbor method for approximating the optimal solution.
9. A, B, C, G, F, E, D and E, D, A, B, F, G, C; other answers are possible.
10. F, B, C, A, D, E, G and E, G, D, A, C, F, B; other answers are possible.
11. A, B, C, D, G, F, E, H and E, H, F, G, D, C, A, B; other answers are possible.
12. A, B, $C, D, H, G, F, E, I, J, K, L$ and $A, E, I, J, F, B, C, G, K, L, H, D$; other answers are possible.
13. A, B, C, E, D, F, G, H and F, G, H, E, D, A, B, C; other answers are possible.
14. A, D, F, G, H, E, B, C, I and $I, C, B, A, D, E, F, H, G$; other answers are possible.
15. A, B, D, E, G, F, C, A and A, C, F, G, E, D, B, A; other answers are possible.
16. $A, B, C, D, H, L, K, G, F, J, I, E, A$ and $A, E, I, J, K, L, H, D, C, G, F, B, A$; other answers are possible.
17. $A, B, C, F, I, E, H, G, D, A$ and $A, E, B, C, F, I, H, G, D, A$; other answers are possible.
18. $A, B, F, G, H, I, E, D, C, A$ and $A, C, D, E, I, H, G, F, B, A$; other answers are possible.
19.

21. The number of unique Hamilton circuits within the complete graph with eight vertices representing this situation is $(8-1)!=7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$ ways
22. The number of unique Hamilton circuits within the complete graph with thirteen vertices representing this situation is $(13-1)!=12!=12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=479,001,600$ ways
23. The number of unique Hamilton circuits within the complete graph with eleven vertices representing this situation is $(11-1)!=10!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=3,628,800$ ways
(The vertices are the 10 different farms he has to visit and his starting point.)
24. The number of unique Hamilton circuits within the complete graph with twelve vertices representing this situation is $(12-1)!=11!=11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=39,916,800$ ways

In Exercises 25-32, other graphs are possible.
25. a)

b)Hamilton Circuit	First Leg/Cost	Second Leg/Cost	Third Leg/Cost	Fourth Leg/Cost	Total Cost
S, R, B, T, S	113	337	393	803	$\$ 1646$
S, R, T, B, S	113	841	393	855	$\$ 2202$
S, T, B, R, S	803	393	337	113	$\$ 1646$
S, T, R, B, S	803	841	337	855	$\$ 2836$
S, B, R, T, S	855	337	841	803	$\$ 2836$
S, B, T, R, S	855	393	841	113	$\$ 2202$

The least expensive route is S, R, B, T, S or S, T, B, R, S
c) $\$ 1646$
26. a)

b) Hamilton

Circuit
C, O, G, S, C
C, O, S, G, C
C, G, O, S, C
C, G, S, O, C
C, S, G, O, C
C, S, O, G, C

First
Leg/Distance
Second
Leg/Distance

280
245
280
500
500
245

Leg/Distanc

500
500
245
245
280
280

Fourth Leg/Distance

300
205
300
80
80

Total
Distance

1160 miles
1030 miles
1030 miles
1030 miles
1160 miles 1030 miles

The shortest route is C, O, S, G, C or C, G, O, S, C or C, G, S, O, C or C, S, O, G, C
c) 1030 miles
27. a)

b) Hamilton

Circuit
$H, H S, B, C, H$
H, HS, C, B, H
$H, B, H S, C, H$
$H, B, C, H S, H$
H, C, HS, B, H
$H, C, B, H S, H$

First
Leg/Distance
1.5
1.53.
$4 \quad 2.5$
$4 \quad 3$
$2 \quad 3.5$
2

Second
Leg/Distance
Third
Leg/Distance

Fourth	Total
Leg/Distance	Distance

2
4
2
1.5
4
1.5

9 miles
12 miles
12 miles
12 miles
12 miles
9 miles

The shortest route is $H, H S, B, C, H$ or $H, C, B, H S, H$
c) 9 miles
28. a)

b) Hamilton

Circuit
O, D, S, L, O
O, D, L, S, O
O, L, S, D, O
O, L, D, S, O
O, S, D, L, O
O, S, L, D, O

First	
Leg/Distance	Second Leg/Distance
150	125
150	450
400	250
400	450
100	125
100	250

Third Leg/Distance	Fourth Leg/Distance	Total Distance
250	400	925 feet
250	100	950 feet
125	150	925 feet
125	100	1075 feet
450	400	1075 feet
450	150	950 feet

The shortest route is O, D, S, L, O or O, L, S, D, O
c) 925 feet
29. a)

b) B, M, P, S, W, B for $131+154+353+179+576=\$ 1393$
c) Answers will vary.
30. a)

b) A, C, D, E, B, A for $252+174+124+257+365=\$ 1172$
c) Answers will vary.
31. a)

b) C, D, M, G, T, C for $39+109+271+520+105=\$ 1044$
c) Answers will vary.
32. a)

b) N, P, D, W, A, N for $55+115+110+180+197=\$ 657$
c) Answers will vary.
33. a) - d) Answers will vary.
34. a)

There are two choices for moving to the second vertex. There is one choice for moving to a third vertex. $2(1)=2$
$(3-1)!=2!=2(1)=2$
The number obtained is the same as the number of Hamilton circuits in a complete graph with 3 vertices.
b)

There are three choices for moving to the second vertex. There are two choices for moving to the third vertex. There is one choice for moving to the fourth vertex.
$3(2)(1)=6$
$(4-1)!=3!=3(2)(1)=6$
The number obtained is the same as the number of Hamilton circuits in a complete graph with 4 vertices.
c)

There are four choices for moving to the second vertex. There are three choices for moving to the third vertex. There are two choices for moving to the fourth vertex. There is one choice for moving to the fifth vertex.
$4(3)(2)(1)=24$
$(5-1)!=4!=4(3)(2)(1)=24$
The number obtained is the same as the number of Hamilton circuits in a complete graph with 5 vertices.
34. c)

There are five choices for moving to the second vertex. There are four choices for moving to the third vertex. There are three choices for moving to the fourth vertex. There are two choices for moving to the fifth vertex. There is one choice for moving to the sixth vertex.
$5(4)(3)(2)(1)=120$
$(6-1)!=5!=5(4)(3)(2)(1)=120$
The number obtained is the same as the number of Hamilton circuits in a complete graph with 6 vertices. d) When starting at a vertex in a complete graph with n vertices, you have $n-1$ choices. At your second vertex, you have one less choice, or $n-2$ choices. This process continues until you only have one vertex to choose from.
35. $A, E, D, N, O, F, G, Q, P, T, M, L, C, B, J, K, S, R, I, H, A$; other answers are possible.

Exercise Set 14.4

1. A tree is a connected graph in which each edge is a bridge.
2. In a tree, each edge is a bridge. In a graph that is not a tree, there is at least one edge that is not a bridge.
3. Yes, because removing the edge would create a disconnected graph.
4. A spanning tree is obtained by removing the edges of a graph one at a time, while maintaining a path to each vertex, until the graph is reduced to a tree.
5. A minimum-cost spanning tree is a spanning tree that has the lowest cost or shortest distance of all spanning trees for a given graph.
6. To find a minimum-cost spanning tree from a weighted graph, choose the edge with the smallest weight first. Continue to choose the edge with the smallest weight that does not lead to a circuit until a spanning tree is found.
7.

8.

9.

10.

11.

Other answers are possible.
12.

Other answers are possible.
13.

Other answers are possible.

Other answers are possible.
15.

Other answers are possible.
16.

Other answers are possible.
17.

Other answers are possible.
18.

Other answers are possible.
19.

Choose edges in the following order: $D B, B A, D C$
20.

21.

22.

23.

Choose edges in the following order: $G B, B C, B A, A H, D E, C F, F E$

Choose edges in the following order: $D G, G F, A B, C D, B D, E F$

Choose edges in the following order: $E F, F D, F C, B D, A C$

Choose edges in the following order: $A B, C F, A C, F G, B D, F H, E C$
24.

Choose edges in the following order: $A B, H I, E G, C D, A C, D G, E F, D H$
25. A

Choose edges in the following order: $B E, \mathrm{FD}, \mathrm{AH}, \mathrm{EF}, \mathrm{FG}, \mathrm{HE}, \mathrm{CF}$
26.

Choose edges in the following order: $A D, E F, A B, D E, B C$
27. a)

Other answers are possible.
27. b)

c) $15(32+35+37+40)=15(144)=\$ 2160$
28. a)

Other answers are possible.
b)

c) $0.75(13+15+18+27)=0.75(73)=\$ 54.75$

Choose edges in the following order: RM, MH, JH, IM

Choose edges in the following order: $B B C S, E C K B D, B D C S, C B B$
29. a)

Choose edges in the following order: $\mathrm{Mi} \mathrm{Pa}, \mathrm{WMi}, \mathrm{Ma} W, \mathrm{Ma} \mathrm{Pl}$
b) $895(39.1+50.7+50.7+71.7)=895(212.2)=\$ 189,919$
30. a)

Choose edges in the following order: $H Y, Y L, L R, R A, A P$
b) $6800(25+25+33+44+59)=6800(186)=\$ 1,264,800$
31. a)

Other answers are possible.
b)

Choose edges in the following order: DH, HL, DS
c) $3500(12+13+15)=3500(40)=\$ 140,000$
32. a)

Other answers are possible.
b)

Choose edges in the following order: $A C a, A C, A Y, C a C o$
c) $2300(23+45+48+125)=2300(241)=\$ 554,300$
33. a)

Other answers are possible.
b)

Choose edges in the following order: $L R P B, E D P B, L R F S, B L R$
c) $2500(43+91+160+184)=2500(478)=\$ 1,195,000$
34. a)

Other answers are possible.

Choose edges in the following order: PS, Chi R, Cha $S, R P$
c) $74+85+86+129=374$ miles
35. Answers will vary.
36. Answers will vary.
37. Answers will vary.
38. a) EULER
b) FLEURY
c) HAMILTON
d) KRUSKAL

Review Exercises

A, B, and C are all even. There is a loop at vertex C.
Other answers are possible.
2.

Edge $F G$ is a bridge. Other answers are possible.
3. A, B, C, A, D, C, E, D; other answers are possible.
4. No. To trace each edge in the graph with a path would require you to trace at least one edge twice (the graph has more than two odd vertices).
5.

6.
$A \quad B$
C

7. Connected
8. Disconnected. There is no path that connects A to C.
9. Edge $C D$
10. $C, B, A, F, E, D, C, G, B, A, G, E, D, G, F$; other answers are possible.
11. $F, E, G, F, A, G, D, E, D, C, B, A, B, G, C$; other answers are possible.
12. $B, C, A, D, F, E, C, D, E, B$; other answers are possible.
13. $E, F, D, E, C, D, A, C, B, E$; other answers are possible.
14. a) No. The graph representing the map:

b) Vertices $C O$ and $T X$ are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path, but no Euler circuits exist.
Yes; $C O, N E, I A, M O, N E, K S, M O, O K, C O, K S, O K, T X$; other answers are possible.
c) No. (See part b) above.)
15. a) Yes. The graph representing the floor plan:

We are seeking an Euler path or an Euler circuit. Note that there are no odd vertices. According to item 1 of Euler's Theorem, since there are no odd vertices, at least one Euler path (which is also an Euler circuit) must exist.
b) The person may start in any room and will finish in the room where he or she started.
16. a) Yes. The graph representing the map:

The officer is seeking an Euler path or an Euler circuit. Note that vertices A and C are both odd. According to item 2 of Euler's Theorem, since there are exactly two odd vertices, at least one Euler path but no Euler circuits exist.
b) The officer would have to start at either the upper left-hand corner or the upper right-hand corner.

If the officer started in the upper left-hand corner, he or she would finish in the upper right-hand corner, and vice versa.
17. $A, B, F, A, E, F, G, C, D, G, H, D$; other answers are possible.
18. $A, B, C, D, H, G, C, F, G, B, F, E, A$; other answers are possible.
19. A, C, B, F, E, D, G and A, C, D, G, F, B, E; other answers are possible.
20. A, B, C, D, F, E, A and A, E, F, B, C, D, A; other answers are possible.
21.

22. The number of unique Hamilton circuits within the complete graph with 5 vertices representing this situation is $(5-1)!=4!=4 \cdot 3 \cdot 2 \cdot 1=24$ ways
23. a)

b)Hamilton Circuit First Leg/Cost	Second Leg/Cost	Third Leg/Cost	Fourth Leg/Cost	Total Cost	
P, D, C, M, P	428	449	415	902	$\$ 2194$
P, D, M, C, P	428	458	415	787	$\$ 2088$
P, C, M, D, P	787	415	458	428	$\$ 2088$
P, C, D, M, P	787	449	458	902	$\$ 2596$
P, M, D, C, P	902	458	449	787	$\$ 2596$
P, M, C, D, P	902	415	449	428	$\$ 2194$

The least expensive route is P, D, M, C, P or P, C, M, D, P
c) $\$ 2088$
24. a)

b) $S J, K C, C, S L, S p, S J$ traveling a total of $54+130+127+210+224=745$ miles
c) $S p, C, S L, K C, S J, S p$ traveling a total of $168+127+256+54+224=829$ miles
25.

Other answers are possible.
27.

28. a)

Choose edges in the following order:
O GCJ, O PF, J GCJ, FA O, GCJ B
c) $2.50(11+24+26+29+37)=2.50(127)=\$ 317.50$

Chapter Test

1.

2.

Edge $A B$ is a bridge. There is a loop at vertex G. Other answers are possible.
3. One example:

4. D, A, B, C, E, B, D, E; other answers are possible.
5. Yes. The graph representing the floor plan:

We are seeking an Euler path or an Euler circuit. Note that there are no odd vertices. According to item 1 of Euler's Theorem, since there are no odd vertices, at least one Euler path (which is also an Euler circuit) must exist.
The person may start in any room and will finish in the room where he or she started.
6. $A, D, E, A, F, E, H, F, I, G, F, B, G, C, B, A$; other answers are possible.
7. $A, B, C, D, H, I, L, K, J, G, F, E, A$; other answers are possible.
8. The number of unique Hamilton circuits within the complete graph with 8 vertices representing this situation is $(8-1)!=7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$ ways
9. a)

b)Hamilton Circuit $I, P, E P, A, I$	First Leg/Cost	Second Leg/Cost	Third Leg/Cost	Fourth Leg/Cost	Total Cost
$I, P, A, E P, I$	449	728	49	203	$\$ 1429$
$I, A, P, E P, I$	449	677	49	201	$\$ 1376$
$I, A, E P, P, I$	203	677	728	201	$\$ 1809$
$I, E P, A, P, I$	203	49	728	449	$\$ 1429$
$I, E P, P, A, I$	201	49	677	449	$\$ 1376$
	201	728	677	203	$\$ 1809$

The least expensive route is $I, P, A, E P, I$ or $I, E P, A, P, I$ for $\$ 1376$.
c) $I, E P, A, P, I$ for $\$ 1376$

Other answers are possible.
11.

12.

Group Projects

1. Answers will vary.
2. a) - d) Answers will vary.
3. a) - d) Answers will vary.
4. Answers will vary.

CHAPTER FIFTEEN

VOTING AND APPORTIONMENT

$\underline{\text { Exercise Set } 15.1}$

1. When a candidate receives more than 50% of the votes.
2. Each voter votes for one candidate. The candidate receiving the most votes is declared the winner.
3. Voters rank candidates from most favorable to least favorable. Each last place vote is awarded one point, each next to last place vote is awarded two points, each third from last place vote is awarded three points, etc. The candidate receiving the most points is the winner.
4. Each voter votes for one candidate. If a candidate receives a majority of votes, that candidate is declared the winner. If no candidate receives a majority, eliminate the candidate with the fewest votes. (If there is a tie for the fewest votes, eliminate all tied candidates.) Repeat this process until a candidate receives a majority.
5. Voters rank the candidates. A series of comparisons in which each candidate is compared to each of the other candidates follows. If candidate A is preferred to candidate B, then A receives one point. If candidate B is preferred to candidate A, then B receives one point. If the candidates tie, each receives $1 / 2$ point. The candidate receiving the most points is declared the winner.
6. Different systems can lead to a different winner.
7. A preference table summarizes the results of an election.
8. a) Pair-wise comparison method

$3+2+1=6$ groupings

9. a) Jeter is the winner; he received the most votes using the plurality method.
b) No. $\frac{265128}{192827+210361+265128}=\frac{265128}{668316} \approx 0.40$ is not a majority. Majority is $>334,158$ votes.
10. a) Felicia is the winner. Felicia received the most votes using the plurality method.
b) No. $\frac{2863}{2192+2562+1671+2863+1959}=\frac{2863}{11247} \approx 0.25$ is not a majority. Majority is $>5,624$ votes.
11.

Number of votes	3	1	2	2	1
First	B	A	C	C	A
Second	A	B	B	A	C
Third	C	C	A	B	B

12.

Number of votes	2	3	2	1
First	A	C	B	C
Second	B	A	A	B
Third	C	B	C	A

13. $9+5+3+2=19$ employees
14. No. Mop had the most with 9 votes, but $9 / 19=$ 0.47 which is not a majority. Majority is ≥ 10.
15. Votes $-(\mathrm{M}): 9,(\mathrm{~V}): 5+3=8$, $(\mathrm{W}): 2$. Mop wins with the most votes.
16. A majority out of 19 votes is 10 or more votes.

First choice votes: (M) 9, (V) 8, (B) 0
None receives a majority, thus B with the least votes is eliminated.
Second round: (M) 9, (V) $5+3+2=10$
Vacuum wins with a majority of 10 votes.
16. M: 9 1st place votes $=(9)(3)=27$
$52^{\text {nd }}$ place votes $=(5)(2)=10$
$53^{\text {rd }}$ place votes $=(5)(1)=5$
V : $81^{\text {st }}$ place votes $=(8)(3)=24$
$112^{\text {nd }}$ place votes $=(11)(2)=22$
B: $21^{\text {st }}$ place votes $=(2)(3)=6$ $32^{\text {nd }}$ place votes $=(3)(2)=6$
$143^{\text {rd }}$ place votes $=(14)(1)=14$
$\mathrm{M}=42$ points; $\mathrm{V}=46$ points; $\mathrm{B}=26$ points
Vacuum wins with 46 points.
18. M vs. $V: \quad M=9 \quad V=5+3+2=10 \quad V$ gets 1 pt .
M vs. $B: \quad M=9+5=14 \quad B=3+2=5$ M gets 1 pt .
V vs. B: $V=9+5+3=17 \quad B=2 \quad V$ gets 1 pt.
Vacuum wins with 2 points.
20. Votes $-(B): 3+1=4,(G): 2,(M): 2+1=3$

Beach wins with the most votes.
21. B vs. $\mathrm{G}: \mathrm{M}=3+2+1=6 \quad \mathrm{G}=2+1=3$

B gets 1 pt .
B vs. $\mathrm{M}: \quad \mathrm{B}=3+1=4 \quad \mathrm{M}=@+@+!=5$
M gets 1 pt .
G vs. $\mathrm{M}: \quad \mathrm{G}=3+2=5 \quad \mathrm{M}=2+1+1=4$
G gets 1 pt .
All get 1 point, which indicates no winner.
22. A majority out of 9 votes is 5 or more votes.

First choice votes: (B) 4, (G) 2, (M) 3
None receives a majority, thus G with the least votes is eliminated.
Second round: (B) 4 , (M) $2+2+1=5$
Mount Rushmore wins with a majority of 5 votes.
24. S: 9 1st place votes $=(13)(4)=52$
$52^{\text {nd }}$ place votes $=(5)(3)=15$
$43^{\text {rd }}$ place votes $=(4)(2)=8$
$104^{\text {th }}$ place votes $=(10)(1)=10$
L: $91^{\text {st }}$ place votes $=(9)(4)=36$
$182^{\text {nd }}$ place votes $=(18)(3)=54$
$43^{\text {rd }}$ place votes $=(4)(2)=8$
$14^{\text {th }}$ place vote $=(1)(1)=1$
H: $91^{\text {st }}$ place votes $=(9)(4)=36$
$92^{\text {nd }}$ place votes $=(9)(3)=27$
$113^{\text {rd }}$ place votes $=(11)(2)=22$
$34^{\text {th }}$ place vote $=(3)(1)=3$
$\mathrm{T}: 11^{\text {st }}$ place votes $=(1)(4)=4$
$02^{\text {nd }}$ place votes $=0$
$133^{\text {rd }}$ place votes $=(13)(2)=26$
$184^{\text {th }}$ place vote $=(18)(1)=18$
$\mathrm{S}=85$ points; $\mathrm{L}=99$ points;
$\mathrm{H}=88$ points; $\mathrm{T}=48$ points
Los Angeles wins with 99 points.
23. Votes: (S) $8+3+2=13$ (L) $6+39$
(H) $4+3+2=9 \quad$ (T) 1

San Antonio wins with the most votes.
25. A majority out of 32 votes is 16 or more votes.

First choice votes: (S) 13, (L) 9, (H) 9, (T) 1
None receives a majority, thus T with the least votes is eliminated.
Second round: (S) 13, (L) 9, (H) 10
No majority, thus eliminate L.
Third round: (S) 16, (H) 16
Since S and H tied, there is no winner.
26. S vs. $L: S=8+3+2+1+2=16$
$\mathrm{L}=6+3+4+3=16 \quad \mathrm{~S} / \mathrm{L}$ get 0.5 pt.
S vs. $\mathrm{H}: \mathrm{S}=8+3+3+2=16$
$\mathrm{H}=6+4+3+1+2=16 \quad \mathrm{~S} / \mathrm{H}$ get 0.5 pt.
S and $T: \quad S=8+3+2+1+2=16$
$T=6+4+1=11 \quad S$ gets 1 pt.
L and $\mathrm{H}: \quad \mathrm{L}=8+6+3+3=20$
$\mathrm{H}=4+3+2+1+2=12 \quad$ L gets 1 pt .
L and $\mathrm{T}: \mathrm{L}=8+6+3+4+3+3+2+2=31$
$\mathrm{T}=1 \quad \mathrm{~L}$ gets 1 pt.
H and $\mathrm{T}: \quad \mathrm{H}=8+6+3+4+3+2+2=28$
$\mathrm{T}=4 \quad \mathrm{H}$ gets 1 pt.
$\mathrm{S}=2 \quad \mathrm{H}=1.5 \quad \mathrm{~L}=2.5 \quad \mathrm{~T}=0 \quad \mathrm{LA}$ wins.
28. Votes: (W): $5,(\mathrm{D}): 1,(\mathrm{~J}): 4+2=6$

Johnson wins with the most votes.
29. W vs. $\mathrm{D}: \quad \mathrm{W}=5+4=9 \quad \mathrm{D}=1+2=3$

W gets 1 pt .
W vs. J: $\mathrm{W}=5 \quad \mathrm{~J}=1+4+2=7$
J gets 1 pt .
D vs. $\mathrm{J}: \quad \mathrm{D}=5+1=6 \quad \mathrm{~J}=4+2=6$
D and J get 0.5 pt .
$\mathrm{W}=1 \mathrm{pt} . \quad \mathrm{D}=1 \mathrm{pt} . \quad \mathrm{J}=1.5 \mathrm{pts}$.
Johnson wins with 1.5 points.
30. A majority out of 12 votes is 6 or more votes.

First choice votes: (W) 5, (D) 1, (J) 6
None receives a majority, thus D with the least votes is eliminated.
Second round: (W) 5, (J) 1+4+2=7
Johnson wins with a majority of 7 votes.
32. Votes: (L): 5, (E): 2, (O): 4. Lehigh Road wins with the most votes.
34. A majority out of 11 votes is 6 or more votes.

First choice votes: (L) 5, (E) 2, (O) 4
None receives a majority, thus E with the least votes is eliminated.
Second round: (L) 5, (O) $2+4=6$
Ontario Road wins with a majority of 6 votes.
35. L vs. $\mathrm{E}: \quad \mathrm{L}=5 \quad \mathrm{E}=2+4=6 \quad \mathrm{E}$ gets 1 pt . Lvs. O: $\mathrm{L}=5 \quad \mathrm{O}=2+4=6 \quad \mathrm{O}$ gets 1 pt . E vs. O: $\quad E=5+2=6 \quad O=4 \quad E$ gets 1 pt . Erie Road wins with 2 points.
37. a) Votes: (TI): 10, (C): 3, (HP): 2

Texas Instruments wins with the most votes.
b) TI: 101 st place votes $=(10)(4)=40$
$52^{\text {nd }}$ place votes $=(5)(3)=15$
C: $31^{\text {st }}$ place votes $=(3)(4)=12$
$62^{\text {nd }}$ place votes $=(6)(3)=18$
$63^{\text {rd }}$ place votes $=(6)(2)=12$
S: 9 3rd place votes $=(9)(2)=18$
$64^{\text {th }}$ place votes $=(6)(1)=6$
$94^{\text {th }}$ place votes $=(9)(1)=9$
HP: $21^{\text {st }}$ place votes $=(2)(4)=8$
$42^{\text {nd }}$ place votes $=(4)(3)=12$
$94^{\text {th }}$ place votes $=(9)(1)=9$
$\mathrm{TI}=55$ points; $\mathrm{C}=42$ points; $\mathrm{S}=24$ points, $\mathrm{HP}=29$ points TI wins with 55 points.
31. A majority out of 12 votes is 6 or more votes.

Most last place votes: (W) 3, (D) 4, (J) 5
Thus J with the most last place votes is eliminated.
Second round using the most last place votes:
(W) $1+2=3$, (D) $5+4=9$

Williams wins with the least last place votes.
33. L: 5 1st place votes $=(5)(3)=15$
$63^{\text {rd }}$ place votes $=(6)(1)=6$
E: $21^{\text {st }}$ place votes $=(2)(3)=6$
$92^{\text {nd }}$ place votes $=(9)(2)=18$
O: $41^{\text {st }}$ place votes $=(4)(3)=12$
$22^{\text {nd }}$ place votes $=(2)(2)=4$
$53^{\text {rd }}$ place votes $=(5)(1)=5$
$\mathrm{L}=21$ points; $\mathrm{E}=24$ points; $\mathrm{O}=21$ points
Erie Road wins with 24 points.
36. A majority out of 11 votes is 6 or more votes.

Most last place votes: (L) $2+4=6$, (E) 0 , (O) 5 Thus L with the most last place votes is eliminated. Second round using the most last place votes:
(E) 0 , (O) 4

Erie Road wins with the least last place votes.
37. c) A majority out of 15 votes is 8 or more votes.

First choice votes: (TI) 10, (C) 3
(S) $0, \quad(\mathrm{HP})=2$

Because TI already has a majority, TI wins.
d) TI vs. $\mathrm{C}: \mathrm{TI}=6+4+2=12 \quad \mathrm{C}=3$

TI gets 1 pt .
TI vs. $\mathrm{S}: \mathrm{TI}=6+4+3+2=15 \quad$ TI gets 1 pt .
TI vs. $\mathrm{HP}: \mathrm{TI}=6+4+3=14 \quad \mathrm{HP}=2$
TI gets 1 pt .
C vs. S: $\quad C=6+4+3+2=15 \quad C$ gets 1 pt .
C vs. HP: $C=6+3=9 \quad H P=4+3=7$
$\mathrm{C}=$ gets 1 pt .
S vs. $\mathrm{HP}: S=6+3=9 \quad H P=4+2=6$
S gets 1 pt .
TI wins with 3 points.
38. a) Votes: (L): 8, (M): 2, (S): 3, (H): 4 I Love Lucy wins with the most votes.
b) L: 81 st place votes $=(8)(4)=32$
$94^{\text {th }}$ place votes $=(9)(1)=9$
M: $21^{\text {st }}$ place votes $=(2)(4)=8$
$152^{\text {nd }}$ place votes $=(15)(3)=45$
S: $31^{\text {st }}$ place votes $=(3)(4)=12$
$22^{\text {nd }}$ place votes $=(2)(3)=6$
$123^{\text {rd }}$ place votes $=(12)(2)=24$
H: $41^{\text {st }}$ place votes $=(4)(4)=16$
$53^{\text {rd }}$ place votes $=(5)(2)=10$
$84^{\text {th }}$ place votes $=(8)(1)=8$
$\mathrm{L}=41$ points; $\mathrm{M}=53$ points; $\mathrm{S}=42$ points,
$\mathrm{H}=34$ points \quad Mash wins with 53 points.
39. a) A: 61 st place votes $=(6)(4)=24$
$12^{\text {nd }}$ place vote $=(1)(3)=3$
$23^{\text {rd }}$ place votes $=(2)(2)=4$
$54^{\text {th }}$ place votes $=(5)(1)=5$
B: 1 1st place vote $=(1)(4)=4$
$42^{\text {nd }}$ place vote $=(4)(3)=12$
$93^{\text {rd }}$ place votes $=(9)(2)=18$
C: 5 1st place votes $=(5)(4)=20$
$62^{\text {nd }}$ place vote $=(6)(3)=18$
$13^{\text {rd }}$ place vote $=(1)(2)=2$
$24^{\text {th }}$ place votes $=(2)(1)=2$
D: 21 st place votes $=(2)(4)=8$
$32^{\text {nd }}$ place vote $=(3)(3)=9$
$23^{\text {rd }}$ place votes $=(2)(2)=4$
$74^{\text {th }}$ place votes $=(7)(1)=7$
$\mathrm{A}=36$ points; $\mathrm{B}=34$ points; $\mathrm{C}=42$ points;
$\mathrm{D}=28$ points
C wins with 42 points.
40. a) G vs. A: $G=69 \quad \mathrm{~A}=73 \quad$ A gets 1 pt .

G vs. C: $\quad G=43 \quad C=99 \quad$ C gets 1 pt .
G vs. $D: G=43 \quad D=99 \quad$ D gets 1 pt .
A vs. $\mathrm{C}: \mathrm{A}=73 \quad \mathrm{C}=69 \quad$ A gets 1 pt .
A vs. D: A = $73 \quad \mathrm{D}=69 \quad$ A gets 1 pt .
C vs. D: $C=72 \quad D=70 \quad$ C gets 1 pt .

Apple wins with 3 points.
38. c) A majority out of 17 votes is 9 or more votes.

First choice votes: (L) 8, (M) 2

$$
\text { (S) } 3, \quad(\mathrm{H})=4
$$

None receives a majority, thus M with the least votes is eliminated.
Second round: (L) 8, (S) 5, (H) 4
No majority, thus eliminate H .
Third round: (L) 8, (S) 9
Seinfeld wins with 9 votes.
d) L vs. $\mathrm{M}: \quad \mathrm{L}=8 \quad \mathrm{M}=9 \quad \mathrm{M}$ gets 1 pt .

L vs. $\mathrm{S}: \quad \mathrm{L}=8 \quad \mathrm{~S}=9 \quad \mathrm{~S}$ gets 1 pt .
L vs. $\mathrm{H}: \quad \mathrm{L}=8 \quad \mathrm{H}=9 \quad \mathrm{H}$ gets 1 pt .
M vs. S: $\quad \mathrm{M}=14 \quad \mathrm{~S}=3 \quad \mathrm{M}$ gets 1 pt .
M vs. H: $\quad M=13 \quad H=4 \quad M$ gets 1 pt.
S vs. H: $\quad \mathrm{S}=13 \quad \mathrm{H}=4 \quad \mathrm{~S}$ gets 1 pt .
Mash wins with 3 points.
39. b) Votes: (A): 6, (B): 1, (C): 5, (D): 2

A wins with the most votes.
c) A majority out of 14 votes is 7 or more votes.

First choice votes: (A) 6 , (B) 1
(C) $5, \quad$ (D) $=2$

None receives a majority, thus B with the least votes is eliminated.
Second round: (A) 7, (C) 5, (D) 2
No majority, thus eliminate D.
Third round: (A) 9, (C) 5
A wins with 9 votes.
d) A vs. $B: A=6 \quad B=8 \quad B$ gets 1 pt.

A vs. $\mathrm{C}: \quad \mathrm{A}=9 \quad \mathrm{C}=5 \quad \mathrm{~A}$ gets 1 pt.
A vs. D: $\mathrm{A}=7 \quad \mathrm{D}=7 \quad \mathrm{~A} / \mathrm{D}$ get 0.51 pt .
B vs. C: $\quad \mathrm{B}=34 \quad \mathrm{C}=11 \quad \mathrm{C}$ gets 1 pt .
B vs. $D: \quad B=9 \quad D=5 \quad B$ gets 1 pt.
C vs. D: $\quad \mathrm{C}=12 \quad \mathrm{D}=2 \quad \mathrm{C}$ gets 1 pt.
B and C tie with 2 points.
40. b) A majority out of 142 votes is 71 or more votes.

First choice votes: $G=43, A=30, C=29, D=40$
None receives a majority, thus C with the least votes is eliminated.
Second round: (G) 43, (C) 30, (D) 69
No majority, thus eliminate C .
Third round: (G) 43, (C) 99
Compaq wins with 99 votes.
40. c) G: 43 1st place votes $=(43)(4)=172$
$12^{\text {nd }}$ place vote $=(1)(3)=3$
$263^{\text {rd }}$ place votes $=(26(2)=52$
$734^{\text {th }}$ place votes $=(73)(1)=73$
A: 30 1st place vote $=(30)(4)=120$
$432^{\text {nd }}$ place vote $=(43)(3)=129$
$293^{\text {rd }}$ place votes $=(29)(2)=58$
$264^{\text {th }}$ place votes $=(26)(1)=26$
C: 29 1st place votes $=(29)(4)=116$
$402^{\text {nd }}$ place vote $=(40)(3)=120$
$733^{\text {rd }}$ place vote $=(73)(2)=146$
D: 40 1st place votes $=(40)(4)=160$
$592^{\text {nd }}$ place vote $=(59)(3)=177$
$434^{\text {th }}$ place votes $=(43)(1)=43$
$\mathrm{G}=300$ points; $\mathrm{A}=333$ points;
$\mathrm{C}=382$ points; $\mathrm{D}=380$ points
Compaq wins with 380 points.
40. d) Votes: (G): 43, (A): 30, (C): 29, (D): 40 Gateway wins with the most votes.
e) You must choose the voting method prior to the election.
41. a) If there were only two columns then only two of the candidates were the first choice of the voters. If each of the 15 voters cast a ballot, then one of the voters must have received a majority of votes because 15 cannot be split evenly.
b) An odd number cannot be divided evenly so one of the two first choice candidates must receive more than half of the votes.
43. a) $\mathrm{C}: 4+1+1=6 \quad \mathrm{R}: 4+4+3=11$

W: $3+3+2+2+1+1=12$
T: $4+3+2+2=11$
The Warriors finished $1^{\text {st }}$, the Rams and the Tigers tied for $2^{\text {nd }}$, and the Comets were $4^{\text {th }}$.
b) C: $5+0=5 \quad \mathrm{R}: 5+5+3=13$

W: $3+3+1+1+0+0=8$
T: $5+3+1 \quad 1=10$
Rams - $1^{\text {st }}$, Tigers - $2^{\text {nd }}$, Warriors - $3^{\text {rd }}$, and Comets $-4^{\text {th }}$.
45. a) Each voter casts $\$+3+2+1=10$ votes. $(15)(10)=150$ votes
b) $150-(35+40+25)=150-100=50$ votes
c) Yes. Candidate D has more votes than each of the other 3 candidates.
46. $\mathrm{A}=10 \quad \mathrm{~B}=7 \quad \mathrm{C}=5 \quad \mathrm{D}=9$

Candidates A and D will win.

Exercise Set 15.2

1. If a candidate receives a majority of first place votes, then that candidate should be declared the winner.
2. A candidate who wins a first election and then gains additional support without losing any of the original support should also win a second election.
3. If a candidate is favored when compared individually with every other candidate, then that candidate should be declared the winner.
4. If a candidate is declared the winner of an election, and in a second election, one or more of the other candidates is removed, then the previous winner should still be declared the winner
5. A candidate that is preferred to all others will win each pairwise comparison and be selected with the pairwise comparison method.
6. A candidate that holds a majority of first place votes wins each pairwise comparison and is selected with the pairwise comparison method.
7. If a candidate receives a majority of first place votes, then that candidate should be declared the winner.

Plurality counts only the $1^{\text {st }}$ place votes.
8. If a majority is not reached on the $1^{\text {st }}$ vote, then the candidate with the lowest vote total is eliminated and successive votes are taken until one of the candidates achieves a majority vote.
9. The plurality method yields Tacos are the winner with a majority of $81^{\text {st }}$ place votes. However, if the Borda count method is used:
Tacos $(8)(3)+(3)(2)+(4)(1)=24+6+4=34$
Pizza $(4+3)(4)+(8)(2)=28+16=44$
Burgers $(4)(2)+(8+3)(1)=8+11=19$
The winner is Pizza using the Borda count method, thus violating the majority criterion.
10. a) Total votes $=2+4+2+3=11$

A vs. $B: A=4+2=6 \quad B=2+3=5 \quad A$ gets 1 pt .
A vs. $C: A=2+4=6 \quad C=2+3=5 \quad$ A gets 1 pt . B vs. $C: B=2+4=6 \quad C=2+3=5 \quad B$ gets 1 pt. Plan A wins with 2 points.
b) C wins by a plurality of 5 votes. No, the head-to-head criterion is not satisfied.
12. a) Total votes $=12+6+4+3=25$

B vs. $\mathrm{W}: \mathrm{B}=12+6+4=22 \quad \mathrm{~W}=3 \mathrm{~B}$ gets 1 pt .
B vs. $S: B=12+3=15 \quad S=10 \quad B$ gets 1 pt .
B vs. $R: B=12+6=18 \quad R=7 \quad B$ gets 1 pt .
W vs. $S: W=12+3=15 \quad S=10 \quad W$ gets 1 pt .
W vs. $\mathrm{R}: \mathrm{W}=12+6+3=21 \mathrm{R}=4 \mathrm{~W}$ gets 1 pt .
S vs. R: $S=12+6=18 \quad S=7 \quad S$ gets 1 pt.
Beach wins with 3 points.
b) B wins by a plurality of 12 votes. Yes, the head-to-head criterion is satisfied.
11. Total votes $=3+2+1+1=7$ Candidates A is the candidate of choice with a plurality of 4 votes.
A: 4 1st place votes $=(4)(4)=16$ $34^{\text {th }}$ place votes $=(3)(1)=3$
B: 3 1st place vote $=(3)(4)=12$ $42^{\text {nd }}$ place vote $=(4)(3)=12$
C: $22^{\text {nd }}$ place vote $=(2)(3)=6$ $43^{\text {rd }}$ place vote $=(4)(2)=8$ $14^{\text {th }}$ place vote $=(1)(1)=1$
D: $12^{\text {nd }}$ place vote $=(1)(3)=3$
$33^{\text {rd }}$ place votes $=(3)(2)=6$
$34^{\text {th }}$ place votes $=(3)(1)=3$
$\mathrm{G}=300$ points; $\mathrm{A}=333$ points;
$A=19$ votes; $B=24$ votes; $C=15$ votes; D $=12$ votes
Candidate B is chosen with 24 votes, therefore the majority criterion is not satisfied.
13. P: 4 1st place votes $=(4)(3)=12$ $22^{\text {nd }}$ place votes $=(2)(2)=4$ $33^{\text {rd }}$ place votes $=(3)(1)=3$
L: 3 1st place vote $=(3)(3)=9$ $52^{\text {nd }}$ place vote $=(5)(2)=10$ $13^{\text {rd }}$ place vote $=(1)(1)=1$
S: $21^{\text {st }}$ place votes $=(2)(3)=6$ $22^{\text {nd }}$ place vote $=(2)(3)=6$ $53^{\text {rd }}$ place vote $=(5)(1)=5$
$\mathrm{P}=19$ votes; $\mathrm{L}=20$ votes; $\mathrm{S}=17$ votes
P vs. L: $\mathrm{P}=4+1=5 \quad \mathrm{~L}=4 \quad \mathrm{P}$ gets 1 pt .
P vs. $S: P=4+1=5 \quad S=4 \quad P$ gets 1 pt .
L vs. S: $L=4+1+2=7 \quad S=2 \quad L$ gets 1 pt .
Because Parking wins by head-to-head comparison and the Lounge Areas win by Borda count method, the head-to-head criterion is not satisfied.
14. A: 2 1st place votes $=(2)(3)=6$
$72^{\text {nd }}$ place votes $=(7)(2)=14$
B: 21 st place vote $=(2)(3)=6$
$22^{\text {nd }}$ place vote $=(2)(2)=4$
$53^{\text {rd }}$ place vote $=(5)(1)=5$
C: $51^{\text {st }}$ place votes $=(5)(3)=15$
$43^{\text {rd }}$ place vote $=(4)(1)=4$
$A=20$ votes; $B=15$ votes; $C=19$ votes
A vs. $B: A=2+2=4 \quad B=5 \quad B$ gets 1 pt .
A vs. $C: A=2+2=4 \quad C=5 \quad C$ gets $1 p$
B vs. $C: B=2+2=4 \quad C=5 \quad C$ gets 1 pt.
Because C wins by head-to-head comparison and the A wins by the Borda count method, the head-to-head criterion is not satisfied.
16. A majority out of 25 votes is 13 or more votes.

First choice votes: (A) 10, (B) 2, (C) 8, (D) $=5$
None receives a majority, thus B with the least votes is eliminated.
Second round: (A) 10, (C) 10, (D) 5
Still no majority, thus eliminate D.
Third round: (A) 10, (C) 15
C wins with a majority of 15 votes.
A vs. $B: A=10 \quad B=15 \quad B$ gets 1 pt.
A vs. $C: A=10 \quad C=15 \quad C$ gets 1 pt.
A vs. D: $A=12 \quad D=13 \quad$ D gets 1 pt .
B vs. $C: B=17 \quad C=8 \quad B$ gets 1 pt .
B vs. $D: B=20 \quad D=5 \quad B$ gets 1 pt .
C vs. D: $\mathrm{C}=10 \quad \mathrm{D}=15 \quad \mathrm{D}$ gets 1 pt .
B wins with 3 points. Therefore, the head-to-head criterion is not satisfied.
20. A receives 38 points, B receives 35 points, C receives 35 points. Thus, A wins using the Borda count method. If B drops out we get the following: A receives 25 points, and C receives 29 points. Thus, C wins the second vote.

The irrelevant alternatives criterion is not satisfied.
15. A majority out of 25 votes is 13 or more votes. First choice votes: $\mathrm{A}=7, \mathrm{~B}=15, \mathrm{C}=3$
Since B has > 13 votes, B wins by plurality with elimination.

$$
\begin{array}{lll}
\text { A vs. } B: A=7+3=10 & B=15 & B \text { gets } 1 \mathrm{pt} \\
\text { A vs. } C: A=7 \quad C=25-7=18 & \text { C gets } 1 \mathrm{pt} . \\
\text { B vs. } C: B=15+7=22 & C=3 & B \text { gets } 1 \mathrm{pt}
\end{array}
$$

Yes, because B wins by both methods, the head-to-head criterion is satisfied.
17. Votes: A: 8, B: 4, C: 5; thus, A wins. If B drops out, we get the following: Votes: A: $8, \quad C: 4+5=9$, thus C would win. The irrelevant alternatives criterion is not satisfied.
18. Votes: A: 3, B: 4, C: 5; thus B wins If C drops out, we get the following: Votes: $\mathrm{A}: 3+5=8, \quad \mathrm{~B}: 6$, thus A would win. The irrelevant alternatives criterion is not satisfied.
19. A receives 53 points, B receives 56 points, and C receives 53 points. Thus, B wins using the Borda count method. If A drops out, we get the following: B receives 37 points, and C receives 44 points. Thus, C wins the second vote. The irrelevant alternatives criterion is not satisfied.
21. A majority out of 32 voters is 16 or more votes. Votes: A: $8+3=11$, B: $9, \mathrm{C}: 12$; none has a majority, thus eliminate B .
Votes: $\mathrm{A}: 8+3=11, \mathrm{C}: 9+12=21$, thus C wins. If the three voters who voted for $\mathrm{A}, \mathrm{C}, \mathrm{B}$ change to C, A, B, the new set of votes becomes: Votes: A: 12, B: 9, C: 11; none has a majority, thus eliminate B. Votes: $\mathrm{A}: 9+12=21, \mathrm{C}=11$, thus A wins. Thus, the monotonicity criterion is not satisfied.
22. A majority out of 29 voters is 15 or more votes. Votes: A: 8, B: $10, \mathrm{C}: 11$; none has a majority, thus eliminate A .
Votes: B: $8+10=18, \quad$ C: $7+4=11$, thus B wins. After the four votes change their votes, the the new set of votes is $\mathrm{A}: 8, \quad \mathrm{~B}: 14 ., \quad \mathrm{C}: 7$; none has a majority, thus eliminate C .
Votes: A: $7+8=15$, B:14; thus A wins.
Thus, the monotonicity criterion is not satisfied.
24. A majority out of 13 voters is 7 votes.

Votes: A: 3, B: 6, C: 4 ; none has a majority, thus eliminate A. Votes: B: $6, \mathrm{C}: 4+3=7$; thus C wins. After B drops out, the new set of votes is Votes: A: $6+3=9, \mathrm{C}: 4$; thus A wins. The irrelevant alternatives criterion is not satisfied.
26. A receives 3 points, B receives 1 point, C receives 3 points, D receives 1 point, and E receives 2 points. A and C tie, but when A vs. C, C wins and thus we declare C the winner. After A, B and E drop out, the new set of votes is table is $\mathrm{C}: 2+1=3$, D: 4, thus D wins.
The irrelevant alternatives criterion is not satisfied.
27. Total votes $=7$ A wins with a majority of 4 votes.
A: 4 1st place votes $=(4)(3)=12$
$33^{\text {rd }}$ place votes $=(3)(1)=3$
B: 21 st place vote $=(2)(3)=6$
$52^{\text {nd }}$ place vote $=(5)(2)=10$
C: $11^{\text {st }}$ place votes $=(1)(3)=3$
$22^{\text {nd }}$ place votes $=(2)(2)=4$
$43^{\text {rd }}$ place vote $=(4)(1)=4$
$\mathrm{A}=15$ points; $\mathrm{B}=16$ points; $\mathrm{C}=11$ points
B wins with 16 points. No. The majority
criterion is not satisfied.
23. A majority out of 23 voters is 12 votes. Votes: A: 10, B: 8, C: 5; none has a majority, thus eliminate C .
Votes: B: $10, \mathrm{~B}: 8+5=13$; thus B wins.
After A drops out, the new set of votes is
B: 8, C: $10+5=15$; thus C wins.
The irrelevant alternatives criterion is not satisfied.
25. A receives 2 points, B receives 3 point, C receives 2 points, D receives 1 point, and E receives 2 pts. B wins by pairwise comparison.
After A, C and E drop out, the new set of votes is B: 2 D: 3, thus D wins. The irrelevant alternatives criterion is not satisfied.
28. Total votes $=11 \quad \mathrm{~B}$ wins with a plurality of 5 votes.
A: 1 1st place votes $=(1)(3)=3$
$52^{\text {nd }}$ place votes $=(5)(2)=10$
$53^{\text {rd }}$ place votes $=(5)(1)=5$
B: 6 1st place vote $=(6)(3)=18$
$53^{\text {rd }}$ place votes $=(5)(1)=5$
C: $41^{\text {st }}$ place votes $=(4)(3)=12$
$62^{\text {nd }}$ place votes $=(6)(2)=12$
$13^{\text {rd }}$ place vote $=(1)(1)=1$
$\mathrm{A}=21$ points; $\mathrm{B}=23$ points; $\mathrm{C}=25$ points
C wins with 25 points. No. The majority
criterion is not satisfied.
29. Total votes $=31$ Majority $=16$ or more
a) Museum of Natural History
b) Museum of Natural History
c) Museum of Natural History
d) None of them
30. a) Total votes $=44$ A majority is ≥ 22 votes.

A: 81 st place votes $=(8)(5)=40$
$83^{\text {rd }}$ place votes $=(8)(3)=24$
$84^{\text {th }}$ place votes $=(8)(2)=16$
$205^{\text {th }}$ place votes $=(20)(1)=20$
B: 20 1st place vote $=(20)(5)=100$
$22^{\text {nd }}$ place vote $=(2)(4)=8$
$144^{\text {th }}$ place votes $=(14)(2)=28$
$85^{\text {th }}$ place votes $=(8)(1)=8$
C: $41^{\text {st }}$ place votes $=(4)(5)=20$
$82^{\text {nd }}$ place votes $=(8)(4)=32$
$163^{\text {rd }}$ place vote $=(16)(3)=48$
$84^{\text {th }}$ place votes $=(8)(2)=16$
$85^{\text {th }}$ place votes $=(8)(1)=8$
D: $41^{\text {st }}$ place votes $=(4)(5)=20$
$282^{\text {nd }}$ place votes $=(28)(4)=112$
$43^{\text {rd }}$ place votes $=(4)(3)=12$
$85^{\text {th }}$ place votes $=(8)(1)=8$
E: $81^{\text {st }}$ place votes $=(8)(5)=40$
$22^{\text {nd }}$ place votes $=(2)(4)=8$
$163^{\text {rd }}$ place votes $=(16)(3)=48$
$144^{\text {th }}$ place votes $=(14)(2)=28$
$\mathrm{A}=100$ pts. $; \quad \mathrm{B}=136$ pts.; $\mathrm{C}=124$ pts.;
$\mathrm{D}=152$ pts.; $\mathrm{E}=124$ pts.
Dow Chemical is chosen with 152 points.
b) Burrows-Welcome will be chosen.
c) Yes.
38. A majority out of 11 voters is 6 or more votes.
a) Votes: A: 9, B: 2; thus A wins.
b) Votes: A: $4+2=6$, C: 5 ; Yes, A wins.
c) The five voters who favor C should vote $\mathrm{C}, \mathrm{B}, \mathrm{A}$ instead of $\mathrm{C}, \mathrm{A}, \mathrm{B}$.
31. a) A majority out of 82 votes is 41 or more votes. First choice votes: (A) 28, (C) 30, (D) 24
None receives a majority, thus D with the least votes is eliminated.
Second round: (A) 52, (C) 30
Thus, Jennifer Aniston is selected..
b) No majority on the $1^{\text {st }}$ vote; C is eliminated with the fewest votes.
Second round: (A) 38, (D) 44
Denzel Washington is chosen.
c) Yes.
32. a) A receives 1 point, B receives $21 / 2$ points, C receives $11 / 2$ points, D receives 3 points, E receives 2 points. Thus, (D) wins.
b) A receives 0 points, B receives $21 / 2$ points, D receives 2 points, E receives $11 / 2$ points. Thus, B wins.
c) Yes.
33. A candidate who holds a plurality will only gain strength and hold and even larger lead if more favorable votes are added.
34. Answers will vary (AWV).
35. AWV 36. AWV 37. AWV
39. AWV

Exercise Set 15.3

1. If we divide the total population by the number of items to be apportioned we obtain a number called the standard divisor.
2. The standard quota is found by dividing each group's population by the standard divisor.
3. The standard quota rounded down to the nearest whole number.
4. The standard quota rounded up to the nearest whole number.
5. An apportionment should always be either the upper quota or the lower quota.
6. Hamilton's method
7. Jefferson's method, Webster's method, Adams's method
8. a) Jefferson's method
b) Adam's method
c) Webster's method
9. a) Webster's method
b) Adam's method
c) Jefferson's method
10. Jefferson's method, Webster's method, Adams's method
11. a) $\frac{7500000}{150}=50,000=$ standard divisor
b) and c)

| State | A | B | C | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Population | $1,222,000$ | $2,730,000$ | 857,000 | $2,693,000$ | $7,500,000$ |
| Standard Quota | 24.40 | 54.60 | 17.14 | 53.86 | |
| Lower Quota | 24 | 54 | 17 | 53 | 148 |
| Hamilton's Apportionment | 24 | 55 | 17 | 54 | 150 |

12. a) and b)

| State | A | B | C | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Population | $1,222,000$ | $2,730,000$ | 857,000 | $2,693,000$ | $7,500,000$ |
| Modified Quota | 24.65 | 55.15 | 17.31 | 54.40 | |
| Jefferson's Apportionment | 24 | 55 | 17 | 54 | 150 |
| (round down) | | | | | |

13. a) and b)

State	A	B	C	D	Total
Population	$1,222,000$	$2,730,000$	857,000	$2,693,000$	$7,500,000$
Modified Quota	24.70	55.26	17.35	54.51	
Jefferson's Apportionment	24	55	17	54	150
(round down)					

14. a) and b)

| State | A | B | C | D | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Population | $1,222,000$ | $2,730,000$ | 857,000 | $2,693,000$ | $7,500,000$ |
| Modified Quota | 24.11 | 53.95 | 16.94 | 53.22 | |
| Adams' Apportionment | 25 | 54 | 17 | 54 | 150 |
| (round up) | | | | | |

15. a) and b)

State	A	B	C	D	Total
Population	$1,222,000$	$2,730,000$	857,000	$2,693,000$	$7,500,000$
Modified Quota	24.06	53.85	16.90	53.12	
Adams' Apportionment	25	54	17	54	150
(round up)					

16. a) and b)

State	A	B	C	D	Total	
Population	$1,222,000$	$2,730,000$	857,000	$2,693,000$	$7,500,000$	
Standard Quota	24.40	54.60	17.14	53.86		
Webster's Apportionment	24	55	17	54	150	
(standard rounding)						

502 CHAPTER 15 Voting and Apportionment
17. a) and b)

State	A	B	C	D	Total
Population	$1,222,000$	$2,730,000$	857,000	$2,693,000$	$7,500,000$
Modified Quota	24.38	54.55	17.12	53.81	
Webster's Apportionment	24	55	17	54	150

18. a) Standard divisor $=\frac{\text { total }}{25}=\frac{675}{25}=27$
b) and c)

Hotel	A	B	C	Total
Amount	306	214	155	675
Standard Quota	11.33	7.93	5.74	
Hamilton's Apportionment	11	8	6	25

19. a) and b)

Hotel	Al	Bob	Charlie	Total
Amount	350	530	470	1350
Modified Quota	8.05	12.18	10.84	
Jefferson's Apportionment	8	12	10	30
(rounded down)				

20. a) and b)

Hotel	Al	Bob	Charlie	Total
Amount	350	530	470	1350
Modified Quota	8.14	12.33	10.93	
Jefferson's Apportionment	8	12	10	30

21. a) and b)

Hotel	Al	Bob	Charlie	Total
Amount	350	530	470	1350
Modified Quota	7.45	11.28	10.00	
Adam's Apportionment	8	12	10	30
(rounded up)				

22. a) and b)

Hotel	Al	Bob	Charlie	Total
Amount	350	530	470	1350
Modified Quota	7.29	11.04	9.79	
Adam's Apportionment	8	12	10	30
(rounded up)				

23. a) and b)

Store	Al	Bob	Charlie	Total
Amount	350	530	470	1350
Standard Quota	7.78	11.78	10.44	
Webster's Apportionment	8	12	10	30
(standard rounding)				

24. a) and b)

Store	Al	Bob	Charlie	Total
Amount	350	530	470	1350
Modified Quota	7.61	11.52	10.22	
Webster's Apportionment	8	12	10	30

25. a) A standard divisor $=\frac{\text { total }}{30}=\frac{540}{30}=18$
b)

Store	A	B	C	D	Total
Population	75	97	140	228	540
Standard Quota	4.177	5.39	7.78	12.67	30

26.

Store	A	B	C	D	Total
Population	123	484	382	271	1260
Standard Quota	5.86	23.05	18.19	12.90	
Lower Quota	5	23	18	12	58
Hamilton's Apportionment	6	23	18	13	60

27. A divisor of 20.5 was used.

Store	A	B	C	D	Total
Population	123	484	382	271	1260
Modified Quota	6.00	23.61	18.63	13.22	
Jefferson's Apportionment	6	23	18	13	60
(round down)					

28. A divisor of 21.5 was used.

Store	A	B	C	D	Total
Population	123	484	382	271	1260
Modified Quota	5.72	27.51	17.77	12.60	
Adams'Apportionment	6	23	18	13	60
(round up)					

29.

Store	A	B	C	D	Total
Population	123	484	382	271	1260
Standard Quota	5.86	23.05	18.19	12.90	
Webster's Apportionment	6	23	18	13	60

30. a) Standard divisor $=\frac{\text { total }}{250}=\frac{13000}{250}=52$
b)

School	LA	Sci.	Eng.	Bus.	Hum	Total
Enrollment	1746	7095	2131	937	1091	13000
Standard Quota	33.58	136.44	40.98	18.02	20.98	

31.

School	LA	Sci.	Eng.	Bus.	Hum	Total
Enrollment	1746	7095	2131	937	1091	13000
Standard Quota	33.58	136.44	40.98	18.02	20.98	
Lower Quota	33	136	40	18	20	247
Hamilton's Apportionment	34	136	41	18	21	250

32. A divisor of 51.5 was used.

School	LA	Sci.	Eng.	Bus.	Hum	Total
Enrollment	1746	7095	2131	937	1091	13000
Modified Quota	33.90	137.77	41.38	18.19	21.18	
Jefferson's Apportionment	33	137	41	18	21	250
(round down)						

33. A divisor of 52.5 was used.

School	LA	Sci.	Eng.	Bus.	Hum	Total
Enrollment	1746	7095	2131	937	1091	13000
Modified Quota	33.26	135.14	40.59	17.85	20.78	
Adam's Apportionment	34	136	41	18	21	250
(round up)						

34.

School	LA	Sci.	Eng.	Bus.	Hum	Total
Enrollment	1746	7095	2131	937	1091	13000
Standard Quota	33.58	136.44	40.98	18.02	20.98	
Webster's Apportionment	34	136	41	18	21	250
(standard rounding)						

35. a) A standard divisor $=\frac{\text { total }}{150}=\frac{13500}{150}=90$

Dealership	A	B	C	D	Total
Annual Sales	4800	3608	2990	2102	13500
Standard Quota	53.33	40.09	33.22	23.36	150.00

36.

Dealership	A	B	C	D	Total
Annual Sales	4800	3608	2990	2102	13500
Standard Quota	53.33	40.09	33.22	23.36	150.00
Hamilton's Apportionment	53	40	33	24	150

37.

Dealership	A	B	C	D	Total
Annual Sales	4800	3608	2990	2102	13500
Standard Quota	53.33	40.09	33.22	23.36	150.00
Jefferson's Apportionment	54	40	33	23	150

38.

Dealership	A	B	C	D	Total
Annual Sales	4800	3608	2990	2102	13500
Standard Quota	53.33	40.09	33.22	23.36	150.00
Adam's Apportionment	53	40	33	24	150

39.

Dealership	A	B	C	D	Total
Annual Sales	4800	3608	2990	2102	13500
Standard Quota	53.33	40.09	33.22	23.36	150.00
Webster's Apportionment	54	40	33	23	150

40. a) Standard divisor $=\frac{\text { total }}{210}=\frac{2940}{210}=14$
b)

Precinct	A	B	C	D	E	F	Total
Crimes	743	367	432	491	519	388	2940
Standard Quota	53.07	26.21	30.86	35.07	37.07	27.71	

41.

Precinct	A	B	C	D	E	F	Total
Crimes	743	367	432	491	519	388	2940
Standard Quota	53.07	26.21	30.86	35.07	37.07	27.71	
Lower Quota	53	26	30	35	37	27	208
Hamilton's Apportionment	53	26	31	35	37	28	210

42. The divisor 3.8 as used.

Precinct	A	B	C	D	E	F	Total
Crimes	743	367	432	491	519	388	2940
Modified Quota	53.84	26.59	31.30	35.58	37.61	28.12	
Jefferson's Apportionment	53	26	31	35	37	28	210
(round down)							

43. The divisor 14.2 as used.

Precinct	A	B	C	D	E	F	Total
Crimes	743	367	432	491	519	388	2940
Modified Quota	52.32	22.85	30.42	34.58	36.55	27.32	
Adam's Apportionment	53	26	31	35	37	28	210
(round up)							

44.

Precinct	A	B	C	D	E	F	Total
Crimes	743	367	432	491	519	388	2940
Standard Quota	52.32	22.85	30.42	34.58	36.55	27.32	
Webster's Apportionment	53	26	31	35	37	28	210
(standard rounding)							

45. a) Standard divisor $=\frac{\text { total }}{200}=\frac{2400}{200}=12$
b)

Shift	A	B	C	D	Total
Room calls	751	980	503	166	2400
Standard Quota	62.58	81.67	41.92	13.83	

46.

Shift	A	B	C	D	Total
Room calls	751	980	503	166	2400
Standard Quota	62.58	81.67	41.92	13.83	
Lower Quota	62	81	41	13	197
Hamilton's Apportionment	62	82	42	14	200

47. The divisor 11.9 was used.

Shift	A	B	C	D	Total
Room calls	751	980	503	166	2400
Modified Quota	63.11	82.35	42.27	13.95	
Jefferson's Apportionment	63	82	42	13	200
(round down)					

48. The divisor 12.1 was used.

Shift	A	B	C	D	Total
Room calls	751	980	503	166	2400
Modified Quota	62.07	80.99	41.57	13.72	
Adam's Apportionment	63	81	42	14	200
(round up)					

49. The divisor 12.02 was used.

Shift	A	B	C	D	Total
Room calls	751	980	503	166	2400
Modified Quota	62.48	81.53	41.85	13.81	
Webster's Apportionment	62	82	42	14	200
(standard rounding)					

50. Standard divisor $=\frac{3615920}{105}=34437.33$
a) Hamilton's Apportionment: 7, 2, 2, 2, 8, 14, 4, 5, 10, 10, 13, 2, 6, 2, 18
b) Jefferson's Apportionment: 7, 1, 2, 2, 8, 14, 4, 5, 10, 10, 13, 2, 6, 2, 19
c) States that Benefited: Virginia States Disadvantaged: Delaware

Exercise set 15.4

1. The Alabama paradox occurs when an increase in the total \# of items results in a loss of items for a group.
2. The new-states paradox occurs when the addition of a new group changes the apportionment of another group.
3. The population paradox occurs when group A loses items to group B, although group A's population grew at a higher rate than group B's.
4. Yes, it can produce the Alabama paradox, population paradox, and new-states paradox.
5. Hamilton's, Jefferson's
6. Adam's, Webster's
7. New divisor $=\frac{900}{51}=17.65$

School	A	B	C	D	E	Total
Standard Quota	11.90	9.35	9.07	9.92	10.76	
Lower Quota	11	9	9	9	10	48
Hamilton's Apportionment	12	9	9	10	11	51

No. No school suffers a loss so the Alabama paradox does not occur.
8. a) Standard divisor $=\frac{2592}{144}=18$

School	A	B	C	D	Total
Population	739	277	618	958	2592
Standard Quota	41.06	15.38	34.33	53.22	
Hamilton's Apportionment	41	16	34	53	144

b) New divisor $=\frac{2592}{145}=17.88$

School	A	B	C	D	Total
Population	739	277	618	958	2592
Standard Quota	41.33	15.49	34.56	53.57	
Hamilton's Apportionment	41	16	34	53	144

Yes. School B loses a monitor while schools C and D each gain a monitor.
9. a) Standard divisor $=\frac{900}{30}=30$

State	A	B	C	Total
Population	161	250	489	900
Standard Quota	5.37	8.33	16.30	
Hamilton's Apportionment	6	8	16	30

9. b) New divisor $=\frac{900}{31}=29.03$

State	A	B	C	Total
Population	161	250	489	900
Standard Quota	5.56	8.61	16.84	
Hamilton's Apportionment	5	9	17	31

Yes, state A loses 1 seat and states B and C each gain 1 seat.
10. a) Standard divisor $=\frac{1000000}{200}=5000$

State	A	B	C	Total
Population	233,000	461,000	306,000	$1,000,000$
Standard Quota	46.60	92.20	61.20	
Lower Quota	46	92	61	199
Hamilton's Apportionment	47	92	61	200

10. b) New divisor $=\frac{1000000}{201}=4975.12$

State	A	B	C	Total
Population	233,000	461,000	306,000	$1,000,000$
Standard Quota	46.83	92.66	61.51	
Lower Quota	46	92	61	199
Hamilton's Apportionment	47	93	61	201

No. None of the States lost a seat.
11. a) Standard divisor $=\frac{25000}{200}=125$

City	A	B	C	Total
Population	8130	4030	12,840	25,000
Standard Quota	65.04	32.24	102.72	
Hamilton's Apportionment	65	32	103	200

b) New divisor $=\frac{25125}{200}=125.625$

City	A	B	C	Total
New Population	8150	4030	12,945	25,125
Standard Quota	64.88	32.08	103.04	
Hamilton's Apportionment	65	32	103	200

No. None of the Cities loses a bonus.
12. a) Standard divisor $=\frac{900}{30}=30$

College	A	B	C	Total
Faculty	162	249	489	900
Standard Quota	5.40	8.30	16.30	
Lower Quota	5	8	16	29
Hamilton's Apportionment	6	8	16	30

12. b) New divisor $=\frac{965}{30}=32.167$

College	A	B	C	Total
Faculty	178	269	518	965
Standard Quota	5.53	8.36	16.10	
Lower Quota	5	8	16	29
Hamilton's Apportionment	6	8	16	30

No. The opportionment is the same.
13. a) Standard divisor $=\frac{5400}{54}=100$

Division	A	B	C	D	E	Total
Population	733	1538	933	1133	1063	5400
Standard Quota	7.33	15.38	9.33	11.33	10.63	
Lower Quota	7	15	9	11	10	52
Hamilton's Apportionment	7	16	9	11	11	54

13. b) New divisor $=\frac{5454}{54}=101$

Division	A	B	C	D	E	Total
Population	733	1539	933	1133	1116	
Standard Quota	7.26	15.238	9.238	11.22	11.05	
Lower Quota	7	15	9	11	11	53
Hamilton's Apportionment	8	15	9	11	11	54

Yes. Division B loses an internship Division A even though the population of division B grew faster than the population of division A .
14. a) Standard divisor $=\frac{30000}{250}=120$

State	A	B	C	Total
Population	459	10551	18990	30000
Standard Quota	3.82	87.93	158.25	
Hamilton's Apportionment	4	88	158	250

b) Same divisor $=\frac{30000}{250}=120$

State	A	B	C	Total
Population	464	10551	19100	30110
Standard Quota	3.87	87.93	159.17	
Hamilton's Apportionment	3	88	159	250

No. The opportionment is the same.
15. a) Standard divisor $=\frac{4800}{48}=100$

Tech. Data	A	B	Total
Employees	844	3956	4800
Standard Quota	8.44	39.56	
Lower Quota	8	39	47
Hamilton's Apportionment	8	40	48

b) New divisor $=\frac{5524}{55}=100.44$

Tech. Data	A	B	C	Total
Employees	844	3956	724	5524
Standard Quota	8.40	39.39	7.21	
Lower Quota	8	39	7	54
Hamilton's Apportionment	9	39	7	55

Yes. Group B loses a manager.
16. a) Standard divisor $=\frac{10000}{100}=100$

State	A	B	Total
Population	1135	8865	10000
Standard Quota	11.35	88.65	
Hamilton's Apportionment	11	89	100

16. b) New divisor $=\frac{10625}{106}=100.24$

State	A	B	C	Total
Population	1135	8865	625	10625
Standard Quota	11.32	88.44	6.24	
Hamilton's Apportionment	11	89	6	106

Yes. State C loses a seat to State B.
17. a) Standard divisor $=\frac{990000}{66}=15,000$

State	A	B	C	Total
Population	68970	253770	667260	990000
Standard Quota	4.59	16.92	44.48	
Hamilton's Apportionment	5	17	44	66

b) New divisor $=\frac{1075800}{71}=15,152.11$

State	A	B	C	D	Total
Population	68970	253770	667260	85800	1075800
Standard Quota	4.55	16.75	44.04	5.66	
Hamilton's Apportionment	4	17	44	6	71

Yes. State C loses a seat to State B.
18. a) Standard divisor $=\frac{3300}{33}=100$

State	A	B	Total
Population	744	2556	3300
Standard Quota	7.44	25.56	
Lower Quota	7	25	32
Hamilton's Apportionment	7	26	33

b) New divisor $=\frac{4010}{40}=100.25$

State	A	B	C	Total
Population	744	2556	710	4010
Standard Quota	7.42	25.50	7.08	
Lower Quota	7	25	7	39
Hamilton's Apportionment	7	26	7	40

No. The apportionment is the same.

Review Exercises

1. a) Robert Rivera wins with the most votes (12).
b) A majority out of 24 voters is 13 or more votes. Robert Rivera does not have a majority.
2. a) Michelle MacDougal wins with the most votes (224).
b) Yes. A majority out of 421 voters is 211 or more votes.
3.

\# of votes	3	2	1	3	1
First	B	A	D	C	D
Second	A	C	C	B	A
Third	C	D	A	A	B
Fourth	D	B	B	D	C

5. Number of votes $=6+4+3+2+1+1=17$
6. Park City wins with a plurality of 6 votes.
7. P: 50 points, V: 47 points, $S: 35$ points, A: 38 points. Park City wins with 50 points.
8. P: 3 pts., V: 2 pts., $\mathrm{S}: 0$ pts., A: 1 pt. Park City wins with 3 points.
9. $38+30+25+7+10=110$ students voted
10. S: 223 pts., V: 215 pts., B: 222 pts. Soccer wins.
11.

\# of votes	2	2	2	1
First	C	A	B	C
Second	A	B	C	B
Third	B	C	A	A

8. A majority out 17 voters is 9 or more votes. Votes: P: $6+1=7, \mathrm{~V}: 4, \mathrm{~S}: 3+2=5$, A:1.
None has a majority, thus eliminate A.
Votes: P: $6+1=7, \mathrm{~V}: 4, \mathrm{~S}: 3+2+1=6$
None has a majority, thus eliminate V .
Votes: P: $6+4+1=11$, $\mathrm{S}: 3+2+1=6$.
Park City wins.
9. Votes: P: 7, V:4, S: 5, A: 1 None has a majority, thus eliminate S with most last place votes. Votes: P: 10, V: 4, A: 3; Park City wins.
10. Volleyball wins with a plurality of 40 votes.
11. A majority out of 110 voters is 56 or more votes. Votes: S: 38, V: 40 , B: 32 ; None has a majority, thus eliminate B. Votes: S: 45, V: 65 Volleyball wins.
12. S: 1 pt., V: 1 pt., B: 1 pt. A 3-way tie
13. a) Votes: A: $161+134=295, \quad \mathrm{~F}: 45, \mathrm{M}: 12$, P: 0 AARP wins.
b) Yes. A majority out of 372 voters is 186 or more votes. AARP receives a majority.
c) A: 985 pts., F: 740 pts., M: 741 pts., P: 852 pts. AARP wins.
d) 186 or more votes is needed for a majority.

Votes: A: 295, F: 45, M: 12, P: 0
AARP wins.
e) A: 3 pts., F: 1 pt., M: 1 pt., P: 1 pt.

AARP wins.
19. a) A majority out of 16 voters is 9 or more votes.

Votes: $(\mathrm{EB}): 4+3+=7, \quad(\mathrm{FW}): 1+1=2$,
(G): $0, \quad(\mathrm{WB}): 6+1=7 \quad$ None has a majority, thus eliminate G. Votes: (EB): $4+3=7$,
(FW): $1+1=2, \quad(W B): 6+1=7 \quad$ None has a majority, thus eliminate FW
Votes: $(\mathrm{EB}): 4+3+1=8, \quad(\mathrm{WB}): 6+1+1=8$.
Thus, EB and WB tie.
b) Use the Borda count method to break the tie.
$(\mathrm{EB})=46$ points, $\quad(\mathrm{WB})=50$ points;
World Book wins.
22. a) A majority out of 42 voters is 21 or more votes.

Votes: A: 12, B: $10+6=16, \mathrm{C}: 14$
None has the majority, thus eliminate A.
Votes: $B: 10+6=16, C: 14+12=26$ C wins.
b) The new preference table is

Number of votes	10	14	6	12
First	B	C	C	A
Second	A	B	B	C
Third	C	A	A	B

Votes: A: 12, B: 10, C: 20 ; None has a majority, thus eliminate B.
Votes: A: 22, C: 20 A wins. When the order is changed A wins. Therefore, the monotonicity criterion is not satisfied.
16. Votes: S: 38 , V: 40 , B: 32 None has a majority, thus eliminate V with the most last place votes. Votes: S: 68, B: 42. Soccer wins.
18. Votes: (NO): 70, (LV): 55, (C): 30, (SD): 45
a) A majority out of 200 voters is 101 or more votes. None of the cities has a majority.
b) New Orleans win a plurality of 70 votes.
c) (NO):410 pts., (LV): 580 pts., (C): 505 pts., (SD): 495 pts. Las Vegas wins.
d) Las Vegas wins with 130 pts. to 70 pts. for NO.
e) NO: 0 pts., LV: 3 pts., C: 1 pt., SD: 1 pt.

Las Vegas wins with points.
19. c) (EB) vs. (WB): EB: $4+3+1=8$ points, (WB): $6+1+1=8$ points. EB and WB tie again.
20. A: 33 pts., B: 39 pts, C: 28 pts., D: 20 pts. Using the Borda count, method B wins. However, B only has 3 first place votes, thus the majority criterion is not satisfied.
21. In a head-to-head comparison, B must win over all the others. For (B vs. A), A wins with 3 pts. The head-to-head criterion is not satisfied.
22. c) If B drops out the new table is

Number of votes	10	14	6	12
First	A	C	C	A
Second	C	A	A	C

Votes: A: $10+12=22, C: 14+6=20$ A wins. Since C won the first election and then after B dropped out A won, the irrelevant criterion is not satisfied.
23. a) M has 0 pts., S has 3 pts., F has 1 pt., and E has 1 pt. Thus, Starbucks wins.
b) Maxwell House wins w/a plurality of 33 votes.
c) $\mathrm{M}=228$ pts., $\mathrm{S}=277$ pts., $\mathrm{F}=293$ pts., and $\mathrm{E}=292$ pts. Thus, Folgers wins.
d) Eight O'clock wins over Maxwell House with 76 points.
e) Same results as in a), thus, Starbucks wins.
f) The plurality, plurality with elimination, and Borda count methods all violate the head-to-head criterion.
25. The Borda count method
26. Plurality and plurality w/elimination methods
27. Pairwise comparison and Borda count methods
24. a) Yes. Fleetwood Mac is favored when compared to each of the other bands.
b) Votes: A: $15, \mathrm{~B}: 34, \mathrm{C}: 9+4=13$, F: 25 Boston wins.
c) A: 217 points, B: 198 points, C: 206 points, F: 249 points Fleetwood Mac wins.
d) A majority out of 87 voters is 44 or more votes.

Votes: A: 15, B: 34, C: 13, F:25
None has a majority, thus eliminate C .
Votes: A: $15+9+4=28$, B: 34, F: 25
None has a majority, thus eliminate F .
Votes: A: $28+25=53$, B: 34 Abba wins.
e) $\mathrm{A}=2$ pts., $\mathrm{B}=0$ pts., $\mathrm{C}=1$ pt., $\mathrm{F}=3$ pts.

Thus, Fleetwood Mac wins.
f) Plurality and plurality w/elimination methods
28. Standard divisor $=\frac{6000}{10}=600$

Region	A	B	C	Total
Number of Houses	2592	1428	1980	6000
Standard Quota	4.32	2.38	3.30	
Lower Quota	4	2	3	9
Hamilton's Apportionment	4	3	3	10

29. Using the modified divisor 500.

Region	A	B	C	Total
Number of Houses	2592	1428	1980	6000
Modified Quota	5.18	2.86	3.96	
Jefferson's Apportionment	5	2	3	10
(rounded down)				

30. Using the modified divisor 700.

Region	A	B	C	Total
Number of Houses	2592	1428	1980	6000
Modified Quota	3.70	2.04	2.83	
Adam's Apportionment	4	3	3	10
(rounded up)				

31. Using the modified divisor 575.

Region	A	B	C	Total
Number of Houses	2592	1428	1980	6000
Modified Quota	4.51	2.48	3.4	
Webster's Apportionment	5	2	3	10
(normal rounding)				

32. Yes. Hamilton's Apportionment becomes 5, 2, 4. Region B loses one truck.
33. Standard divisor $=\frac{690}{23}=30$

Course	A	B	C	Total
Number of Students	311	219	160	690
Standard Quota	10.37	7.30	5.33	
Lower Quota	10	7	5	22
Hamilton's Apportionment	11	7	5	23

34. Use the modified divisor 28

Course	A	B	C	Total
Number of Students	311	219	160	690
Modified Quota	11.12	7.82	5.71	
Jefferson's Apportionment	11	7	5	23
(round down)				

35. Use the modified divisor 31.5

Course	A	B	C	Total
Number of Students	311	219	160	690
Modified Quota	9.87	6.95	5.08	
Adam's Apportionment	10	7	6	23
(round up)				

36. Use the modified divisor 29.5

Course	A	B	C	Total
Number of Students	311	219	160	690
Modified Quota	10.54	7.42	5.42	
Webster's Apportionment	11	7	5	23
(standard rounding)				

37. The new divisor is $\frac{698}{23}=30.35$

Course	A	B	C	Total
Number of Students	317	219	162	698
Standard Quota	10.44	7.22	5.34	
Lower Quota	10	7	5	22
Hamilton's Apportionment	11	7	5	23

No. The apportionment remains the same.
38. The Standard divisor $=\frac{55000}{55}=1000$

State	A	B	Total
Population	4862	50138	55,000
Standard Quota	4.86	50.14	
Hamilton's Apportionment	5	50	55

39. The apportionment is 4,51 .
40. The apportionment is 5,50 .
41. The apportionment is 5,50 .
42. The new divisor is $\frac{60940}{60}=1015.67$

State	A	B	C	Total
Population	4862	50138	5940	60940
Standard Quota	4.79	49.36	5.85	
Hamilton's Apportionment	5	49	6	60

Yes. State A. gains a seat while State B loses a seat.

Chapter Test

1. $6+5+5+4=20$ members voted.
2. Chris wins with a plurality of 9 votes.
3. Donyall wins with 11 pts.
4. No candidate has a majority of ≥ 10 votes.
5. $\mathrm{D}=41$ pts., $\mathrm{C}=44$ pts., $\mathrm{S}=35$ pts. Chris wins.
6. $\mathrm{D}=1.5$ pts., $\mathrm{C}=1 \mathrm{pt} ., \mathrm{S}=0.5 \mathrm{pt}$. Donyall wins.
7. b) (S) $1^{\text {st }}(43)(4)=172$

$$
2^{\text {nd }}(0)(3)=0
$$

$$
3^{\text {rd }}(26)(2)=52
$$

$$
4^{\text {th }}(73)(1)=73 \quad \text { S receives } 297 \text { points. }
$$

The iguana (I) wins with the most points.
c) A majority out of 142 voters is 72 or more votes. Votes: H: 40, I: 29, L: 30, S: 43; None has a majority, thus eliminate I. Votes: H: 69, L: 30, S: 43 None has a majority, thus eliminate L. Votes: H: 99, S: 43
The hamster wins.
d) H vs. I: I gets 1 pt. H vs. L: L gets 1 pt . H vs. S: H gets 1 pt. I vs. L: L gets 1 pt. I vs. S: I gets 1 pt. L vs. S: L gets 1 pt. Ladybug wins with 3 points.
8. Plurality: Votes: W: $86, \mathrm{X}: 52+28=80$, Y: 60 , Z: 58 W wins.
Borda count: W gets 594 points, X gets 760 points, Y gets 722 points, Z gets 764 points Z wins Plurality with elimination: A majority out of 284 voters is 143 or more votes.
Votes: W: 86, X: 80, Y: 60, Z: 58
None has a majority, thus eliminate Z .
Votes: W: 86, X: $80+58=138$, Y: 60
None has a majority, thus eliminate Y .
Votes: W: 86, X: $138+60=198 \mathrm{X}$ wins.
8. Head-to-Head: When Y is compared to each of the others, Y is favored. Thus Y wins the head-to-head comparison.
Plurality, Borda count and Plurality with elimination each violate the head-to-head criterion. The pairwise method never violates the head-to-head criterion.
9. A majority out of 35 voters is 18 or more votes. Louisiana (L) has a majority.
However, Mississippi (M) wins using the Borda count method. Thus the majority criterion is violated.
10. a) The standard divisor $=\frac{33000}{30}=1100$

State	A	B	C	Total
Population	6933	9533	16534	33,000
Standard Quota	6.30	8.67	15.03	
Hamilton's Apportionment	6	9	15	30

b)

State	A	B	C	Total
Population	6933	9533	16534	33,000
Modified Quota	6.30	8.67	15.03	
Jefferson's Apportionment	6	8	15	29
(round down)				

c) The new divisor 1064.52

State	A	B	C	Total
Population	6933	9533	16534	33,000
Standard Quota	6.51	8.96	15.53	
Hamilton's Apportionment	6	9	16	31

The Alabama paradox does not occur, sine none of the states loses a seat.
d) The divisor $=\frac{33826}{31}=1091.16$

State	A	B	C	Total
Population	7072	9724	17030	33,826
Standard Quota	6.48	8.91	15.61	
Hamilton's Apportionment	6	9	16	31

The Alabama paradox does not occur, sine none of the states loses a seat.
10. e) The new divisor is $\frac{38100}{36}=1058.33$

State	A	B	C	D	Total
Population	6933	9533	16534	5100	38100
Standard Quota	6.55	9.01	15.62	4.82	
Hamilton's Apportionment	6	9	16	5	36

The new states paradox does not occur, sine none of the existing states loses a seat.

APPENDIX

GRAPH THEORY

Exercise Set

1. A vertex is a designated point.
2. An edge (or an arc) is any line, either straight or curved, that begins and ends at a vertex.
3. To determine whether a vertex is odd or even, count the number of edges attached to the vertex. If the number of edges is odd, the vertex is odd. If the number of edges is even, the vertex is even.
4. Answers will vary.
5. 5 vertices, 7 edges
6. 7 vertices, 11 edges
7. Each graph has the same number of edges from the corresponding vertices.
8. Odd vertices: C, D

Even vertices: A, B
6. 6 vertices, 8 edges
8. 5 vertices, 6 edges
10. Each graph has the same number of edges from the corresponding vertices.
12. Odd vertices: A, C, E, F

Even vertices: B, D
13. Yes. The figure has exactly two odd vertices, namely C and D. Therefore, the figure is traversable. You may start at C and end at D, or start at D and end at C.
14. No. All four vertices are odd. There are more than two odd vertices. Therefore, the figure is not traversable.
15. Yes. The figure has no odd vertices. Therefore, the figure is traversable. You may start at any point and end where you started.
16. Yes. The figure has no odd vertices. Therefore, the figure is traversable. You may start at any point and end where you started.
17. No. The figure has four odd vertices, namely A, B, E, and F. There are more than two odd vertices. Therefore, the figure is not traversable.
18. Yes. The figure has exactly two odd vertices, namely C and G. Therefore, the figure is traversable. You may start at C and end at G, or start at G and end at C.
19. Yes. The figure has exactly two odd vertices, namely A and C. Therefore, the figure is traversable. You may start at A and end at C, or start at C and end at A.
20. Yes. The figure has no odd vertices. Therefore, the figure is traversable. You may start at any point and end where you started.
21. a) 0 rooms have an odd number of doors.

5 rooms have an even number of doors.
b) Yes because the figure would have no odd vertices.
c) Start in any room and end where you began. For example: A to D to B to C to E to A.
22. a) 4 rooms have an odd number of doors.

1 room has an even number of doors.
b) No because the figure would have more than two odd vertices.
23. a) 2 rooms have an odd number of doors.

4 rooms have an even number of doors.
b) Yes because the figure would have exactly two odd vertices.
c) Start at B and end at F, or start at F and end at B.

For example: B to C to F to E to D to A to B to E to F
24. a) 2 rooms have an odd number of doors.

4 rooms have an even number of doors.
b) Yes because the figure would have exactly two odd vertices.
c) Start at B and end at E, or start at E and end at B. For example: B to A to D to E to F to C to B to E
25. a) 4 rooms have an odd number of doors.

1 room has an even number of doors.
b) No because the figure would have more than two odd vertices.
26. a) 5 rooms have an odd number of doors.

1 room has an even number of doors.
b) No because the figure would have more than two odd vertices.
27. a) 3 rooms have an odd number of doors.

2 rooms have an even number of doors.
b) No because the figure would have more than two odd vertices.
28. a) 3 rooms have an odd number of doors.

4 rooms have an even number of doors.
b) No because the figure would have more than two odd vertices.
29. The door must be placed in room D. Adding a door to any other room would create two rooms with an odd number of vertices. You would then be unable to enter the building through the door marked "enter" and exit through the new door without going through a door at least twice.
30. The door must be placed in room D. Adding a door to any other room would create two rooms with an odd number of vertices. You would then be unable to enter the building through the door marked "enter" and exit through the new door without going through a door at least twice.
31. Yes because the figure would have exactly two odd vertices. Begin at either the island on the left or on the right and end at the other island.
32. Yes because the figure would have exactly two odd vertices. Begin at the island on the right and end on the land below the island, or vice versa.

34.

35. a) Kentucky, Virginia, North Carolina, Georgia, Alabama, Mississippi, Arkansas, Missouri
b) Illinois, Arkansas, Tennessee
36. a) French Guiana, Surinam, Guyana, Venezuela, Columbia, Peru, Bolivia, Paraguay, Argentina, Uruguay
b) Peru, Chile, Argentina, Paraguay, Brazil
37. a) 4
b) 4
c) 11
Bill
39.

40. No, it is not possible, assuming that your starting and ending points are considered vertices.
41. a) Yes, the graph has exactly two odd vertices, namely C and G.
b) C, A, B, E, F, D, G, C
42. Number of Edges $=$ Number of Vertices + Number of Regions -2

Exercise Set 8.4

1. Dimensional analysis is a procedure used to convert from one unit of measurement to a different unit of measurement.
2. A unit fraction is a fraction in which the numerator and denominator contain different units and the value of the fraction is 1 .
3. $\frac{60 \text { seconds }}{1 \text { minute }}$ or $\frac{1 \text { minute }}{60 \text { seconds }}$ because 60 seconds $=1$ minute
4. $\frac{3 \mathrm{ft}}{1 \mathrm{yd}}$ or $\frac{1 \mathrm{yd}}{3 \mathrm{ft}}$ because $3 \mathrm{ft}=1 \mathrm{yd}$
5. $\frac{1 \mathrm{ft}}{30 \mathrm{~cm}}$ Since we need to eliminate centimeters, cm must appear in the denominator. Since we need to convert to feet, ft must appear in the numerator.
6. $\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}$ Since we need to eliminate kilograms, kg must appear in the denominator. Since we need to convert to pounds, lb must appear in the numerator.
7. $\frac{3.81}{1 \text { gal }}$ Since we need to eliminate gallons, gal must appear in the denominator. Since we need to convert to liters, 1 must appear in the numerator.
8. $\frac{0.8 \mathrm{~m}^{2}}{1 \mathrm{yd}^{2}}$ Since we need to eliminate square yards, yd^{2} must appear in the denominator. Since we need to convert to square meters, m^{2} must appear in the numerator.
9. 52 in. $=(52 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=132.08 \mathrm{~cm}$
10. $9 \mathrm{lb}=(9 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)=4.05 \mathrm{~kg}$
11. $4.2 \mathrm{ft}=(4.2 \mathrm{ft})\left(\frac{30 \mathrm{~cm}}{1 \mathrm{ft}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=1.26 \mathrm{~m}$
12. $427 \mathrm{~g}=(427 \mathrm{~g})\left(\frac{1 \mathrm{oz}}{28 \mathrm{~g}}\right)=15.25 \mathrm{oz}$
13. $15 \mathrm{yd}^{2}=\left(15 \mathrm{yd}^{2}\right)\left(\frac{0.8 \mathrm{~m}^{2}}{1 \mathrm{yd}^{2}}\right)=12 \mathrm{~m}^{2}$
14. $160 \mathrm{~kg}=(160 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=355 . \overline{5} \approx 355.6 \mathrm{lb}$
15. $39 \mathrm{mi}=(39 \mathrm{mi})\left(\frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}\right)=62.4 \mathrm{~km}$
16. $765 \mathrm{~mm}=(765 \mathrm{~mm})\left(\frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}\right)\left(\frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}\right)=30.11811024 \approx 30.12 \mathrm{in}$.
17. $675 \mathrm{ha}=(675 \mathrm{ha})\left(\frac{1 \text { acre }}{0.4 \text { ha }}\right)=1687.5$ acres
18. $192 \mathrm{oz}=(192 \mathrm{oz})\left(\frac{28 \mathrm{~g}}{1 \mathrm{oz}}\right)=5376 \mathrm{~g}$
19. $15.6 \mathrm{l}=(15.6 \mathrm{l})\left(\frac{1 \mathrm{pt}}{0.47 \mathrm{l}}\right)=33.19148936 \approx 33.19 \mathrm{pints}$
20. $4 \mathrm{~T}=(4 \mathrm{~T})\left(\frac{0.9 \mathrm{t}}{1 \mathrm{~T}}\right)=3.6 \mathrm{t}$
21. $45.6 \mathrm{ml}=(45.6 \mathrm{ml})\left(\frac{1 \mathrm{fl} \mathrm{oz}}{30 \mathrm{ml}}\right)=1.52 \mathrm{fl} \mathrm{oz}$
22. $1.6 \mathrm{~km}^{2}=\left(1.6 \mathrm{~km}^{2}\right)\left(\frac{1 \mathrm{mi}^{2}}{2.6 \mathrm{~km}^{2}}\right)=0.615384615 \approx 0.62 \mathrm{mi}^{2}$
23. $120 \mathrm{lb}=(120 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)=54 \mathrm{~kg}$
24. 6.2 acres $=(6.2$ acres $)\left(\frac{0.4 \text { ha }}{1 \text { acre }}\right)=2.48$ ha
25. 28 grams
26. 28 grams, 0.45 kilogram
27. 0.45 kilogram
28. $5 \mathrm{ft}=(5 \mathrm{ft})\left(\frac{12 \mathrm{in} .}{1 \mathrm{ft}}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=152.4 \mathrm{~cm}$

2 in. $=(2 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=5.08 \mathrm{~cm}$
$152.4 \mathrm{~cm}+5.08 \mathrm{~cm}=157.48$ centimeters
$157.48 \mathrm{~cm}=(157.48 \mathrm{~cm})\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=1.5748 \approx 1.57$ meters
29. 2.54 centimeters, 1.6 kilometers
30. 1.6 kilometers
31. $10 \mathrm{yd}=(10 \mathrm{yd})\left(\frac{0.9 \mathrm{~m}}{1 \mathrm{yd}}\right)=9$ meters
32. 0.9 meter
33. $505 \mathrm{~m}=(505 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=561 . \overline{1} \approx 561.11 \mathrm{yd}$
34. $175 \mathrm{~m}=(175 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=194 . \overline{4} \approx 194.44 \mathrm{yd}$
35. $344 \mathrm{~m}=(344 \mathrm{~m})\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)\left(\frac{1 \mathrm{ft}}{30 \mathrm{~cm}}\right)=1146 . \overline{6} \approx 1146.67 \mathrm{ft}$
36. $303 \mathrm{~m}=(303 \mathrm{~m})\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)\left(\frac{1 \mathrm{ft}}{30 \mathrm{~cm}}\right)=1010 \mathrm{ft}$
37. $85 \mathrm{~km}=(85 \mathrm{~km})\left(\frac{1 \mathrm{mi}}{1.6 \mathrm{~km}}\right)=53.125 \approx 53.13 \mathrm{mph}$
38. $105 \mathrm{mi}=(105 \mathrm{mi})\left(\frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}\right)=168 \mathrm{~km}$
39. $(6 \mathrm{yd})(9 \mathrm{yd})=54 \mathrm{yd}^{2}$

$$
54 \mathrm{yd}^{2}=\left(54 \mathrm{yd}^{2}\right)\left(\frac{0.8 \mathrm{~m}^{2}}{1 \mathrm{yd}^{2}}\right)=43.2 \mathrm{~m}^{2}
$$

40. $110 \mathrm{mi}=(110 \mathrm{mi})\left(\frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}\right)=176 \mathrm{~km}$
41. $400 \mathrm{~g}=(400 \mathrm{~g})\left(\frac{1 \mathrm{oz}}{28 \mathrm{~g}}\right)=14.28571429 \approx 14.29 \mathrm{oz}$
42. $80 \mathrm{~km}=(80 \mathrm{~km})\left(\frac{1 \mathrm{mi}}{1.6 \mathrm{~km}}\right)=50 \mathrm{mph}$
43. $8 \mathrm{fl} \mathrm{oz}=(8 \mathrm{fl} \mathrm{oz})\left(\frac{30 \mathrm{ml}}{1 \mathrm{fl} \mathrm{oz}}\right)=240 \mathrm{ml}$
44. $12,500 \mathrm{gal}=(12,500 \mathrm{gal})\left(\frac{3.8 \mathrm{l}}{1 \mathrm{gal}}\right)\left(\frac{1 \mathrm{kl}}{1000 \mathrm{l}}\right)=47.5 \mathrm{kl}$
45. $(50 \mathrm{ft})(30 \mathrm{ft})(8 \mathrm{ft})=12,000 \mathrm{ft}^{3}$
$12,000 \mathrm{ft}^{3}=\left(12,000 \mathrm{ft}^{3}\right)\left(\frac{0.03 \mathrm{~m}^{3}}{1 \mathrm{ft}^{3}}\right)=360 \mathrm{~m}^{3}$
46. $1189 \mathrm{mi}^{2}=\left(1189 \mathrm{mi}^{2}\right)\left(\frac{2.6 \mathrm{~km}^{2}}{1 \mathrm{mi}^{2}}\right)=3091.4 \mathrm{~km}^{2}$
47. $1 \mathrm{~kg}=(1 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=2 . \overline{2} \mathrm{lb}$ $\frac{\$ 1.10}{2 . \overline{2}}=\$ 0.495$ per pound
48. a) $1.3 \mathrm{t}=(1.3 \mathrm{t})\left(\frac{1 \mathrm{~T}}{0.9 \mathrm{t}}\right)=1 . \overline{4} \approx 1.44 \mathrm{~T}$
b) $1 . \overline{4} \mathrm{~T}=(1 . \overline{4} \mathrm{~T})\left(\frac{2000 \mathrm{lb}}{1 \mathrm{~T}}\right)=2888 . \overline{8} \approx 2888.9 \mathrm{lb}$
49. $34.5 \mathrm{kl}=(34.5 \mathrm{kl})\left(\frac{1000 \mathrm{l}}{1 \mathrm{kl}}\right)\left(\frac{1 \mathrm{gal}}{3.8 \mathrm{l}}\right)=9078.947368 \approx 9078.95 \mathrm{gal}$
50. $\quad 0.25 \mathrm{oz}=(0.25 \mathrm{oz})\left(\frac{28 \mathrm{~g}}{1 \mathrm{oz}}\right)=7 \mathrm{~g}$
$\frac{\$ 80}{7}=11.42857143 \approx \$ 11.43$ per gram
51. a) 8 stones $=(8$ stones $)\left(\frac{70 \mathrm{~kg}}{11 \text { stones }}\right)=50 . \overline{90} \approx 50.91 \mathrm{~kg}$
b) $50 . \overline{90} \mathrm{~kg}=(50 . \overline{90} \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=113 . \overline{13} \approx 113.13 \mathrm{lb}$
52. $\frac{1}{8}$ carat $=(0.125$ carat $)\left(\frac{1 \mathrm{~g}}{5 \text { carat }}\right)=0.025 \mathrm{~g}$
53. a) $-282 \mathrm{ft}=(-282 \mathrm{ft})\left(\frac{30 \mathrm{~cm}}{1 \mathrm{ft}}\right)=-8460 \mathrm{~cm}$
b) $-8460 \mathrm{~cm}=(-8460 \mathrm{~cm})\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=-84.6 \mathrm{~m}$
54. $5.7 \mathrm{l}=(5.7 \mathrm{l})\left(\frac{1 \mathrm{qt}}{0.95 \mathrm{l}}\right)=6 \mathrm{qt}$
55. a) $1 \mathrm{~m}^{2}=\left(1 \mathrm{~m}^{2}\right)\left(\frac{(3.3)^{2} \mathrm{ft}^{2}}{1 \mathrm{~m}^{2}}\right)=10.89 \mathrm{ft}^{2}$
b) $1 \mathrm{~m}^{3}=\left(1 \mathrm{~m}^{3}\right)\left(\frac{(3.3)^{3} \mathrm{ft}^{3}}{1 \mathrm{~m}^{3}}\right)=35.937 \mathrm{ft}^{3}$
56. a) $1 \mathrm{ft}^{2}=\left(1 \mathrm{ft}^{2}\right)\left(\frac{(30)^{2} \mathrm{~cm}^{2}}{1 \mathrm{ft}^{2}}\right)=900 \mathrm{~cm}^{2}$
b) $1 \mathrm{ft}^{3}=\left(1 \mathrm{ft}^{3}\right)\left(\frac{(30)^{3} \mathrm{~cm}^{3}}{1 \mathrm{ft}^{3}}\right)=27000 \mathrm{~cm}^{3}$
57. $56 \mathrm{lb}=(56 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)\left(\frac{1 \mathrm{mg}}{1 \mathrm{~kg}}\right)=25.2 \mathrm{mg}$
58. $170 \mathrm{lb}=(170 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)\left(\frac{1.5 \mathrm{mg}}{1 \mathrm{~kg}}\right)=114.75 \mathrm{mg}$
59. $76 \mathrm{lb}=(76 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)\left(\frac{200 \mathrm{mg}}{1 \mathrm{~kg}}\right)=6840 \mathrm{mg}$
$6840 \mathrm{mg}=(6840 \mathrm{mg})\left(\frac{1 \mathrm{~g}}{1000 \mathrm{mg}}\right)=6.84 \mathrm{~g}$
60. $82 \mathrm{lb}=(82 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)\left(\frac{5 \mathrm{mg}}{1 \mathrm{~kg}}\right)=184.5 \mathrm{mg}$
61. a) 2 teaspoons $=(2$ teaspoons $)\left(\frac{12.5 \mathrm{mg}}{1 \text { teaspoon }}\right)=25 \mathrm{mg}$
b) $12 \mathrm{fl} \mathrm{oz}=(12 \mathrm{fl} \mathrm{oz})\left(\frac{30 \mathrm{ml}}{1 \mathrm{fl} \mathrm{oz}}\right)\left(\frac{12.5 \mathrm{mg}}{5 \mathrm{ml}}\right)=900 \mathrm{mg}$
62. a) 2 tablespoons $=(2$ tablespoons $)\left(\frac{236 \mathrm{mg}}{1 \text { tablespoon }}\right)=472 \mathrm{mg}$
b) $8 \mathrm{fl} \mathrm{oz}=(8 \mathrm{fl} \mathrm{oz})\left(\frac{30 \mathrm{ml}}{1 \mathrm{fl} \mathrm{oz}}\right)\left(\frac{1 \text { tablespoon }}{15 \mathrm{ml}}\right)\left(\frac{236 \mathrm{mg}}{1 \text { tablespoon }}\right)=3776 \mathrm{mg}$
63. a) $964 \mathrm{ft}=(964 \mathrm{ft})\left(\frac{30 \mathrm{~cm}}{1 \mathrm{ft}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=289.2 \mathrm{~m}$
b) 85,000 tons $=(85,000$ tons $)\left(\frac{0.9 \text { tonne }}{1 \text { ton }}\right)=76500 \mathrm{t}$
c) $28 \mathrm{mi}=(28 \mathrm{mi})\left(\frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}\right)=44.8 \mathrm{kph}$
64. $(0.5 \mathrm{c})\left(\frac{0.241}{1 \mathrm{c}}\right)=0.121$ graham cracker crumbs
$(12 \mathrm{oz})\left(\frac{28 \mathrm{~g}}{1 \mathrm{oz}}\right)=336 \mathrm{~g}$ nuts
$(8 \mathrm{oz})\left(\frac{28 \mathrm{~g}}{1 \mathrm{oz}}\right)=224 \mathrm{~g}$ chocolate pieces
$\left(\frac{4}{3} \mathrm{c}\right)\left(\frac{0.241}{1 \mathrm{c}}\right)=0.321$ flaked coconut
$\left(\frac{4}{3} \mathrm{c}\right)\left(\frac{0.241}{1 \mathrm{c}}\right)=0.321$ condensed milk
$(9 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right) \times(13 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=22.86 \mathrm{~cm} \times 33.02 \mathrm{~cm}$ baking pan
$350^{\circ} \mathrm{F}=\frac{5}{9}(350-32)=176 . \overline{6} \approx 176.7^{\circ} \mathrm{C}$
$(1.5 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right) \times(3 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=3.81 \mathrm{~cm} \times 7.62 \mathrm{~cm}$ bars
65. a) $(37 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=41 . \overline{1} \approx 41.1 \mathrm{yd}$
b) $(370140 \mathrm{~km})\left(\frac{1 \mathrm{mi}}{1.6 \mathrm{~km}}\right)=231,337.5 \mathrm{mi}$
c) $(44 \mathrm{~km})\left(\frac{1 \mathrm{mi}}{1.6 \mathrm{~km}}\right)=27.5 \mathrm{mi}$
d) $1260^{\circ} \mathrm{C}=\frac{9}{5}(1260)+32=2300^{\circ} \mathrm{F}$
e) $(335 \mathrm{~km})\left(\frac{1 \mathrm{mi}}{1.6 \mathrm{~km}}\right)=209.375 \mathrm{mph}$
f) $(29484 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=65,520 \mathrm{lb}$
g) $(4.5 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right) \times(18 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=5 \mathrm{yd} \times 20 \mathrm{yd}$
h) $\left(\begin{array}{ll}1713961\end{array}\right)\left(\frac{1 \mathrm{gal}}{3.81}\right)=45,104.21053 \approx 45,104.21 \mathrm{gal} / \mathrm{min}$
i) $(635881)\left(\frac{1 \mathrm{gal}}{3.8 \mathrm{l}}\right)=16,733.68421 \approx 16,733.68 \mathrm{gal} / \mathrm{min}$
j) $\quad(46.89 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=52.1 \mathrm{yd}$
k) $(8.4 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=9 . \overline{3} \approx 9.33 \mathrm{yd}$
1) $(632772 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=1,406,160 \mathrm{lb}$
65. m) $(106142 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=235,871 . \overline{1} \approx 235,871.11 \mathrm{lb}$
n) $-251^{\circ} \mathrm{C}=\frac{9}{5}(-251)+32=-419.8^{\circ} \mathrm{F}$
66. $(0.2 \mathrm{mg})\left(\frac{1 \text { grain }}{60 \mathrm{mg}}\right)\left(\frac{1 \mathrm{ml}}{\frac{1}{300} \text { grain }}\right)=1.0 \mathrm{cc}$, or b$)$
67. $15(130 \mathrm{lb})=1950 \mathrm{lb}$
$(1950 \mathrm{lb})\left(\frac{0.18 \mathrm{~kg}}{100 \mathrm{lb}}\right)\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=7.8 \mathrm{lb}$
68. a) $(4.0 \mathrm{l})\left(\frac{1000 \mathrm{ml}}{1 \mathrm{l}}\right)\left(\frac{1 \mathrm{~cm}^{3}}{1 \mathrm{ml}}\right)=4000 \mathrm{cc}$
b) $\left(4000 \mathrm{~cm}^{3}\right)\left(\frac{1 \mathrm{in.}^{3}}{(2.54)^{3} \mathrm{~cm}^{3}}\right)=\frac{4000}{16.387064}=244.0949764 \approx 244.09 \mathrm{in} .^{3}$
69. A meter
70. A hectare
71. A tonne
72. wonton
73. 1 kilohurtz
74. 1 megaphone
75. 2 kilomockingbird
76. 1 decoration
77. A kilogram
78. A liter
79. A decimeter
80. 1 microscope
81. 1 pound cake $\left(1 \mathrm{lb}=16 \mathrm{oz} ; 16 \mathrm{oz}\left(\frac{28 \mathrm{~g}}{1 \mathrm{oz}}\right)=448 \mathrm{~g}\right)$
82. 2 megacycles
83. 1 decacards
84. 1 microfiche

Review Exercises

1. $\frac{1}{100}$ of base unit
2. $1000 \times$ base unit
3. $100 \times$ base unit
4. $20 \mathrm{cg}=0.20 \mathrm{~g}$
5. $1000000 \mathrm{mg}=1 \mathrm{~kg}$
6. $2.67 \mathrm{kl}=2670000 \mathrm{ml}$ $14630 \mathrm{cl}=146300 \mathrm{ml}$ $3000 \mathrm{ml}, 14630 \mathrm{cl}, 2.67 \mathrm{kl}$
7. Grams
8. Square meters
9. Kilograms or tonnes
10. a) and b) Answers will vary.
11. b
12. a
13. 10 times base unit
14. $3.2 \mathrm{l}=320 \mathrm{cl}$
15. $4.62 \mathrm{kl}=4620 \mathrm{l}$
16. $0.047 \mathrm{~km}=47 \mathrm{~m}$
$47000 \mathrm{~cm}=470 \mathrm{~m}$ $0.047 \mathrm{~km}, 47000 \mathrm{~cm}$, 4700 m
17. Degrees Celsius
18. Milliliters or cubic centimeters
19. Kilometers
20. a) and b) Answers will vary.
21. c
22. b
23. $\frac{1}{1000}$ of base unit
24. $\frac{1}{10}$ of base unit
25. $0.0004 \mathrm{~cm}=0.004 \mathrm{~mm}$
26. $192.6 \mathrm{dag}=19260 \mathrm{dg}$
27. Centimeters
28. Millimeters or centimeters
29. Millimeters
30. Meters or centimeters
31. c
32. a
33. $2500 \mathrm{~kg}=(2500 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~T}}{2000 \mathrm{lb}}\right)\left(\frac{0.9 \mathrm{t}}{1 \mathrm{~T}}\right)=2.5 \mathrm{t}$
34. $6.3 \mathrm{t}=(6.3 \mathrm{t})\left(\frac{1 \mathrm{~T}}{0.9 \mathrm{t}}\right)\left(\frac{2000 \mathrm{lb}}{1 \mathrm{~T}}\right)\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)=6300000 \mathrm{~g}$
35. $18^{\circ} \mathrm{C}=\frac{9}{5}(18)+32=64.4^{\circ} \mathrm{F}$
36. $68^{\circ} \mathrm{F}=\frac{5}{9}(68-32)=20^{\circ} \mathrm{C}$
37. $-6^{\circ} \mathrm{F}=\frac{5}{9}(-6-32)=-21 . \overline{1} \approx-21.1^{\circ} \mathrm{C}$
38. $l=4 \mathrm{~cm}, w=1.6 \mathrm{~cm}$

$$
A=l w=4(1.6)=6.4 \mathrm{~cm}^{2}
$$

40. $r=1.5 \mathrm{~cm}$
$A=\pi r^{2} \approx 3.14(1.5)^{2}=7.065 \approx 7.07 \mathrm{~cm}^{2}$
41. a) $V=l w h=(10)(4)(2)=80 \mathrm{~m}^{3}$
b) $\left(80 \mathrm{~m}^{3}\right)\left(\frac{1 \mathrm{kl}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1000 \mathrm{l}}{1 \mathrm{kl}}\right)\left(\frac{1 \mathrm{~kg}}{11}\right)=80 \quad 000 \mathrm{~kg}$
42. a) $A=l w=30(22)=660 \mathrm{~m}^{2}$
b) $660 \mathrm{~m}^{2}=\left(660 \mathrm{~m}^{2}\right)\left(\frac{1 \mathrm{~km}^{2}}{(1000)^{2} \mathrm{~m}^{2}}\right)=0.00066 \mathrm{~km}^{2}$
43. a) $V=l w h=(80)(40)(30)=96000 \mathrm{~cm}^{3}$
b) $96000 \mathrm{~cm}^{3}=\left(\begin{array}{ll}96000 \mathrm{~cm}^{3}\end{array}\right)\left(\frac{1 \mathrm{~m}^{3}}{(100)^{3} \mathrm{~cm}^{3}}\right)=0.096 \mathrm{~m}^{3}$
c) $96000 \mathrm{~cm}^{3}=\left(\begin{array}{ll}96000 \mathrm{~cm}^{3}\end{array}\right)\left(\frac{1 \mathrm{ml}}{1 \mathrm{~cm}^{3}}\right)=96000 \mathrm{ml}$
d) $0.096 \mathrm{~m}^{3}=\left(0.096 \mathrm{~m}^{3}\right)\left(\frac{1 \mathrm{kl}}{1 \mathrm{~m}^{3}}\right)=0.096 \mathrm{kl}$
44. Since $1 \mathrm{~km}=100 \times 1$ dam, $1 \mathrm{~km}^{2}=100^{2} \times 1 \mathrm{dam}^{2}=10 \quad 000 \mathrm{dam}^{2}$.

Thus, 1 square kilometer is 10,000 times larger than a square dekameter.
45. $(20 \mathrm{~cm})\left(\frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}\right)=7.874015748 \approx 7.87 \mathrm{in}$.
46. $(105 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=233 . \overline{3} \approx 233.33 \mathrm{lb}$
47. $(83 \mathrm{yd})\left(\frac{0.9 \mathrm{~m}}{1 \mathrm{yd}}\right)=74.7 \mathrm{~m}$
49. $(45 \mathrm{mi})\left(\frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}\right)=72 \mathrm{kph}$
51. $(15 \mathrm{gal})\left(\frac{3.8 \mathrm{l}}{1 \mathrm{gal}}\right)=571$
53. $\left(83 \mathrm{~cm}^{2}\right)\left(\frac{1 \mathrm{in.}^{2}}{6.5 \mathrm{~cm}^{2}}\right)=12.76923077 \approx 12.77 \mathrm{in} .^{2}$
48. $(100 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=111 . \overline{1} \approx 111.11 \mathrm{yd}$
50. $\quad(40 \mathrm{l})\left(\frac{1 \mathrm{qt}}{0.95 \mathrm{l}}\right)=42.10526316 \approx 42.11 \mathrm{qt}$
52. $\left(40 \mathrm{~m}^{3}\right)\left(\frac{1 \mathrm{yd}^{3}}{0.76 \mathrm{~m}^{3}}\right)=52.63157895 \approx 52.63 \mathrm{yd}^{3}$
54. (4 qt) $\left(\frac{0.951}{1 \mathrm{qt}}\right)=3.81$
55. $\left(15 \mathrm{yd}^{3}\right)\left(\frac{0.76 \mathrm{~m}^{3}}{1 \mathrm{yd}^{3}}\right)=11.4 \mathrm{~m}^{3}$
57. $(27 \mathrm{~cm})\left(\frac{1 \mathrm{ft}}{30 \mathrm{~cm}}\right)=0.9 \mathrm{ft}$
56. $(62 \mathrm{mi})\left(\frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}\right)=99.2 \mathrm{~km}$
58. $(3.25 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)\left(\frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}\right)=82.55 \mathrm{~mm}$
59. a) $700(1.5 \mathrm{~kg})=1050 \mathrm{~kg}$
b) $1050 \mathrm{~kg}=(1050 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=2333 . \overline{3} \approx 2333.33 \mathrm{lb}$
60. $A=l w=(24)(15)=360 \mathrm{ft}^{2}$

$$
360 \mathrm{ft}^{2}=\left(360 \mathrm{ft}^{2}\right)\left(\frac{0.09 \mathrm{~m}^{2}}{1 \mathrm{ft}^{2}}\right)=32.4 \mathrm{~m}^{2}
$$

61. a) $(50,000 \mathrm{gal})\left(\frac{3.8 \mathrm{l}}{1 \mathrm{gal}}\right)\left(\frac{1 \mathrm{kl}}{1000 \mathrm{l}}\right)=190 \mathrm{kl}$
b) $(190 \mathrm{kl})\left(\frac{1000 \mathrm{l}}{1 \mathrm{kl}}\right)\left(\frac{1 \mathrm{~kg}}{1 \mathrm{l}}\right)=190000 \mathrm{~kg}$
62. a) $35 \mathrm{mi}=(35 \mathrm{mi})\left(\frac{1.6 \mathrm{~km}}{1 \mathrm{mi}}\right)=56 \mathrm{kph}$
b) $56 \mathrm{~km}=(56 \mathrm{~km})\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=56000$ meters per hour
63. a) $V=l w h=(90)(70)(40)=252000 \mathrm{~cm}^{3}$
$252000 \mathrm{~cm}^{3}=\left(252000 \mathrm{~cm}^{3}\right)\left(\frac{1 \mathrm{ml}}{1 \mathrm{~cm}^{3}}\right)\left(\frac{11}{1000 \mathrm{ml}}\right)=2521$
b) $2521=(2521)\left(\frac{1 \mathrm{~kg}}{11}\right)=252 \mathrm{~kg}$
64. $1 \mathrm{~kg}=(1 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=2 . \overline{2} \mathrm{lb}$
$\frac{\$ 3.50}{2 . \overline{2}}=\$ 1.575 \approx \$ 1.58$ per pound

Chapter Test

1. $204 \mathrm{cl}=0.204 \mathrm{dal}$
2. $123 \mathrm{~km}=123000000 \mathrm{~mm}$
3. $1 \mathrm{~km}=(1 \mathrm{~km})\left(\frac{100 \mathrm{dam}}{1 \mathrm{~km}}\right)=100$ dam or 100 times greater
4. $400(6)=2400 \mathrm{~m}$ $(2400 \mathrm{~m})\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right)=2.4 \mathrm{~km}$
5. a
6. c
7. b
8. c
9. b
10. $1 \mathrm{~m}^{2}=\left(1 \mathrm{~m}^{2}\right)\left(\frac{100^{2} \mathrm{~cm}^{2}}{1 \mathrm{~m}^{2}}\right)=10 \quad 000 \mathrm{~cm}^{2}$ or 10,000 times greater
11. $1 \mathrm{~m}^{3}=\left(1 \mathrm{~m}^{3}\right)\left(\frac{1000^{3} \mathrm{~mm}^{3}}{1 \mathrm{~m}^{3}}\right)=1000000000 \mathrm{~mm}^{3}$ or $1,000,000,000$ times greater
12. $452 \mathrm{in} .=(452 \mathrm{in}).\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=1148.08 \mathrm{~cm}$
13. $150 \mathrm{~m}=(150 \mathrm{~m})\left(\frac{1 \mathrm{yd}}{0.9 \mathrm{~m}}\right)=166 . \overline{6} \approx 166.67 \mathrm{yd}$
14. $-10^{\circ} \mathrm{F}=\frac{5}{9}(-10-32)=-23 . \overline{3} \approx-23.33^{\circ} \mathrm{C} \quad$ 15. $20^{\circ} \mathrm{C}=\frac{9}{5}(20)+32=68^{\circ} \mathrm{F}$
15. $12 \mathrm{ft}=(12 \mathrm{ft})\left(\frac{30 \mathrm{~cm}}{1 \mathrm{ft}}\right)=360 \mathrm{~cm}$ or $12 \mathrm{ft}=(12 \mathrm{ft})\left(\frac{12 \mathrm{in} .}{1 \mathrm{ft}}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=365.76 \mathrm{~cm}$
16. a) $V=l w h=20(20)(8)=3200 \mathrm{~m}^{3}$
b) $3200 \mathrm{~m}^{3}=\left(3200 \mathrm{~m}^{3}\right)\left(\frac{1000 \mathrm{l}}{1 \mathrm{~m}^{3}}\right)=32000001$ or $3200000 \mathrm{l}=(3200000 \mathrm{l})\left(\frac{1 \mathrm{kl}}{1000 \mathrm{l}}\right)=3200 \mathrm{kl}$
c) $3200000 \mathrm{l}=(3200000 \mathrm{l})\left(\frac{1 \mathrm{~kg}}{1 \mathrm{l}}\right)=3200000 \mathrm{~kg}$
17. Total surface area: $2 l h+2 w h=2(20)(6)+2(15)(6)=420 \mathrm{~m}^{2}$

Liters needed for first coat: $\left(420 \mathrm{~m}^{2}\right)\left(\frac{11}{10 \mathrm{~m}^{2}}\right)=421$
Liters needed for second coat: $\left(420 \mathrm{~m}^{2}\right)\left(\frac{11}{15 \mathrm{~m}^{2}}\right)=281$
Total liters needed: $42+28=701$
Total cost: $(701)\left(\frac{\$ 3.50}{11}\right)=\$ 245$

Group Projects

1. a) $(196 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)\left(\frac{20 \mathrm{mg}}{1 \mathrm{~kg}}\right)=1764 \mathrm{mg}$
b) $\left(\frac{250 \mathrm{cc}}{1 \mathrm{hr}}\right)\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)=4.1 \overline{6} \approx 4.17 \mathrm{cc} / \mathrm{min}$
2. a) $(60 \mathrm{lb})\left(\frac{0.45 \mathrm{~kg}}{1 \mathrm{lb}}\right)=27 \mathrm{~kg}$

Child's dose: $\frac{27 \mathrm{~kg}}{67.5 \mathrm{~kg}}(70 \mathrm{mg})=28 \mathrm{mg}$
b) $\frac{\text { child's weight in } \mathrm{kg}}{67.5 \mathrm{~kg}} \times 70 \mathrm{mg}=70 \mathrm{mg}$
$\frac{\text { child's weight in } \mathrm{kg}}{67.5 \mathrm{~kg}}=1$
Child's weight: $67.5 \mathrm{~kg}=(67.5 \mathrm{~kg})\left(\frac{1 \mathrm{lb}}{0.45 \mathrm{~kg}}\right)=150 \mathrm{lb}$
3. a) $5 \mathrm{ft} 2 \mathrm{in} .=62 \mathrm{in}$.

62 in. $=(62$ in. $)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)=157.48 \mathrm{~cm}$
b) 8695.5 yen $=(8695.5$ yen $)\left(\frac{\$ 1 \text { U.S. }}{118.25 \text { yen }}\right)=\$ 73.53488372$ U.S. $\approx \$ 73.53$ U.S.
c) $6 \mathrm{lb}=(6 \mathrm{lb})\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)\left(\frac{28 \mathrm{~g}}{1 \mathrm{oz}}\right)=2688 \mathrm{~g}$
$2688 \mathrm{~g}=(2688 \mathrm{~g})\left(\frac{10 \text { pesos }}{100 \mathrm{~g}}\right)\left(\frac{\$ 0.095 \text { U.S. }}{1 \text { peso }}\right)=25.536 \approx \$ 25.54$
Note: If you use different conversion factors, your answer will be slightly different because the conversion factors are rounded values.
d) To fill the tank in New Zealand dollars:
$531\left(\frac{\$ 0.929 \text { New Zealand }}{11}\right)=\$ 49.237$ New Zealand $\approx \$ 49.24$ New Zealand
To fill the tank in U.S. dollars:
$\$ 49.237$ New Zealand $=(\$ 49.237$ New Zealand $)\left(\frac{\$ 0.584 \text { U.S. }}{\$ 1 \text { New Zealand }}\right)=\$ 28.754408$ U.S. $\approx \$ 28.75$ U.S.
\$28.754408 U.S. for 531
$\frac{\$ 28.754408 \text { U.S. }}{531}=\$ 0.542536$ U.S. per 1
$\left(\frac{\$ 0.542536 \text { U.S. }}{11}\right)\left(\frac{3.81}{1 \text { gal }}\right)=\$ 2.0616368$ U.S. per gal $\approx \$ 2.06$ U.S. per gal

CHAPTER NINE

GEOMETRY

Exercise Set 9.1

1. a) Undefined terms, definitions, postulates (axioms), and theorems
b) First, Euclid introduced undefined terms. Second, he introduced certain definitions. Third, he stated primitive propositions called postulates (axioms) about the undefined terms and definitions. Fourth, he proved, using deductive reasoning, other propositions called theorems.
2. An axiom (postulate) is a statement that is accepted as being true on the basis of its "obviousness" and its relation to the physical world. A theorem is a statement that has been proven using undefined terms, definitions, and axioms.
3. Two lines in the same plane that do not intersect are parallel lines.
4. Two lines that do not lie in the same plane and do not intersect are called skewed lines.
5. Two angles in the same plane are adjacent angles when they have a common vertex and a common side but no common interior points.
6. Two angles the sum of whose measure is 180° are called supplementary angles.
7. Two angles the sum of whose measure is 90° are called complementary angles.
8. An angle whose measure is 180° is a straight angle.
9. An angle whose measure is greater than 90° but less than 180° is an obtuse angle.
10. An angle whose measure is less than 90° is an acute angle.
11. An angle whose measure is 90° is a right angle.
12. In the pair of intersecting lines below, $\measuredangle 1$ and $\measuredangle 3$ are vertical angles as are $\measuredangle 2$ and $\measuredangle 4$.

13. Half line, $\stackrel{\circ}{A B}$
14. Line, $\overrightarrow{A B}$
15. $\overrightarrow{B D}$
16. $\{B, F\}$
17. Half open line segment, $\stackrel{\circ}{A B}$
18. Half line,,$\stackrel{B A}{B A}$
19. $\overrightarrow{E G}$
20. $\{C\}$
21. Line segment, $\overline{A B}$
22. Open line
segment, $\stackrel{\circ}{A B}$
23. $\overrightarrow{B D}$
24. $\{C\}$
25. Ray, $\overrightarrow{A B}$
26. Ray, $\overrightarrow{B A}$
27. $\overrightarrow{A D}$
28. $\stackrel{\circ}{B C}$
29. $\overline{B C}$
30. \varnothing
31. $\triangle B C F$
32. $\measuredangle A B E$
33. $\stackrel{\circ}{A C}$
34. Obtuse
35. Right
36. Straight
37. None of these
38. $90^{\circ}-19^{\circ}=71^{\circ}$
39. $\quad 90^{\circ}-32 \frac{3}{4}^{\circ}=57 \frac{1}{4}^{\circ}$
40. $90^{\circ}-64.7^{\circ}=25.3^{\circ}$
41. $180^{\circ}-91^{\circ}=89^{\circ}$
42. $180^{\circ}-20.5^{\circ}=159.5^{\circ}$
43. $180^{\circ}-43 \frac{5}{7}^{\circ}=136 \frac{2}{7}^{\circ}$
44. $\overrightarrow{B C}$
45. \varnothing
46. $\overrightarrow{B C}$
47. $\overrightarrow{D E}$
48. $\measuredangle E B C$
49. $\{B\}$
50. $\overrightarrow{B E}$
51. $\{B\}$
52. Straight
53. Acute
54. None of these
55. Right
56. $90^{\circ}-89^{\circ}=1^{\circ}$
57. $90^{\circ}-43 \frac{1}{3}^{\circ}=46 \frac{2}{3}^{\circ}$
58. $90^{\circ}-0.01^{\circ}=89.99^{\circ}$
59. $180^{\circ}-8^{\circ}=172^{\circ}$
60. $180^{\circ}-179.99^{\circ}=0.01^{\circ}$
61. $180^{\circ}-64 \frac{7}{16}^{\circ}=115 \frac{9}{16}^{\circ}$
62. d
63. b
64. f
65. e
66. Let $x=$ measure of $\measuredangle 2$

$$
\begin{aligned}
& x+4=\text { measure of } \measuredangle 1 \\
& x+x+4=90 \\
& 2 x+4=90 \\
& 2 x=86 \\
& x=\frac{86}{2}=43^{\circ}, m \measuredangle 2 \\
& x+4=43+4=47^{\circ}, m \measuredangle 1
\end{aligned}
$$

73. Let $x=$ measure of $\measuredangle 1$
$180-x=$ measure of $\measuredangle 2$

$$
\begin{aligned}
x-(180-x) & =88 \\
x-180+x & =88 \\
2 x-180 & =88 \\
2 x & =268 \\
x & =\frac{268}{2}=134^{\circ}, m \measuredangle 1 \\
180-x & =180-134=46^{\circ}, m \measuredangle 2
\end{aligned}
$$

67. c
68. a
69. Let $x=$ measure of $\measuredangle 1$
$90-x=$ measure of $\measuredangle 2$

$$
\begin{aligned}
x-(90-x)=62 & \\
x-90+x & =62 \\
2 x-90 & =62 \\
2 x & =152 \\
x & =\frac{152}{2}=76^{\circ}, m \measuredangle 1 \\
90-x & =90-76=14^{\circ}, m \measuredangle 2
\end{aligned}
$$

74. Let $x=$ measure of $\measuredangle 1$
$17 x=$ measure of $\measuredangle 2$

$$
\begin{aligned}
x+17 x & =180 \\
18 x & =180 \\
x & =\frac{180}{18}=10^{\circ}, m \measuredangle 1
\end{aligned}
$$

$$
17 x=17(10)=170^{\circ}, m \measuredangle 2
$$

75. $m \measuredangle 1+125^{\circ}=180^{\circ}$
$m \measuredangle 1=55^{\circ}$
$m \measuredangle 2=m \measuredangle 1$ (vertical angles)
$m \measuredangle 3=125^{\circ}$ (vertical angles)
$m \measuredangle 5=m \measuredangle 2$ (alternate interior angles)
$m \measuredangle 4=m \measuredangle 3$ (alternate interior angles)
$m \measuredangle 7=m \measuredangle 4$ (vertical angles)
$m \measuredangle 6=m \measuredangle 5$ (vertical angles)
Measures of angles 3,4 , and 7 are each 125°.
Measures of angles 1, 2, 5, and 6 are each 55°.
76. $m \measuredangle 1+25^{\circ}=180^{\circ}$
$m \measuredangle 1=155^{\circ}$
$m \measuredangle 3=m \measuredangle 1$ (vertical angles)
$m \measuredangle 2=25^{\circ}$ (vertical angles)
$m \measuredangle 4=m \measuredangle 3$ (alternate interior angles)
$m \measuredangle 7=m \measuredangle 4$ (vertical angles)
$m \measuredangle 5=m \measuredangle 2$ (corresponding angles)
$m \measuredangle 6=m \measuredangle 5$ (vertical angles)
Measures of angles 2, 5, and 6 are each 25°.
Measures of angles $1,3,4$, and 7 are each 155°.
77.

$$
\begin{aligned}
x+3 x+10 & =90 \\
4 x+10 & =90 \\
4 x & =80 \\
x & =\frac{80}{4}=20^{\circ}, m \npreceq 2 \\
3 x+10 & =3(20)+10=70^{\circ}, m \measuredangle 1
\end{aligned}
$$

81. $x+2 x-9=90$
$3 x-9=90$
$3 x=99$
$x=\frac{99}{3}=33^{\circ}, m \measuredangle 1$
$2 x-9=2(33)-9=57^{\circ}, m \npreceq 2$
82. $x+2 x-15=180$
$3 x-15=180$
$3 x=195$
$x=\frac{195}{3}=65^{\circ}, m \measuredangle 2$
$2 x-15=2(65)-15=115^{\circ}, m \npreceq 1$
83. $m \measuredangle 3+30^{\circ}=180^{\circ}$
$m \measuredangle 3=150^{\circ}$
$m \measuredangle 1=30^{\circ}$ (vertical angles)
$m \measuredangle 2=m \measuredangle 3$ (vertical angles)
$m \measuredangle 4=m \measuredangle 1$ (corresponding angles)
$m \measuredangle 7=m \measuredangle 4$ (vertical angles)
$m \measuredangle 6=m \measuredangle 3$ (alternate interior angles)
$m \measuredangle 5=m \measuredangle 6$ (vertical angles)
Measures of angles 1, 4, and 7 are each 30°.
Measures of angles 2, 3, 5, and 6 are each 150°.
84. $m \measuredangle 3+120^{\circ}=180^{\circ}$
$m \measuredangle 3=60^{\circ}$
$m \measuredangle 4=120^{\circ}$ (vertical angles)
$m \measuredangle 7=m \measuredangle 3$ (vertical angles)
$m \measuredangle 6=m \measuredangle 3$ (alternate interior angles)
$m \measuredangle 1=m \measuredangle 6$ (vertical angles)
$m \measuredangle 5=m \measuredangle 4$ (alternate exterior angles)
$m \measuredangle 2=m \measuredangle 5$ (vertical angles)
Measures of angles 2, 4, and 5 are each 120°.
Measures of angles $1,3,6$, and 7 are each 60°.
85.

$$
\begin{aligned}
x+7 x+2 & =90 \\
8 x+2 & =90 \\
8 x & =88 \\
x & =\frac{88}{8}=11^{\circ}, m \measuredangle 1 \\
7 x+2 & =7(11)+2=79^{\circ}, m \measuredangle 2
\end{aligned}
$$

82. $x+8 x-9=90$
$9 x-9=90$
$9 x=99$
$x=\frac{99}{9}=11^{\circ}, m \nless 2$
$8 x-9=8(11)-9=79^{\circ}, m \npreceq 1$
83. $x+4 x+10=180$
$5 x+10=180$
$5 x=170$
$x=\frac{170}{5}=34^{\circ}, m \measuredangle 2$
$4 x+10=4(34)+10=146^{\circ}, m \measuredangle 1$
```
85. \(x+5 x+6=180\)
    \(6 x+6=180\)
        \(6 x=174\)
        \(x=\frac{174}{6}=29^{\circ}, m \measuredangle 1\)
    \(5 x+6=5(29)+6=151^{\circ}, m \npreceq 2\)
```

86. $x+6 x+5=180$

$$
\begin{aligned}
7 x+5 & =180 \\
7 x & =175
\end{aligned}
$$

$$
x=\frac{175}{7}=25^{\circ}, m \measuredangle 1
$$

$$
6 x+5=6(25)+5=155^{\circ}, m \measuredangle 2
$$

87. a) An infinite number of lines can be drawn through a given point.
b) An infinite number of planes can be drawn through a given point.
88. If the two planes are not parallel, the intersection is a straight line.
89. An infinite number of planes can be drawn through a given line.
90. a) Yes, any three noncollinear points always determine a plane.
b) No, the plane determined is unique.
c) An infinite number of planes can be drawn through three collinear points.

For Exercises 91-98, the answers given are one of many possible answers.

91. Plane $A B G$ and plane $J C D$

93. $\quad \overrightarrow{B G}$ and $\overleftrightarrow{D G}$
94. Plane $A G B \cap$ plane $A B C \cap$ plane $B C D=\{B\}$
95. $\quad \overleftrightarrow{B C} \cap$ plane $A B G=\{B\}$
96. $\quad \overleftrightarrow{E F}$ and $\overleftrightarrow{D G}$
97. Plane $A B G$ and plane $B C D$
98. Plane $H G D \cap$ plane $F G D \cap$ plane $B G D=\overrightarrow{G D}$
99. $\overrightarrow{A B} \cap$ plane $A B G=\overleftrightarrow{A B}$
100. Always true. If any two lines are parallel to a third line, then they must be parallel to each other.
101. Sometimes true. A triangle must always contain at least two acute angles. Some triangles contain three acute angles.
102. Sometimes true. Vertical angles are only complementary when each is equal to 45°.
103. Sometimes true. Alternate exterior angles are only supplementary when each is equal to 90°.
104. Sometimes true. Alternate interior angles are only complementary when each is equal to 45°.
105. Never true. The sum of two obtuse angles is greater than 180°.
106. No. Line m and line n may intersect.
107. No. Line l and line n may be parallel or skewed.
108.

108.

$m \measuredangle 1+m \measuredangle 2=180^{\circ}$
$m \measuredangle 3+m \measuredangle 4=180^{\circ}$
$180^{\circ}+180^{\circ}=360^{\circ}$
109. a)

Other answers are possible.
b) Let $m \measuredangle A B C=x$ and $m \measuredangle C B D=y$.
$x+y=90^{\circ}$ and $y=2 x$
Substitute $y=2 x$ into $x+y=90^{\circ}$.

$$
\begin{aligned}
x+2 x & =90^{\circ} \\
3 x & =90^{\circ} \\
\frac{3 x}{3} & =\frac{90^{\circ}}{3} \\
x & =30^{\circ}=m \measuredangle A B C
\end{aligned}
$$

c) $m \measuredangle C B D=y$

$$
y=2 x=2\left(30^{\circ}\right)=60^{\circ}
$$

d) $m \measuredangle A B D+m \measuredangle D B E=180^{\circ}$
$m \measuredangle A B D=x+y=30^{\circ}+60^{\circ}=90^{\circ}$.
$90^{\circ}+m \measuredangle D B E=180^{\circ}$
$m \measuredangle D B E=180^{\circ}-90^{\circ}=90^{\circ}$.

Exercise Set 9.2

1. A polygon is a closed figure in a plane determined by three or more straight line segments.
2. A regular polygon is one whose sides are all the same length and whose interior angles all have the same measure; other polygons may have sides of different length and interior angles with different meaures.
3. The different types of triangles are acute, obtuse, right, isosceles, equilateral, and scalene. Descriptions will vary.
4. The different types of quadrilaterals are trapezoid, parallelogram, rhombus, rectangle, and square.

Descriptions will vary.
5. If the corresponding sides of two similar figures are the same length, the figures are congruent figures.
6. Figures that have the same shape but may be of different sizes are similar figures.
7. a) Rectangle
b) Not regular
8. a) Triangle
b) Regular
11. a) Rhombus
b) Not regular
12. a) Pentagon
b) Regular
9. a) Hexagon
b) Regular
13. a) Octagon
b) Not regular
10. a) Octagon
b) Not regular
14. a) Dodecagon
b) Not regular
15. a) Scalene
b) Right
19. a) Equilateral
b) Acute
23. Parallelogram
27. Trapezoid
16. a) Isosceles
b) Acute
20. a) Scalene
b) Acute
24. Rectangle
28. Square
17. a) Isosceles
b) Obtuse
21. a) Scalene
b) Obtuse
25. Rhombus
18. a) Isosceles
b) Right
22. a) Scalene b) Right
26. Trapezoid
29. The measures of the other two angles of the triangle are 138° and 25° (by vertical angles). Therefore, the measure of angle x is $180^{\circ}-138^{\circ}-25^{\circ}=17^{\circ}$.
30. The measure of one angle of the triangle is 75° (by vertical angles). The measure of another angle of the triangle is $180^{\circ}-133^{\circ}=47^{\circ}$. The measure of the third angle of the triangle is $180^{\circ}-75^{\circ}-47^{\circ}=58^{\circ}$. Since angle x is a vertical angle with the 58° angle, the measure of angle x is 58°.
31. The measure of one angle of the triangle is 27° (by vertical angles). The measure of another angle of the triangle is $180^{\circ}-57^{\circ}=123^{\circ}$. The measure of the third angle of the triangle is $180^{\circ}-27^{\circ}-123^{\circ}=30^{\circ}$. The measure of angle x is $180^{\circ}-30^{\circ}=150^{\circ}$ (The 30° angle and angle x form a straight angle.).
32. The given measure of one angle of the triangle is 35°. The measure of another angle of the triangle is 30° (by vertical angles). The measure of the third angle of the triangle is $180^{\circ}-35^{\circ}-30^{\circ}=115^{\circ}$. The measure of angle x is $180^{\circ}-115^{\circ}=65^{\circ}$ (The 115° angle and angle x form a straight angle.).
33.

Angle	Measure	$\underline{\text { Reason }}$
1	50°	$\measuredangle 1$ and $\measuredangle 5$ are vertical angles
2	63°	Vertical angle with the given 63° angle
3	67°	$\measuredangle 1, \measuredangle 2$, and $\measuredangle 3$ form a straight angle
4	67°	$\measuredangle 3$ and $\measuredangle 4$ are vertical angles
5	50°	$\measuredangle 5$ and $\measuredangle 12$ are corresponding angles
6	113°	$\measuredangle 6$ and the given 67° angle form a straight angle
7	50°	The sum of the measures of the interior angles of a triangle is 180°
8	130°	$\measuredangle 8$ and $\measuredangle 12$ form a straight angle
9	67°	$\measuredangle 4$ and $\measuredangle 9$ are corresponding angles
10	113°	$\measuredangle 6$ and $\measuredangle 10$ are vertical angles
11	130°	$\measuredangle 8$ and $\measuredangle 11$ are vertical angles
12	50°	$\measuredangle 7$ and $\measuredangle 12$ are vertical angles

34.

Angle	Measure	Reason
1	90°	$\measuredangle 1$ and $\measuredangle 7$ are vertical angles
2	50°	$\measuredangle 2$ and $\measuredangle 4$ are corresponding angles
3	130°	$\measuredangle 3$ and $\measuredangle 4$ form a straight angle
4	50°	Vertical angle with the given 50° angle
5	50°	$\measuredangle 2$ and $\measuredangle 5$ are vertical angles
6	40°	Vertical angle with the given 40° angle
7	90°	$\measuredangle 2, \measuredangle 6$ and $\measuredangle 7$ form a straight angle
8	130°	$\measuredangle 3$ and $\measuredangle 8$ are vertical angles
9	140°	$\measuredangle 9$ and $\measuredangle 10$ form a straight angle
10	40°	$\measuredangle 10$ and $\measuredangle 12$ are vertical angles
11	140°	$\measuredangle 9$ and $\measuredangle 11$ are vertical angles
12	40°	$\measuredangle 6$ and $\measuredangle 12$ are corresponding angles

35. $n=5$
$(5-2) \times 180^{\circ}=3 \times 180^{\circ}=540^{\circ}$
36. $n=9$

$$
(9-2) \times 180^{\circ}=7 \times 180^{\circ}=1260^{\circ}
$$

37. $n=6$
$(6-2) \times 180^{\circ}=4 \times 180^{\circ}=720^{\circ}$
38. $n=20$

$$
(20-2) \times 180^{\circ}=18 \times 180^{\circ}=3240^{\circ}
$$

41. a) The sum of the measures of the interior angles of a triangle is 180°. Dividing by 3 , the number of angles, each interior angle measures 60°.
b) Each exterior angle measures $180^{\circ}-60^{\circ}=120^{\circ}$.
42. a) The sum of the measures of the interior angles of an octagon is $(8-2) \times 180^{\circ}=6 \times 180^{\circ}=1080^{\circ}$.
Dividing by 8 , the number of angles, each interior angle measures 135°.
b) Each exterior angle measures $180^{\circ}-135^{\circ}=45^{\circ}$.
43. a) The sum of the measures of the interior angles of a dodecagon is $(12-2) \times 180^{\circ}=10 \times 180^{\circ}=1800^{\circ}$. Dividing by 12 , the number of angles, each interior angle measures 150°.
b) Each exterior angle measures $180^{\circ}-150^{\circ}=30^{\circ}$.
44. $n=10$

$$
(10-2) \times 180^{\circ}=8 \times 180^{\circ}=1440^{\circ}
$$

40. $n=12$

$$
(12-2) \times 180^{\circ}=10 \times 180^{\circ}=1800^{\circ}
$$

42. a) The sum of the measures of the interior angles of a quadrilateral is $(4-2) \times 180^{\circ}=2 \times 180^{\circ}=360^{\circ}$. Dividing by 4 , the number of angles, each interior angle measures 90°.
b) Each exterior angle measures $180^{\circ}-90^{\circ}=90^{\circ}$.
43. a) The sum of the measures of the interior angles of a nonagon is $(9-2) \times 180^{\circ}=7 \times 180^{\circ}=1260^{\circ}$.
Dividing by 9 , the number of angles, each interior angle measures 140°.
b) Each exterior angle measures $180^{\circ}-140^{\circ}=40^{\circ}$.
44. a) The sum of the measures of the interior angles of an icosagon is $(20-2) \times 180^{\circ}=18 \times 180^{\circ}=3240^{\circ}$. Dividing by 20, the number of angles, each interior angle measures 162°.
b) Each exterior angle measures $180^{\circ}-162^{\circ}=18^{\circ}$.

Let $y=A^{\prime} C^{\prime}$

$$
\begin{aligned}
\frac{A^{\prime} C^{\prime}}{A C} & =\frac{A^{\prime} B^{\prime}}{A B} \\
\frac{y}{8} & =\frac{4}{10} \\
10 y & =32 \\
y & =\frac{32}{10}=\frac{16}{5}
\end{aligned}
$$

Let $y=B^{\prime} C^{\prime}$

$$
\begin{aligned}
\frac{B^{\prime} C^{\prime}}{B C} & =\frac{A^{\prime} B^{\prime}}{A B} \\
\frac{y}{8} & =\frac{2}{5} \\
5 y & =16 \\
y & =\frac{16}{5}
\end{aligned}
$$

49. Let $x=D C$

$$
\begin{aligned}
\frac{D C}{D^{\prime} C^{\prime}} & =\frac{A B}{A^{\prime} B^{\prime}} \\
\frac{x}{6} & =\frac{4}{10} \\
10 x & =24 \\
x & =\frac{24}{10}=\frac{12}{5}
\end{aligned}
$$

50. Let $x=A B$

$$
\begin{aligned}
\frac{A B}{A^{\prime} B^{\prime}} & =\frac{A D}{A^{\prime} D^{\prime}} \\
\frac{x}{5} & =\frac{5}{12} \\
12 x & =25 \\
x & =\frac{25}{12}
\end{aligned}
$$

51. Let $x=A C$

$$
\begin{aligned}
\frac{A C}{A^{\prime} C^{\prime}} & =\frac{B C}{B^{\prime} C^{\prime}} \\
\frac{x}{0.75} & =\frac{2}{1.25} \\
1.25 x & =1.5 \\
x & =1.2
\end{aligned}
$$

52. Let $x=B C$

$$
\begin{aligned}
\frac{B C}{B^{\prime} C^{\prime}} & =\frac{D C}{D^{\prime} C^{\prime}} \\
\frac{x}{0.875} & =\frac{1}{1.75} \\
1.75 x & =0.875 \\
x & =0.5
\end{aligned}
$$

53. Let $x=B C$

$$
\begin{aligned}
\frac{B C}{E C} & =\frac{A B}{D E} \\
\frac{x}{2} & =\frac{6}{2} \\
2 x & =12 \\
x & =6
\end{aligned}
$$

Let $y=B^{\prime} C^{\prime}$

$$
\begin{aligned}
\frac{B^{\prime} C^{\prime}}{B C} & =\frac{A^{\prime} B^{\prime}}{A B} \\
\frac{y}{3} & =\frac{10}{4} \\
4 y & =30 \\
y & =\frac{30}{4}=\frac{15}{2}
\end{aligned}
$$

Let $y=C^{\prime} D^{\prime}$

$$
\begin{aligned}
\frac{C^{\prime} D^{\prime}}{C D} & =\frac{A^{\prime} D^{\prime}}{A D} \\
\frac{y}{1} & =\frac{12}{5} \\
5 y & =12 \\
y & =\frac{12}{5}
\end{aligned}
$$

Let $y=A^{\prime} B^{\prime}$

$$
\begin{aligned}
\frac{A^{\prime} B^{\prime}}{A B} & =\frac{B^{\prime} C^{\prime}}{B C} \\
\frac{y}{1} & =\frac{1.25}{2} \\
2 y & =1.25 \\
y & =0.625
\end{aligned}
$$

Let $y=D E$

$$
\begin{aligned}
\frac{D E}{D C} & =\frac{D^{\prime} E^{\prime}}{D^{\prime} C^{\prime}} \\
\frac{y}{1} & =\frac{0.7}{1.75} \\
1.75 y & =0.7 \\
y & =0.4
\end{aligned}
$$

54. Let $x=D C$

$$
\begin{aligned}
\frac{D C}{A C} & =\frac{D E}{A B} \\
\frac{x}{10} & =\frac{2}{6} \\
6 x & =20 \\
x & =\frac{20}{6}=\frac{10}{3}
\end{aligned}
$$

55. $A D=A C-D C=10-\frac{10}{3}=\frac{30}{3}-\frac{10}{3}=\frac{20}{3}$
56. $A^{\prime} B^{\prime}=A B=14$
57. $A C=A^{\prime} C^{\prime}=28$
58. $m \measuredangle A C B=m \measuredangle A^{\prime} C^{\prime} B^{\prime}=28^{\circ}$
59. $A^{\prime} B^{\prime}=A B=8$
60. $\quad B^{\prime} C^{\prime}=B C=16$
61. $m \measuredangle A^{\prime} D^{\prime} C^{\prime}=m \measuredangle A D C=70^{\circ}$
62. $180^{\circ}-125^{\circ}=55^{\circ}$
63. $180^{\circ}-90^{\circ}-55^{\circ}=35^{\circ}$
64. Let $x=$ height of silo

$$
\begin{aligned}
\frac{x}{6} & =\frac{105}{9} \\
9 x & =630 \\
x & =70 \mathrm{ft}
\end{aligned}
$$

75. a) $197 \mathrm{mi}=(197 \mathrm{mi})\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)\left(\frac{12 \mathrm{in} .}{1 \mathrm{ft}}\right)$

$$
=12,481,920 \mathrm{in} .
$$

Let $x=$ the actual distance from Dallas to Houston

$$
\begin{aligned}
\frac{x}{3.75} & =\frac{12,481,920}{3} \\
3 x & =46,807,200 \\
x & =15,602,400 \mathrm{in} .
\end{aligned}
$$

$15,602,400$ in. $=(15,602,400 \mathrm{in}).\left(\frac{1 \mathrm{ft}}{12 \mathrm{in} .}\right)\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)$
$=246.25 \mathrm{mi}$
b) Let $x=$ the actual distance from Dallas to

San Antonio

$$
\begin{aligned}
& \frac{x}{4.125}=\frac{12,481,920}{3} \\
& 3 x=51,487,920 \\
& x=17,162,640 \mathrm{in} . \\
& 17,162,640 \mathrm{in} .=(17,162,640 \mathrm{in} .)\left(\frac{1 \mathrm{ft}}{12 \mathrm{in} .}\right)\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right) \\
&=270.875 \mathrm{mi}
\end{aligned}
$$

56. $B E=B C-E C=6-2=4$
57. $\quad B^{\prime} C^{\prime}=B C=30$
58. $m \measuredangle B^{\prime} A^{\prime} C^{\prime}=m \measuredangle B A C=84^{\circ}$
59. $m \measuredangle A B C=m \measuredangle A^{\prime} B^{\prime} C^{\prime}=180^{\circ}-84^{\circ}-28^{\circ}=68^{\circ}$
60. $A D=A^{\prime} D^{\prime}=6$
61. $m \measuredangle B C D=m \measuredangle B^{\prime} C^{\prime} D^{\prime}=50^{\circ}$
62. $m \measuredangle D A B=m \measuredangle D^{\prime} A^{\prime} B^{\prime}$
$=360^{\circ}-130^{\circ}-70^{\circ}-50^{\circ}=110^{\circ}$
63. 55°
64. $90^{\circ}+35^{\circ}=125^{\circ}$
65. $m \measuredangle B A C+m \measuredangle B C A+80^{\circ}=180^{\circ}$
$m \measuredangle B A C+m \measuredangle B C A=100^{\circ}$
$m \measuredangle B A C=m \measuredangle B C A$
$m \measuredangle B A C=50^{\circ}, m \measuredangle B C A=50^{\circ}$
$m \measuredangle x=50^{\circ}$ since $\measuredangle x$ and $\measuredangle B A C$ are alternate interior angles.
The measure of the angle adjacent to $\measuredangle y$
is $180^{\circ}-50^{\circ}-80^{\circ}=50^{\circ}$.
$m \measuredangle y=180^{\circ}-50^{\circ}=130^{\circ}$
66. a) $44 \mathrm{mi}=(44 \mathrm{mi})\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)\left(\frac{12 \mathrm{in} .}{1 \mathrm{ft}}\right)$
$=2,787,840 \mathrm{in}$.
Let $x=$ the actual distance from St. Paul to Austin

$$
\begin{aligned}
\frac{x}{2.25} & =\frac{2,787,840}{0.875} \\
0.875 x & =6,272,640 \\
x & =7,168,731.429 \mathrm{in.}
\end{aligned}
$$

$7,168,731.429$ in.
$=(7,168,731.429 \mathrm{in}).\left(\frac{1 \mathrm{ft}}{12 \mathrm{in} .}\right)\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)$
$=113.1428571 \approx 113.14 \mathrm{mi}$
b) Let $x=$ the actual distance from St. Paul to Rochester

$$
\begin{aligned}
& \frac{x}{1.5}=\frac{2,787,840}{0.875} \\
& 0.875 x=4,181,760 \\
& x=4,779,154.286 \mathrm{in} . \\
& 4,779,154.286 \mathrm{in} . \\
&=(4,779,154.286 \mathrm{in} .)\left(\frac{1 \mathrm{ft}}{12 \mathrm{in} .}\right)\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right) \\
&=75.42857143 \approx 75.43 \mathrm{mi}
\end{aligned}
$$

77. $\frac{D E}{D^{\prime} E^{\prime}}=3$

$$
\frac{E F}{E^{\prime} F^{\prime}}=3
$$

$$
\frac{D F}{D^{\prime} F^{\prime}}=3
$$

$$
\begin{aligned}
\frac{12}{D^{\prime} E^{\prime}} & =3 \\
3 D^{\prime} E^{\prime} & =12 \\
\overline{D^{\prime} E^{\prime}} & =4
\end{aligned}
$$

$$
\frac{15}{E^{\prime} F^{\prime}}=3
$$

$$
\frac{9}{D^{\prime} F^{\prime}}=3
$$

$$
3 E^{\prime} F^{\prime}=15
$$

$$
3 D^{\prime} F^{\prime}=9
$$

$$
\overline{E^{\prime} F^{\prime}}=5
$$

$$
\overline{D^{\prime} F^{\prime}}=3
$$

78. $\frac{E^{\prime} F^{\prime}}{E F}=\frac{1}{3}$

$$
\begin{aligned}
\frac{F^{\prime} G^{\prime}}{F G} & =\frac{1}{3} \\
\frac{F^{\prime} G^{\prime}}{9} & =\frac{1}{3}
\end{aligned}
$$

$$
\frac{G^{\prime} H^{\prime}}{G H}=\frac{1}{3}
$$

$$
\frac{E^{\prime} H^{\prime}}{E H}=\frac{1}{3}
$$

$$
\frac{E^{\prime} F^{\prime}}{21}=\frac{1}{3}
$$

$$
\frac{G^{\prime} H^{\prime}}{9}=\frac{1}{3}
$$

$$
\frac{E^{\prime} H^{\prime}}{12}=\frac{1}{3}
$$

$$
3 E^{\prime} F^{\prime}=21 \quad 3 F^{\prime} G^{\prime}=9
$$

$$
3 G^{\prime} H^{\prime}=9
$$

$$
3 E^{\prime} H^{\prime}=12
$$

$$
\overline{E^{\prime} F^{\prime}}=7
$$

$$
\overline{G^{\prime} H^{\prime}}=3
$$

$$
\overline{E^{\prime} H^{\prime}}=4
$$

79. a) $m \measuredangle H M F=m \measuredangle T M B, m \measuredangle H F M=m \measuredangle T B M, m \measuredangle M H F=m \measuredangle M T B$
b) Let $x=$ height of the wall

$$
\begin{aligned}
\frac{x}{20} & =\frac{5.5}{2.5} \\
2.5 x & =110 \\
x & =\frac{110}{2.5}=44 \mathrm{ft}
\end{aligned}
$$

80. a) $m \measuredangle C E D=m \measuredangle A B C ; m \measuredangle A C B=m \measuredangle D C E$ (vertical angles); $m \measuredangle B A C=m \measuredangle C D E$ (alternate interior angles)
b) Let $x=D E$

$$
\begin{aligned}
\frac{x}{A B} & =\frac{C E}{B C} \\
\frac{x}{543} & =\frac{1404}{356} \\
356 x & =762,372 \\
x & =2141.494382 \approx 2141.49 \mathrm{ft}
\end{aligned}
$$

Exercise Set 9.3

Throughout this section, on exercises involving π, we used the π key on a scientific calculator to determine the answer. If you use 3.14 for π, your answers may vary slightly.

1. a) The perimeter of a two-dimensional figure is the sum of the lengths of the sides of the figure.
b) The area of a two-dimensional figure is the region within the boundaries of the figure.
c)

$$
\begin{aligned}
& A=l w=6(2)=12 \text { square units } \\
& P=2 l+2 w=2(6)+2(2)=12+4=16 \text { units }
\end{aligned}
$$

2. The radius of a circle is half the diameter or the diameter of a circle is twice the radius.
3. a) To determine the number of square inches, multiply the number of square feet by $12 \times 12=144$.
b) To determine the number of square feet, divide the number of square inches by $12 \times 12=144$.
4. a) To determine the number of square feet, multiply the number of square yards by $3 \times 3=9$.
b) To determine the number of square yards, divide the number of square feet by $3 \times 3=9$.
5. $\quad A=\frac{1}{2} b h=\frac{1}{2}(10)(7)=35 \mathrm{in.}^{2}$
6. $A=\frac{1}{2} b h=\frac{1}{2}(7)(5)=17.5 \mathrm{~cm}^{2}$
7. $A=l w=(15)(7)=105 \mathrm{ft}^{2}$
$P=2 l+2 w=2(15)+2(7)=44 \mathrm{ft}$
8. $3 \mathrm{~m}=3(100)=300 \mathrm{~cm}$
$A=b h=300(20)=6000 \mathrm{~cm}^{2}$
$P=2 b+2 w=2(300)+2(27)=654 \mathrm{~cm}$
9. $2 \mathrm{ft}=2(12)=24 \mathrm{in}$.
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(24)(5+19)$
$=\frac{1}{2}(24)(24)=288 \mathrm{in} .^{2}$
$P=s_{1}+s_{2}+b_{1}+b_{2}=25+25+5+19=74 \mathrm{in}$.
10. $A=\pi r^{2}=\pi(7)^{2}=49 \pi=153.93804 \approx 153.94 \mathrm{in}^{2}$
$C=2 \pi r=2 \pi(7)=14 \pi=43.98229715 \approx 43.98 \mathrm{in}$.
11. $r=\frac{9}{2}=4.5 \mathrm{ft}$
$A=\pi r^{2}=\pi(4.5)^{2}=20.25 \pi=63.61725124$
$\approx 63.62 \mathrm{ft}^{2}$
$C=2 \pi r=2 \pi(4.5)=9 \pi=28.27433388$
$\approx 28.27 \mathrm{ft}$
12. a) $a^{2}+12^{2}=15^{2}$

$$
\begin{aligned}
a^{2}+144 & =225 \\
a^{2} & =81 \\
a & =\sqrt{81}=9 \mathrm{in} .
\end{aligned}
$$

b) $P=s_{1}+s_{2}+s_{3}=9+12+15=36 \mathrm{in}$.
c) $A=\frac{1}{2} b h=\frac{1}{2}(9)(12)=54 \mathrm{in} .^{2}$
6. $3 \mathrm{yd}=3(3)=9 \mathrm{ft}$

$$
A=\frac{1}{2} b h=\frac{1}{2}(1)(9)=4.5 \mathrm{ft}^{2}=\frac{4.5}{9}=0.5 \mathrm{yd}^{2}
$$

8. $\quad A=\frac{1}{2} b h=\frac{1}{2}(2)(\sqrt{3})=\sqrt{3} \mathrm{~m}^{2}$
9. $A=b h=(7)(5)=35 \mathrm{in}^{2}$
$P=2 b+2 w=2(7)+2(6)=26 \mathrm{in}$.
10. $2 \mathrm{yd}=2(3)=6 \mathrm{ft}$
$A=s^{2}=(6)^{2}=36 \mathrm{ft}^{2}$
$P=4 s=4(6)=24 \mathrm{ft}$
11. $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(12)(6+16)$
$=\frac{1}{2}(12)(22)=132 \mathrm{in} .^{2}$
$P=s_{1}+s_{2}+b_{1}+b_{2}=13+13+6+16=48 \mathrm{in}$.
12. $r=\frac{100}{2}=50 \mathrm{~cm}$
$A=\pi r^{2}=\pi(50)^{2}=2500 \pi=7853.981634$
$\approx 7853.98 \mathrm{~cm}^{2}$
$C=2 \pi r=2 \pi(50)=100 \pi=314.1592654$
$\approx 314.16 \mathrm{~cm}$
13. $A=\pi r^{2}=\pi(13)^{2}=169 \pi=530.9291585$
$\approx 530.93 \mathrm{~mm}^{2}$
$C=2 \pi r=2 \pi(13)=26 \pi=81.68140899$
$\approx 81.68 \mathrm{~mm}$
14. a) $c^{2}=5^{2}+12^{2}$
$c^{2}=25+144$
$c^{2}=169$
$c=\sqrt{169}=13 \mathrm{ft}$
b) $P=s_{1}+s_{2}+s_{3}=5+12+13=30 \mathrm{ft}$
c) $A=\frac{1}{2} b h=\frac{1}{2}(5)(12)=30 \mathrm{ft}^{2}$
15. a) $c^{2}=10^{2}+24^{2}$

$$
\begin{aligned}
c^{2} & =100+576 \\
c^{2} & =676 \\
c & =\sqrt{676}=26 \mathrm{~cm}
\end{aligned}
$$

b) $P=s_{1}+s_{2}+s_{3}=10+24+26=60 \mathrm{~cm}$
c) $A=\frac{1}{2} b h=\frac{1}{2}(10)(24)=120 \mathrm{~cm}^{2}$
23. Area of larger circle:
$\pi(4)^{2}=16 \pi=50.265 \quad 482 \quad 46 \mathrm{~cm}^{2}$
Area of smaller circle:
$\pi(3)^{2}=9 \pi=28.274 \quad 333 \quad 88 \mathrm{~cm}^{2}$
Shaded area:
$50.26548246-28.27433388=21.99114858$
$\approx 21.99 \mathrm{~cm}^{2}$
25. Use the Pythagorean Theorem to find the length of a side of the shaded square.
$x^{2}=2^{2}+2^{2}$
$x^{2}=4+4$
$x^{2}=8$
$x=\sqrt{8}$
Shaded area: $\sqrt{8}(\sqrt{8})=8$ in. 2
27. Area of trapezoid:
$\frac{1}{2}(8)(9+20)=\frac{1}{2}(8)(29)=116$ in. ${ }^{2}$
Area of circle: $\pi(4)^{2}=16 \pi=50.26548246$ in. ${ }^{2}$
Shaded area:
$116-50.26548246=65.73451754 \approx 65.73 \mathrm{in}^{2}{ }^{2}$
29. Area of small rectangle on the right side:
$12(6)=72 \mathrm{ft}^{2}$
Area of semi-circle on the right side:
$\frac{1}{2} \pi(6)^{2}=18 \pi=56.54866776 \mathrm{ft}^{2}$
Area of shaded region on the right side:
$72-56.54866776=15.45133224 \mathrm{ft}^{2}$
Area of shaded region on the left side:
$15.45133224 \mathrm{ft}^{2}$
Area of triangle: $\frac{1}{2}(14)(12)=84 \mathrm{ft}^{2}$
Shaded area:
$15.45133224+15.45133224+84$
$=114.9026645 \approx 114.90 \mathrm{ft}^{2}$
22. a) $b^{2}+15^{2}=39^{2}$
$b^{2}+225=1521$

$$
\begin{aligned}
b^{2} & =1296 \\
c & =\sqrt{1296}=36 \mathrm{~m}
\end{aligned}
$$

b) $P=s_{1}+s_{2}+s_{3}=15+36+39=90 \mathrm{~m}$
c) $A=\frac{1}{2} b h=\frac{1}{2}(36)(15)=270 \mathrm{~m}^{2}$
24. Area of square: $(10)^{2}=100 \mathrm{~m}^{2}$

Area of circle: $\pi(5)^{2}=25 \pi=78.539 \quad 816 \quad 34 \mathrm{~m}^{2}$
Shaded area:
$100-78.53981634=21.46018366 \approx 21.46 \mathrm{~m}^{2}$
26. Area of rectangle: $7(4)=28 \mathrm{ft}^{2}$

Area of trapezoid: $\frac{1}{2}(4)(3+7)=\frac{1}{2}(4)(10)=20 \mathrm{ft}^{2}$
Shaded area: $28-20=8 \mathrm{ft}^{2}$
28. Area of circle: $\pi(5)^{2}=25 \pi=78.539 \quad 81634 \mathrm{~m}^{2}$

Area of rectangle: $8(6)=48 \mathrm{~m}^{2}$
Shaded area:
$78.53981634-48=30.53981634 \approx 30.54 \mathrm{~m}^{2}$
30. Radius of larger circle: $\frac{28}{2}=14 \mathrm{~cm}$

Area of large circle:
$\pi(14)^{2}=196 \pi=615.7521601 \mathrm{~cm}^{2}$
Radius of each smaller circle: $\frac{14}{2}=7 \mathrm{~cm}$
Area of each smaller circle:
$\pi(7)^{2}=49 \pi=153.93804 \mathrm{~cm}^{2}$
Shaded area:
615.7521601-153.93804-153.93804
$=307.8760801 \approx 307.88 \mathrm{~cm}^{2}$
31. Length of rectangle: $3(8)=24 \mathrm{in}$.

Area of rectangle: $24(8)=192$ in. ${ }^{2}$
Radius of each circle: $\frac{8}{2}=4 \mathrm{in}$.
Area of each circle: $\pi(4)^{2}=16 \pi=50.26548246$
Shaded area:
$192-50.26548246-50.26548246-50.26548246$
$=41.20355262 \approx 41.20 \mathrm{in}^{2}{ }^{2}$
33. $\frac{1}{x}=\frac{9}{107}$

$$
\begin{aligned}
9 x & =107 \\
x & =\frac{107}{9}=11 . \overline{8} \approx 11.89 \mathrm{yd}^{2}
\end{aligned}
$$

35. $\frac{1}{14.7}=\frac{9}{x}$

$$
x=14.7(9)=132.3 \mathrm{ft}^{2}
$$

37. $\frac{1}{23.4}=\frac{10,000}{x}$

$$
x=23.4(10,000)=234,000 \mathrm{~cm}^{2}
$$

39. $\frac{1}{x}=\frac{10,000}{1075}$
$10,000 x=1075$
$x=\frac{1075}{10,000}=0.1075 \mathrm{~m}^{2}$
40. Area of living/dining room: $25(22)=550 \mathrm{ft}^{2}$
a) $550(5.89)=\$ 3239.50$
b) $550(8.89)=\$ 4889.50$
41. Area of kitchen: $12(14)=168 \mathrm{ft}^{2}$

Area of first floor bathroom: $6(10)=60 \mathrm{ft}^{2}$
Area of second floor bathroom: $8(14)=112 \mathrm{ft}^{2}$
Total area: $168+60+112=340 \mathrm{ft}^{2}$
Cost: $340(\$ 5)=\$ 1700$
45. Area of bedroom $1: 10(14)=140 \mathrm{ft}^{2}$

Area of bedroom 2: $10(20)=200 \mathrm{ft}^{2}$
Area of bedroom 3: $10(14)=140 \mathrm{ft}^{2}$
Total area: $140+200+140=480 \mathrm{ft}^{2}$
Cost: $480(\$ 6.06)=\$ 2908.80$
32. Area of each outer rectangle: $2(4)=8 \mathrm{~cm}^{2}$

Area of four outer rectangles: $4(8)=32 \mathrm{~cm}^{2}$
Area of inner square: $4(4)=16 \mathrm{~cm}^{2}$
Radius of circle: $\frac{4}{2}=2 \mathrm{~cm}$
Area of circle: $\pi(2)^{2}=4 \pi=12.56637061$
Shaded area: $32+16-12.56637061$
$=35.43362939 \approx 35.43 \mathrm{~cm}^{2}$
34. $\frac{1}{x}=\frac{9}{15.2}$
$9 x=15.2$

$$
x=\frac{15.2}{9}=1.6 \overline{8} \approx 1.69 \mathrm{yd}^{2}
$$

36. $\frac{1}{18.3}=\frac{9}{x}$

$$
x=18.3(9)=164.7 \mathrm{ft}^{2}
$$

38. $\frac{1}{14.7}=\frac{10,000}{x}$

$$
x=14.7(10,000)=147,000 \mathrm{~cm}^{2}
$$

40. $\frac{1}{x}=\frac{10,000}{608}$
$10,000 x=608$ $x=\frac{608}{10,000}=0.0608 \mathrm{~m}^{2}$
41. Area of living/dining room: $25(22)=550 \mathrm{ft}^{2}$
a) $550(10.86)=\$ 5973$
b) $550(13.86)=\$ 7623$
42. Area of kitchen and both bathrooms: $340 \mathrm{ft}^{2}$ (See Exercise 43.)
Cost: $340(\$ 8.50)=\$ 2890$
43. Area of all three bedrooms: $480 \mathrm{ft}^{2}$ (See Exercise 45.)
Cost: $480(\$ 5.56)=\$ 2668.80$
44. Area of entire lawn if all grass:
$200(100)=20,000 \mathrm{ft}^{2}$
Area of patio: $40(10)=400 \mathrm{ft}^{2}$
Area of shed: $10(8)=80 \mathrm{ft}^{2}$
Area of house: $50(25)=1250 \mathrm{ft}^{2}$
Area of drive: $30(10)=300 \mathrm{ft}^{2}$
Area of pool: $\pi(12)^{2}=144 \pi=452.3893421 \mathrm{ft}^{2}$
Area of lawn:
$20,000-400-80-1250-300-452.3893421$
$=17,517.61066 \mathrm{ft}^{2}=\frac{17,517.61066}{9}$
$=1946.401184 \mathrm{yd}^{2}$
Cost:
$1946.401184(\$ 0.02)=\$ 38.92802368 \approx \$ 38.93$
45. a) $A=11.5(15.4)=177.1 \mathrm{~m}^{2}$

$$
\text { b) } \begin{aligned}
\frac{1}{x} & =\frac{10,000}{177.1} \\
10,000 x & =177.1 \\
x & =\frac{177.1}{10,000}=0.01771 \text { hectare }
\end{aligned}
$$

51. Let $c=$ length of guy wire

$$
\begin{aligned}
90^{2}+52^{2} & =c^{2} \\
8100+2704 & =c^{2} \\
10,804 & =c^{2} \\
c & =\sqrt{10,804}=103.9422917 \approx 103.94 \mathrm{ft}
\end{aligned}
$$

53. Let $a=$ horizontal distance from dock to boat

$$
\begin{aligned}
a^{2}+9^{2} & =41^{2} \\
a^{2}+81 & =1681 \\
a^{2} & =1600 \\
a & =\sqrt{1600}=40 \mathrm{ft}
\end{aligned}
$$

48. Area of entire lawn if all grass:

$$
400(300)=120,000 \mathrm{ft}^{2}
$$

Area of house: $\frac{1}{2}(50)(100+150)=6250 \mathrm{ft}^{2}$
Area of goldfish pond:
$\pi(20)^{2}=400 \pi=1256.637061 \mathrm{ft}^{2}$
Area of privacy hedge: $200(20)=4000 \mathrm{ft}^{2}$
Area of garage: $70(30)=2100 \mathrm{ft}^{2}$
Area of driveway: $40(25)=1000 \mathrm{ft}^{2}$
Area of lawn:

$$
\begin{aligned}
& 120,000-6250-1256.637061-4000-2100-1000 \\
& =105,393.3629 \mathrm{ft}^{2}=\frac{105,393.3629}{9} \\
& =11,710.37366 \mathrm{yd}^{2}
\end{aligned}
$$

Cost:

$$
11,710.37366(\$ 0.02)=\$ 234.2074732 \approx \$ 234.21
$$

50. Wendy's hamburger: $A=3(3)=9$ in. 2

Burger King hamburger:

$$
\begin{aligned}
& A=\pi\left(\frac{3.5}{2}\right)^{2}=\pi(1.75)^{2}=3.0625 \pi \\
& =9.621127502 \approx 9.62 \mathrm{in.}^{2}
\end{aligned}
$$

Burger King's hamburger is larger by

$$
\approx 9.62-9=0.62 \mathrm{in} .^{2}
$$

52. Let $a=$ height on the wall that the ladder reaches

$$
\begin{aligned}
a^{2}+20^{2} & =29^{2} \\
a^{2}+400 & =841 \\
a^{2} & =441 \\
a & =\sqrt{441}=21 \mathrm{ft}
\end{aligned}
$$

54.

$$
\begin{aligned}
& x^{2}+21^{2}=43^{2} \\
& x^{2}+441=1849 \\
& x^{2}=1408 \\
& x=\sqrt{1408}=37.52332608 \approx 37.52 \mathrm{in} .
\end{aligned}
$$

55. a) $A=s^{2}$
b) $A=(2 s)^{2}=4 s^{2}$
c) The area of the square in part b) is four times larger than the area of the square in part a).
56. $s=\frac{1}{2}(a+b+c)=\frac{1}{2}(8+6+10)=12$
$A=\sqrt{12(12-8)(12-6)(12-10)}$ $=\sqrt{12(4)(6)(2)}=\sqrt{576}=24 \mathrm{~cm}^{2}$
57. a) $A=b h$
b) $A=2 b(2 h)=4 b h$
c) The area of the parallelogram in part b) is four times larger than the area of the parallelogram in part a).
58. a) $A=a^{2}$
b) $A=a b$
c) $A=a b$
d) $A=b^{2}$
e) $(a+b)^{2}=a^{2}+a b+a b+b^{2}=a^{2}+2 a b+b^{2}$
59. Answers will vary.

Exercise Set 9.4

In this section, we use the π key on the calculator to determine answers in calculations involving π.
If you use 3.14 for π, your answers may vary slightly.

1. Volume is a measure of the capacity of a figure.
2. Solid geometry is the study of three-dimensional solid figures.
3. A polyhedron is a closed surface formed by the union of polygonal regions.

A regular polyhedron is one whose faces are all regular polygons of the same size and shape.
4. A prism is a polyhedron whose bases are congruent polygons and whose sides are parallelograms. A right prism is one in which all of the lateral faces are rectangles.
5. A prism and a pyramid are both polyhedrons, but a prism has a top and a bottom base while a pyramid only has one base.
6. For any polyhedron, the number of vertices minus the number of edges plus the number of faces equals two.

$$
\begin{aligned}
& \text { 7. } \quad V=s^{3}=(3)^{3}=27 \mathrm{ft}^{3} \\
& \text { 9. } \quad 1 \mathrm{ft}=12 \mathrm{in} . \\
& \quad V=\pi r^{2} h=\pi(2)^{2}(12)=48 \pi \\
& \quad=150.7964474 \approx 150.80 \mathrm{in.}^{3}
\end{aligned}
$$

11. $V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(3)^{2}(14)=42 \pi$

$$
=131.9468915 \approx 131.95 \mathrm{~cm}^{3}
$$

13. Area of the base:

$$
\begin{aligned}
& B=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(10)(8+12)=100 \mathrm{in.}^{2} \\
& V=B h=100(24)=2400 \mathrm{in.}^{3}
\end{aligned}
$$

8. $V=l w h=8(3)(3)=72 \mathrm{ft}^{3}$
9. $2 \mathrm{ft}=2(12)=24 \mathrm{in}$.

$$
\begin{aligned}
V & =\pi r^{2} h=\pi(6)^{2}(24)=864 \pi \\
& =2714.336053 \approx 2714.34 \mathrm{in.}^{3}
\end{aligned}
$$

12. $r=\frac{10}{2}=5 \mathrm{ft}$
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(5)^{2}(24)=200 \pi$

$$
=628.3185307 \approx 628.32 \mathrm{ft}^{3}
$$

14. Area of the base: $B=\frac{1}{2} b h=\frac{1}{2}(8)(8)=32$ in. 2
$V=B h=32(12)=384 \mathrm{in} .{ }^{3}$
15. $r=\frac{9}{2}=4.5 \mathrm{~cm}$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(4.5)^{3}=121.5 \pi \\
& =381.7035074 \approx 381.70 \mathrm{~cm}^{3}
\end{aligned}
$$

17. Area of the base: $B=s^{2}=(11)^{2}=121 \mathrm{~cm}^{2}$
$V=\frac{1}{3} B h=\frac{1}{3}(121)(13)=524 . \overline{3} \approx 524.33 \mathrm{~cm}^{3}$
18. Area of the base:
$B=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(5)(7+9)=40 \mathrm{in} .{ }^{2}$
$V=\frac{1}{3} B h=\frac{1}{3}(40)(8)=106 . \overline{6} \approx 106.67 \mathrm{in}^{3}{ }^{3}$
19. $\quad V=$ volume of rect. solid - volume of cylinder

$$
\begin{aligned}
& =6(4)(3)-\pi(1)^{2}(4)=72-4 \pi \\
& =72-12.56637061 \\
& =59.43362939 \approx 59.43 \mathrm{~m}^{3}
\end{aligned}
$$

23. $V=$ volume of rect. solid - volume of sphere

$$
\begin{aligned}
& =4(4)(4)-\frac{4}{3} \pi(2)^{3}=64-33.51032164 \\
& =30.48967836 \approx 30.49 \mathrm{ft}^{3}
\end{aligned}
$$

25. $\quad V=$ vol. of large cylinder - vol. of small cylinder

$$
\begin{aligned}
& =\pi(1.5)^{2}(5)-\pi(0.5)^{2}(5)=11.25 \pi-1.25 \pi=10 \pi \\
& =31.41592654 \approx 31.42 \mathrm{~m}^{3}
\end{aligned}
$$

27. $\quad V=$ volume of rect. solid - volume of pyramid

$$
=3(3)(4)-\frac{1}{3}(3)^{2}(4)=36-12=24 \mathrm{ft}^{3}
$$

29. $7 \mathrm{yd}^{3}=7(27)=189 \mathrm{ft}^{3}$
30. $153 \mathrm{ft}^{3}=\frac{153}{27}=5 . \overline{6} \approx 5.67 \mathrm{yd}^{3}$
31. $5.9 \mathrm{~m}^{3}=5.9(1,000,000)=5,900,000 \mathrm{~cm}^{3}$
32. $3,000,000 \mathrm{~cm}^{3}=\frac{3,000,000}{1,000,000}=3 \mathrm{~m}^{3}$
33. a) $V=46(25)(25)=28,750$ in. ${ }^{3}$
b) $(1 \mathrm{ft})^{3}=(12 \mathrm{in}).(12 \mathrm{in}).(12 \mathrm{in})=.1728 \mathrm{in}^{3}$

28,750 in. $^{3}=\frac{28,750}{1728}=16.63773148 \approx 16.64 \mathrm{ft}^{3}$
16. $V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(7)^{3}=457 . \overline{3} \pi$

$$
=1436.75504 \approx 1436.76 \mathrm{~cm}^{3}
$$

18. Area of the base: $B=\frac{1}{2} b h=\frac{1}{2}(9)(15)=67.5 \mathrm{ft}^{2}$

$$
V=\frac{1}{3} B h=\frac{1}{3}(67.5)(13)=292.5 \mathrm{ft}^{3}
$$

20. Area of the base: $B=l w=18(15)=270 \mathrm{in}^{2}$

$$
V=\frac{1}{3} B h=\frac{1}{3}(270)(10)=900 \text { in. } .^{3}
$$

22. $\quad V=$ volume of cylinder - volume of cone

$$
\begin{aligned}
& =\pi(2)^{2}(9)-\frac{1}{3} \pi(2)^{2}(9)=36 \pi-12 \pi=24 \pi \\
& =75.39822369 \approx 75.40 \mathrm{~cm}^{3}
\end{aligned}
$$

24. $\quad V=$ vol. of large sphere - vol. of small sphere

$$
\begin{aligned}
& =\frac{4}{3} \pi(6)^{3}-\frac{4}{3} \pi(3)^{3}=288 \pi-36 \pi=252 \pi \\
& =791.6813487 \approx 791.68 \mathrm{~cm}^{3}
\end{aligned}
$$

26. $V=$ volume of cylinder - volume of 3 spheres

$$
\begin{aligned}
& =\pi(3.5)^{2}(20.8)-3\left[\frac{4}{3} \pi(3.45)^{3}\right] \\
& =254.8 \pi-164.2545 \pi=90.5455 \pi \\
& =284.4570776 \approx 284.46 \mathrm{~cm}^{3}
\end{aligned}
$$

28. $V=$ volume of prism - volume of rectangular solid
$=\frac{1}{2}(6)(8)(11)-3(4)(11)$
$=264-132=132$ in. 3
29. $\quad 3.8 \mathrm{yd}^{3}=3.8(27)=102.6 \mathrm{ft}^{3}$
30. $2457 \mathrm{ft}^{3}=\frac{2457}{27}=91 \mathrm{yd}^{3}$
31. $17.6 \mathrm{~m}^{3}=17.6(1,000,000)=17,600,000 \mathrm{~cm}^{3}$
32. $7,300,000 \mathrm{~cm}^{3}=\frac{7,300,000}{1,000,000}=7.3 \mathrm{~m}^{3}$
33. Tubs: $V=\pi r^{2} h=\pi(3)^{2}(5)=45 \pi$

$$
=141.3716694 \approx 141.37 \mathrm{in}^{3}{ }^{3}
$$

Boxes: $V=s^{3}=(5)^{3}=125 \mathrm{in}^{3}$
39. $V=12(4)(3)=144$ in. 3
$144 \mathrm{in}^{3}{ }^{3}=144(0.01736)=2.49984 \approx 2.50 \mathrm{qt}$
41. a) Cylinder 1:
$V=\pi\left(\frac{10}{2}\right)^{2}(12)=300 \pi=942.4777961 \approx 942.48 \mathrm{in} .^{3}$
Cylinder 2:
$V=\pi\left(\frac{12}{2}\right)^{2}(10)=360 \pi$
$=1130.973355 \approx 1130.97 \mathrm{in}^{3}{ }^{3}$
The container with the larger diameter holds more.
b) $1130.97-942.48=188.49 \approx 188.50 \mathrm{in}^{3}{ }^{3}$
43. $V=\frac{1}{3} B h=\frac{1}{3}(720)^{2}(480)=82,944,000 \mathrm{ft}^{3}$
45. $r=\frac{3.875}{2}=1.9375 \mathrm{in}$.

Volume of each cylinder:
$\pi r^{2} h=\pi(1.9375)^{2}(3)$
$=11.26171875 \pi=35.37973289$
Total volume:
$8(35.37973289)=283.0378631 \approx 283.04 \mathrm{in}^{3}{ }^{3}$
47. a) $5.5 \mathrm{ft}=5.5(12)=66 \mathrm{in}$.
$r=\frac{2.5}{2}=1.25 \mathrm{in}$.
$V=\pi r^{2} h=\pi(1.25)^{2}(66)=103.125 \pi$
$=323.9767424 \approx 323.98 \mathrm{in}^{3}$
b) $\frac{323.98}{1728}=0.187488425 \approx 0.19 \mathrm{ft}^{3}$
40. Wendy's Volume: $4(4)\left(\frac{3}{16}\right)=3$ in. 3

Magic Burger's Volume:
$\pi\left(\frac{4.5}{2}\right)^{2}(0.25)=\pi(2.25)^{2}(0.25)$
$=3.976078202 \approx 3.98 \mathrm{in}^{3}{ }^{3}$
The Magic Burger has the greater volume by ≈ 0.98 in. 3
42. a) $V=15(9)(2)=270 \mathrm{~m}^{3}$
b) 270 kl
44. a) $V=80(50)(30)=120,000 \mathrm{~cm}^{3}$
b) $120,000 \mathrm{ml}$
c) $120,000 \mathrm{ml}=\frac{120,000}{1000}=120 \mathrm{l}$
46. a) 4 in. $=\frac{4}{12}=\frac{1}{3} \mathrm{ft}$
$V=l w h=9(18)\left(\frac{1}{3}\right)=54 \mathrm{ft}^{3}$
$\frac{54}{27}=2 \mathrm{yd}^{3}$
b) $2(\$ 32.95)=\$ 65.90$
48. a) Volume of water needed to fill the pool to a height
of $\frac{1}{2} \mathrm{ft}: \pi r^{2} h=\pi(2)^{2}\left(\frac{1}{2}\right)=2 \pi=6.283185307 \mathrm{ft}^{3}$
Radius of bucket of water: $\frac{1}{2} \mathrm{ft}$
Volume of bucket of water:
$\pi r^{2} h=\pi\left(\frac{1}{2}\right)^{2}(1)=\frac{1}{4} \pi=0.785398163 \mathrm{ft}^{3}$ $\frac{6.283185307}{0.785398163}=8.000000004 \approx 8$ bucketsful
b) $6.283185307(62.5)=392.6990817 \approx 392.70 \mathrm{lb}$
c) $6.283185307(7.5)=47.1238898 \approx 47.12 \mathrm{gal}$
49. a) Round pan:
$A=\pi r^{2}=\pi\left(\frac{9}{2}\right)^{2}=20.25 \pi$
$=63.61725124 \approx 63.62 \mathrm{in}^{2}{ }^{2}$
Rectangular pan: $A=l w=7(9)=63$ in. ${ }^{2}$
b) Round pan:
$V=\pi r^{2} h \approx 63.62(2)=127.24 \mathrm{in}^{3}{ }^{3}$
Rectangular pan: $V=l w h=7(9)(2)=126$ in. ${ }^{3}$
c) Round pan
51. a) $B=$ area of trapezoid $=\frac{1}{2}(9)(8+12)=90$ in. 2
$4 \mathrm{ft}=4(12)=48 \mathrm{in}$.
$V=B h=90(48)=4320 \mathrm{in}^{3}$
b) $1 \mathrm{ft}^{3}=(12)(12)(12)=1728 \mathrm{in} .^{3}$
$4320 \mathrm{in}^{3}=\frac{4320}{1728}=2.5 \mathrm{ft}^{3}$
53. $8-x+3=2$
$11-x=2$
$-x=-9$
$x=9$ edges
55. $x-8+4=2$
$x-4=2$
$x=6$ vertices
57. $11-x+5=2$
$16-x=2$
$-x=-14$
$x=14$ edges
50. $V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2}(6)=4.5 \pi$ $=14.13716694 \approx 14.14$ in. 3
52. a) $C=2 \pi r=2 \pi\left(\frac{19.6}{2}\right)=19.6 \pi$

$$
=61.57521601 \approx 61.58 \mathrm{~m}
$$

b) $V=\pi r^{2} h=\pi\left(\frac{19.6}{2}\right)^{2}(60)=5762.4 \pi$ $=18,103 \cdot 11351 \approx 18,103.11 \mathrm{~m}^{3}$
54. $12-16+x=2$
$-4+x=2$
$x=6$ faces
56. $7-12+x=2$
$-5+x=2$
$x=7$ faces
58. $x-10+4=2$
$x-6=2$
$x=8$ vertices
59. Let $r=$ the radius of one of the cans of orange juice

The length of the box $=6 r$ and the width of the box $=4 r$
Volume of box - volume of cans:
$l w h-6\left(\pi r^{2} h\right)=(6 r)(4 r) h-6 \pi r^{2} h=24 r^{2} h-6 \pi r^{2} h=6 r^{2} h(4-\pi)$
Percent of the volume of the interior of the box that is not occupied by the cans:
$\frac{6 r^{2} h(4-\pi)}{l w h}=\frac{6 r^{2}(4-\pi)}{(6 r)(4 r)}=\frac{4-\pi}{4}=0.2146018366 \approx 21.46 \%$
60. a) - e) Answers will vary.
f) If we double the length of each edge of a cube, the new volume will be eight times the original volume.
61. a) - e) Answers will vary.
f) If we double the radius of a sphere, the new volume will be eight times the original volume.
62. a) $42(60)(24)(365)=22,075,200$ drops
b) $\frac{22,075,200}{20}=1,103,760 \mathrm{ml}$
$\frac{1,103,760}{1000}=1103.761$
$\frac{1103.76}{3.79}=291.2295515 \approx 291.23 \mathrm{gal}$
c) $291.23(\$ 0.11)=32.0353 \approx \$ 32.04$
63. a) Find the volume of each numbered region. Since the length of each side is $a+b$, the sum of the volumes of each region will equal $(a+b)^{3}$.
b) $V_{1}=a(a)(a)=a^{3} \quad V_{2}=a(a)(b)=a^{2} b \quad V_{3}=a(a)(b)=a^{2} b \quad V_{4}=a(b)(b)=a b^{2}$ $V_{5}=a(a)(b)=a^{2} b \quad V_{6}=a(b)(b)=a b^{2} \quad V_{7}=b(b)(b)=b^{3}$
c) The volume of the piece not shown is $a b^{2}$.
64. a) $5.5 \mathrm{ft}=5.5(12)=66 \mathrm{in}$.
$V=B h=5(66)=330$ in. 3
b) Radius of cylinder: $\frac{0.75}{2}=0.375 \mathrm{in}$.

Volume of cylinder: $\pi \mathrm{r}^{2} h=\pi(0.375)^{2}(66)=9.28125 \pi=29.15790682 \mathrm{in} .^{3}$
Volume of hollow noodle: 330-29.15790682=300.8420932 $\approx 300.84 \mathrm{in}^{3}{ }^{3}$

Exercise Set 9.5

1. The act of moving a geometric figure from some starting position to some ending position without altering its shape or size is called rigid motion. The four main rigid motions studied in this section are reflections, translations, rotations, and glide reflections.
2. Transformational geometry is a type of geometry in which we study how to use a geometric figure to obtain other geometric figures by conducting one of several changes, called rigid motions, to the figure.
3. A reflection is a rigid motion that moves a figure to a new position that is a mirror image of the figure in the starting position.
4. Answers will vary.
5. A translation is a rigid motion that moves a figure by sliding it along a straight line segment in the plane.
6. Answers will vary.
7. A rotation is a rigid motion performed by rotating a figure in the plane about a specific point.
8. Answers will vary.
9. A glide reflection is a rigid motion formed by performing a translation (or glide) followed by a reflection.
10. Answers will vary.
11. A geometric figure is said to have reflective symmetry if the positions of a figure before and after a reflection are identical (except for vertex labels).
12. A geometric figure is said to have rotational symmetry if the positions of a figure before and after a rotation are identical (except for vertex labels).
13. A tessellation is a pattern consisting of the repeated use of the same geometric figures to entirely cover a plane, leaving no gaps.
14. Answers will vary.

15. a)

b) Yes
16. a)

b) Yes
c) Yes
c) Yes
17. a)

18. a)

b) No
b) No
c) No
c) No

316 CHAPTER 9 Geometry

51. a)

b) No
c) No
d)

e) Yes
e) Yes
f) Yes
f) Yes
52. a)

b) Yes
c) Yes
d)

53. a) - c)

d) No. Any 90° rotation will result in the figure being in a different position than the starting position.
54. a)

b) No. Any reflection about any horizontal line will result in the figure being in a different position than the starting position.
c) No. Any 90° rotation will result in the figure being in a different position than the starting position.
d) No. Any 180° rotation will result in the figure being in a different position than the starting position.
55. a) - b)

c) No
d) The order in which the translation and the reflection are performed is important. The figure obtained in part b) is the glide reflection.
56. Answers will vary.
57. Answers will vary.
58. a) Answers will vary.
b) A regular octagon cannot be used as a tessellating shape.
59. a) Answers will vary.
b) A regular pentagon cannot be used as a tessellating shape.
60. Although answers will vary depending on the font, the following capital letters have reflective symmetry about a horizontal line drawn through the center of the letter: B, C, D, E, H, I, K, O, X.
61. Although answers will vary depending on the font, the following capital letters have reflective symmetry about a vertical line drawn through the center of the letter: A, H, I, M, O, T, U, V, W, X, Y.
62. Although answers will vary depending on the font, the following capital letters have 180° rotational symmetry about a point in the center of the letter: H, I, O, S, X, Z.

Exercise Set 9.6

1. Topology is sometimes referred to as "rubber sheet geometry" because it deals with bending and stretching of geometric figures.
2. A Möbius strip is a one-sided, one-edged surface.
3. You can construct a Möbius strip by taking a strip of paper, giving one end a half twist, and taping the ends together.
4. A Klein bottle is a topological object that resembles a bottle but has only one side.
5. Four
6. a) Six
b) Seven
7. A Jordan curve is a topological object that can be thought of as a circle twisted out of shape.
8. Since you must cross the curve to get from outside to inside, two crosses puts you back where you started. Thus, if you cross the curve twice (or any even number of times) to get outside, you must have started outside. Also, if you cross the curve once (or any odd number of times) to get outside, you must have started inside.
9. The number of holes in the object determines the genus of an object.
10. Two figures are topologically equivalent if one figure can be elastically twisted, stretched, bent, or shrunk into the other figure without ripping or puncturing the original figure.
11. 1, 4, 6 - Red; 2,3 - Yellow; 7 - Green; 5 - Blue
12. 1, 4, 6 - Red; 2, 5, 8 - Blue; 3, 7, 9 - Yellow
13. 1 - Red; 2, 5-Yellow; 3, 6 - Blue; 4, 7 - Green
14. YT, NU, AB, ON, NS - Red

NT, QC - Blue
BC, SK, NB, NF - Green
MB, PE - Yellow
19. TX, KS, MS, KY, SC, FL - Red

OK, LA, TN - Green
MO, GA, VA - Blue
AR, AL, NC - Yellow
21. Outside; a straight line from point A to a point clearly outside the curve crosses the curve an even number of times.
23. Outside; a straight line from point A to a point clearly outside the curve crosses the curve an even number of times.
25. Outside; a straight line from point C to a point clearly outside the curve crosses the curve an even number of times.
12. 1, 3, 7 - Red; 2, 6, 8 - Blue; 4,5 - Green
14. 1 - Red; 2, 5 - Yellow; 3, 6 - Blue; 4, 7 - Green
16. 1 - Red; 2, 5 - Yellow; 3, 6 - Blue; 4, 7 - Green
18. BCS, SON, DGO, NLE - Red

BCA, CHH, ZAC, TMP - Blue
SIN, COA - Green
NAY, SLP - Yellow
20. CA, WA, MT, UT - Red

OR, WY, AZ - Green
ID, NM - Blue
NV, CO - Yellow
22. Inside; a straight line from point B to a point clearly outside the curve crosses the curve an odd number of times.
24. Outside; a straight line from point B to a point clearly outside the curve crosses the curve an even number of times.
26. Outside; a straight line from point D to a point clearly outside the curve crosses the curve an even number of times.

318 CHAPTER 9 Geometry

27. Inside; a straight line from point E to a point clearly outside the curve crosses the curve an odd number of times.
28. 1
29. 1
30. 0
31. Larger than 5
32. One
33. Inside; a straight line from point F to a point clearly outside the curve crosses the curve an odd number of times.
34. 1
35. 5
36. 5
37. 1
38. 5
39. 1
40. One
41. One vary.
42. Two
43. a) No, it has an inside and an outside.
b) Two
c) Two
d) Two strips, one inside the other
44. No, it does not.
45. Answers will vary.
46. Answers will vary.
47. The smaller one is a Möbius strip; the larger one is not.
48. Yes. "Both sides" of the belt experience wear.
49. Ecuador, Brazil, Chile - Red Colombia, Guyana, French Guiana, Bolivia - Green Peru, Venezuela, Suriname, Paraguay, Uruguay - Yellow
Argentina - Blue
50. a) 1
b) 1
c) Answers will vary.

Exercise Set 9.7

1. Girolamo Saccheri - proved many theorems of hyperbolic geometry
2. Janos Bolyai - discovered hyperbolic geometry
3. Carl Friedrich Gauss - discovered hyperbolic geometry
4. Nikolay Ivanovich Lobachevsky - discovered hyperbolic geometry
5. G.F. Bernhard Riemann - discovered elliptical geometry
6. Benoi Mandelbrot - first to use the word fractal to describe shapes that had several common characteristics, including some form of "self-similarity"
7. a) Euclidean - Given a line and a point not on the line, one and only one line can be drawn parallel to the given line through the given point.
b) Hyperbolic - Given a line and a point not on the line, two or more lines can be drawn through the given point parallel to the given line.
c) Elliptical - Given a line and a point not on the line, no line can be drawn through the given point parallel to the given line.
8. a) Euclidean - The sum of the measures of the angles of a triangle is 180°.
b) Hyperbolic - The sum of the measures of the angles of a triangle is less than 180°.
c) Elliptical - The sum of the measures of the angles of a triangle is greater than 180°.
9. A plane
10. A sphere
11. A pseudosphere
12. Each type of geometry can be used in its own frame of reference.
13. Spherical - elliptical geometry; flat - Euclidean geometry; saddle-shaped - hyperbolic geometry
14. Coastlines, trees, mountains, galaxies, polymers, rivers, weather patterns, brains, lungs, blood supply
15.

16.

17.

18.

19. a)

b) Infinite since it is infinitely subdivided.
c) Finite since it covers a finite or closed area.
20. a)

Step

Perimeter

1

$$
\begin{aligned}
& 3\left(\frac{4}{3}\right)^{0}=3(1)=3 \\
& 3\left(\frac{4}{3}\right)^{1}=3\left(\frac{4}{3}\right)=4
\end{aligned}
$$

2

3

$$
3\left(\frac{4}{3}\right)^{2}=3\left(\frac{16}{9}\right)=\frac{16}{3}
$$

4

$$
3\left(\frac{4}{3}\right)^{3}=3\left(\frac{64}{27}\right)=\frac{64}{9}
$$

5

$$
3\left(\frac{4}{3}\right)^{4}=3\left(\frac{256}{81}\right)=\frac{256}{27}
$$

6

$$
3\left(\frac{4}{3}\right)^{5}=3\left(\frac{1024}{243}\right)=\frac{1024}{81}
$$

b) At each stage, the perimeter is $\frac{4}{3}$ multiplied by the previous perimeter.
c) The area is finite because it encloses a finite region.

The perimeter is infinite because it consists of an infinite number of pieces.

Review Exercises

In the Review Exercises and Chapter Test questions, the π key on the calculator is used to determine answers in calculations involving π. If you use 3.14 for π, your answers may vary slightly.

1. $\{F\}$
2. $\overrightarrow{B C}$
3. $\{F\}$
4. $90^{\circ}-51.2^{\circ}=38.8^{\circ}$
5. Let $x=B C$

$$
\begin{aligned}
\frac{B C}{B^{\prime} C} & =\frac{A C}{A^{\prime} C} \\
\frac{x}{3.4} & =\frac{12}{4} \\
4 x & =40.8 \\
x & =\frac{40.8}{4}=10.2 \mathrm{in}
\end{aligned}
$$

11. $m \measuredangle A B C=m \measuredangle A^{\prime} B^{\prime} C$
$m \measuredangle A^{\prime} B^{\prime} C=180^{\circ}-88^{\circ}=92^{\circ}$
Thus, $m \measuredangle A B C=92^{\circ}$
$m \measuredangle B A C=180^{\circ}-30^{\circ}-92^{\circ}=58^{\circ}$
12. $\triangle B F C$
13. $\overrightarrow{B H}$
14. $\}$
15. $180^{\circ}-124.7^{\circ}=55.3^{\circ}$
16. Let $x=A^{\prime} B^{\prime}$

$$
\begin{aligned}
\frac{A^{\prime} B^{\prime}}{A B} & =\frac{A^{\prime} C}{A C} \\
\frac{x}{6} & =\frac{4}{12} \\
12 x & =24 \\
x & =\frac{24}{12}=2 \mathrm{in}
\end{aligned}
$$

12. $m \measuredangle A B C=m \measuredangle A^{\prime} B^{\prime} C$
$m \measuredangle A^{\prime} B^{\prime} C=180^{\circ}-88^{\circ}=92^{\circ}$
Thus, $m \measuredangle A B C=92^{\circ}$
13. $m \measuredangle 1=180^{\circ}-110^{\circ}=70^{\circ}$
$m \measuredangle 6=70^{\circ}$ (angle 1 and angle 6 are vertical angles)
The measure of the top angle of the triangle is 50°, by vertical angles. The measure of the angle on the bottom right of the triangle is $180^{\circ}-70^{\circ}-50^{\circ}=60^{\circ}$.
$m \measuredangle 2=60^{\circ}$ (angle 2 and the angle on the bottom right of the triangle are vertical angles)
The measure of the alternate interior angle of angle 2 is 60°. Thus, $m \npreceq 3=180^{\circ}-60^{\circ}=120^{\circ}$.
The measure of the alternate interior angle of angle 6 is 70°. Thus, $m \Varangle 5=180^{\circ}-70^{\circ}=110^{\circ}$.
$m \measuredangle 4=180^{\circ}-110^{\circ}=70^{\circ}$
14. $n=6$
$(n-2) 180^{\circ}=(6-2) 180^{\circ}=4\left(180^{\circ}\right)=720^{\circ}$
15. $\quad A=\frac{1}{2} b h=\frac{1}{2}(14)(5)=35 \mathrm{in} .^{2}$
16. $A=b h=12(7)=84$ in. 2
17. $A=l w=14(16)=224 \mathrm{ft}^{2}$

Cost: $224(\$ 2.75)=\$ 616$
22. $V=l w h=10(3)(4)=120 \mathrm{~cm}^{3}$
15. $A=l w=9(7)=63 \mathrm{~cm}^{2}$
17. $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(2)(4+9)=13$ in. ${ }^{2}$
19. $A=\pi r^{2}=\pi(13)^{2}=169 \pi$

$$
=530.9291585 \approx 530.93 \mathrm{~cm}^{2}
$$

21. $\quad V=\pi r^{2} h=\pi(5)^{2}(15)=375 \pi$

$$
=1178.097245 \approx 1178.10 \mathrm{in}^{3}
$$

23. If h represents the height of the triangle which is the base of the pyramid, then

$$
\begin{gathered}
h^{2}+3^{2}=5^{2} \\
h^{2}+9=25 \\
h^{2}=16 \\
h=\sqrt{16}=4 \mathrm{ft} \\
B=\frac{1}{2} b h=\frac{1}{2}(6)(4)=12 \mathrm{ft}^{2} \\
V=\frac{1}{3} B h=\frac{1}{3}(12)(7)=28 \mathrm{ft}^{3}
\end{gathered}
$$

24. $B=\frac{1}{2} b h=\frac{1}{2}(9)(12)=54 \mathrm{~m}^{2}$
$V=B h=54(8)=432 \mathrm{~m}^{3}$
25. $r=\frac{12}{2}=6 \mathrm{~mm}$
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(6)^{2}(16)=192 \pi$
$=603.1857895 \approx 603.19 \mathrm{~mm}^{3}$
26. $\quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(7)^{3}=457 . \overline{3} \pi$ $=1436.75504 \approx 1436.76 \mathrm{ft}^{3}$
27. $\quad h^{2}+1^{2}=3^{2}$
$h^{2}+1=9$
$h^{2}=8$

$$
h=\sqrt{8}
$$

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(\sqrt{8})(2+4)=8.485281374 \mathrm{ft}^{2}
$$

a) $V=B h=8.485281374(8)$

$$
=67.88225099 \approx 67.88 \mathrm{ft}^{3}
$$

b) Weight:

$$
67.88(62.5)+375=4617.5 \mathrm{lb}
$$

Yes, it will support the trough filled with water.
c) $(4617.5-375)=4242.5 \mathrm{lb}$ of water

$$
\frac{4242.5}{8.3}=511.1445783 \approx 511.14 \mathrm{gal}
$$

37. Yes
38. No
39. No
40. Yes
41. 1
42. Saarland, North Rhine-Westphalia, Bremen, Mecklenburg-Western Pomerania, Berlin, Thuringia, Baden-Württemberg, Hamburg - Red
Rhineland-Palatinate, Lower Saxony, Saxony - Green
Schleswig-Holstein, Hesse, Brandenburg - Yellow
Bavaria, Saxony-Anhalt - Blue
43. Outside; a straight line from point A to a point clearly outside the curve crosses the curve an even number of times.
44. Euclidean: Given a line and a point not on the line, one and only one line can be drawn parallel to the given line through the given point.
Elliptical: Given a line and a point not on the line, no line can be drawn through the given point parallel to the given line.
Hyperbolic: Given a line and a point not on the line, two or more lines can be drawn through the given point parallel to the given line.
45.

Chapter Test

1. $\stackrel{\circ}{E F}$

3. $\{D\}$
4. $90^{\circ}-36.9^{\circ}=53.1^{\circ}$
5. The other two angles of the triangle are 48°
(by vertical angles) and $180^{\circ}-112^{\circ}=68^{\circ}$.
Thus, the measure of angle $x=180^{\circ}-48^{\circ}-68^{\circ}=64^{\circ}$.
6. Let $x=B^{\prime} C^{\prime}$

$$
\begin{aligned}
\frac{B^{\prime} C^{\prime}}{B C} & =\frac{A^{\prime} C^{\prime}}{A C} \\
\frac{x}{7} & =\frac{5}{13} \\
13 x & =35 \\
x & =\frac{35}{13}=2.692307692 \approx 2.69 \mathrm{~cm}
\end{aligned}
$$

11. $r=\frac{16}{2}=8 \mathrm{~cm}$
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(8)^{3}=682 . \overline{6} \pi$

$$
=2144.660585 \approx 2144.66 \mathrm{~cm}^{3}
$$

2. $\triangle B C D$
3. $\overrightarrow{A C}$
4. $180^{\circ}-101.5^{\circ}=78.5^{\circ}$
5. $n=8$

$$
(n-2) 180^{\circ}=(8-2) 180^{\circ}=6\left(180^{\circ}\right)=1080^{\circ}
$$

10. a)

$$
\begin{aligned}
x^{2}+5^{2} & =13^{2} \\
x^{2}+25 & =169 \\
x^{2} & =144 \\
x & =\sqrt{144}=12 \mathrm{in}
\end{aligned}
$$

b) $P=5+13+12=30 \mathrm{in}$.
c) $\quad A=\frac{1}{2} b h=\frac{1}{2}(5)(12)=30 \mathrm{in.}^{2}$
12. $B=9(14)+\pi(4.5)^{2}=126+20.25 \pi=189.6172512$
$V=B h=189.6172512(6)=1137.703507 \mathrm{ft}^{3}$
$1137.703507 \mathrm{ft}^{3}=\frac{1137.703507}{27}$
$=42.13716694 \approx 42.14 \mathrm{yd}^{3}$
13. $B=l w=4(7)=28 \mathrm{ft}^{2}$
$V=\frac{1}{3} B h=\frac{1}{3}(28)(12)=112 \mathrm{ft}^{3}$
15.

17.

19. A Möbius strip is a surface with one side and one edge.
21. Euclidean: Given a line and a point not on the line, one and only one line can be drawn parallel to the given line through the given point.
Elliptical: Given a line and a point not on the line, no line can be drawn through the given point parallel to the given line.
Hyperbolic: Given a line and a point not on the line, two or more lines can be drawn through the given point parallel to the given line.

Group Projects

1. a) $B=\pi r^{2}=\pi\left(\frac{12}{2}\right)^{2}=36 \pi=113.0973355$ $V=B h=113.0973355(4)=452.3893421 \approx 452 \mathrm{ft}^{3}$
b) $452.3893421(7.5)=3392.920066 \approx 3393 \mathrm{gal}$
c) $452.3893421(52.4)=23,705.20153 \approx 23,705 \mathrm{lb}$
d) Weight of Jacuzzi and water: $475+23,705.20153=24,180.20153 \mathrm{lb}$

Yes
e) Weight of Jacuzzi, water, and four people: $24,180.20153+4(115)=24,640.20153 \mathrm{lb}$

Yes
2. a) 12 ft
b) 4 in. $\times 3 \mathrm{ft} 6$ in. $\times 12 \mathrm{ft} 6 \mathrm{in}$.
c) $V=\frac{4}{12} \mathrm{ft} \times 3.5 \mathrm{ft} \times 12.5 \mathrm{ft}=14.58 \overline{3} \mathrm{ft}^{3}$

$$
14.58 \overline{3} \mathrm{ft}^{3}=\frac{14.58 \overline{3}}{27}=0.5401234568 \mathrm{yd}^{3}
$$

d) $0.5401234568(45)=24.30 \overline{5} \approx \$ 24.31$
e) 1 sheet
f) $\$ 18.95$
g) Five $8 \mathrm{ft} \quad 2 \times 4$'s
h) $5(\$ 2.14)=\$ 10.70$
i) $B=\frac{1}{2} b h=\frac{1}{2}(2)(12)=12 \mathrm{ft}^{2}$

$$
V=B h=12(3)=36 \mathrm{ft}^{3}
$$

$$
36 \mathrm{ft}^{3}=\frac{36}{27}=1 . \overline{3} \mathrm{yd}^{3} \approx 1.33 \mathrm{yd}^{3}
$$

j) $1 . \overline{3}(\$ 45)=\$ 60$
k) $\$ 24.31+\$ 18.95+\$ 10.70+\$ 60=\$ 113.96$

1) $2^{2}+12^{2}=x^{2}$
$4+144=x^{2}$
$x^{2}=148$
$x=\sqrt{148}=12.16552506 \approx 12.17 \mathrm{ft}$
m) 8 boards
n) $8(\$ 6.47)=\$ 51.76$
o) $10(\$ 2.44)=\$ 24.40$
p) $\$ 24.31+\$ 51.76+\$ 24.40=\$ 100.47$
q) The materials are less expensive for the wooden ramp.

CHAPTER TEN

MATHEMATICAL SYSTEMS

Exercise Set 10.1

1. A binary operation is an operation that is performed on two elements, and the result is a single element.
2. A set of elements and at least one binary operation.
3. Each of these operations can be performed on only two elements at a time and the result is always a single
element.
a) $2+3=5$
b) $5-3=2$
c) $2 \times 3=6$
d) $6 \div 3=2$
4. Closure, identity, each element must have a unique inverse, associative property.
5. Closure, identity, each element must have a unique inverse, associative property, commutative property.
6. Abelian group
7. If a binary operation is performed on any two elements of a set and the result is an element of the set, then that set is closed under the given binary operation. For all integers a and $b, a+b$ is an integer. Therefore, the set of integers is closed under the operation of addition.
8. An identity element is an element in a set such that when a binary operation is performed on it and any given element in the set, the result is the given element. The additive identity element is 0 , and the multiplicative identity element is $1 . \quad$ Examples: $5+0=5,5 \times 1=5$
9. When a binary operation is performed on two elements in a set and the result is the identity element for the binary operation, then each element is said to be the inverse of the other. The additive inverse of 2 is (-2) since $2+(-2)=0$, and the multiplicative inverse of 2 is $(1 / 2)$ since $2 \times 1 / 2=1$.
10. A specific example illustrating that a specific property is not true is called a counterexample.
11. No. Every commutative group is also a group.
12. Yes. For a group, the Commutative property need not apply.
13. d The Commutative property need not apply.
14. Squaring, finding square roots, finding the reciprocal, finding the absolute value
15. The associative property of addition states that $(a+b)+c=a+(b+c)$, for any elements $a, b, a n d$. Example: $(3+4)+5=3+(4+5)$
16. The associative property of multiplication states that $(a \times b) \times c=a \times(b \times c)$, for any real numbers a, b, and c. Example: $(3 \times 4) \times 5=3 \times(4 \times 5)$
17. The commutative property of multiplication stated that $a \times b=b \times a$, for any real numbers a, b, and c. Example: $3 \times 4=4 \times 3$
18. The commutative property of addition stated that $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$, for any elements a, b, and c .

Example: $3+4=4+3$
19. $8 \div 4=2$, but $4 \div 8=1 / 2$
20. $7-3=4$, BUT $3-7=-4$
21. $(6-3)-2=3-2=1$, but $6-(3-2)=6-1=5$
22. $(16 \div 4) \div 2=4 \div 2$, $=2$ but $16 \div(4 \div 2)=16 \div 2=8$
23. No. No inverse element
24. No. No inverse element
25. Yes. Satisfies 5 properties needed
26. Yes. Satisfies 4 properties needed
27. No. Not closed
28. No. Not closed
29. No. No identity or inverse elements
31. No. Not closed
33. Yes. Satisfies 4 properties needed
35. No. Not closed ie.: $1 / 0$ is undefined
37. No. Does not satisfy Associative property
39. No; the system is not closed, $\pi+(-\pi)=0$ which is not an irrational number.
41. Yes. Closure: The sum of any two real numbers is a real number. The identity element is zero. Example: $5+0=0+5=5$
Each element has a unique inverse.
Example: $6+(-6)=0$
The associative property holds:
Example: $(2+3)+4=2+(3+4)$
43. Answers will vary.
$\begin{array}{lr}\text { 45. } 9 / 19 / 29 / 39 / 49 / 59 / 69 / 79 / 89 & 9 \\ \text { 90/91/92/93/94/95/96/97/98/99 } & 11\}\end{array} 20$
30. No. Not all elements have inverses
32. No. Not all elements have inverses
34. No. Not all elements have inverses
36. No. Does not satisfy Associative property
38. No. Not closed
40. No; $\pi \quad(1 / \pi)=1$ which is not an irrational number.
42. No. Closure: The product of any two real numbers is a real number. The identity element is one. Example: $5 \bullet 0=0 \bullet 5=5$
Not every element has an inverse.
Example: $2 \bullet$? = 1
The associative property holds:
Example: $(2 \bullet 3) \bullet 4=2 \bullet(3 \bullet 4)$
44. 999

Exercise Set 10.2

1. The clock addition table is formed by adding all pairs of integers between 1 and 12 using the 12 hour clock to determine the result. Example: If the clock is at 7 and we add 8 , then the clock will read 3.
Thus, $7+8=3$ in clock arithmetic.
2. $12+12=12$. Start at 12 move clockwise 12 hours, the result is 12 .
3. a) First add $(6+9)$ on the clock, then add that result to 5 on the clock to obtain the final answer.
b) $(4+10)+3=2 \quad(2)+3=5$
4. a) Start at the first number on the face of the clock, then count counterclockwise the number being subtracted. The number you end at is the difference.
b) $4-7=9$
5. a) $5-9 \quad 5+12=17 \quad 17-9$
b) $17-9=8$
6. The system is commutative if the elements in the table are symmetric about the main diagonal.
7. If a binary operation is performed on any two elements of a set and the result is an element of the set, then that set is closed under the given binary operation. For all integers a and $b, a+b$ is an integer. Therefore, the set of integers is closed under the operation of addition.
8. Yes. 12
9. Yes. One and 11 are inverses, 2 and 10 are inverses, 3 and 9 are inverses, 4 and 8 are inverses, 5 and 7 are inverses, 6 is its own inverse, and 12 is its own inverse.
10. $(2+3)+8=2+(3+8)$
11. Yes. $6+9=3$ and $9+6=3$
$5+8=2+11$
$1=1$
12. Yes, the five properties are met.
1) The system is closed. All results are from the set $\{1,2,3,4,5,6,7,8,9,10,11,12\}$
2) The identity element is 12 .
3) Each element has an inverse.
4) The associative property holds true.
5) The system is commutative.
13. a) Identity element $=5$
b) Add inverse of 2 , which is $3.2+3=5$
14. a) Identity element $=8$
b) Add inverse of 3 , which is $5.3+5=8$
15. Yes. Commutative, symmetrical around main diagonal
16. Identity element $=\mathrm{C}$, Row 3 is identical to top row and column 3 is identical to left column
17. The inverse of A is B, because A operate $B=C$ and B operate $\mathrm{A}=\mathrm{C}$.
18. No. Not commutative, Non-symmetrical around main diagonal
19. There is no identity. While the top row $=3^{\text {rd }}$ row, the left column \neq any other column.
20. The inverse of A is A , because A operate $\mathrm{A}=\mathrm{A}$.
21. $4+7=11$
22. $8+7=3$
23. $9+8=5$
24. $10+4=2$
25. $4+12=4$
26. $12+12=12$
27. $3+(8+9)=3+5=8$
28. $(8+7)+6=3+6=9$
29. $(6+4)+8=10+8=6$
30. $(6+10)+12=4+12=4$
31. $(7+8)+(9+6)=3+3=6$
32. $(7+11)+(9+5)=6+2=8$
33. $7-4=3$
34. $11-8=3$
35. $4-12=4$
36. $3-9=6$
37. $5-10=7$
38. $3-10=5$
39. $1-12=1$
40. $6-10=8$
41. $5-5=12$
42. $8-8=12$
43. $12-12=12$
44. $5-8=9$
45.

+	1	2	3	4	5	6
1	2	3	4	5	6	1
2	3	4	5	6	1	2
3	4	5	6	1	2	3
4	5	6	1	2	3	4
5	6	1	2	3	4	5
6	1	2	3	4	5	6

45.

+	1	2	3	4	5	6	7
1	2	3	4	5	6	7	1
2	3	4	5	6	7	1	2
3	4	5	6	7	1	2	3
4	5	6	7	1	2	3	4
5	6	7	1	2	3	4	5
6	7	1	2	3	4	5	6
7	1	2	3	4	5	6	7

46. $4+5=3$
47. $1+6=1$
48. $4-5=5$
49. $4-6=4$
50. $5+4=2$
51. $7+6=6$
52. $2-4=5$
53. $6+4=4$
54. $2-6=2$
55. $2+(1-3)=2+4=6$
56. $6+5=4$
57. $2-3=6$
58. $(4-5)-6=6-6=7$
59. $3-(2-6)=3-3=7$

65．Yes．Satisfies 5 required properties

67．a）$\{0,1,2,3\}$
b）airplane
c）Yes．All solutions are members of the original set．
d）Identity element is 0 ．
e）Yes； $0=0,13=0$ ， $2=0,3+1=0$
f）$(1+2)+3=3+3=2$ and $1+3$ ） 12
g）Yes； $32=1=2$ 2 3
h）Yes，system satisfies five properties needed．

69．a）$\{\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}\}$
b）\longleftrightarrow
c）Yes．All solutions are members of the original set．
d）Yes，the identity element is t ．
e）Yes； $\mathrm{r} \longleftrightarrow \mathrm{r}=\mathrm{t}, \mathrm{s} \longleftrightarrow \mathrm{u}=\mathrm{t}$ ，
$\mathrm{t} \longleftrightarrow \mathrm{t}=\mathrm{t}, \mathrm{u} \longleftrightarrow \mathrm{S}=\mathrm{t}$
f）$(\mathrm{r} \longleftrightarrow \mathrm{r}) \longleftrightarrow \mathrm{u}=\mathrm{u} \longleftrightarrow \mathrm{u}=\mathrm{r}$ and $\mathrm{r} \longrightarrow(\mathrm{s} \longleftrightarrow \mathrm{u})=\mathrm{r} \longleftrightarrow \mathrm{r}=\mathrm{r}$
g）Yes； $\mathrm{s} \longleftrightarrow \mathrm{r}=\mathrm{u}$ and $\mathrm{r} \longleftrightarrow \mathrm{s}=\mathrm{u}$
h）Yes，system satisfies five properties needed．

71．a）$\{\mathrm{f}, \mathrm{r}, \mathrm{o}, \mathrm{m}\} \quad$ b） \mathfrak{A}
c）The system is closed．All elements in the table are elements of the set．

f）Identity element is f ．
g）Inverse of r is m since $m \hat{d}=f$ ．
h）Inverse of m is r since $r \mathfrak{d} m=f$ ．

66．No，not necessarily．It may not have an inverse， identity element，or satisfy the Commutative or Associative properties．

68．a）$\{*, 5, \mathrm{~L}\} \quad$ b ）
b）
c）Yes．All solutions are members of the original set．
d）Identity element is L．
e） $\mathrm{Yes} ; * 5=\mathrm{L}, 5 *=\mathrm{L}, \mathrm{L} \mathrm{H}_{4}=\mathrm{L}$
f）$(*$ 你 $5=\mathrm{L}$ 对 $5=5$
and $*$ 路为 5$)=* *=5$
g）Yes；L $=*$ and $*$ 路 $\mathrm{L}=*$
h）Yes，system satisfies five properties needed．

70．a）$\{3,5,8,4\}$
b） 8
c）Yes．All solutions are members of the original set．
d）Identity element is 4 ．
 $4 \mathrm{C}^{\circ} 4=4$

g）Yes． 8 री $5=3=5$ रे 8
h）Yes，system satisfies five properties needed．

72．a）No，there is no identity element．
b）$(1 w 3) w 4 \neq 1 w(3 w 4)$ $4 w 4 \neq 1 w 3$
73．a）Is closed；all solutions are members of the original set．b）Identity $=\square$
c）Inverse：of \square is \square ；of M is M ；of θ is θ
d）$(M \otimes \theta) \otimes M=\theta \otimes M=M$
$M \otimes(\otimes \otimes M)=M \otimes M=\square$
Not associative since $M \square$
e）$\delta \otimes M=M \quad M \otimes \otimes=\varnothing$
Not commutative since $M \neq \varnothing$
74. Not closed: $\mathrm{y}^{\wedge} \mathrm{x}=\mathrm{a}$ and a is not a member of the set $\{\mathrm{w}, \mathrm{x}, \mathrm{y}\}$
No identity element, and therefore no inverses.

$$
\begin{aligned}
& \left(x^{\wedge} w\right)^{\wedge} x=y^{\wedge} x=a \\
& x^{\wedge}\left(w^{\wedge} x\right)=x^{\wedge} y=w
\end{aligned}
$$

Not associative since a w
$y^{\wedge} \mathrm{x}=\mathrm{a}$ and $\mathrm{x}^{\wedge} \mathrm{y}=\mathrm{w}$
Not commutative since $a \neq w$
76. (a а) $\Delta=\Delta$? $\Delta=$ a

а $(\mathrm{a}$? $)=\mathrm{a}$? $0=\prec$
Not associative since a \prec

$$
\Delta \text { Q } \quad \prec \quad \prec \because \Delta=\mathrm{a}
$$

Not commutative since $\prec \neq \mathrm{a}$
78. No inverses for $0,2,3$, and 4
79. a)

+	E	O
E	E	O
O	O	E

b) The system is closed, the identity element is E , each element is its own inverse, and the system is commutative since the table is symmetric about the main diagonal. Since the system has fewer than 6 elements satisfying the above properties, it is a commutative group.
83. a) All elements in the table are in the set $\{1,2,3,4,5,6\}$ so the system is closed. The identity is 6.5 and 1 are inverses of each other, and $2,3,4$, and 6 are their own inverses. Thus, if the associative property is assumed, the system is a group.
b) $4 \infty 5=2$, but $5 \infty 4=3$
75. No inverses for \odot and *
$(* \otimes *) \otimes \mathrm{T}=\odot \otimes \mathrm{T}=*$
$* \otimes(* \otimes \mathrm{~T})=* \otimes \mathrm{~T}=\odot$
Not associative since $* \neq \odot$
77. No identity element and therefore no inverses.

$$
\begin{gathered}
(d \Leftrightarrow e) \Leftrightarrow d=d \Leftrightarrow d=e \\
d \Leftrightarrow(e \Leftrightarrow d)=d \Leftrightarrow e=d
\end{gathered}
$$

Not associative since e d
$\mathrm{e} \Leftrightarrow \mathrm{d}=\mathrm{e} \quad \mathrm{d} \Leftrightarrow \mathrm{e}=\mathrm{d}$
Not commutative since $e \neq d$
80. a)

	E	O
E	E	E
O	E	O

b) The identity is 0 , but since E has no inverse, the system is not a group.
81. Student activity - Answers will vary.
82. Student activity - Answers will vary.
83. Examples of associativity

$$
(2 \infty 3) \infty 4=5 \infty 4=3 \text { and }
$$

$$
2 \infty(3 \infty 4)=2 \infty 5=3
$$

$$
(1 \infty 3) \infty 5=4 \infty 5=2 \text { and }
$$

$$
1 \infty(3 \infty 5)=1 \infty 4=2
$$

84. a) Is closed Identity $=\mathrm{F} \vartheta$
${ }_{(\mathrm{c}} \ominus_{\mathrm{D}} \ominus_{\mathrm{A}=\mathrm{E}} \ominus_{\mathrm{A}}=\mathrm{F}$
$\mathrm{c} \ominus_{(\mathrm{D}} \ominus_{\mathrm{A}}=\mathrm{c} \ominus_{\mathrm{c}=\mathrm{F}}$
Is Associative since $F=F$

$$
\begin{aligned}
& \text { Inverses of: } \quad A \bigodot_{E}=F, \quad B \bigodot_{B}=F \text {, } \\
& \mathrm{C} \ominus_{\mathrm{C}}=\mathrm{F}, \mathrm{D} \ominus_{\mathrm{D}}=\mathrm{F} \text {, } \\
& \mathrm{E} \vartheta_{\mathrm{A}}=\mathrm{F}, \quad \mathrm{~F} \ominus_{\mathrm{F}}=\mathrm{F} \\
& { }_{B} \ominus_{\mathrm{C}}=\mathrm{E} \quad \mathrm{C} \ominus_{\mathrm{B}}=\mathrm{A}
\end{aligned}
$$

Not Commutative since $\mathrm{E} \neq \mathrm{A}$
86. $4^{3}=64$ ways
87.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

89.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	4
2	2	3	4	0
3	3	4	0	1

85. a)

$*$	R	S	T	U	V	I
R	V	T	U	S	I	R
S	U	I	V	R	T	S
T	S	R	I	V	U	T
U	T	V	R	I	S	U
V	I	U	S	T	R	V
I	R	S	T	U	V	I

$\mathrm{R} *(\mathrm{~T} * \mathrm{~V})=\mathrm{R} * \mathrm{U}=\mathrm{S}$
$(\mathrm{R} * \mathrm{~T}) * \mathrm{~V}=\mathrm{U} * \mathrm{~V}=\mathrm{S}$
Is Associative since $\mathrm{S}=\mathrm{S}$
b) Is closed
c) $\mathrm{R} * \mathrm{~S}=\mathrm{T} \quad \mathrm{S} * \mathrm{R}=\mathrm{U}$

Not Commutative since $\mathrm{T} \neq \mathrm{U}$
R. $(\mathrm{S}, \mathrm{V})=\mathrm{R} . \mathrm{T}=\mathrm{U}$
88.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

89. 90) Add \# in left column to \# in top row
2) Divide by 4
3) Replace remainder in table

Exercise Set 10.3

1. A modulo m system consists of m elements, 0 through $m-1$, and a binary operation.
2. a) a is congruent to b modulo m, written $a \cong b(\bmod m)$, means a and b have the same remainder when divided by m.
b) 13 and 3 have the same remainder, 3 , when divided by 5 .
3. In a modulo 5 system there will be 5 modulo classes. When a number is divided by 5 the remainder will be a number from $0-4$.

0	1	2	3	4
0	1	2	3	4
5	6	7	8	9
10	11	12	13	14

4. In any modulo system, modulo classes are developed by placing all numbers with the same remainder in the same modulo class.
5. In a modulo 12 system there will be 12 modulo classes. When a number is divided by 12 the remainder will be a number $0-11$.
6. In a modulo n system there will be n modulo classes. When a number is divided by n the remainder will be a number from $0-(\mathrm{n}-1)$.
7. $27 \cong ?(\bmod 5) \mathrm{c}$ or $\mathrm{d} 27,12$, and 107 have the same remainder, 2 , when divided by 5 .
8. Thursday $=$ Day $4 \quad 30 \cong 2(\bmod 7) \quad$ Saturday
9. $4+366=370$ and $370 \div 7=52$, remainder 6 Day $6=$ Saturday
10. 3 years, 34 days $=(3)(365+34)$ days $=1129$ days $4+1129=1133$ and $1133 \div 7=161$, remainder 6 Day $6=$ Saturday
11. 728 days $/ 7=104$ remainder 0 Thursday
12. Answers will vary. 18. Answers will vary.
13. Answers will vary.
14. Answers will vary.
15. $8+6=14 \quad 14 \cong 4(\bmod 5)$
16. $1+9+12=22 \quad 22 \cong 2(\bmod 5)$
17. $5-12=3 \quad 3 \cong 3(\bmod 5)$
18. $8 \bullet 9=72 \quad 72=2(\bmod 5)$
19. $4-8=1 \quad 1 \cong 1(\bmod 5)$
20. $(15 \cdot 4)-8=60-8=52 \quad 52 \cong 2(\bmod 5)$
21. $15(\bmod 5) \cong 0$
22. $23(\bmod 7) \cong 2$
23. $60(\bmod 9) \cong 6$
24. $-5(\bmod 7) \cong 2$
25. $135(\bmod 10) \cong 5$
26. $2+2 \cong 4(\bmod 5)$
27. $5 \bullet 5 \cong 7(\bmod 9)$
28. $75(\bmod 8) \cong 3$
29. $-7(\bmod 4) \cong 1$
30. $-12(\bmod 4) \cong 0$
31. $4+5 \cong 3(\bmod 6)$
32. $3 \cdot\} \cong 5(\bmod 6)$

No solution
8. $167 \cong ?(\bmod 7)$ b or d 106,71 , and 22 have the same remainder, 1 , when divided by 7 .
10. $4+161=165$ and $165 \div 7=23$, remainder 4 Day $4=$ Thursday
12. 5 years $=(5 \cdot 365)$ days $=1825$ days $4+1825=1829$ and $1829 \div 7=261$, remainder 2 Day 2 = Tuesday
14. $4+463=467$ and $467 \div 7=66$, remainder 5 Day $5=$ Friday
16. 3 yrs. 27 days $=1122$ days $1122 / 7=160$ remainder $2 \quad$ Saturday
19. Answers will vary. 20. Answers will vary.
23. Answers will vary. 24. Answers will vary.
26. $5+10=15 \quad 15 \cong 0(\bmod 5)$
28. $9-3=6 \quad 6 \cong 1(\bmod 5)$
30. $7 \bullet 4=28 \quad 28 \cong 3(\bmod 5)$
32. $10-15=0 \quad 0 \cong 0(\bmod 5)$
34. $3-7=1 \quad 1 \cong 1(\bmod 5)$
36. $(4-9) 7=(-5) 7=5(7)=35 \quad 35 \cong 0(\bmod 5)$
39. $84(\bmod 12) \cong 0$ 40. $43(\bmod 6) \cong 1$
43. $30(\bmod 7) \cong 2$
44. $53(\bmod 4) \cong 1$
47. $-13(\bmod 11) \cong 9$
48. $-11(\bmod 13) \cong 2$
51. $3+4=7 \cong 1(\bmod 6)$
52. $6+5 \cong 3(\bmod 8)$
55. $4-5 \cong 5(\bmod 6)$
56. $4 \cdot 5 \cong 6(\bmod 7)$
59. $3 \bullet\} \cong 1(\bmod 6)$

No solution
60. $3 \bullet\} \cong 3(\bmod 12)$
$\{1,5,9\}$
61. $4 \bullet\} \cong 4(\bmod 10)$ $\{1,6\}$
65. $3 \bullet 0 \cong 05(\bmod 10)$
66. $4 \bullet\} \cong 5(\bmod 8)$

No solution
68. a) flying 7 R 4
b) flying 11 R 2
c) resting 30 R 0
d) flying $7-6=1$
e) flying
f) $7-20=3$
70. a) $20 / 10=2 \mathrm{R} 0$ twice a day
b) $49 / 10=4 \mathrm{R} 9$ twice a day
c) $103 / 10=10$ R 3 twice a day
d) $78 / 10=7 \mathrm{R} 8$ yes, rest
72. a) $6 \cong 1(\bmod 5)$

If this is week 3 , then $3+1 \cong 4(\bmod 5)$ indicates the 3 P.M. - 11 P.M. shift.
b) $7 \cong 2(\bmod 5)$

If this is week 4 , then $4+2 \cong 1(\bmod 5)$ indicates the 7 A.M. - 3 P.M. shift.
c) $11 \cong 1(\bmod 5)$

If this is week 1 , then $1+1 \cong 2(\bmod 5)$ indicates the 7 A.M. - 3 P.M. shift.
73. The waiter's schedule in a mod 14 system is given in the following table:
Day: 011233456718910111213 shift: d d d d d e e e d d d d e e
Note: This is his second day shift which is day 1 in the mod 14 system.
a) $20 \cong 14=1$, remainder 6 . Six days from day 1 is day 7 which is the evening shift.
b) $52 \cong 14=3$, remainder 10 . Ten days from day 1 is day 11 , which is the day shift.
c) $365 \cong 14=26$, remainder 1 . One day from day 1 is day 2 , which is the day shift.
63. $4-7 \cong 9(\bmod 12)$
64. $6-7 \cong 8(\bmod 9)$
67. a) 2016, 2020, 2024, 20,28, 2032
67. c) $2552,2556,2560$, 2564, 2568, 2572
b) 3004
69. a) $28 / 8=3 \mathrm{R} 4$ resting $2^{\text {nd }}$ day
b) $60 / 8=7 \mathrm{R} 4$ resting $2^{\text {nd }}$ day
c) $127 / 8=15 \mathrm{R} 7 \mathrm{am} / \mathrm{pm}$ practice
d) no am practice
71. The manager's schedule is repeated every seven weeks. If this is week two of her schedule, then this is her second weekend that she works, or week 1 in a mod 7 system. Her schedule in mod 7 on any given weekend is shown in the following table:
Weekend $(\bmod 7)$:
Work/off $0 \begin{array}{lllllll} & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
w w w w w w o
a) If this is weekend 1 , then in 5 more weeks $(1+5=6)$ she will have the weekend off.
b) $25 \cong 7=3$, remainder 4 . Thus $25 \cong(\bmod 7)$ and 4 weeks from weekend 1 will be weekend 5 . She will not have off.
c) $50 \cong 7=7$, remainder 1 . One week from weekend 1 will be weekend 2 . It will be 4 more weeks before she has off. Thus, in 54 weeks she will have the weekend off.
74. The truck driver's schedule is repeated every 17 days as indicated by the following table:

Days	Activity
0-2	N.Y. - Chicago
3	Rest in Chicago
4-6	Chicago - L.A.
7-8	Rest in L.A.
9-13	L.A. - N.Y.
14-16	

a) $30 \cong 13(\bmod 17)$ indicates that he will be driving from L.A. to N.Y.
b) $70 \cong 2(\bmod 17)$ indicates that he will be driving from N.Y. to Chicago.
c) 2 years $=730$ days $\cong 16(\bmod 17)$
75. a)

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

b) Yes. All the numbers in the table are from the set $\{0,1,2,3\}$.
c) The identity element is 0 .
d) Yes. element + inverse = identity

$$
0+0=0 \quad 1+3=0 \quad 2+2=0 \quad 3+1=0
$$

e) $(1+3)+20+2=2 \quad 1+(3+2)=1+1=2$

Associative since $2=2$.
f) Yes, the table is symmetric about the main diagonal. $1+3=0=3+1$
77. a)

\square	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

b) Yes. All the elements in the table are from the set $\{0,1,2,3\}$.
c) Yes. The identity element is 1 .
d) elem. inverse = identity
$0 \quad$ none $=1 \quad 1 \quad 1=1 \quad 2 \quad$ none $=1$ $33=1$ Elements 0 and 2 do not have inverses.
e) $(1 \quad 3) \quad 0=3 \quad 0=0$
$1 \quad(3 \quad 0)=1 \quad 0=0$ Yes, Associative
f) Yes. $2 \quad 3=2=3 \quad 2$
g) No. Not all elements have inverses.
76. a)

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

b) Yes. All the numbers in the table are from the set $\{0,1,2,3,4,5,6,7\}$.
c) The identity element is 0 .
d) elem. + inverse = identity
$0+0=0 \quad 1+7=0 \quad 2+6=0 \quad 3+5=0$
$4+4=0 \quad 5+3=0 \quad 6+2=0 \quad 7+1=0$
e) $(1+2)+5=3+5=0$
$1+(2+5)=1+7=0 \quad$ Yes, Associative
f) Yes. $2+4=6=4+2$
g) Yes. All five properties are satisfied.
h) Same answer as problem 63 part h.
78. a)

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

b) Yes. All the elements in the table are from the set $\{0,1,2,3,4,5,6\}$.
c) Yes. The identity element is 1.
d) No. elem. \rightarrow inverse $0 \rightarrow$ none $1 \rightarrow 1$ $2 \rightarrow 4 \quad 3 \rightarrow 5 \quad 4 \rightarrow 2 \quad 5 \rightarrow 3 \quad 6 \rightarrow 6$
The element 0 does not have an inverse.
e) $\left(\begin{array}{ll}1 & 2\end{array}\right) \quad 4=2 \quad 4=1$
$1 \quad(2 \quad 4)=1 \quad 1=1$ Yes, Associative
f) Yes. $2 \quad 3=6=3 \quad 2$
g) No. 0 does not have an inverse.

For the operation of division in modular systems, we define $\mathrm{n} \div \mathrm{d}=\mathrm{n} \bullet \mathrm{i}$, where i is the multiplicative inverse of d .
79. $5 \div 7 \cong$? $(\bmod 9)$

Since $7 \bullet 4=28 \cong 1(\bmod 9), 4$ is the inverse of 7 .
Thus, $5 \div 7=0$ R $2 \quad 5 \quad 7 \cong 2(\bmod 9) \quad ?=2$
80. $? \div 5 \cong 5(\bmod 9)$

Since $5 \quad 5 \cong 5(\bmod 9), 1 \cong 5(\bmod 5) \quad ?=7$
81. $? \div ? \cong 1(\bmod 4) \quad 0 \div 0$ is undefined.
$1 \div 1 \cong 1) \bmod 4) \quad 2 \div 2 \cong 1(\bmod 4)$
$3 \div 3 \cong 1(\bmod 4) \quad ?=\{1,2,3\}$
83. $5 \mathrm{k} \cong \mathrm{x}(\bmod 5) \quad 5(1) \cong 0(\bmod 5)$
$5(2)=10 \cong 0(\bmod 5) \quad x=0$
85. $4 \mathrm{k}-2 \cong \mathrm{x}(\bmod 4) 4(0)-2=-2 \cong 2(\bmod 4)$
$4(1)-2=2 \cong 2(\bmod 4) 4(2)-2=6 \cong 2(\bmod 4)$ $\mathrm{x}=2$
87. (365 days)(24 hrs./day)(60 min./hr.) = 525,600 hrs.
$(525,600) /(4)=131,400$ rolls $131400 \cong 0(\bmod 4)$
82. $1 \div 2 \cong ?(\bmod 5)$
$2(1 / 2) \cong 3 ? \quad 1 \cong 6(\bmod 5) \quad 1=1$
? $=3$
84. $5 \mathrm{k}+4 \cong \mathrm{x}(\bmod 5) \quad 5(1)+4=9 \cong 4(\bmod 5)$
$5(2)+4=14 \cong 4(\bmod 5) \quad x=4$
86. Check the numbers divisible by 5 until you find one that is also congruent to 2 in modulo 6 . $20 \cong 2(\bmod 6)$ and 20 is also divisible by 5 .
88. 1 yr. 21 days $=365+21=386$ days
$386 / 5=77$ R $1 \quad$ Halfway up the mountain
89. If 10 is subtracted from each number on the wheel,

23	11	3	18	10	19	2	10	16	4	24	becomes
13	1	20	8	0	9	19	0	6	21	14	which is equivalent to
\mathbf{M}	\mathbf{A}	\mathbf{T}	\mathbf{H}		\mathbf{I}	\mathbf{S}		\mathbf{F}	\mathbf{U}	\mathbf{N}	

Review Exercises

1. A set of elements and at least one binary operation.
2. A binary operation is an operation that can be performed on two and only two elements of a set. The result is a single element.
3. Yes. The sum of any two integers is always an integer.
4. No. Example: $2-3=-1$, but -1 is not a natural number.
5. $9+10=19 \cong 7(\bmod 12)$
6. $5+12=17 \cong 5(\bmod 12)$
7. $8-10=-2 \cong 10(\bmod 12)$
8. $4+7+9=20 \cong 8(\bmod 12)$
9. $7-4+6=9 \cong 9(\bmod 12)$
10. $2-8-7=-13 \cong 11(\bmod 12)$
11. a) The system is closed. If the binary operation is then for any elements a and b in the set, $a . b$ is a member of the set.
b) There exists an identity element in the set. For any element a in the set, if a $\square \mathrm{i}=\mathrm{i} \square \mathrm{a}=\mathrm{a}$, then i is called the identity element.
c) Every element in the set has a unique inverse. For any element a in the set, there exists an element b such that $\square \mathrm{b}=\mathrm{b} \square \mathrm{a}=\mathrm{i}$. Then b is the inverse of a , and a is the inverse of b .
d) The set is associative under the operation For elements a, b, and c in the set, (a $\square \mathrm{b}$) $\square \mathrm{c}=\mathrm{a} \square$ (b $\square \mathrm{c}$).
12. An Abelian group is a group in which the operation has the commutative property.
13. Yes. Closure: The sum of any two integers is an integer. The identity element is zero.

Yes, Associative Example: $(2+3)+4=2+(3+4)$ Each element has a unique inverse.
14. The set of integers with the operation of multiplication does not form a group since not all elements have an inverse. $4 \bullet ?=1$
15. Yes. Closure: The sum of any two rational \#s is a rational number.
The identity element is zero. Ex.: $5+0=0+5=5$
16. The set of rational numbers with the operation of multiplication does not form a group since zero does not have an inverse. $0 \bullet \underline{?}=1$
17. There is no identity element. Therefore the system does not form a group.
18. Not Associative

Example: $(!\square \mathrm{p}) \square$$?=\mathrm{p}$$?=$!(p?) $=$!$!=\triangle \quad!\neq \triangle$
19. Not Associative

Example: $(\mathrm{p} ? \mathrm{p}) ? 4=\mathrm{L} ? 4=$ \#
$p ?(p ? 4)=p ? L=4$ \# $\neq 4$
20. a)
$)-\odot, ?, \Delta\}$
b) \lrcorner
c) Yes. All the elements in the table are from the set $\{$ - $, \bigcirc, ?, \Delta$ \}.
22. $31 \div 8=3$, remainder $7 \quad 31 \cong 7(\bmod 8)$
23. $31 \div 6=5$, remainder $1 \quad 31 \cong 1(\bmod 6)$
d) The identity element is)-- .
e) Yes. elem. - - inverse = identity

21. $21 \div 3=7$, remainder $0 \quad 21 \cong 0(\bmod 3)$
24. $59 \div 8=7$, remainder $3 \quad 59 \cong 3(\bmod 8)$
25. $82 \div 13=6$, remainder $4 \quad 82 \cong 4(\bmod 13)$
26. $54 \div 4=13$, remainder $254 \cong 2(\bmod 4)$
27. $52 \div 12=4$, remainder $4 \quad 52 \cong 4(\bmod 12)$
f) Yes, Associative

$$
\begin{aligned}
& \text { (一 }-\lrcorner ?)\lrcorner \Delta=?\lrcorner \Delta=\varnothing \\
&)-\lrcorner(?\lrcorner \Delta)=)-\lrcorner \odot=\ominus
\end{aligned}
$$

g) Yes. $\Delta\lrcorner$? $=\ominus=$? $\lrcorner \Delta$
h) Yes, all five properties are satisfied.
28. $54 \div 14=3$, remainder $1254 \cong 12(\bmod 14)$
30. $42 \div 11=3$, remainder $9 \quad 42 \cong 9(\bmod 11)$
31. $5+8=13 \cong 4(\bmod 9)$

Thus, replace ? with 4.
32. $?-3 \cong 0(\bmod 5)$
$0-3 \cong 2(\bmod 5) \quad 1-3 \cong 3(\bmod 5)$
$2-3 \cong 4(\bmod 5) \quad 3-3 \cong 0(\bmod 5)$
Replace ? with 3.

Yes, Associative Example: $(2+3)+4=2+(3+4)$ Each element has a unique inverse. Ex. $; 6+(-6)=0$5
34. $6-? \cong 5(\bmod 7)$
$6-0 \cong 6(\bmod 7) \quad 6-1 \cong 5(\bmod 7)$
$6-2 \cong 4(\bmod 7) \quad 6-3 \cong 3(\bmod 7)$
$6-4 \cong 2(\bmod 7) \quad 6-5 \cong 1(\bmod 7)$
Replace? with 1 .
36. $10 \bullet 7 \cong$? $(\bmod 12)$
$10 \bullet 7=70 ; 70 \quad 12 \cong 5$, remainder 10
Thus, $10 \bullet 7 \cong 10(\bmod 12)$.
Replace? with 10.
38. ? $\bullet 7 \cong 3(\bmod 10)$
$0 \bullet 7 \cong 0(\bmod 10) \quad 1 \bullet 7 \cong 7(\bmod 10)$
$2 \cdot 7=14 \cong 4(\bmod 10) 3 \cdot 7=21 \cong 1(\bmod 10)$
$4 \bullet 7=28 \cong 8(\bmod 10) 5 \bullet 7=35 \cong 5(\bmod 10)$
$6 \cdot 7=42 \cong 2(\bmod 10) \quad 7 \bullet 7=49 \cong 9(\bmod 10)$
$8 \bullet 7=56 \cong 6(\bmod 10) 9 \bullet 7=63 \cong 3(\bmod 10)$
$10 \cdot 7=70 \cong 0(\bmod 10)$
Replace? with 9 .
40.
$7 \bullet \quad 2(\bmod 9)$
$7 \bullet 0 \cong 0(\bmod 9)$
$7 \bullet 1 \cong 7(\bmod 9)$
$7 \bullet 2=14 \cong 5(\bmod 9)$
$7 \cdot 3=21 \cong 3(\bmod 9)$
$7 \bullet 4=28 \cong 1(\bmod 9) 7 \cdot 5=35 \cong 7(\bmod 9)$
$7 \bullet 6=42 \cong 6(\bmod 9) 7 \bullet 7=49 \cong 4(\bmod 9)$
$7 \bullet 8=56 \cong 2(\bmod 9)$
Replace? with 8 .
35. ? • $4 \cong 0(\bmod 8)$
$0 \bullet 4 \cong 0(\bmod 8) \quad 1 \bullet 4 \cong 4(\bmod 8)$
$2 \cdot 4=8 \cong 0(\bmod 8) \quad 3 \cdot 4=12 \cong 4(\bmod 8)$
$4 \cdot 4=16 \cong 0(\bmod 8) \quad 5 \bullet 4=20 \cong 4(\bmod 8)$
$6 \bullet 4=24 \cong 0(\bmod 8) \quad 7 \bullet 4=28 \cong 4(\bmod 8)$
Replace ? with $\{0,2,4,6\}$.
37. $3-5 \cong ?(\bmod 7)$
$3-5=(3+7)-5=5 \cong 5(\bmod 7)$
Replace? with 5.
39. $5 \bullet ? \cong 3(\bmod 8)$
$5 \bullet 0 \cong 0(\bmod 8) \quad 5 \bullet 1 \cong 5(\bmod 8)$
$5 \cdot 2=10 \cong 2(\bmod 8) 5 \bullet 3=15 \cong 7(\bmod 8)$
$5 \bullet 4=20 \cong 4(\bmod 8) 5 \bullet 5=25 \cong 1(\bmod 8)$
$5 \bullet 6=30 \cong 6(\bmod 8) 5 \bullet 7=35 \cong 3(\bmod 8)$
Replace? with 7 .
41. a)

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

41. b) Since all the numbers in the table are elements of 42. a) $\{0,1,2,3,4,5\}$, the system has the closure property.
c) The commutative property holds since the elements are symmetric about the main diagonal.
d) The identity element is 0 and the inverses of each element are $0-0,1-5,2-4,3-3$, $4-2,5-1$

\square	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

b) The identity element is 1 , but because 0 and 2 have no inverses, the system does not form a group.
e) If it is assumed the associative property holds as illustrated by the example: $(2+3)+5=4=$ $2+(3+5)$, then the system is a commutative group.
43. Day $(\bmod 10): \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

Work/off : w w w o o w w o o o
a) If today is the first day of her work pattern, day 0 , then $18 \cong 8(\bmod 10)$ indicates Toni will not be working in 18 days.
b) $38 \cong 8(\bmod 10)$ indicates that Toni will have the evening off in 38 days.

Chapter Test

1. A mathematical system consists of a set of elements and at least one binary operation.
2. Closure, identity element, inverses, associative property, and commutative property.
3. No, the numbers greater than 0 do not have inverses.
4. | +1 | 2 | 3 | 4 | 5 | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2 | 3 | 4 | 5 | 1 |
| 2 | 3 | 4 | 5 | 1 | 2 |
| 3 | 4 | 5 | 1 | 2 | 3 |
| 4 | 5 | 1 | 2 | 3 | 4 |
| 5 | 1 | 2 | 3 | 4 | 5 |
5. $9+3+2=14 \cong 4 \bmod 5$
6. Yes. It is closed since the only elements in the table are from the set $\{1,2,3,4,5\}$. The identity element is 5 . The inverses are $1-4,2-3,3-2,4-1$, and $5-5$. The system is associative. The system is commutative since the table is symmetric about the main diagonal. Thus, all five properties are satisfied.
7. $5-18=(15+5)-18=20-18=2 \cong 2 \bmod 5$
8. a) The binary operation is Δ.
b) Yes. All elements in the table are from the set $\{\mathrm{W}, \mathrm{S}, \mathrm{T}, \mathrm{R}\}$.
c) The identity element is T, since $T \Delta x=x=x \Delta T$, where x is any member of the set $\{W, S, T, R\}$.
d) The inverse of R is S , since $\mathrm{R} \Delta \mathrm{S}=\mathrm{T}$
e) $(\mathrm{T} \Delta \mathrm{R}) \Delta \mathrm{W}=\mathrm{R} \Delta \mathrm{W}=\mathrm{S}$
9. The system is not a group. It does not have the closure property since $c, c=d$, and d is not a member of $\{a, b, c\}$.
10. Since all the numbers in the table are elements of $\{1,2,3\}$, the system is closed. The commutative property holds since the elements are symmetric about the main diagonal. The identity element is 2 and the inverses are $1-3,2-2,3-1$. If it is assumed the associative property holds as illustrated by the example:
$(1 ? 2) ? 1=2=1 ?(2 ? 3)$, then the system is a commutative group.

340 CHAPTER 10 Mathematical Systems

11. Since all the numbers in the table are elements of $\{@, \$, \&, \%\}$, the system is closed. The commutative property holds since the elements are symmetric about the main diagonal. The identity element is $\$$ and the inverses are $@-\&, \$-\$, \&-@, \%-\%$. It is assumed the associative property holds as illustrated by the example: (@ $\mathrm{O} \$ \mathrm{O} \%=\&=@ \mathrm{O}(\$ \mathrm{O} \%)$, then the system is a commutative group.
12. $64 \div 9=7$, remainder $1 \quad 64 \cong 1(\bmod 9)$
13. $7+7=6 \bmod 8$
14. $3-5 \cong 7(\bmod 9)$
$3-5=(3+9)-5=12-5 \cong 7(\bmod 9)$
$12-5 \cong 7(\bmod 9)$
Replace? with 5.
15. $58 \div 11=5$, remainder $3 \cong(\bmod 11)$
16. $2-3=(5+2)-3=4 \cong 4 \bmod 5$
17. $3 \bullet ? \bullet \cong 2(\bmod 6)$
$3 \bullet 0 \cong 0(\bmod 6) \quad 3 \bullet 1 \cong 3(\bmod 6)$
$3 \cdot 2 \cong 0(\bmod 6) \quad 3 \bullet 3 \cong 3(\bmod 6)$
$3 \cdot 4 \cong 0(\bmod 6) 3 \bullet 5 \cong 3(\bmod 6)$
There is no solution for? The answer is $\}$.

> 17. $4 \bullet 2=8$ and $8 \div 6=1$, remainder 2
> $4 \bullet 2 \cong 2(\bmod 6)$
> Replace $?$ with 2.
19. $103 \div 7=14$, remainder 5
$103 \cong 5(\bmod 7)$
Replace ? with 5.
20.a)

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

b) The system is closed. The identity is 1 .

However, 0 does not have an inverse, so the system is not a group.

Group Projects

1. a)

\therefore	A	B	C	D
A	B	C	D	A
B	C	D	A	B
C	D	A	B	C
D	A	B	C	D

b) The system is closed. The identity is D.
c) $(A \approx B) \approx C=C \approx C=B$
$A *(B * C)=A * A=B$
Yes, Associative
d) $\mathrm{A} \div \mathrm{C}=\mathrm{D} \quad \mathrm{B} \div \mathrm{B}=\mathrm{D} \quad \mathrm{C} \because \mathrm{A}=\mathrm{D}$
$\mathrm{D} \% \mathrm{D}=\mathrm{D} \quad$ All elements have inverses.
e) $\mathrm{A} \div \mathrm{B}=\mathrm{C}=\mathrm{B} \div \mathrm{A}$

Yes, Commutative, symmetrical around the main diagonal
Therefore, the system is a group.
3. a)

$\bmod 3$			
\bullet	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

2. a) Yes, see Group Project exercise 3. a).
b) Product $=0$ when factors 0 $\bmod 4, \bmod 6, \bmod 8, \bmod 9$
c) Product $=0$ when at least 1 factor $=0$ $\bmod 3, \bmod 5, \bmod 7$
d) The systems in which the modulo is a composite number system have factors 0 .
$\bmod 4$

\bullet	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

3. a)

$\bmod 5$					
\bullet	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$\bmod 6$						
\bullet						
\bullet	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

3. a)
$\bmod 7$

\bullet	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 8$								
\bullet	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

3. b) $\bmod 3, \bmod 5, \bmod 7$
c) $\bmod 4, \bmod 6, \bmod 8, \bmod 9$
d) Modulo systems that have composite numbers have multiplicative inverses for all nonzero numbers.

CHAPTER ELEVEN

CONSUMER MATHEMATICS

Exercise Set 11.1

1. A percent is a ratio of some number to 100 .
2. (i) Divide the number by 100 . (ii) Remove the percent sign.
3. (i) Divide the number by the denominator.
(ii) Multiply the quotient by 100 (which has the effect of moving the decimal point two places to the right).
(iii) Add a percent sign.
4. Multiply the decimal number by 100 and add a percent sign.
5. Percent change $=\frac{(\text { Amount in latest period })-(\text { Amount in previous period })}{\text { Amount in previous period }} \times 100$
6. Percent markup on cost $=\frac{\text { Selling Price }- \text { Dealer's Cost }}{\text { Dealer's Cost }} \times 100$
7. $\frac{1}{2}=0.500=(0.500)(100) \%=50.0 \%$
8. $\frac{1}{4}=0.25=(0.25)(100) \%=25.0 \%$
9. $\frac{2}{5}=0.400=(0.400)(100) \%=40.0 \%$
10. $\frac{7}{8}=0.875=(0.875)(100) \%=87.5 \%$
11. $0.007654=(0.007654)(100) \%=0.8 \%$
12. $0.5688=(0.5688)(100) \%=56.9 \%$
13. $3.78=(3.78)(100) \%=378.0 \%$
14. $13.678=(13.678)(100) \%=1367.8 \%$
15. $4 \%=\frac{4}{100}=0.04$
16. $6.9 \%=\frac{6.9}{100}=0.069$
17. $1.34 \%=\frac{1.34}{100}=0.0134$
18. $0.0005 \%=\frac{0.0005}{100}=0.000005$
19. $\frac{1}{4} \%=0.25 \%=\frac{0.25}{100}=0.0025$
20.

$\frac{3}{8} \%=0.375 \%=\frac{0.375}{100}=0.00375$
21. $\frac{1}{5} \%=0.2 \%=\frac{0.2}{100}=0.002$
22. $135.9 \%=\frac{135.9}{100}=1.359$
23. $1 \%=\frac{1}{100}=0.01$
24. $0.50 \%=\frac{0.50}{100}=0.005$
26. $50+50+40+40=180$
$(180)(.06)=\$ 10.80$
28. $(693,905)(.36)=249,805.8$ miles
30. $(591 \mathrm{M})(.06)=\$ 35.46 \mathrm{M}$
32. $(591 \mathrm{M})(.59)=\$ 348.69 \mathrm{M}$
34. $(32.3 \mathrm{~B})(.058)=\$ 1.8734 \mathrm{~B}$
36. $(32.3 \mathrm{~B})(.46)=\$ 14.858 \mathrm{~B}$
38. $\frac{1,392 \mathrm{M}}{8,105 \mathrm{M}}=.1717$
$(.1717)(100)=17.2 \%$
40. $\frac{2,188 \mathrm{M}}{8,105 \mathrm{M}}=.2699 \quad(.2699)(100)=27.0 \%$
42. a) $\frac{288.4 \mathrm{M}}{248.7 \mathrm{M}}=1.1596 \quad 115.96-100.0 \approx 16 \%$
43. a) $\frac{9,457 \mathrm{M}}{8,059 \mathrm{M}}=1.1735 \quad 117.35-100.0=17.3 \%$
b) $\frac{13,577 \mathrm{M}}{9,457 \mathrm{M}}=1.4357 \quad 143.57-100.0=43.6 \%$
c) $\frac{20,947 \mathrm{M}}{13,577 \mathrm{M}}=1.5428 \quad 154.28-100.0=54.3 \%$
d) $\frac{32,240 \mathrm{M}}{20,947 \mathrm{M}}=1.5391 \quad 153.91-100.0=53.9 \%$
45. a) $\frac{10,403.94}{9,920}=1.0488 \quad 104.88-100.0=4.9 \%$
b) $\frac{7,591.93}{10,403.94}=0.7297 \quad 100.0-72.97=27.0 \%$
c) $\frac{7,591.93}{9,920}=0.7653 \quad 100.0-76.53=23.5 \%$
d) $\frac{8,397.03}{7,591.93}=1.1060 \quad 110.60-100.0=10.6 \%$
25. $\frac{95}{3500} \approx .0271428571=(0.0271428571 \times 100) \%=$ 2.714 \%
27. $8(.4125)=3.3 \quad 8.0-3.3=4.7 \mathrm{~g}$
29. $(591,000)(.08)=\$ 47,280,000=\$ 47.28 \mathrm{M}$
31. $(591 \mathrm{M})(.27)=\$ 159.57 \mathrm{M}$
33. $(32.3 \mathrm{~B})(.176)=\$ 5.6848 \mathrm{~B}$
35. $(32.3 \mathrm{~B})(.306)=\$ 9.8838 \mathrm{~B}$
37. $\frac{1,553 \mathrm{M}}{8,105 \mathrm{M}}=.1916 \quad(.1916)(100)=19.2 \%$
39. $\frac{1,592 \mathrm{M}}{8,105 \mathrm{M}}=.1964 \quad(.1964)(100)=19.6 \%$
41. $\frac{45,793}{48,622}=.942 \quad 100-94.2 \approx 5.8 \%$
42.b) $(288.4 \mathrm{M})(1.1596)=334.4 \mathrm{M}$
44. a) $\frac{9,457 \mathrm{M}}{8,059 \mathrm{M}}=1.1735$
$117.35-100.0=17.3 \%$
b) $\frac{13,577 \mathrm{M}}{9,457 \mathrm{M}}=1.4357$
$143.57-100.0=43.6 \%$
c) $\frac{9,457 \mathrm{M}}{8,059 \mathrm{M}}=1.1735 \quad 117.35-100.0=17.3 \%$
d) $\frac{13,577 \mathrm{M}}{9,457 \mathrm{M}}=1.4357 \quad 143.57-100.0=43.6 \%$
46. a) $\frac{50,000}{25,000}=2.00 \quad 200.0-100.0=100 \%$
b) $\frac{100,000}{75,000}=1.3333 \quad 133.33-100.0=33.3 \%$
c) $\frac{400,000}{200,000}=2.00 \quad 200.0-100.0=100 \%$
d) $\frac{400,000}{25,000}=16.00 \quad 1600.0-100.0=1500 \%$
47. $(.15)(45)=\$ 6.75$
48. $(.065)(150)=\$ 9.75$
49. $24 / 96=.25(.25)(100)=25.0 \%$
50. $15 / 75=.20(.20)(100)=20.0 \%$
51. . $05 \mathrm{x}=75 \mathrm{x}=75 / .05=300$
52. $10 \mathrm{x}=75 \mathrm{x}=75 / .10=750$
53. a) $\operatorname{tax}=6 \%$ of $\$ 43.50=(0.06)(43.50)=\$ 2.61$
b) total bill before tip $=\$ 43.50+\$ 2.61=\$ 46.11$
c) tip $=15 \%$ of $46.11=0.15(46.11)=\$ 6.92$
d) total cost $=46.11+6.92=\$ 53.03$
55. $1.50(\mathrm{x})=18 \quad \mathrm{x}=\frac{18}{1.50}=12$

12 students got an A on the 2 nd test.
57. Mr. Browns' increase was $0.07(36,500)=\$ 2,555$

His new salary $=\$ 36,500+\$ 2,555=\$ 39,055$
59. Percent change $=\left(\frac{407-430}{430}\right)(100)=$
$\left(\frac{-23}{430}\right)(100)=-5.3 \%$
There was a 5.3% decrease in the \# of units sold.
61. $\frac{31.1 \mathrm{M}}{39.3 \mathrm{M}}=.7913 \quad 100.0-79.13=20.9 \%$
63. Percent decrease from regular price $=$
$\left(\frac{\$ 439-539.62}{539.62}\right)(100)=\left(\frac{-100.62}{539.62}\right)(100)=$

- 18.6 \%

The sale price is 18.6% lower than the regular price.
65. $(0.18)($ sale price $)=\$ 675$
sale price $=\frac{675}{0.18}=\$ 3,750$
66. No, 15% of $\$ 115$ is $(0.15)(\$ 115)=\$ 17.25$

The sale price should be $115-17.25=\$ 97.75$ not $\$ 100$.
54. 25% of what number is 10 ?
$0.25 \mathrm{x}=10 \quad \mathrm{x}=\frac{10}{0.25}=40$
original number of crew is 40 .
56. $0.30(\mathrm{x})=57 \quad \mathrm{x}=\frac{57}{0.30}=190$

The original number of employees was 190 .
58. $(0.17)(300)=x=51 \quad 51$ prefer Ranch.
60.

Percent markup $=\left(\frac{699-320}{320}\right)(100)=\frac{379}{320}=1.184$
$(1.184)(100)=118.4 \%$
62. Percent increase in great grandchildren $=$ $\left(\frac{12-8}{8}\right)(100)=0.50 \quad \rightarrow \quad(0.50(100)=50.0 \%$
64. Percent markup $=\left(\frac{11.95-7.95}{7.95}\right)(100)=$ $(0.5031)(100)=50.3 \%$
67. $\$ 1000$ increased by 10% is $\$ 1000+0.10(\$ 1000)=\$ 1000+\$ 100=\$ 1,100$.
$\$ 1,100$ decreased by 10% is $\$ 1,100-0.10(\$ 1,100)=\$ 1,100-\$ 110=\$ 990$.
Therefore if he sells the car at the reduced price he will lose $\$ 10$.
68. a) No, the 25% discount is greater. (see part b)
b) $189.99-0.10(189.99)=189.99-19.00=170.99 \quad 170.99-0.15(170.99)=170.99-25.65=\$ 145.34$
c) $189.99-0.25(189.99)=189.99-47.50=\$ 142.49$
d) Yes
69. Total profit must $=0.40(\$ 5901.79)=\$ 2,360.72$

Revenue from first sale $=100 \times \$ 9.00=\$ 900$

346 CHAPTER 11 Consumer Mathematics

Exercise Set 11.2

1. Interest is the money the borrower pays for the use of the lender's money.
2. The amount of money that a bank is willing to lend to a person is called credit.
3. Security is anything of value pledged by the borrower that the lender may sell or keep if the borrower does not repay the loan.
4. A cosigner is a person, other than the person who received the loan, who guarantees that a loan will be repaid.
5. $\mathrm{i}=$ interest, $\mathrm{p}=$ principal, $\mathrm{r}=$ interest rate, $\mathrm{t}=$ time

The rate and time must be expressed for the same period of time, i.e. days, months or years.
6. A personal note is an agreement that states the conditions of the loan.
7. The difference between ordinary interest and interest calculated using the Banker's rule is the way in which time is used in the simple interest formula. Ordinary interest: a month is 30 days and year is 360 days. Banker's rule: any fractional part of a year is the exact number of days, and a year is 360 days.
8. The United States Rule states that if a partial payment is made on a loan, interest is computed on the principal from the first day of the loan (or previous partial payment) up to the date of the partial payment. For each partial payment, the partial payment is used to pay the interest first, then the remainder of the payment is applied to the principle. On the due date of the loan the interest is calculated from the date of the last partial payment.
9. $\mathrm{i}=\mathrm{prt}=(300)(.04)(5)=\$ 60.00$
11. $(900)(.0375)(30 / 360)=\$ 2.81$
13. $\mathrm{i}=\mathrm{prt}=(587)(0.00045)(60)=\$ 15.85$
15. $\mathrm{i}=(2,756.78)(0.1015)\left(\frac{103}{360}\right)=\$ 80.06$
17. $\mathrm{i}=(1372.11)(.01375)(12)(.5)=\$ 113.20$
19. $(1500)(r)\left(3=450 \quad r=\left(\frac{450}{4500}\right)(100)=10.0 \%\right.$
21. $12.00=\mathrm{p}(0.08)\left(\frac{3}{12}\right)=\mathrm{p}(0.02) \mathrm{p}=\frac{12.00}{0.02}=\$ 600$
23. $124.49=(957.62)(0.065)(\mathrm{t})=62.2453 \mathrm{t}$

$$
\frac{124.49}{62.2453}=t \quad t=2 \text { years }
$$

25. $\mathrm{i}=(1000)(.03)(1)=\$ 30.00$

$$
15+1000=\$ 1015
$$

10. $(450)(.055)(2)=\$ 49.50$
11. $\mathrm{i}=(365.45)(0.115)\left(\frac{8}{12}\right)=\$ 28.02$
12. $i=(6,742.75)(0.0605)\left(\frac{90}{360}\right)=\$ 101.98$
13. $\mathrm{i}=(550.31)(0.089)\left(\frac{67}{360}\right)=\$ 9.12$
14. $\mathrm{i}=(41864)(.000375)(360)\left(\frac{60}{360}\right)=\$ 941.94$
15. $\mathrm{p}(.03)\left(\frac{90}{360}\right)=600 \quad \mathrm{p}=\left(\frac{600}{.0075}\right)=\$ 80,000.00$
16. $64.00=(800)(0.06)(\mathrm{t})=48 \mathrm{t}$
$\mathrm{t}=\frac{64.00}{48}=1 . \overline{33}$ years, or 1 yr. 4 months
17. $343.20=(1650.00)(\mathrm{r})(6.5)=10725 \mathrm{r}$
$\frac{343.20}{10725}=r \quad r=0.032$ or 3.2% per year
18. a) $(4500)(.0475)(3)=\$ 641.25$
b) $4500+641.25=\$ 5,141.25$
19. a) $\mathrm{i}=\mathrm{prt} \quad \mathrm{i}=(3500)(0.075)(6 / 12)=\$ 131.25$
b) $\mathrm{A}=\mathrm{p}+\mathrm{i} \quad \mathrm{A}=3500+131.25=\$ 3,631.25$
20. a) $\mathrm{i}=\mathrm{prt} \quad \mathrm{I}=(3650)(0.075)(8 / 12)=\$ 182.50$
b) $3650.00-182.50=\$ 3467.50$, which is the amount Julie received.
c) $\mathrm{i}=\mathrm{prt} \quad 182.50=(3467.50)(\mathrm{r})(8 / 12)=2311.67 \mathrm{r}$

$$
\frac{182.50}{2311.67}=r=0.0789 \text { or } 7.9 \%
$$

31. Amt. collected $=(470)(4500 / 2)=\$ 1,057,500$ $\mathrm{i}=\mathrm{prt}=(1,057,500)(0.054)(5 / 12)=\$ 23,793.75$
32. [Jan 17 - July 4] = 185-17 = 168 days
33. $[12 / 08-03 / 17]=342-76=266$ days
34. $[08 / 24-05 / 15]=(365-236)+135=129+135=$ 264 days
35. [04/15] for 60 days $105+60=165$, which is June 14
36. [11/25] for 120 days $329+120=449$;
$449-365=84 \quad 84-1$ leap year day $=$ day 83 , which is March 24
37. $[03 / 01$ to $05 / 01]=91-60$ or 30 days
$(2000)(.05)(31 / 360)=8.61 \quad 400.00-8.61=391.39$
$2000.00-391.39=\$ 1608.61$
$(1608.61)(.05)(31 / 360)=6.70$
$1608.61+6.70=\$ 1615.31$
38. a) $\mathrm{i}=\mathrm{prt} \quad \mathrm{I}=(2500)(0.08)(5 / 12)=\$ 83.33$
b) $2500.00-83.33=\$ 2416.67$
c) $\mathrm{i}=\mathrm{prt} \quad 83.33=(2416.67)(5 / 12)=1006.95 \mathrm{r}$

$$
\frac{83.33}{1006.95}=\mathrm{r}=0.08275 \text { or } 8.3 \%
$$

30. a) $0.80 \mathrm{x}=350 \quad \mathrm{x}=350 / 0.80=\$ 437.50$ $\$ 437.50$ is needed in savings
b) $3 \frac{1}{4} \%+2 \%=5 \frac{1}{4} \%$
c) $\mathrm{i}=\mathrm{prt} \quad \mathrm{i}=(350)(0.0525)(0.5)=\$ 9.19$
$A=p+i=350+9.19=\$ 359.19$
31. $\mathrm{i}=80.25-75.00=5.25$
$5.25=(75.00)(r)(14 / 360)=2.92 r$
$r=\frac{5.25}{2.92}=1.80$ or 180%
32. $[06 / 19-02 / 12]=170-43=127$ days

Because of Leap Year, $127+1=128$ days
36. $[06 / 14-01 / 24]=(365-165)+24=200+24=$ 224 days
38. $[12 / 21-04 / 28]=(365-355)+118=10+118=$ 128 days
40. [05/18] for 180 days $138+180=318$, which is November 14
42. July 5 for 210 days $186+210=396$; $396-365=$ day 31 , which is January 31
44. $[01 / 15$ to $03 / 01]=60-15$ or 45 days

$$
\begin{aligned}
& (4500)(.03)(45 / 360)=16.875 \\
& 2000.00-16.875=\$ 1983.125 \\
& 4500.00-1983.125=\$ 2516.875 \\
& (2516.875)(.03)(5 / 360)=9.44 \\
& 2516.875+9.44=\$ 2526.32
\end{aligned}
$$

45. [08/01 to $11 / 15]=319-213$ or 106 days, to $[12 / 15]=30$ days
$(7000)(.0575)(106 / 360)=118.51$
$3500.00-118.51=\$ 3381.49$
$7000.00-3381.49=\$ 3618.51$
$(3618.51)(.0575)(30 / 360)=17.34$
$3618.51+17.34=\$ 3635.85$
46. [07/15 to $12 / 27]=361-196$ or 165 days, to $[02 / 01]=4+32=36$ days
$(9000)(.06)(165 / 360)=247.50$
$4000.00-247.50=\$ 3752.50$
$9000.00-3752.50=\$ 5247.50$
$(5247.50)(.06)(36 / 360)=31.485$
$5247.50+31.49=\$ 5278.99$
47. $[08 / 01$ to $09 / 01]=31$ days,
to $[10 / 01]=30$ days
to $[11 / 01]=31$ days
$(1800)(.15)(31 / 360)=23.25$
$500.00-23.25=\$ 476.75$
$1800.00-476.75=\$ 1323.25$
$(1323.25)(.15)(30 / 360)=16.54$
$500.00-16.54=483.46$
$1323.25-483.46=\$ 839.79$
$(839.79)(.15)(31 / 360)=10.85$
$839.79+10.85=\$ 850.64$
48. $[03 / 01$ to $08 / 01]=153$ days,
to $[11 / 15]=106$ days
to $[12 / 01]=16$ days
$(11600)(.06)(153 / 360)=295.80$
$2000.00-295.80=\$ 1704.20$
$11600.00-1704.20=\$ 9895.80$
$(9895.80)(.06)(106 / 360)=174.83$
$4000.00-174.83=3825.17$
$9895.8-3825.17=\$ 6070.63$
$(6070.63)(.06)(16 / 360)=16.19$
$6070.63+16.19=\$ 6086.82$
49. $[04 / 15$ to $08 / 01]=213-105$ or 108 days, to $[10 / 01]=61$ days
$(7500)(.12)(108 / 360)=270.00$
$1000.00-270.00=\$ 730.00$
$7500.00-730.00=\$ 6770.00$
$(6770)(.12)(61 / 360)=137.66$
$6770.00+137.66=\$ 6907.66$
50. [01/01 to $01 / 15]=14$ days,
to $[02 / 15]=31$ days
$(1000)(.125)(14 / 360)=4.86$
$300.00-4.86=\$ 295.14$
$1000.00-295.14=\$ 704.86$
$(704.86)(.125)(31 / 360)=7.59$
$704.86+7.59=\$ 712.45$
51. $[10 / 15$ to $11 / 15]=31$ days,
to $[12 / 15]=30$ days
to $[01 / 01]=16$ days
$(5000)(.14)(31 / 360)=60.28$
$800.00-60.28=\$ 739.72$
$5000.00-739.72=\$ 4260.28$
$(4260.28)(.14)(30 / 360)=49.70$
$800.00-49.70=750.30$
$4260.28-750.30=\$ 3509.98$
$(3509.98)(.14)(16 / 360)=21.84$
$3509.98+21.84=\$ 3531.82$
52. $[07 / 12$ to $10 / 10]=90$ days,
to $[12 / 08]=59$ days
to $[01 / 30]=53$ days
$(21000)(.04375)(90 / 360)=229.69$
$8000.00-229.69=\$ 7770.31$
$21000.00-7770.31=\$ 13229.69$
$(13229.69)(.04375)(59 / 360)=94.86$
$6000.00-94.86=5905.14$
$13229.69-5905.14=\$ 7324.55$
$(7324.55)(.04375)(53 / 360)=47.18$
$7324.55+47.18=\$ 7371.73$
53. $[03 / 01$ to $05 / 01]=61$ days, to $[07 / 01]=61$ days to $[08 / 28]=58$ days

$$
\begin{aligned}
& (6500)(.105)(61 / 360)=115.65 \\
& 1750.00-115.65=\$ 1634.35 \\
& 6500.00-1634.35=\$ 4865.65 \\
& (4865.65)(.105)(61 / 360)=86.57 \\
& 2350.00-86.57=2263.43 \\
& 4865.65-2263.43=\$ 2602.22
\end{aligned}
$$

$(2602.22)(.105)(58 / 360)=44.02$
$2602.22+44.02=\$ 2646.24$
55. a) May 5 is day $125 \quad 125+182=307$ day 307 is Nov. 3
b) $\mathrm{i}=(1000)(0.0434)(182 / 360)=\$ 21.94$

Amt. paid $=1000-21.94=\$ 978.06$
c) interest $=\$ 21.94$
d) $\mathrm{r}=\frac{\mathrm{i}}{\mathrm{pt}}=\frac{21.94}{978.06(182 / 360)}=0.0444$ or 4.44%
57. a) Amt. received $=743.21-39.95=\$ 703.26$
$\mathrm{i}=\mathrm{prt}$
$39.95=(703.26)(\mathrm{r})(5 / 360)$
$39.95=(9.7675)(\mathrm{r})$
$r=39.95 / 9.7675=4.09$ or 409%
b) $39.95=(703.26)(\mathrm{r}) 10 / 360)$
$39.95=(19.535)(\mathrm{r})$
$\mathrm{r}=39.95 / 19.535=2.045$ or 204.5%
c) $39.95=(703.26)(\mathrm{r})(20 / 360)$
$39.95=(39.07) \mathrm{r}$
$r=39.95 / 39.07=1.023$ or 102.3%
59. a) $\frac{93337}{100000}=0.93337$
$1.00000-0.93337=.06663$ or 6.663%
b) $100000-93337=\$ 6663.00$
c) $\frac{100000}{93337}=1.071386$
$1.071386-1.000000=.071386$ or 7.139%
d) $(6663)(.05)(1)=33.15$
$6663.00+33.15=\$ 6696.15$
54. $[05 / 15$ to $06 / 15]=31$ days,
to $[08 / 01]=47$ days
to $[09 / 01]=31$ days
$(3000)(.11)(31 / 360)=28.42$
$875.00-28.42=\$ 846.58$
$3000.00-846.58=\$ 2153.42$
$(2153.42)(.11)(47 / 360)=30.93$
$940.00-30.93=909.07$
$2153.42-909.07=\$ 1244.35$
$(1244.35)(.11)(31 / 360)=11.79$
$1244.35+11.79=\$ 1256.14$
56. a) Aug. 31 is day $243 \quad 243+364=607$ $(607-1)-365=241$ day 241 is Aug. 29
b) $\mathrm{i}=(6000)(0.044)(364 / 360)=\$ 266.93$

Amt. paid $=6000-266.93=\$ 5,733.07$
c) interest $=\$ 266.93$
d) $\mathrm{r}=\frac{266.93}{5733.07(364 / 360)}=0.0460$ or 4.6%
58. a) $(600)(.0675)(30 / 360)=3.38$

$$
200.00+3.38=\$ 203.38
$$

$(400)(.07)(30 / 360)=2.33$
$200.00+2.33=\$ 202.33$
$(200)(.0725)(30 / 360)=1.21$
$200.00+1.21=\$ 201.21$
b) $3.38+2.33+1.21=\$ 6.92=$ total interest
60. a) [08/03/1492 to $12 / 01 / 1620]$

1492 to $1620=127$ years $=45720$ days
$08 / 03$ to $12 / 31=365-215=150$ days
$01 / 01$ to $12 / 01=335$ days
$45720+150+335=46205$ days
$(1)(.05)(46205 / 360)=6.417361=\$ 6.42$
b) $[07 / 04 / 1776$ to $08 / 03 / 1492]$

284 yrs. minus 30 days $=102,210$
$(1)(.05)(102,210 / 360)=14.1958=\$ 14.20$
c) $[08 / 03 / 1492$ to $12 / 07 / 1941]$

449 yrs plus 126 days $=161,766$ days
$(1)(.05)(161,766 / 360)=\$ 22.47$
d) Answers will vary.

350 CHAPTER 11 Consumer Mathematics

Exercise Set 11.3

1. An investment is the use of money or capital for income or profit.
2. With a fixed investment the amount invested as principal is guaranteed and interest is computed at a fixed rate.
3. For a variable investment neither the principal nor the interest is guaranteed.
4. Interest that is computed on the principal and any accumulated interest is called compound interest.
5. The effective annual yield on an investment is the simple interest rate that gives the same amount of interest as a compound rate over the same period of time.
6. The principal that would have to be invested today to have a fixed amount of money in the future.
7. a) $\mathrm{n}=1, \mathrm{r}=2.0 \%, \mathrm{t}=3, \mathrm{p}=\$ 2000$

$$
A=2000\left(1+\frac{0.02}{1}\right)^{1 \bullet 3}=\$ 2122.42
$$

b) $\mathrm{i}=\$ 2122.42-\$ 2000=\$ 122.42$
9. a) $\mathrm{n}=2, \mathrm{r}=3.0 \%, \mathrm{t}=4, \mathrm{p}=\$ 3500$

$$
A=3500\left(1+\frac{0.03}{2}\right)^{2 \bullet 4}=\$ 3942.72
$$

b) $\mathrm{i}=\$ 3942.72-\$ 3500=\$ 442.72$
11. a) $\mathrm{n}=4, \mathrm{r}=4.75 \%, \mathrm{t}=3, \mathrm{p}=\$ 1500$

$$
A=1500\left(1+\frac{0.0475}{4}\right)^{4 \bullet 3}=\$ 1728.28
$$

b) $\mathrm{i}=\$ 1728.28-\$ 1500=\$ 228.28$
13. a) $\mathrm{n}=12, \mathrm{r}=6.25 \%, \mathrm{t}=2, \mathrm{p}=\$ 2500$

$$
A=2500\left(1+\frac{0.0625}{12}\right)^{12 \bullet 2}=\$ 2831.95
$$

b) $\mathrm{i}=\$ 2831.95-\$ 2500=\$ 331.95$
15. a) $\mathrm{n}=360, \mathrm{r}=4.59 \%, \mathrm{t}=4$ yr., $\mathrm{p}=\$ 4000$

$$
A=4000\left(1+\frac{0.0459}{360}\right)^{360 \bullet 4}=\$ 4806.08
$$

b) $\mathrm{i}=\$ 4806.08-\$ 4000=\$ 806.08$
17. $\mathrm{A}=7500\left(1+\frac{0.0266}{2}\right)^{2 \bullet 4}=\$ 8336.15$
19. $\mathrm{A}=1500\left(1+\frac{0.039}{12}\right)^{12 \cdot 2.5}=\$ 1653.36$
8. a) $\mathrm{n}=2, \mathrm{r}=2.0 \%, \mathrm{t}=3, \mathrm{p}=\$ 2000$

$$
A=2000\left(1+\frac{0.02}{2}\right)^{2 \bullet 3}=\$ 2123.04
$$

b) $\mathrm{i}=\$ 2123.04-\$ 2000=\$ 123.04$
10. a) $\mathrm{n}=1, \mathrm{r}=3.0 \%, \mathrm{t}=4, \mathrm{p}=\$ 3500$

$$
A=30003500\left(1+\frac{0.03}{1}\right)^{1 \cdot 4}=\$ 3939.28
$$

b) $\mathrm{i}=\$ 3939.28-\$ 3500=\$ 439.28$
12. a) $\mathrm{n}=4, \mathrm{r}=4.75 \%, \mathrm{t}=4, \mathrm{p}=\$ 1500$

$$
A=1500\left(1+\frac{0.0475}{4}\right)^{4 \bullet 4}=\$ 1811.85
$$

b) $\mathrm{i}=\$ 1811.85-\$ 1500=\$ 311.85$
14. a) $\mathrm{n}=12, \mathrm{r}=6.25 \%, \mathrm{t}=2, \mathrm{p}=\$ 3000$

$$
A=3000\left(1+\frac{0.0625}{12}\right)^{12 \bullet 2}=\$ 3398.34
$$

b) $\mathrm{i}=\$ 3398.34-\$ 3000=\$ 398.34$
16. a) $\mathrm{n}=360, \mathrm{r}=4.59 \%, \mathrm{t}=8$ yr., $\mathrm{p}=\$ 4000$

$$
A=4000\left(1+\frac{0.0459}{360}\right)^{360 \bullet 8}=\$ 5774.61
$$

b) $\mathrm{i}=\$ 5774.61-\$ 4000=\$ 1774.61$
18. $A=9500\left(1+\frac{0.0412}{4}\right)^{4 \bullet 3}=\$ 10743.06$
20. $\mathrm{p}=250,000-10,000=240,000$

$$
A=240,000\left(1+\frac{0.015}{12}\right)^{12 \bullet 10}=\$ 278814.00
$$

21. $\mathrm{p}=800+150+300+1000=\$ 2250$

$$
A=2250\left(1+\frac{0.02}{360}\right)^{360 \bullet 2}=\$ 2,341.82
$$

23. a) $\mathrm{A}=2000\left(1+\frac{0.05}{2}\right)^{2 \cdot 15}=\$ 4,195.14$
b) $\mathrm{A}=2000\left(1+\frac{0.05}{4}\right)^{2 \square 5}=\$ 4,214.36$
24. $\mathrm{A}=3000\left(1+\frac{0.08}{4}\right)^{8}=\$ 3514.98$
25. $A=6000\left(1+\frac{0.08}{4}\right)^{12}=\$ 7,609.45$
26. a) $\mathrm{A}=1000\left(1+\frac{0.02}{2}\right)^{4}=\$ 1,040.60$ $\mathrm{i}=\$ 1040.60-\$ 1000=\$ 40.60$
b) $\mathrm{A}=1000\left(1+\frac{0.04}{2}\right)^{4}=\$ 1,082.43$ $\mathrm{i}=\$ 1082.43-\$ 1000=\$ 82.43$
c) $\mathrm{A}=1000\left(1+\frac{0.08}{2}\right)^{4}=\$ 1,169.86$ $\mathrm{i}=\$ 1169.86-\$ 1000=\$ 169.86$
d) No predictable outcome.
27. a) $\mathrm{A}=1000\left(1+\frac{0.06}{2}\right)^{4}=\$ 1,125.51$ $\mathrm{i}=\$ 1125.51-\$ 1000=\$ 125.51$
b) $\mathrm{A}=1000\left(1+\frac{0.06}{2}\right)^{8}=\$ 1,266.77$ $\mathrm{i}=\$ 1266.77-\$ 1000=\$ 266.77$
c) $\mathrm{A}=1000\left(1+\frac{0.06}{2}\right)^{16}=\$ 1,604.71$ $\mathrm{i}=\$ 1604.71-\$ 1000=\$ 604.71$
d) New amount $=\frac{(\text { old amount })^{2}}{1000}$
28. $\mathrm{A}=5000\left(1+\frac{0.0335}{4}\right)^{4 \cdot 5}=\$ 5907.60$
29. a) $\mathrm{A}=2000\left(1+\frac{0.06}{2}\right)^{2 \square 0}=\$ 3612.22-1$ st 10 yrs .
b) $\mathrm{A}=3612.22\left(1+\frac{0.06}{4}\right)^{4.8}=\$ 5,816.85-18 \mathrm{yrs}$.
30. $\mathrm{A}=6000\left(1+\frac{0.0525}{12}\right)^{24}=\$ 6,662.74$

$$
\mathrm{i}=\$ 6662.74-\$ 6000=\$ 662.74
$$

28. Let $\mathrm{p}=1.00$. Then

$$
\begin{aligned}
& A=1\left(1+\frac{0.056}{360}\right)^{360}=\$ 1.0576 \\
& i=1.0576-1.00=0.0576
\end{aligned}
$$

The effective annual yield is 5.76%
30. a) $\mathrm{A}=100\left(1+\frac{0.12}{12}\right)^{24}=\$ 126.97$ $\mathrm{i}=\$ 126.97-\$ 100=\$ 26.97$
b) $\mathrm{A}=200\left(1+\frac{0.12}{12}\right)^{24}=\$ 253.95$
$\mathrm{i}=\$ 253.95-\$ 200=\$ 53.95$
c) $\mathrm{A}=400\left(1+\frac{0.12}{12}\right)^{24}=\$ 507.89$
$\mathrm{i}=\$ 507.89-\$ 400=\$ 107.89$
d) The interest doubles also.
32. a) $\mathrm{A}=1000\left(1+\frac{0.04}{2}\right)^{1 \cdot 1}=\$ 1,004.00$
$\mathrm{i}=\$ 1040.00-\$ 1000=\$ 40.00$
b) $\mathrm{A}=1000\left(1+\frac{0.04}{2}\right)^{1 \cdot 2}=\$ 1,040.40$ $\mathrm{i}=\$ 1040.04-\$ 1000=\$ 40.04$
c) $\mathrm{A}=1000\left(1+\frac{0.04}{2}\right)^{4 \bullet 1}=\$ 1,040.60$ $i=\$ 1040.60-\$ 1000=\$ 40.60$
d) No
33. $\mathrm{A}=1\left(1+\frac{0.035}{12}\right)^{12 \bullet 1}=1.03536$ or 3.54%
35. $\mathrm{A}=1\left(1+\frac{0.024}{12}\right)^{12 \bullet 1}=1.02426$

Yes, APY $=2.43 \%$, not 2.6%
37. The effective rate of the 4.75% account is:
$A=1\left(1+\frac{0.0475}{12}\right)^{12}=1.0485$
$1.0485-1.00=0.0485$ or 4.85%
Therefore the 5% simple interest account pays more interest.
39. a) $\frac{\mathrm{A}}{(1+\mathrm{i} / \mathrm{n})^{\mathrm{n} \cdot \mathrm{t}}}=\frac{290000}{(1+0.0825 / 2)^{20}}=\$ 129,210.47$
b) surcharge $=\frac{129210.47}{958}=\$ 134.88$
41. $\mathrm{p}=\frac{\mathrm{A}}{(1+\mathrm{i} / \mathrm{n})^{\mathrm{ntt}}}=\frac{30000}{(1+0.0515 / 12)^{60}}=\$ 23,202.23$
43. Present value $=\frac{50000}{\left(1+\frac{0.08}{4}\right)^{72}}=\$ 12,015.94$
45. $\mathrm{p}=1.35, \mathrm{r}=0.025, \mathrm{t}=10, \mathrm{n}=1$
$\mathrm{A}=1.35(1+0.025)^{5}=\$ 1.53$
47. a) $72 / 3=24$ years
b) $72 / 6=12$ years
c) $72 / 8=9$ years
d) $72 / 12=6$ years
e) $72 / \mathrm{r}=22 \quad 72=22 \mathrm{r} \quad \mathrm{r}=72 / 22=0.0327$ $r=3.27 \%$
34. $\mathrm{A}=1\left(1+\frac{0.0475}{12}\right)^{12 \bullet 1}=1.04854$ or 4.85%
36. $\mathrm{A}=1\left(1+\frac{0.045}{12}\right)^{4 \bullet 1}=1.045765$ Yes, 4.85%
38. The amount Troy owes the bank after two years is:
$A=1500\left(1+\frac{0.10}{4}\right)^{4 \cdot 2}=\$ 1,827.60$
Bank's interest charge:
$\mathrm{i}=1827.60-1500=\$ 327.60$
Grandfather's interest charge:
$\mathrm{i}=\mathrm{prt}=(1500)(0.07)(2)=\$ 210.00$
Troy will save $327.60-210.00=\$ 117.60$
40. a) $\frac{\mathrm{A}}{(1+\mathrm{i} / \mathrm{n})^{\mathrm{ntt}}}=\frac{783000}{(1+0.09 / 12)^{180}}=\$ 204,010.21$
b) surcharge $=\frac{204010.21-50000}{2682}=\$ 57.42$
42. Present value $=\frac{200000}{\left(1+\frac{0.075}{4}\right)^{80}}=\$ 45,250.17$
44. Present value $=\frac{20000}{\left(1+\frac{0.07}{4}\right)^{60}}=\$ 7,062.61$
46. $\mathrm{p}=2000, \mathrm{~A}=3586.58, \mathrm{n}=12, \mathrm{t}=5$
$3586.58=2000\left(1+\frac{\mathrm{r}}{12}\right)^{60}$
$\frac{3586.58}{2000}=\left(1+\frac{r}{12}\right)^{60}$
$(1.79329)^{1 / 60}=1+\frac{\mathrm{r}}{12}=1.00978$
$0.00978=\frac{r}{12} \quad r=0.00978(12)=.117$ or 11.7%
48. $\mathrm{A}=2000[1+(.08 / 2)]^{6}=2000(1.04)^{6}=\$ 2530.64$
$i=\$ 2530.64-2500=\$ 530.64$
Simple interest: $\quad i=p r t=530.64=2000(r)(3)$
$530.64=6000 r \quad r=\frac{530.64}{6000}=0.0884$ or 8.84%
49. $\mathrm{R}=\$ 500, \mathrm{r}=5.5 \%, \mathrm{n}=2, \mathrm{t}=17$
$S=500 \frac{\left[\left(1+\frac{0.055}{2}\right)^{34}-1\right]}{\frac{0.055}{2}}=$

$$
500[1.51526]\left(\frac{2}{0.055}\right)=\$ 27,550.11
$$

51. Use the formula given in exercise 45.
a) $\mathrm{R}=150, \mathrm{r}=0.056, \mathrm{n}=12, \mathrm{t}=18$ ans. $\mathrm{S}=\$ 55,726.01$
b) $\mathrm{R}=900, \mathrm{r}=0.058, \mathrm{n}=2, \mathrm{t}=18$
ans. $S=\$ 55,821.15$

Exercise Set 11.4

1. An open-end installment loan is a loan on which you can make different payment amounts each month. A fixed installment loan is one in which you pay a fixed amount each month for a set number of months.
2. With an installment plan, the borrower repays the principal plus the interest with weekly or monthly payments that usually begin shortly after the loan is made. With a personal note, the borrower repays the principal plus the interest as a single payment at the end of the specified time period.
3. The APR is the true rate of interest charged on a loan.
4. The finance charge is the total amount of money the borrower must pay for the use of the money borrowed.
5. The total installment price is the sum of all the monthly payments and the down payment, if any.
6. The Actuarial method and the Rule of 78 's.
7. The unpaid balance method and the average daily balance method.
8. A cash advance is a loan obtained through a credit card.
9. a) Amount financed $=43000-0.15(43000)=\$ 36,550.00$

From table 11.2 the finance charge per $\$ 100$ at 5.5% for 60 payments is 14.61 .
Total finance charge $=(14.61)\left(\frac{36550}{100}\right)=\$ 5340.00$
b) Total amount due after down payment $=36550.00+5340.00=\$ 41889.96$

Monthly payment $=\frac{41889.96}{60}=\$ 698.17$
10. a) Amount financed $=2900-0.20(2900)=\$ 2,320.00$

From table 11.2, the finance charge per $\$ 100$ financed at 8.5% for 24 months is 9.09 .
Total finance charge $=(9.09)\left(\frac{2320}{100}\right)=\$ 210.89$
b) Total amount due after down payment $=2320+210.89=\$ 2,530.89$

Monthly payment $=\frac{2530.89}{24}=\$ 105.45$
11. a) From table 11.2, the finance charge per $\$ 100$ financed at 7.5% for 60 months is $\$ 20.23$.

Total finance charge is $(20.23)\left(\frac{4000}{100}\right)=\$ 809.20$
b) Total amount due $=4000+809.20=\$ 4,809.20$

Monthly payment $=\frac{4809.20}{60}=\$ 80.15$
12. a) From table 11.2, the finance charge per $\$ 100$ financed at 4.5% for 48 months is $\$ 9.46$.

Total finance charge $=(9.46)\left(\frac{2500}{100}\right)=\$ 236.50$
b) Total amount due $=2500+236.50=\$ 2736.50$

Monthly payment $=\frac{2736.50}{48}=\$ 57.01$
13. a) Down payment $=0.20(3200)=\$ 640$

Total installment price $=640+(60 \bullet 53.14)=\$ 3828.40$
Finance charge $=3828.40-3200=\$ 628.40$
b) $\left(\frac{\text { finance charge }}{\text { amt. financed }}\right)(100)=\left(\frac{628.40}{2560}\right)(100)=24.55$

From Table 11.2 for 60 payments, the value of 24.55 corresponds with an APR of 9.0%.
14. a) Total installment price $=(64)(24)=\$ 1536.00$

Finance charge $=1536.00-1420.25=\$ 115.75$
b) $\left(\frac{\text { finance charge }}{\text { amt. financed }}\right)(100)=\left(\frac{115.75}{1420.25}\right)(100)=8.15$

From Table 11.2, for 24 payments, the value of $\$ 8.15$ is closest to $\$ 8.00$ which corresponds with an APR of 7.5%.
15. a) Total installment price $=(224)(48)=\$ 10752.00$

Finance charge $=10752.00-9000.00=\$ 1752.00$
b) $\left(\frac{\text { finance charge }}{\text { amt. financed }}\right)(100)=\left(\frac{1752.00}{9000}\right)(100)=19.47$

From Table 11.2, for 48 payments, the value of $\$ 19.47$ is closest to $\$ 19.45$ which corresponds with an APR of 9.0%.
16. Down payment $=(1 / 4)(3450)=\$ 862.50 \quad$ Amount financed $=(3 / 4)(3450)=\$ 2587.50$
a) Installment price $=(6)(437)=2622$

Finance charge $=\$ 2622.00-\$ 2587.50=\$ 34.50$
b) $\left(\frac{\text { finance charge }}{\text { amt. financed }}\right)(100)=\left(\frac{34.50}{2587.50}\right)(100)=1.33$

From Table 11.2, for 6 payments, the value of $\$ 1.33$ is closest to $\$ 1.32$ which corresponds with an APR of 4.5%.
17. Down payment $=\$ 0.00 \quad$ Amount financed $=\$ 12000.00$
a) Installment price $=(60)(232)=13920$

Finance charge $=\$ 13920.00-\$ 12000.00=\$ 1920.00$
$\left(\frac{\text { finance charge }}{\text { amt. financed }}\right)(100)=\left(\frac{1920.00}{12000}\right)(100)=16.00$
From Table 11.2, for 6 payments, the value of $\$ 16.00$ corresponds with an APR of 6.0%.
b) $u=\frac{n p v}{100+v}=\frac{(36)(232)(9.52)}{(100+9.52)}=\frac{79511.04}{109.52}=725.9956=\$ 726.00$
c) $(232)(23)=5336 \quad 5336+726=6062 \quad 13920-6062=\$ 7858.00$
18. $(167.67)(48)=8048.16 \quad 8048.16-7500.00=548.16$
a) $\left(\frac{548.16}{7500}\right)(100)=\$ 7.31$ per $\$ 100 \quad$ From Table $11.2, \$ 7.31$ corresponds with an APR of 3.5%.
b) $\left.u=\frac{n p v}{100+v}=\frac{(30)(167.67)(4.58)}{(100+4.58)}=\frac{23037.86}{104.58}=\$ 220.29\right)$
c) $(167.67)(17)=2850.39 \quad 2850.39+220.29=3070.68 \quad 8048.16-3070.68=\$ 4977.48$
19. a) Amount financed $=32000-10000=\$ 22000$

From table 11.2, the finance charge per 100 financed at 8% for 36 payments is 12.81 .
Total finance charge $=(12.81)\left(\frac{22000}{100}\right)=2818.20$
b) Total amt. due $=22000+2818.20=\$ 24,818.20$

Monthly payment $=\frac{24818.20}{36}=\$ 689.39$
c) $\mathrm{u}=\frac{(12)(689.89)(4.39)}{100+4.39}=\frac{36317.07}{104.39}=\$ 347.90$
d) $(23)(689.39)=15855.97 \quad 15855.97-347.90=16203.87 \quad 24818.20-16203.87=\$ 8614.17$
20. a) Amount financed $=(110.52)(24)=\$ 2652.48 \quad 2652.48-2558.00=94.48 \quad\left(\frac{94.48}{2558}\right)(100)=3.69$

From table 11.2, the interest rate that would generate a finance charge of $\$ 3.69$ is 3.5% for 24 payments.
b) $\mathrm{u}=\frac{(110.52)(12)(1.91)}{100+1.91}=\frac{2533.12}{101.91}=24.86$
c) $(110.52)(11)=1215.72 \quad 1215.72+24.86=1240.58 \quad 2652.48-1240.58=\$ 1411.90$

356 CHAPTER 11 Consumer Mathematics

21. a) Amount financed $=\$ 7345.00$ with no down payment.

From table 11.2, the finance charge per 100 financed at 8.5% for 48 payments is 18.31 .
Total finance charge $=(18.31)\left(\frac{7345}{100}\right)=1344.87$
b) Total amt. due $=7345.00+1344.87=\$ 8,689.87$

$$
\text { Monthly payment }=\frac{8689.87}{48}=\$ 181.04
$$

c) $\mathrm{u}=\frac{(1344.87)(36)(36+1)}{48(48+1)}=\frac{1791366.84}{2352}=\$ 761.64$
d) $(181.04)(48)=8689.92 \quad(11)(181.04)=1991.44 \quad 1991.44+761.64=2753.08$
$8689.92-2753.08=\$ 5936.84$
22. a) From table 11.2 , at 8.5% for 36 payments the finance charge per 100 is 13.64 .

Finance charge $=(13.64)\left(\frac{3600}{100}\right)=\$ 491.04$
b) Total installment price $=3600+491.04=\$ 4091.04$

Monthly payment $=\frac{4091.04}{36}=\$ 113.64$
c) $\mathrm{K}=24, \mathrm{n}=36, \mathrm{f}=491.04$
$\mathrm{u}=\frac{(491.04)(24)(25)}{(36)(37)}=\$ 221.19$
d) $\$ 2727.36$ Total of remaining payments $\quad 2727.36-221.19=2506.17$
$2506.17+113.64=\$ 2619.81$ Total amount due
23. a) Interest $=500+(151.39)(18)-3000=\$ 225.02 \quad \mathrm{k}=6, \mathrm{n}=18$, and $\mathrm{f}=225.02$

$$
\mathrm{u}=\frac{(225.02)(6)(6+1)}{18(18+1)}=\frac{9450.84}{342}=\$ 27.63
$$

b) $\$ 908.34$ Total of remaining payments $\quad 908.34-27.63=880.71$
$880.71+151.39=\$ 1032.10 \quad$ Total amount due
24. a) Interest $=850+(134.71)(12)-2375=\$ 91.52 \quad k=6, n=12$, and $f=91.52$

$$
u=\frac{(91.52)(6)(6+1)}{12(12+1)}=\frac{3843.84}{156}=\$ 24.64
$$

b) $\$ 808.26$ Total of remaining payments $\quad 808.26-24.64=\$ 783.62$
$783.62+134.71=\$ 918.33$ Total amount due
25. a) Balance due $=365+180+195+84=\$ 824$ min. payment $=\frac{\text { bal. due }}{48}=\frac{824}{48} \approx 17.17 \approx \$ 18$
b) Bal. due after Dec. 1 payment $=824-200=\$ 624$ interest for Dec. $=(0.011)(624)=\$ 6.86$ Bal. due Jan. $1=624+6.86=\$ 630.86$
26. a) Bal. due $=425+175+450+125=\$ 1175$ min. payment $=\frac{\text { bal. due }}{36}=\frac{1175}{36} \approx 32.64 \approx \$ 33$
b) Bal. due after Sept. 1 payment $=1175-650=\$ 525 \quad$ interest for Sept. $=(0.012)(525)=\$ 6.30$

Bal. due Oct. $1=525+6.30=\$ 531.30$
27. a) Bal. due $=423+36+145+491=\$ 1095$ min. payment $=\frac{\text { bal. due }}{36}=\frac{1095}{36} \approx 30.42 \approx \$ 31$
b) Bal. due after Mar. 1 payment $=1095-548=\$ 547 \quad$ interest for March $=(0.011)(547)=\$ 6.02$

Bal. due Apr. $1=547+6.02=\$ 553.02$
28. a) Bal. due $=512+172+190+350=\$ 1224$ min. payment $=\frac{\text { bal. due }}{36}=\frac{1224}{48} \approx 25.50 \approx \$ 26$
b) Bal. due after July 1 payment $=1224-500=\$ 724 \quad$ interest for July $=(0.013)(724)=\$ 9.41$

Bal. due Aug. $1=724+9.41=\$ 733.41$
29. a) Finance charge $=(1097.86)(0.018)(1)=\$ 19.76$
b) Bal. due May $5=(1097.86+19.76+425.79)-800=\$ 743.41$
30. a) Finance charge $=(567.20)(0.011)(1)=\$ 6.24$
b) old balance + finance charge - payment + airline ticket + hotel bill + clothing $=$ new balance $567.20+6.24-275.00+330.00+190.80+84.75=\$ 903.99$
31. a) Finance charge $=(124.78)(0.0125)(1)=\$ 1.56$
b) old balance + finance charge - payment + art supplies + flowers + music $\mathrm{CD}=$ new balance
$124.78+1.56-100.00+25.64+67.23+13.90=\$ 133.11$
32. a) Finance charge $=(57.88)(0.0135(1)=\$ 0.78$
b) old balance + finance charge - payment + paint + curtains + chair $=$ new balance
$57.88+0.78-45.00+64.75+72.85+135.50=\$ 903.99$

33. a) Date	Balance Due	Number of Days	Average daily balance $=\frac{15872.07}{31}$ (Balance) $($ Days $)$	
May 12	$\$ 378.50$	1	$(378.50)(1)=\$ 378.50$	$\$ 512$
May 13	$\$ 508.29$	2	$(508.29)(2)=1,016.58$	
May 15	$\$ 458.29$	17	$(458.29)(17)=7,790.93$	b) Finance charge $=$ prt $=$
June 01	$\$ 594.14$	7	$(594.14)(7)=4,158.98$	$(512.00)(0.013)(1)=\$ 6.66$
June 08	$\$ 631.77$	4	$\underline{(631.77)(4)=2,527.08}$	c) Balance due $=631.77+6.66=$
$\$ 638.43$				

34. a) Date	Balance Due	Number of Days	(Balance)(Days)
Mar. 23	$\$ 1,578.25$	3	$(1578.25)(3)=\$ 4,734.75$
Mar. 26	$\$ 1,658.23$	4	$(1658.23)(4)=6,632.92$
Mar. 30	$\$ 1,710.99$	4	$(1710.99)(4)=6,843.96$
Apr. 03	$\$ 1,460.99$	12	$(1460.99)(12)=17,531.88$
Apr. 15	$\$ 1,651.51$	7	$(1651.51)(7)=11,560.57$
Apr. 22	$\$ 1,842.36$	1	$\frac{(1842.36)(1)=1,842.36}{}$

Average daily balance $=\frac{49146.44}{31}=$
\$1585.37
b) Finance charge $=$ prt $=$ $(1585.37)(0.013)(1)=\$ 20.61$
c) Balance due $=1842.36+20.61=$ \$1,862.97

35. a)Date	Balance Due	Number of Days	(Balance)(Days) Feb. 03
$\$ 124.78$	5	$(124.78)(5)=\$ 623.90$	
Feb. 08	$\$ 150.42$	4	$(150.42)(4)=601.68$
Feb. 12	$\$ 50.42$	2	$(50.42)(2)=100.84$
Feb. 14	$\$ 117.65$	11	$(117.65)(11)=1294.15$
Feb. 25	$\$ 131.55$	6	$\underline{(131.55)(6)=789.30}$
		28	sum $=\$ 3,409.87$

Average daily balance $=\frac{3409.87}{28}=$ \$121.78
b) Finance charge $=$ prt $=$ $(121.78)(0.0125)(1)=\$ 1.52$
c) Balance due $=131.55+1.52=$ \$133.07
d) The interest charged using the ave. daily balance method is $\$ 0.04$ less than the interest charged using the unpaid balance method.
36. a) Date Balance Number

Day
Sept. 05 \$385.75
Sept. 08 \$110.75 13
Sept. 21 \$440.75 6
Sept. 27 \$631.55 5
Oct. 02 \$716.30 3
28
37. 0.05477% per day $=0.0005477$
38. a) $\mathrm{i}=(875)(0.0004273)(32)=\$ 11.96$
a) $(600)(0.0005477)(27)=\$ 8.87$
b) $600.00+8.87=\$ 608.87$

Average daily balance $=\frac{10548.15}{30}=$
\$351.61
b) Finance charge $=$ prt $=$ $(351.61)(0.014)(1)=\$ 4.92$
c) Balance due $=716.30+4.92=$ $\$ 721.22$
d) Smaller finance charge on Oct. 5 using the ave. daily balance method.
39. $\$ 1000.00 \quad 5 \% \quad 6$ payments
a) State National Bank (SNB): (1000)(.05)(.5) $=\$ 25.00$
b) Consumers Credit Union $(C C U): \quad(1000)(x)(1)=35.60 \quad(86.30)(12)=1035.60$

$$
1035.60-1000.00=\$ 35.60
$$

c) $\left(\frac{25}{1000}\right)(100)=2.50 \quad$ In Table $11.2, \$ 2.49$ is the closest value to $\$ 2.50$, which corresponds to an

APR of 8.5%.
d) $\left(\frac{35.60}{1000}\right)(100)=3.56 \quad$ In Table 11.2, $\$ 3.56$ corresponds to an APR of 6.5%.
40. The interest on $\$ 890$ at 5.25% annually for 1 month is: $i=(890)(0.0525)(1 / 12)=\$ 3.89$ She will be saving $\$ 3.89$ by using her credit card.
41. a) Amount financed $=3450-1150=\$ 2300$

Month	Finance charge	Payment $\$ 384.00$	Balance $\$ 1,916.00$
1	None	408.91	$1,532.00$
2	$(1916)(0.013)=\$ 24.91$	403.92	$1,148.00$
3	$(1532)(0.013)=\$ 19.92$	764.00	
4	$(1148)(0.013)=\$ 14.92$	398.92	760.00
5	$(764)(0.013)=\$ 9.93$	393.93	380.00
6	$(380)(0.013)=\$ 4.94$	384.94	0.00

Total $=\$ 74.62$ It will take 6 months to repay the loan.
b) The total amount of interest paid is \$74.62
c) The finance charge is $\$ 13.38$ less using the credit card.
42. Let $\mathrm{p}=$ amount Ken borrowed
$p+2500=$ purchase price
Installment price: $2500+(379.50)(36)=\$ 16,162$
Interest $=$ Installment price - purchase price $\mathrm{i}=16,162-(\mathrm{p}+2500)=16,162-\mathrm{p}-2500=13,662-\mathrm{p}$

Since $\mathrm{i}=$ prt we have:

$$
\begin{aligned}
& 13,662-p=(p)(.06)(3)=13,662-p=.18 p \\
& 13,662=.18 p+p \quad p=11,577.97 \\
& \text { purchase price }=11,577.97+2500= \\
& \$ 14,077.97
\end{aligned}
$$

43. $\$ 35,000 \quad 15 \%$ down payment 60 month fixed loan $\quad A P R=8.5 \%$
$(35000)(.15)=5250 \quad 35000-5250=29750$
a) From Table 11.2, 60 payments at an APR of 8.5% yields a finance charge of $\$ 23.10$ per $\$ 100$.

$$
\left(\frac{29750}{100}\right)(23.10)=\$ 6872.25
$$

b) $29750.00+6872.25=36622.25 \quad \frac{36622.25}{60}=\$ 610.37$
c) In Table 11.2, 36 payments at an APR of 8.5% yields a finance charge of $\$ 13.64$ per $\$ 100$.

$$
u=\frac{(36)(610.37)(13.64)}{100+13.64}=\frac{299716.08}{113.64}=\$ 2637.42
$$

d) $\mathrm{u}=\frac{\mathrm{f} \bullet \mathrm{k}(\mathrm{k}+1)}{\mathrm{n}(\mathrm{n}+1)}=\frac{(6872.25)(36)(37)}{60(61)}=\frac{9153837}{3660}=\$ 2501.05$
44. $\$ 23,000 \quad 10 \%$ down payment 48 month fixed loan $A P R=6.0 \%$

$$
(23000)(.10)=2300 \quad 23000-2300=20700
$$

a) From Table 11.2, 48 payments at an APR of 6.0% yields a finance charge of $\$ 12.73$ per $\$ 100$.

$$
\left(\frac{20700}{100}\right)(12.73)=\$ 2635.11
$$

b) $20700.00+2635.11=23335.11 \quad \frac{23335.11}{48}=\$ 486.15$
c) In Table 11.2, 36 payments at an APR of 6.0% yields a finance charge of $\$ 9.52$ per $\$ 100$.

$$
\begin{aligned}
u & =\frac{(36)(486.15)(9.52)}{100+9.52}=\frac{166613.33}{109.52}=\$ 1521.31 \\
\text { d) } u & =\frac{\mathrm{f} \cdot \mathrm{k}(\mathrm{k}+1)}{\mathrm{n}(\mathrm{n}+1)}=\frac{(2635.11)(36)(37)}{48(49)}=\frac{3509966.52}{2352}=\$ 1492.33
\end{aligned}
$$

45. With her billing date on the 25th of the month she can buy the camera during the period of June 26-June 29 and the purchase will be on the July 25 th bill. Purchasing during these dates she can pay the bill on August $5^{\text {th }}$ or later without paying interest.

Exercise Set 11.5

1. A mortgage is a long term loan in which the property is pledged as security for payment of the difference between the down payment and the sale price.
2. The down payment is the amount of cash the buyer must pay the seller before the lending institution will grant the buyer a mortgage.
3. The major difference between these two types of loans is that the interest rate for a conventional loan is fixed for the duration of the loan, whereas the interest rate for a variable-rate loan may change every period, as specified in the loan agreement.
4. a) A point is 1% of the mortgage. b) For x points multiply the mortgage by 0.01 x .
5. A buyer's adjusted monthly income is found by subtracting any fixed monthly payment with more than 10 months remaining from the gross monthly income.
6. An add on rate, or margin, is the percent added to the interest rate on which the adjustable rate mortgage is based.
7. An amortization schedule is a list of the payment number, interest, principal, and balance remaining on the loan.
8. The FHA insures the loan and a bank provides the money for the loan.
9. Equity is the difference between the appraised value of your home and the loan balance.
10. A home equity loan is a loan in which the equity in your home is used as collateral.
11. a) Down payment $=15 \%$ of $\$ 250,000$
$(0.15)(250000)=\$ 35,700$
b) amt. of mortgage $=250000-35700=212500$

Table 11.4 yields $\$ 7.65$ per $\$ 1000$ of mortgage
Monthly payment $=\left(\frac{212000}{1000}\right)(7.65)=\$ 1625.63$
13. a) Down payment $=10 \%$ of $\$ 210,000$
$(0.10)(210000)=\$ 21,000$
b) amt. of mortgage $=210000-21000=189000$

Table 11.4 yields $\$ 6.60$ per $\$ 1000$ of mortgage
Monthly payment $=\left(\frac{189000}{1000}\right)(6.60)=\$ 1247.40$
15. a) Down payment $=20 \%$ of $\$ 195,000$
$(0.20)(195000)=\$ 39,000$
b) amt. of mortgage $=195000-39000=156000$
c) $(156000)(.02)=\$ 3120.00$
17. $\$ 3,200=$ monthly income
a) $(25)(335)=\$ 8,375.00 \quad 3200-335=\$ 2865$
b) $(2865)(.28)=\$ 802.20$
c) Table 11.4 yields $\$ 7.91$ per $\$ 1000$ of mortgage $\left(\frac{150000}{1000}\right)(7.91)=\$ 1186.50$
d) No; $\$ 1411.50>\$ 802.20$
19. a) $(490.24)(30)(12)=\$ 176,486.40$ $176486.40+11250.00=\$ 187,736.40$
b) $187736.40-75000=\$ 112,736.40$
c) $\mathrm{i}=\mathrm{prt}=(63750)(.085)(1 / 12)=451.56$
$490.24-451.56=\$ 38.68$
12. a) Down payment $=20 \%$ of $\$ 175,000$
$(0.20)(175000)=\$ 35,000$
b) amt. of mortgage $=175000-35000=140000$

Table 11.4 yields $\$ 5.68$ per $\$ 1000$ of mortgage
Monthly payment $=\left(\frac{140000}{1000}\right)(5.68)=\$ 795.20$
14. a) Down payment $=5 \%$ of $\$ 95,000$
$(0.05)(95000)=\$ 4,750$
b) amt. of mortgage $=95000-4750=90250$

Table 11.4 yields $\$ 6.65$ per $\$ 1000$ of mortgage
Monthly payment $=\left(\frac{90250}{1000}\right)(6.65)=\$ 600.16$
16. a) $245000-45000=\$ 200,000.00$
b) $(200000)(.015)=\$ 3000.00$
18. $\$ 4,100=$ monthly income
a) $4100-505=\$ 3595.00$
b) $(3595)(.28)=\$ 1006.60$
c) Table 11.4 yields $\$ 9.00$ per $\$ 1000$ of mortgage
$\left(\frac{275000}{1000}\right)(9.00)=\$ 2475.00$
$2475+425=\$ 2900.00$
d) No; $\$ 2900.00>\$ 1006.60$
20. a) Down payment $=160,000-110,000=\$ 50,000$

Total cost of house $=50000+(1038.40)(12)(25)$

$$
=\$ 361,520
$$

b) interest $=\$ 361,520-\$ 160,000=\$ 201,520$
c) interest on first payment $\mathrm{i}=\mathrm{prt}$
$(110,000)(0.105)(1 / 12)=\$ 962.50$
amount applied to principal $=$ $1038.40-962.50=\$ 75.90$
21. a) down payment $=(0.28)(113500)=\$ 31,780$
b) amount of mortgage $=113500-31780=\$ 81,720$ cost of three points $=(0.03)(81720)=\$ 2,451.60$
c) $4750-420=\$ 4330.00$ adjusted monthly income
d) maximum monthly payment $=$ $(0.28)(4330)=\$ 1,212.40$
e) At a rate of 10% for 20 years, Table 11.4 yields 9.66.
mortgage payment $=\left(\frac{81720}{1000}\right)(9.66)=\$ 789.42$
f) $789.42+126.67=\$ 916.09$ total mo. Payment
g) Since $\$ 1,212.40$ is greater than $\$ 916.09$, the Yakomo's qualify.
h) interest on first payment $=\mathrm{i}=\mathrm{prt}=$ $(81720)(0.10)(1 / 12)=\$ 681.00$
amount applied to principal $=789.42-681.00=$ \$108.42
23. Bank A Down payment $=(0.10)(105000)=$ \$10,500
amount of mortgage $105000-10500=\$ 94,500$
At a rate of 10% for 30 years, Table 11.4 yields \$8.70.
monthly mortgage payment $=$
$\left(\frac{94500}{1000}\right)(8.70)=\$ 822.15$
cost of three points $=(0.03)(94500)=\$ 2835$
Total cost of the house $=$

$$
10500+2835+(822.15)(12)(30)=\$ 309,309
$$

Bank B Down payment $=(0.20)(105000)=$ \$21,000
amount of mortgage $105000-21000=\$ 84,000$
At a rate of 11.5% for 25 years, Table 11.4 yields \$10.16.
monthly mortgage payment $=$
$\left(\frac{84000}{1000}\right)(10.16)=\$ 853.44$
cost of the house $=21000+(853.44)(12)(25)=$ \$277,032
The Nagrockis should select Bank B.
22. Cost of house $=\$ 95,000.00$
a) $(95000)(.20)=\$ 19,000.00$
b) $4000-135=\$ 3865 \quad(3865)(.28)=\$ 1082.20$
c) Table 11.4 yields $\$ 8.74$ per $\$ 1000$ of mortgage $\left(\frac{76000}{1000}\right)(8.74)=\$ 664.24$
d) $664.24+125.00+28.00=\$ 817.24$
e) Yes; $\$ 817.24<\$ 1082.20$
f) $\mathrm{i}=\mathrm{prt}=(76000)(.095)(1 / 12)=\$ 601.67$
g) $(664.24)(25)(12)=199272$ $199272+19000=\$ 218,272.00$
h) $218272-95000=\$ 123,272.00$
24. Condominium $\$ 525,000.00$

GCTCU 20% down payment, 7.5%, 15 years, 1 point at closing
SCCU 15% down payment, $8.5 \%, 20$ years, No points
$(525000)(.80)=420000$
1 pt.: $(420000)(.01)=42000$
At 7.5% for 15 yrs., Table 11.4 yields $\$ 9.27$.
(9.27) $\left(\frac{378000}{1000}\right)=\$ 3504.06$

GCTCU: $\quad 105000.00+42000.00+630730.80=$ \$777,730.80
$(525000)(.85)=446250$
At 8.5% for 20 yrs., Table 11.4 yields $\$ 8.68$.
(8.68) $\left(\frac{446250}{1000}\right)=\$ 3873.45$
$(3873.45)(20)(12)=\$ 929,628.00$
SCCU: $929628+78750=\$ 1,008,378.00$

Grant County Teacher's Credit Union would provide a lower cost.
25. a) Amount of mortgage $=105000-5000=\$ 100000 \quad$ Initial monthly payment $=\left(\frac{100000}{1000}\right)(8.05)=\$ 805.00$
b) Payment \# Interest Principal Balance

1	$\$ 750.00$	$\$ 55.00$	$\$ 99,945.00$
2	749.59	55.41	$99,889.59$
3	749.17	55.83	$99,833.76$

c) effective interest rate $=6.13 \%+3.25 \%=9.38 \%$. The new rate is 9.38%.
d) Payment \# Interest Principal Balance

4	$\$ 780.37$	$\$ 24.63$	$\$ 99,809.13$
5	780.17	24.83	$99,784.30$
6	779.98	25.02	$99,759.28$

e) New rate $=6.21 \%+3.25 \%=9.46 \%$
26. a) amount of mortgage: $\$ 95000-\$ 13000=\$ 82,000$

At a rate of 8.5% for 30 years, Table 11.4 yields \$7.69.
initial monthly payment $=$
$\left(\frac{82000}{1000}\right)(7.69)=\$ 630.58$
b) effective interest rate: $5.65+3.25=8.9 \%$
8.9% is less than 1% above the old rate of 8.5%.
Thus, the new rate is 8.9%.
c) effective new interest rate: $4.85+3.25=8.1 \%$.
27. a) $\left(\frac{\text { amount of mortgage }}{1000}\right)(8.4)=950$ amount of mortgage $=\$ 113,095.24$
b) $(0.75)($ total price $)=113,095.24$ total price $=\$ 150,793.65$
28. a) The variable rate mortgage would be the cheapest.
b) By choosing the variable rate plan, they would save $\$ 2,672.64$

Review Exercises

1. $3 / 5=0.60 \quad(0.60)(100)=60 \%$	2. $2 / 3 \approx 0.667 \quad(0.667)(100)=66.7 \%$
3. $5 / 8=0.625 \quad(0.625)(100)=62.5 \%$	4. $0.041 \quad(0.041)(100)=4.1 \%$
5. $0.0098(0.0098)(100)=0.98 \% \approx 1.0 \%$	6. $3.141 \quad(3.141)(100)=314.1 \%$
7. $3 \% \quad \frac{3}{100}=.03$	8. $12.1 \% \quad \frac{12.1}{100}=0.121$
9. $123 \% \quad \frac{123}{100}=1.23$	10. $\frac{1}{4} \%=0.25 \% \quad \frac{.25}{100}=.0025$
11. $\frac{5}{6}=0.8 \overline{3} \% \quad \frac{0.8 \overline{3}}{100}=0.008 \overline{3}$	12. $0.00045 \% \quad \frac{0.00045}{100}=0.0000045$
13. $\frac{71500}{60790}=1.17618 \quad(1.17618)(100) \approx 17.6 \%$	14. $\frac{5100}{46200}=0.11039 \quad(0.11039)(100) \approx 11.0 \%$

15. $(x \%)(80)=25 \quad x \%=25 / 80=.3125$ $(.3125)(100)=31.25 \%$
Twenty-five is 31.25% of 80 .
16. $(0.17)(540)=x \quad 91.8=x$

Seventeen percent of 540 is 91.8 .
19. $0.20(x)=8 \quad x=8 / 0.20=40$

The original number was 40 people.
21. $\mathrm{i}=(2500)(.04)(60 / 360)=\$ 16.67$
23. $114.75=(\mathrm{p})(0.085)(3)$
$114.75=(p)(0.255) \quad \$ 450=p$
25. $\mathrm{i}=(5300)(.0575)(3)=914.25$

Total amount due at maturity $=5300+914.25=$ \$6214.25
27. a) $\mathrm{i}=(6000)(0.115)(24 / 120=\$ 1380.00$
b) amount received: $6000.00-1380.00=4,620.00$
c) $\mathrm{i}=\mathrm{prt} \quad 1380=(4620)(\mathrm{r})(24 / 12)=9240 \mathrm{r}$ $\mathrm{r}=(1380)(9240)=.1494 \quad(.1494)(100)=14.9 \%$
16. $0.16 x=44 \quad x=44 / 0.16=275$

Forty-four is 16% of 275.
18. $\mathrm{Tip}=15 \%$ of $\$ 42.79=(0.15)(42.79)=\$ 6.42$
20. $\frac{(95-75)}{75}=\frac{20}{75}=.2 \overline{6} \quad(.267)(100)=26.7$

The increase was 26.7%.
22. $41.56=(1575)(\mathrm{r})(100 / 360)=41.56$
$41.56=\left(\frac{157500}{360}\right)(r) \quad r=0.095$ or 9.5%
24. $316.25=(5500)(0.115)(\mathrm{t})$
$316.25=(632.50)(t) \quad t=0.5$ yrs. or 6 mos.
26. a) $\mathrm{i}=(3000)(0.081)(240 / 360)=\$ 162$

She paid $3000+162=\$ 3,162$
28. a) $5 \frac{1}{2} \%+2 \%=7 \frac{1}{2} \%$
b) $\mathrm{i}=(800)(0.75)(6 / 12)=\$ 30$
$A=\$ 800+\$ 30=\$ 830.00$
c) $x=$ amount of money in the account 85% of $x=800 \quad 0.85 x=800 \quad x=\$ 941.18$
29. a) $\mathrm{A}=1000\left(1+\frac{.10}{1}\right)^{5}=(1.10)^{5}=1610.51 \quad 1610.51-1000=\$ 610.51$
b) $\mathrm{A}=1000\left(1+\frac{.10}{2}\right)^{10}=(1.05)^{10}=1628.89 \quad 1628.89-1000=\$ 628.89$
c) $\mathrm{A}=1000\left(1+\frac{.10}{4}\right)^{20}=(1.025)^{20}=1638.62 \quad 1638.62-1000=\$ 638.62$
d) $\mathrm{A}=1000\left(1+\frac{.10}{12}\right)^{60}=(1.008 \overline{3})^{60}=1645.31 \quad 1645.31-1000=\$ 645.31$
e) $\mathrm{A}=1000\left(1+\frac{.10}{360}\right)^{1800}=(1.0002 \overline{7})^{1800}=1648.38 \quad 1648.38-1000=\$ 648.38$
30. $\mathrm{A}=\mathrm{p}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right) \mathrm{nt}$
$A=2500\left(1+\frac{0.0475}{4}\right)^{4 \bullet 15}=\$ 5,076.35$
31. Let $\mathrm{p}=1.00$. Then $\mathrm{A}=1\left(1+\frac{0.56}{360}\right)^{360}=1.05759$
$\mathrm{i}=1.05759-1.00=0.05759$
The effective annual yield is 5.76%.
32. $\mathrm{p}\left(1+\frac{0.055}{4}\right)^{80}=40000 \quad \mathrm{p}=\frac{40000}{(1.01375)^{80}}=13415.00 \quad$ You need to invest $\$ 13,415.00$
33. 48 mo. $\$ 176.14 / \mathrm{mo}$. $\$ 7500 \quad 24$ payments
a) $(176.14)(48)=8454.72$
$8454.72-7500=\$ 954.72$

$$
\left(\frac{954.72}{7500}\right)(100)=\$ 12.73 / \$ 100
$$

From Table 11.2, \$12.73 indicates an APR of 6.0\%
b) $\mathrm{n}=24, \mathrm{p}=176.14, \mathrm{v}=6.37 \quad \mathrm{u}=\frac{(24)(176.14)(6.37)}{100+6.37}=\frac{26928.28}{106.37}=\$ 253.16$
c) $(176.14)(48)=8454.72 \quad(176.14)(23)=4051.22 \quad 8454.72-4051.22=\$ 4403.50$
$4403.50-253.16=\$ 4150.34$
34. a) Amount financed $=\$ 3,500 \quad$ Finance charge $=(163.33)(24)-3500=\$ 419.92$
$\mathrm{f}=419.92, \mathrm{k}=12, \mathrm{n}=24 \quad \mathrm{u}=\frac{(419.92)(12)(13)}{(24)(25)}=\$ 109.18$
b) $1959.96-109.18=\$ 1850.78 \quad 1850.78+163.33=\$ 2014.11$
35. 24 mo. $\$ 111.73 / \mathrm{mo}$. Down payment $=\$ 86024$ payments
a) $3420-860=\$ 2560.00$
$(111.73)(24)=2681.52 \quad 2681.52-2560.00=\$ 121.52$
$\left(\frac{121.52}{2560}\right)(100)=\$ 4.75 / \$ 100$
From Table 11.2, \$4.75 indicates an APR of 4.5\%
b) $\mathrm{n}=12, \mathrm{p}=111.73, \mathrm{v}=2.45 \quad \mathrm{u}=\frac{(12)(111.73)(2.45)}{100+2.45}=\frac{3284.86}{102.45}=\$ 32.06$
c) $(111.73)(11)=1229.03 \quad 2681.52-1229.03=1452.49 \quad 1452.49-32.06=\$ 1420.43$
36. Balance $=\$ 485.75$ as of June $01 \quad i=1.3 \%$

June 04: $485.75-375.00)=\$ 110.75 \quad$ June 08: $110.75+370.00=\$ 480.75$
June 21: $480.75+175.80=\$ 656.55 \quad$ June 28: $656.55+184.75=\$ 841.30$
a) $(485.75)(.013)(1)=\$ 6.31$
b) $841.30+6.31=\$ 847.61$
c) $(485.75)(3)+(110.75)(4)+(480.75)(13)+(656.55)(7)+(841.30)(3)=\$ 15269.75$ $15269.75 / 30=\$ 508.99$
d) $(508.99)(.013)(1)=\$ 6.62$
e) $841.30+6.62=\$ 847.92$
37. a) Aug. 01: $\$ 185.72$

Aug. 05: $185.72+2.60=\$ 188.32$
Aug. 08: $188.32+85.75=\$ 274.07$
Aug. 10: $274.07-75.00=\$ 199.07$
Aug. 15: $199.07+72.85=\$ 271.92$
Aug. 21: $271.92+275.00=\$ 546.92$
b) As of Aug. 31, $544.32+2.60=\$ 546.92$
c) Date Balance \# of Days Balance-Days

| Aug. 01 | $185.72 \quad 4$ | $(185.72)(4)=742.88$ |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { Aug. } 05 & 188.32 & 3 & (188.32)(3)=564.96\end{array}$
$\begin{array}{llll}\text { Aug. } 08 & 274.07 & 2 & (274.07)(2)=548.14\end{array}$
$\begin{array}{llll}\text { Aug. } 10 & 199.07 & 5 & (199.07)(5)\end{array}=995.35$
$\begin{array}{llll}\text { Aug. } 15 & 271.92 & 6 & (271.92)(6)=1631.52\end{array}$
Aug. $21 \quad 546.92 \quad \underline{11} \quad \underline{(546.92)(11)}=6016.12$
sum $=\$ 10,498.97$
40. a) down payment $=(0.25)(135700)=\$ 33,925$
b) gross monthly income $=64000 / 12=\$ 5,333.33$ adjusted monthly income:
$5333.33-528.00=\$ 4,805.33$
c) maximum monthly payment:
$(0.28)(4805.33)=\$ 1,345.49$
d) $\left(\frac{101775}{1000}\right)(8.11)=\$ 825.40$
e) total monthly payment:
$825.40+316.67=\$ 1,142.07$
f) Yes, $\$ 1345.49$ is greater than $\$ 1142.07$.
41. a) down payment $=(0.15)(89900)=\$ 13,485$
b) amount of mortgage $=89,900-13,485=$ \$76,415
At 11.5% for 30 years, Table 11.4 yields 9.90 . monthly mortgage payment:

$$
\left(\frac{76415}{1000}\right)(9.90)=\$ 756.51
$$

c) $\mathrm{i}=\mathrm{prt}=(76415)(0.115)(1 / 12)=\$ 732.31$ amount applied to principal: $756.51-732.51=\$ 24.20$
d) total cost of house: $13485+(756.51)(12)(30)=$ \$285,828.60
e) total interest paid: $285,828.60-89900=$ \$195,928.60
42. a) amount of mortgage: $105,000-26,250=\$ 78,750 \quad$ First payment $=\left(\frac{78750}{1000}\right)(6.99)=\$ 550.40$
b) $5.00 \%+3.00 \%=8.00 \%$
c) $4.75 \%+3.00 \%=7.75 \%$

Chapter Test

1. $\mathrm{i}=(2000)(0.04)(1 / 2)=\$ 40.00$
2. $\mathrm{i}=\mathrm{prt}=(5000)(0.085)(18 / 12)=\$ 637.50$
3. Partial payment on Sept. 15 (45 days)
$\mathrm{i}=(5400)(0.125)(45 / 360)=\$ 84.375$
$\$ 3000.00-84.375=\$ 2,915.625$
$5400.00-2915.625=\$ 2484.375$
$\mathrm{i}=(2484.375)(0.125)(45 / 360)=\$ 38.82$
$2484.38+38.82=\$ 2523.20$
4. $84.38+38.82=\$ 123.20$
5. $(2350)(.85)=\$ 1997.50 \quad(2350)(.15)=352.50$
6. $\left(\frac{181.46}{1997.50}\right)(100)=\$ 9.08 / \$ 100$

In Table 11.2, $\$ 9.08$ is closest to $\$ 9.09$ which yields an APR of 8.5%.
2. $288=(1200)(0.08)(\mathrm{t}) \quad 288=96 \mathrm{t} \quad \mathrm{t}=3$ years
4. Total amount paid to the bank

$$
5000+637.50=\$ 5,637.50
$$

7. $\mathrm{A}=7500\left(1+\frac{0.03}{4}\right)^{8}=\$ 7961.99$
interest $=7961.99-7500.00=\$ 461.99$
8. $\mathrm{A}=2500\left(1+\frac{0.065}{12}\right)^{36}=\$ 3036.68$ interest $=3036.68-2500.00=\$ 536.68$
9. $(90.79)(24)=2178.96$
$2178.96-1997.50=181.46$
10. $\$ 6750 \quad \$ 1550 \mathrm{dp} 12 \mathrm{mo} . \quad 6750-1550=\$ 5200$ $5590.20-5200.00=390.20$
a) $\mathrm{u}=\frac{\mathrm{f} \cdot \mathrm{k}(\mathrm{k}+1)}{\mathrm{n}(\mathrm{n}+1)}=\frac{(390.20)(6)(7)}{12(3)}=\$ 105.05$
b) $(465.85)(5)=\$ 2329.25$
$5590.20-2329.25=\$ 3260.95$

$$
3260.95-105.05=\$ 3155.90
$$

13. $\$ 750036$ mo. $\$ 223.10 / \mathrm{mo}$. $\quad(223.10)(36)=8031.60 \quad 8031.60-7500.00=531.60$
a) $\left(\frac{181.46}{1997.50}\right)(100)=\$ 9.08 \quad$ In Table 11.2, $\$ 9.08$ yields an APR of $4,5 \%$.
b) $\mathrm{u}=\frac{(12)(223.10)(2.45)}{100+2.45}=\frac{6559.14}{102.45}=\$ 64.02$
c) $(223.10)(23)=5131.30 \quad 8031.60-5131.30=\$ 2900.30 \quad 2900.30-64.02=\$ 2836.28$
14. Mar. 23: $\$ 878.25$

Mar. 26: $878.25+95.89=\$ 974.14$
Mar. 30: $974.14+68.76=\$ 1042.90$
Apr. 03: $1042.90-450.00=\$ 592.90$
Apr. 15: $592.90+90.52=\$ 683.42$
Apr. 22: $683.42+450.85=\$ 1134.27$
a) $\mathrm{i}=(878.25)(.014)(1)=\$ 12.30$
b) $1134.27+12.30=\$ 1146.57$
c) Date Balance \# of Days Balance-Days
$\begin{array}{llll}\text { Mar. } 23 & 878.25 & 3 & (878.25)(3)=2634.75\end{array}$
$\begin{array}{llll}\text { Mar. } 26 & 974.14 & 4 & (974.14)(4)=3896.56\end{array}$
$\begin{array}{llll}\text { Mar. } 30 & 1042.90 \quad 4 \quad(1042.90)(4)=4171.60\end{array}$
$\begin{array}{llll}\text { Apr. } 03 & 592.90 & 12 \quad(592.90)(12)=7114.80\end{array}$
Apr. $15 \quad 683.42 \quad 7 \quad(683.42)(7)=4783.94$
Apr. $22 \quad 1134.27 \quad \underline{1} \quad(1134.27)(1)=1134.27$
sum $=\$ 23,735.92$
d) $(765.67)(.014)(1)=\$ 10.72$
e) $1134.27+10.72=\$ 1144.99$
15. down payment $=(0.15)(144500)=\$ 21,675.00$
17. maximum monthly payment $=(0.28)(6603.33)=$ \$1,848.93
16. gross monthly income $=86500 \div 12=\$ 7208.33$ $7,208.33-605.00=\$ 6,603.33 \mathrm{adj}$. mo. income
18. At 10.5% interest for 30 years, Table 11.4 yields \$9.15.
amount of loan $=144500-21675=\$ 122,825$
monthly payments $=\left(\frac{122825}{1000}\right)(9.15)=\$ 1,123.85$
19. $1123.85+304.17=\$ 1428.02$ total mo. payment
20. Yes, the bank feels he can afford $\$ 1,848.93$ per month and his payments would be $\$ 1,428.02$.
21. a) Total cost of the house:
$21675+(1123.85)(12)(30)=\$ 426,261$
b) interest $=426,261-144,500=\$ 281,761$

Group Projects

1. a) $\$ 340,860.00$
b) $\$ 308,420.00$
c) $\$ 23,274.33$
d) $\$ 174.80$
e) $\$ 121,135.34$
f) Make a down payment of $\$ 20,000$ and invest the difference in part (d).

CHAPTER TWELVE

PROBABILITY

Exercise Set 12.1

1. An experiment is a controlled operation that yields a set of results.
2. a) The possible results of an experiment are called its outcomes.
b) An event is a subcollection of the outcomes of an experiment.
3. Empirical probability is the relative frequency of occurrence of an event. It is determined by actual observation of an experiment.

$$
\mathrm{P}(\mathrm{E})=\frac{\text { number of times the event occurred }}{\text { number of times the experiment was performed }}
$$

4. The equally likely possible outcomes of an experiment.
5. Relative frequency over the long run can accurately be predicted, not individual events or totals.
6. The best way to determine the likelihood of death for a person is to observe others with similar characteristics.
7. Not necessarily, but it does mean that there is a $50: 50$ chance that 1 flip will land on heads.
8. Not necessarily, but it does mean that each outcome on a die has a chance of 1 in 6 of occurring.
9. Not necessarily, but it does mean that based on expirical data, Mr. Duncan may live until 79.21 years.
10. a) Roll a die 100 times and determine the number of times that a 5 occurs out of 100 .
b) Answers will vary (AWV). c) AWV
11. AWV
12. AWV
13. AWV
14. AWV
15. Of 30 birds: 14 finches 10 cardinals 6 blue jays
a) $\mathrm{P}(\mathrm{f})=14 / 30=7 / 15$
b) $\mathrm{P}(\mathrm{c})=10 / 30=1 / 3$
c) $\mathrm{P}(\mathrm{bj})=6 / 30=1 / 5$
16. Of 60 music lovers: 24 like rock 16 like country 8 like classical 12 like other types
a) $\mathrm{P}(\mathrm{r})=24 / 60=2 / 5$
b) $\mathrm{P}(\mathrm{c})=16 / 60=4 / 15$
c) $\mathrm{P}($ other $)=12 / 60=1 / 59$
17. Of 95 animals: 40 are dogs. $\quad 35$ are cats 15 are birds 5 are iguanas
a) $\mathrm{P}(\operatorname{dog})=40 / 95=8 / 19$
b) $\mathrm{P}($ cat $)=35 / 95=7 / 19$
c) $\mathrm{P}($ iguana $)=5 / 95=1 / 19$
18. $5 / 50000=1 / 10000=0.0001$
19. Of 900 people: $\quad 19 \%$ like bananas 32% like apples 22% like oranges 27% like others
a) Percents $=$ the relative frequencies of the events occurring.
b) $\mathrm{P}(\mathrm{a})=\frac{32}{100}=0.32$
c) $\mathrm{P}(\mathrm{o})=\frac{22}{100}=0.22$
d) $\mathrm{P}(\mathrm{b})=\frac{19}{100}=0.19$
20. $40,244 \mathrm{M}$ of a total of $131,100 \mathrm{M} \quad \mathrm{P}($ filing electronically $)=\frac{40,244,000,000}{131,100,000,000}=0.31$
$131,100 \mathrm{M}-40,244 \mathrm{M}=90,856 \mathrm{M}$ people that filed non-electronically
$\mathrm{P}($ filing non-electroncally $)=\frac{90,856,000,000}{131,100,000,000}=0.69$
21. a) $\mathrm{P}($ increase $)=\frac{\text { freq. of increases }}{\text { no. of observations }}=\frac{12}{12}=\frac{1}{1}=1$
b) Yes, the answer in part (a) is only an estimate based on observation.
22. a) $\mathrm{P}(\mathrm{A})=\frac{43}{645} \approx 0.067$
b) $\mathrm{P}(\mathrm{C})=\frac{260}{645} \approx 0.403$
c) $\mathrm{P}(\mathrm{D}$ or higher $)=\frac{90+260+182+43}{645}=0.891$
23. Of 80 votes: 22 for Austin 18 for Emily 20 for Kimberly 14 for Joshua 6 for others
a) $\mathrm{P}(\mathrm{A})=22 / 80=11 / 40$
b) $\mathrm{P}(\mathrm{E})=18 / 80=9 / 40$
c) $\mathrm{P}(\mathrm{K})=20 / 80=1 / 4$
d) $\mathrm{P}(\mathrm{J})=14 / 80=7 / 40$
e) $\mathrm{P}($ others $)=6 / 80=3 / 40$
24. Of changes in housing prices across 50 states:
a) $\mathrm{P}(\geq 60 \%)=2 / 50=1 / 25$
b) $\mathrm{P}(45 \%$ to $59.9 \%)=4 / 50=2 / 25$
c) $\mathrm{P}(30 \%$ to $44.9 \%)=15 / 50=3 / 10$
d) $\mathrm{P}(15 \%$ to $29.9 \%)=27 / 50$
e) $\mathrm{P}(10 \%$ to $14.9 \%)=2 / 50=1 / 25$
25. a) $\mathrm{P}($ bulls-eye $)=\frac{6}{20}=\frac{3}{10}$
b) $\mathrm{P}($ not bulls-eye $)=\frac{14}{20}=\frac{7}{10}$
c) $\mathrm{P}($ at least 20 pts. $)=\frac{14}{20}=\frac{7}{10}$
d) $\mathrm{P}($ does not score $)=\frac{2}{20}=\frac{1}{10}$
26. $\mathrm{P}(\operatorname{side} 4)=\frac{13}{100}=0.13$
27. a) $P($ affecting circular $)=\frac{0}{150}=0$
b) $\mathrm{P}($ affecting elliptical $)=\frac{50}{250}=0.2$
c) $\mathrm{P}($ affecting irregular $)=\frac{100}{100}=1$
28. Of $4,058,805$ babies born, $2,076,960$ were male and $1,981,845$ were female.
a) $\mathrm{P}(\mathrm{m})=\frac{2,076,960}{4,058,805}=0.51$
b) $P(f)=\frac{1,981,845}{4,058,805}=0.49$
29. a) $\mathrm{P}($ white flowers $)=\frac{224}{929}=0.24$
b) $\mathrm{P}($ purple flowers $)=\frac{705}{929}=0.76$
30. a) $\mathrm{P}($ tall plants $)=\frac{787}{1064}=0.74$
b) $\mathrm{P}($ short plants $)=\frac{277}{1064}=0.26$
31. Answers will vary (AWV).
32. Answers will vary (AWV).

Exercise Set 12.2

1. If each outcome of an experiment has the same chance of occurring as any other outcome, they are said to be equally likely outcomes.
2. $\mathrm{P}($ event $)=\frac{\text { no. of outcomes favorable to the event }}{\text { total number of possible outcomes }}$
3. $\mathrm{P}(\mathrm{A})+\mathrm{P}(\operatorname{not} \mathrm{A})=1$
4. $\mathrm{P}($ event will not occur $)=1-\frac{4}{9}=\frac{9}{9}-\frac{4}{9}=\frac{5}{9}$
5. $\mathrm{P}($ event will not occur $)=1-0.3=0.7$
6. $\mathrm{P}($ event will occur $)=1-0.25=0.75$
7. $\mathrm{P}($ event will occur $)=1-\frac{5}{12}=\frac{12}{12}-\frac{5}{12}=\frac{7}{12}$
8. a) 52
b) 13
c) 26
d) 4
e) 26
f) 12
g) 4
h) 4
9. The event must include all possible outcomes.
10. The sum of the probabilities of all outcomes $=1$.
11. a) $\mathrm{P}($ correct $)=1 / 5$
b) $\mathrm{P}($ correct $)=1 / 4$
12. a) $P($ channel 3$)=1 / 10$
b) $\mathrm{P}($ even channel $)=5 / 10=1 / 2$
c) $\mathrm{P}($ less than 7$)=7 / 10$
13. $\mathrm{P}($ you win $)=\frac{\text { one choice }}{52 \text { possible choices }}=\frac{1}{52}$
14. $\mathrm{P}(7)=\frac{4}{52}=\frac{1}{13}$
15. $\mathrm{P}(7$ or 9$)=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13}$
16. $\mathrm{P}(7)=\frac{48}{52}=\frac{12}{13}$
17. $\mathrm{P}(5$ of diamonds $)=\frac{1}{52}$
18. $\mathrm{P}($ black $)=\frac{13}{52}+\frac{13}{52}=\frac{26}{52}=\frac{1}{2}$
19. $\mathrm{P}($ heart $)=\frac{13}{52}=\frac{1}{4}$
20. $\mathrm{P}($ red or black $)=\frac{26}{52}+\frac{26}{52}=\frac{52}{52}=\frac{1}{1}=1$
21. $\mathrm{P}($ red and black $)=0$
22. $\mathrm{P}(>4$ and $<9)=\mathrm{P}(5,6,7,8)=\frac{16}{52}=\frac{4}{13}$
23. $\mathrm{P}($ jack of hearts $)=\frac{1}{52}$
24. a) $\mathrm{P}($ red $)=\frac{2}{4}=\frac{1}{2}$
b) $\mathrm{P}($ green $)=\frac{1}{4}$
c) $\mathrm{P}($ yellow $)=\frac{1}{4}$
d) $\mathrm{P}($ blue $)=0$
25. a) $\mathrm{P}($ red $)=\frac{1}{4} \quad$ b) $\mathrm{P}($ green $)=\frac{1}{2}$
c) $\mathrm{P}($ yellow $)=\frac{1}{4}$
d) $\mathrm{P}($ blue $)=0$
26. a) $\mathrm{P}($ red $)=\frac{2}{4}=\frac{1}{2}$
b) $\mathrm{P}($ green $)=0$
c) $\mathrm{P}($ yellow $)=\frac{1}{3}$
d) $\mathrm{P}($ blue $)=\frac{1}{6}$
27. a) $\mathrm{P}(\mathrm{red})=\frac{2}{4}=\frac{1}{2}$
b) $\mathrm{P}($ green $)=\frac{1}{8}$
c) $\mathrm{P}($ yellow $)=\frac{1}{8}$
d) $\mathrm{P}($ blue $)=\frac{1}{4}$

Of 100 cans: $\quad 30$ are cola (c) $\quad 40$ are orange (o) $\quad 10$ are ginger ale (ga) 20 are root beer (rb)
31. $\mathrm{P}(\mathrm{o})=\frac{40}{100}=\frac{2}{5}$
32. $\mathrm{P}(\mathrm{c}$ or o$)=\frac{70}{100}=\frac{7}{10}$
33. $\mathrm{P}(\mathrm{c}, \mathrm{rb}, \mathrm{o})=\frac{90}{100}=\frac{9}{10}$
34. $\mathrm{P}(\mathrm{ga})=\frac{10}{100}=\frac{1}{10}$
35. $P(600)=\frac{1}{12}$
36. $\mathrm{P}(>400)=\frac{5}{12}$
37. $\mathrm{P}($ lose $/$ bankrupt $)=\frac{2}{12}=\frac{1}{6}$
38. $\mathrm{P}(2500 /$ surprise $)=\frac{2}{12}=\frac{1}{6}$

Of 50 tennis balls: 23 are Wilson (w) $\quad 17$ are Penn (p) $\quad 10$ are other (o)
39. $\mathrm{P}(\mathrm{W})=\frac{23}{50}$
40. $\mathrm{P}(\mathrm{P})=\frac{17}{50}$
41. $\mathrm{P}(\operatorname{not} \mathrm{P})=\frac{33}{50}$
42. $\mathrm{P}(\mathrm{W}$ or P$)=\frac{40}{50}=\frac{4}{5}$

For a traffic light: $\quad 25$ seconds on red (r) $\quad 5$ seconds on yellow (y) $\quad 55$ seconds on green (g)
43. $\mathrm{P}(\mathrm{g})=\frac{55}{85}=\frac{11}{17}$
44. $\mathrm{P}(\mathrm{y})=\frac{5}{85}=\frac{1}{17}$
45. $\mathrm{P}($ not r$)=\frac{60}{85}=\frac{12}{17}$
46. $\mathrm{P}(\operatorname{not} \mathrm{g})=\frac{30}{85}=\frac{6}{17}$

Of 11 letters: $1=\mathrm{m} \quad 4=\mathrm{i} \quad 4=\mathrm{s} \quad 2=\mathrm{p}$
47. $\mathrm{P}(\mathrm{s})=\frac{4}{11}$
48. $\mathrm{P}($ not s$)=\frac{7}{11}$
49. $\mathrm{P}($ vowel $)=\frac{4}{11}$
50. $\mathrm{P}(\mathrm{i}$ or p$)=\frac{6}{11}$
51. $\mathrm{P}($ not v$)=1$ 52. $\mathrm{P}(\mathrm{w})=0$
53. $\mathrm{P}(=60)=\frac{1}{11}$
54. $\mathrm{P}(>250)=\frac{4}{11}$
55.
56.
$\mathrm{P}(>50$ and $<250)=\frac{4}{11} \quad \mathrm{P}(\leq 40$ and $\geq 163)=\frac{1}{11}$
57. $\mathrm{P}(15)=$ $\frac{1}{26}$
58. $\mathrm{P}($ orange $)=$ $\frac{13}{26}=\frac{1}{2}$
67. $P($ Jiffy $)=$ $\frac{50}{159}$
59. $\mathrm{P}(\geq 22)=$ $\frac{5}{26}$
63. $\mathrm{P}(\mathrm{GM}$, Ford, $\mathrm{C}-\mathrm{D})=$ $\frac{533}{715}$
71. P(Peter Pan - chunky) $=\frac{23}{159}$
60. $\mathrm{P}(\leq 6$ and/or $\leq 9)=$ $P(7,8,9)=\frac{3}{26}$
61. $\mathrm{P}($ male $)=$ $\frac{345}{715}=\frac{69}{143}$

$$
=\frac{533}{715}
$$

68. $\mathrm{P}($ Skippy $)=$ $\frac{39}{159}=\frac{13}{53}$
69. P(not GM,Ford,C-D)
70. $P($ chunky $)=$ $\frac{66}{159}=\frac{22}{53}$
71. $\mathrm{P}($ female $)=$
$\frac{370}{715}=\frac{74}{143}$
72. P(male-GM,Ford,C-D)
$=\frac{260}{715}=\frac{52}{143}$
73. $\mathrm{P}($ smooth $)=$
$\frac{93}{159}=\frac{31}{53}$
74. $\mathrm{P}($ red $)=\frac{2}{18}+\frac{1}{12}+\frac{1}{6}=\frac{4}{36}+\frac{3}{36}+\frac{6}{36}=\frac{13}{36}$
75. $\mathrm{P}($ green $)=\frac{1}{18}+\frac{2}{12}+\frac{1}{12}=\frac{1}{18}+\frac{3}{12}=\frac{2}{36}+\frac{9}{36}=\frac{11}{36}$
76. $\mathrm{P}($ yellow $)=\frac{1}{6}+\frac{1}{12}+\frac{1}{12}=\frac{2}{12}+\frac{2}{12}=\frac{4}{12}=\frac{1}{3}$
77. $\mathrm{P}($ red or green $)=\frac{13}{36}+\frac{11}{36}=\frac{24}{36}=\frac{2}{3}$
78. $\mathrm{P}($ yellow or green $)=\frac{1}{3}+\frac{11}{36}=\frac{23}{36}$
79. $\mathrm{P}($ red or yellow $)=\left(\frac{1}{6}+\frac{2}{18}+\frac{1}{12}\right)+\frac{1}{3}=\frac{25}{36}$
80. a) $\mathrm{P}(\mathrm{CC})=0 \quad$ b) $\mathrm{P}(\mathrm{CC})=1$
81. a) $\mathrm{P}(\mathrm{SCA})=\mathrm{P}\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right)=\frac{1}{4}$
b) $\mathrm{P}(\mathrm{SCT})=\mathrm{P}\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right.$ or $\left.\mathrm{S}_{2} \mathrm{~S}_{1}\right)=\frac{1}{2}$
c) $\mathrm{P}(\mathrm{NSCA}$ or NSCT$)=1-\left(\frac{1}{2}+\frac{1}{4}\right)=1-\frac{3}{4}=\frac{1}{4}$
82. a) $\mathrm{P}($ sparrow w/low attract. to PK$)=\frac{2}{7}$
b) $\mathrm{P}($ high attract. to $\mathrm{CC} /$ low attract to PK$)=0$
c) $\mathrm{P}($ high attract. to BSSS / low attract to PK$)=\frac{4}{7}$
83. a) $\mathrm{P}(\mathrm{R} / \mathrm{R})=\frac{2}{4} \cdot \frac{2}{4}=\frac{4}{16}=\frac{1}{4}$
b) $\mathrm{P}(\mathrm{G} / \mathrm{G})=\frac{2}{4} \bullet \frac{2}{4}=\frac{4}{16}=\frac{1}{4}$
c) $\mathrm{P}(\mathrm{R} / \mathrm{G})=\frac{2}{4} \cdot \frac{2}{4}=\frac{4}{16}=\frac{1}{4}$
84.

+	1	2	3	4	5	6
1	2	3	4	5	6	1
2	3	4	5	6	1	2
3	4	5	6	1	2	3
4	5	6	1	2	3	4
5	6	1	2	3	4	5
6	1	2	3	4	5	6
$5+2+2+5+3+4+4+3+1=29$						

Exercise Set 12.3

1. The odds against an event are found by dividing the probability that the event does not occur by the probability that the event does occur. The probabilities used should be expressed in fractional form.
2. The odds in favor of an event are found by dividing the probability that the event does occur by the probability that the event does not occur. The probabilities used should be expressed in fractional form.
3. Odds against are more commonly used.
4. If the odds against an event are a to b, then $P($ event occurs $)=\frac{b}{a+b}$ and $P($ event does not occur $)=\frac{a}{a+b}$.
5. $9: 5$ or 9 to 5
6. a) $\mathrm{P}($ event occurs $)=\frac{1}{1+1}=\frac{1}{2}$
b) $\mathrm{P}($ event fails to occur $)=\frac{1}{1+1}=\frac{1}{2}$
7. $3: 7$ or 3 to 7
8. a) $\mathrm{P}($ event fails $)=1-\mathrm{P}($ event occurs $)=1-\frac{1}{2}=\frac{1}{2}$
b) odds against the event $=\frac{\mathrm{P}(\text { event fails to occur })}{\mathrm{P}(\text { event occurs })}=$

$$
\frac{1 / 2}{1 / 2}=\left(\frac{1}{2}\right)\left(\frac{2}{1}\right)=\frac{1}{1} \text { or } 1: 1
$$

c) odds in favor of the event are $1: 1$.
9. a) $\mathrm{P}($ tie goes well $)=\frac{8}{27}$
b) $\mathrm{P}($ tie does not go well $)=\frac{19}{27}$
c) odds against tie going well $=$

$$
\frac{\mathrm{P}(\text { tie does not go well })}{\mathrm{P}(\text { tie goes well })}=\frac{19 / 27}{8 / 27}=\frac{19}{27} \frac{27}{8}=\frac{19}{8}
$$

d) odds in favor of it going well are 8:19.

11. $5: 1$

13. odds against rolling less than $3=\frac{\mathrm{P}(3 \text { or greater })}{\mathrm{P}(\text { less than } 3)}=$ $\frac{4 / 6}{2 / 6}=\frac{4}{6} \cdot \frac{6}{2}=\frac{4}{2}=\frac{2}{1}$ or $2: 1$
14. odds against a $6=\frac{\mathrm{P}(\text { failure to pick a } 6)}{\mathrm{P}(\text { pick a } 6)}=$ $\frac{48 / 52}{4 / 52}=\frac{48}{52} \cdot \frac{52}{4}=\frac{48}{4}=\frac{12}{1}$ or $12: 1$
Therefore, odds in favor of picking a 6 are 1:12.
15. odds against a picture card $=$
$\frac{\mathrm{P}(\text { failure to pick a picture })}{\mathrm{P}(\text { pick a picture })}=\frac{40 / 52}{12 / 52}=\frac{40}{12}=\frac{10}{3}$
or $10: 3$
Therefore, odds in favor of picking a picture card are 3:10.
16. odds against red $=$
$\frac{\mathrm{P}(\text { not red })}{\mathrm{P}(\text { red })}=\frac{1 / 2}{1 / 2}=\frac{1}{2} \cdot \frac{2}{1}=\frac{2}{2}=\frac{1}{1}$ or $1: 1$
17. odds against red $=\frac{\mathrm{P}(\text { not red })}{\mathrm{P}(\text { red })}=\frac{5 / 8}{3 / 8}=\frac{5}{8} \bullet \frac{8}{3}=\frac{5}{3}$ or 5:3
18. 14 bills: $7-\$ 1 ; 2-\$ 5 ; 4-\$ 10 ; 1-\$ 20$
a) $\mathrm{P}(\$ 5)=\frac{2}{14}=\frac{1}{7}$
b) $\mathrm{P}($ not $\$ 5)=\frac{12}{14}=\frac{6}{7}$
c) $1: 6$
d) $6: 1$
19. $3: 3$ or $1: 1$
20. odds against rolling greater than $4=$ $\frac{P(\text { failure to roll greater than } 4)}{P(\text { roll greater than } 4)}=$ $\mathrm{P}($ roll greater than 4$)$
21. odds against a heart $=\frac{\mathrm{P}(\text { failure to pick a heart })}{\mathrm{P}(\text { pick a heart })}=$ $\frac{39 / 52}{13 / 52}=\frac{39}{52} \cdot \frac{52}{13}=\frac{39}{13}=\frac{3}{1} \quad$ or $3: 1$
Therefore, odds in favor of picking a heart are 1:3.
22. odds against card greater than $5=$ $\frac{\mathrm{P}(\text { failure to pick a card greater than } 5)}{\mathrm{P}(\text { pick a card greater than } 5)}=$
$\frac{20 / 52}{32 / 52}=\frac{20}{52} \cdot \frac{52}{32}=\frac{20}{32}=\frac{5}{8}$ or $5: 8$
Therefore, odds in favor of picking a card greater than 5 are 8:5.
23. odds against red $=$
$\frac{\mathrm{P}(\text { not red })}{\mathrm{P}(\text { red })}=\frac{2 / 3}{1 / 3}=\frac{2}{3} \cdot \frac{3}{1}=\frac{6}{3}=\frac{2}{1}$ or $2: 1$
24. odds against red $=\frac{\mathrm{P}(\text { not red })}{\mathrm{P}(\text { red })}=\frac{5 / 8}{3 / 8}=\frac{58}{8}=\frac{5}{3}$
or 5:3
25. a) odds against selecting female $=$ $\frac{\mathrm{P}(\text { failure to select female })}{\mathrm{P}(\text { select female })}=\frac{16 / 30}{14 / 30}=\frac{16}{14}=\frac{8}{7}$ or 8:7.
b) odds against selecting male $=$
$\frac{\mathrm{P}(\text { failure to select male })}{\mathrm{P}(\text { select male })}=\frac{14 / 30}{16 / 30}=\frac{14}{16}=\frac{7}{8}$
or $7: 8$.
26. odds against a stripe $=\frac{\mathrm{P}(\text { not a stripe })}{\mathrm{P}(\text { stripe })}=$ $\frac{8 / 15}{7 / 15}=\frac{8}{15} \cdot \frac{15}{7}=\frac{8}{7} \quad$ or $8: 7$
27. odds in favor of not the 8 ball are
$\frac{\mathrm{P}(\text { not the } 8 \text { ball })}{\mathrm{P}(\text { the } 8 \text { ball })}=\frac{14 / 15}{1 / 15}=\frac{14}{15} \cdot \frac{15}{1}=\frac{14}{1} \quad$ or $14: 1$
28. odds against a ball with 9 or greater are
$\frac{\mathrm{P}(\text { less than } 9)}{\mathrm{P}(9 \text { or greater })}=\frac{8 / 15}{7 / 15}=\frac{8}{15} \cdot \frac{15}{7}=\frac{8}{7} \quad$ or $8: 7$
29. a) $\mathrm{P}(>\$ 5 \mathrm{M})=\frac{5}{9}$
b) Odds against payout $>\$ 5 \mathrm{M} \quad 4: 5$
30. The odds against testing negative $=$
$\frac{\mathrm{P}(\text { test positive })}{\mathrm{P}(\text { test negative })}=\frac{4 / 76}{72 / 76}=\frac{4}{72}=\frac{1}{18}$ or $1: 18$
31. a) $\mathrm{P}($ Carrie wins $)=\frac{7}{7+5}=\frac{7}{12}$
b) $\mathrm{P}($ Carrie loses $)=\frac{5}{7+5}=\frac{5}{12}$
32. Odds against $4: 11 \quad \mathrm{P}($ promoted $)=\frac{11}{4+11}=\frac{11}{15}$
33. $\mathrm{P}(\mathrm{G})=\frac{15}{75}=\frac{1}{5}$
34. a) odds against winning $=\frac{\mathrm{P}(\text { failure to } \mathrm{win})}{\mathrm{P}(\text { win })}=$

$$
\frac{999999 / 1000000}{1 / 1000000}=\frac{999999}{1} \text { or } 999,999: 1
$$

b) odds against winning $=\frac{\mathrm{P}(\text { failure to } \mathrm{win})}{\mathrm{P}(\mathrm{win})}=$

$$
\frac{999990 / 1000000}{10 / 1000000}=\frac{99999}{1} \text { or } 99,999: 1
$$

26. odds in favor of even are $\frac{\mathrm{P}(\text { even })}{\mathrm{P}(\text { not even })}=$ $\frac{7 / 15}{8 / 15}=\frac{7}{15} \cdot \frac{15}{8}=\frac{7}{8} \quad$ or $7: 8$
27. odds against a ball with yellow are
$\frac{\mathrm{P}(\text { no yellow })}{\mathrm{P}(\text { yellow })}=\frac{13 / 15}{2 / 15}=\frac{13}{15} \cdot \frac{15}{2}=\frac{13}{2}$ or $13: 2$
28. The odds in favor of two digits $=$
$\frac{\mathrm{P}(\text { two digits })}{\mathrm{P}(\text { not two digits })}=\frac{6 / 15}{9 / 15}=\frac{6}{9}=\frac{2}{3}$ or $2: 3$
29. a) $P(2$ dots $)=\frac{1}{3}$
b) Odds against rolling 2 dots $4: 2$ or $2: 1$
30. The odds against red $=\frac{\mathrm{P}(\text { red })}{\mathrm{P}(\text { not red })}=\frac{2 / 11}{9 / 11}=\frac{2}{9}$ or $2: 9$
31. a) $\mathrm{P}($ Claire wins $)=\frac{2}{2+7}=\frac{2}{9}$
b) $\mathrm{P}($ Carrie loses $)=\frac{7}{2+7}=\frac{7}{9}$
32. Odds against $5: 2$ a) $\mathrm{P}($ wins $)=\frac{2}{2+5}=\frac{2}{7}$
b) $\mathrm{P}($ loses $)=\frac{5}{2+5}=\frac{5}{7}$
33. $\mathrm{P}($ not G$)=1-\frac{1}{5}=\frac{4}{5}$
34. Odds in favor of $\mathrm{N}=\frac{\mathrm{P}(\mathrm{N})}{\mathrm{P}(\operatorname{not} \mathrm{N})}=\frac{1 / 5}{4 / 5}=\frac{1}{4}$ or $1: 4$
35. Odds against N are $4: 1$
36. $\mathrm{P}(\mathrm{A}+)=\frac{34}{100}=0.34$
37. $\frac{66}{34}=\frac{33}{17}$ or $33: 17$
38. $\mathrm{P}(\mathrm{O}$ or $\mathrm{O}-)=\frac{43}{100}=\frac{43}{43+57}$ or $43: 57$
39. If $\mathrm{P}($ selling out $)=0.9=\frac{9}{10}$, then
$\mathrm{P}($ do not sell your car this week $)=1-\frac{9}{10}=\frac{1}{10}$.
The odds against selling out $=\frac{1 / 10}{9 / 10}=\frac{1}{9}$ or 1:9.
40. If $\mathrm{P}($ all parts are present $)=\frac{7}{8}$, then the odds in favor of all parts being present are $7: 1$.
41. a) $\mathrm{P}($ Douglas is a male $)=\frac{20}{21}$
b) Odds against being a female are $20: 1$.
42. $\mathrm{P}(\# 1$ wins $)=\frac{2}{9} \quad \mathrm{P}(\# 2$ wins $)=\frac{1}{3}$
$\mathrm{P}(\# 3$ wins $)=\frac{1}{16} \quad \mathrm{P}(\# 4$ wins $)=\frac{5}{12}$
$P(\# 5$ wins $)=\frac{1}{2}$
43. Odds against $\mathrm{I}-27=$
$\frac{\mathrm{P}(\text { not I-27) }}{\mathrm{P}(\mathrm{I}-27)}=\frac{74 / 75}{1 / 75}=\left(\frac{74}{75}\right)\left(\frac{75}{1}\right)=\frac{74}{1}$ or $74: 1$
44. Odds in favor of I-27 are 1:74
45. $\mathrm{P}(\mathrm{B}-)=\frac{2}{100}=0.02$
46. $\frac{2}{98}=\frac{1}{49}$ or $1: 49$
47. $\mathrm{P}(\mathrm{A}+$ or $\mathrm{O}+)=\frac{71}{100}=\frac{71}{71+29}$ or $29: 71$
48. If $\mathrm{P}($ overtime $)=\frac{3}{8}$, then $\mathrm{P}($ no overtime $)=$ $1-1-\frac{3}{8}=\frac{5}{8} \quad$ The odds in favor of being asked to work overtime $=\frac{3 / 8}{5 / 8}=\frac{3}{5}$ or $3: 5$
49. a) $\mathrm{P}($ Mr. Frank is audited $)=\frac{1}{42}$
b) Odds against Mr. Frank being audited are $41: 1$.
50. $\mathrm{P}($ even or $>3)=\frac{1}{2}+\frac{1}{2}-\frac{2}{6}=1-\frac{2}{6}=\frac{4}{6}=\frac{2}{3}$

Odds against even or >3 are $\frac{1 / 3}{2 / 3}=\frac{1}{2}$ or $1: 2$.
58. a) $\mathrm{P}(\mathrm{R})=\frac{9}{19}$
b) Odds against red are 10:9
c) $\mathrm{P}(0$ or 00$)=\frac{1}{19}$
d) Odds in favor of 0 or 00 are 1:18.
59. $119648+6742+506+77=126,973$ multiple births $.03 x=126973 \quad x=4,232,433$ total births Odds against a multiple birth $\frac{(4232433-126973)}{126973}=\frac{4105460}{126973}=\frac{97}{3}$ or $97: 3$.

Exercise Set 12.4

1. Expected value is used to determine the average gain or loss of an experiment over the long run.
2. An expected value of 0 indicates that the individual would break even over the long run.
3. The fair price is the amount charged for the game to be fair and result in an expected value of 0 .
4. a) $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}$
b) $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}$
5. To obtain fair price, add the cost to play to the expected value.
6. No, fair price is the price to pay to make the expected value 0 . The expected value is the expected outcome of an experiment when the experiment is performed many times
7. $\$ 0.50$. Since you would lose $\$ 1.00$ on average for each game you played, the fair price of the game should be $\$ 1.00$ less. Then the expected value would be 0 , and the game would be fair.
8. Fair price $=P_{1} G_{1}+P_{2} G_{2}+P_{3} G_{3}$
9. a) A $\$ 10$ bet is the same as five $\$ 2$ bets, thus Marty's expected value is $5(-0.40)=-\$ 2.00$
b) On average he can expect to lose $\$ 2.00$
10. a) Paul's expected value on a $\$ 5$ bet is $5(0.20)=\$ 1.00$.
b) If he makes many $\$ 5$ bets he can expect to win, on average, $\$ 1.00$ per bet.
11. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}=0.70(200)+0.30(120)=140+36=176$ people
12. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}=0.60(80000)+0.40(-20000)=48000-8000=\$ 40000$
13. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}=0.50(78)+0.50(62)=39+31=70$ points
14. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}=0.40(20)+0.60(12)=8+7.2=15.2$ people
15. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}=0.40(1.2 \mathrm{M})+0.60(1.6 \mathrm{M})=.48 \mathrm{M}+.96 \mathrm{M}=1.44 \mathrm{M}$ viewers
16. a) $\mathrm{E}=\mathrm{P}($ sunny $)(1 / 2)+\mathrm{P}($ cloudy $)(1 / 4) \quad \mathrm{E}=0.75(1 / 2)+0.25(1 / 4)=0.375+0.0625=0.4375$ inches/day
b) $(0.4375$ inches per day $)(31$ days $)=13.5625$ inches of growth during July is expected
17. a) $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}=(.60)(10000)+(.10)(0)+(.30)(7200)=6000+0+-2160=\$ 3840$
18. a) $(.7)(5)+(.3)(10)=.35+3=\$ 6.50$
b) $100.00-6.50=\$ 93.50$
19. a) $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}=\mathrm{P}(\$ 1$ off $)(\$ 1)+\mathrm{P}(\$ 2$ off $)(\$ 2)+\mathrm{P}(\$ 5$ off $)(\$ 5)$
$\mathrm{E}=(1 / 10)(1)+(2 / 10)(2)+(1 / 10)(5)=7 / 10+4 / 10+5 / 10=16 / 10=\$ 1.60$
20. a) $(1 / 4)(5)+(3 / 4)(-2)=1.25-1.50=-\$.25$ for Mike
b) $(1 / 4)(-5)+(3 / 4)(2)=-1.25+1.50=\$.50$ for Dave
21. a) $(2 / 6)(8)+(4 / 6)(-5)=8 / 3-20 / 6=16 / 6-20 / 6=-4 / 6=-\$.67$
b) $(2 / 6)(-8)+(4 / 6)(5)=-8 / 3+20 / 6==16 / 6+20 / 6=\$.67$
22. a) $(2 / 5)(-8)+(3 / 5)(5)=-16 / 5+3 / 1=-3.20+3.00=-\$.20$
b) $(2 / 5)(8)+(3 / 5)(-5)=16 / 5-3 / 1=3.20-3.00=\$.20$
23. a) $(1 / 5)(5)+(0)(0)+(4 / 5)(-1)=1-4 / 5=1 / 5$

Yes, positive expectations $=1 / 5$
b) $(1 / 4)(5)+(0)(0)+(3 / 4)(-1)=5 / 4-3 / 4=1 / 2$

Yes, positive expectations $=1 / 2$
24. a) $(1 / 4)(5)+(0)(0)+(3 / 4)(-2)=5 / 4-6 / 4=-1 / 4$

No, negative expectations $=-1 / 4$
b) $(1 / 3)(5)+(0)(0)+(2 / 3)(-2)=5 / 3-4 / 3=1 / 3$

Yes, positive expectations $=1 / 3$
25. a) $\left(\frac{1}{500}\right)(400)+\left(\frac{499}{500}\right)(-2)=\frac{400-998}{500}=$

$$
\frac{-598}{500}=\frac{-299}{250}=-1.196 \approx-\$ 1.20
$$

b) Fair price $=-1.20+2.00=\$.80$
26. a) $\left(\frac{1}{1000}\right)(800)+\left(\frac{999}{1000}\right)(-1)=\frac{800-999}{1000}=$

$$
\frac{800}{1000}-\frac{999}{1000}=\frac{-199}{1000}=-.199 \approx-\$ 0.20
$$

b) Fair price $=-0.20+1.00=\$.80$
27. a) $\left(\frac{1}{2000}\right)(1000)+\left(\frac{2}{2000}\right)(500)+\left(\frac{1997}{2000}\right)(-3)=.50+.50+-2.9955=-\$ 2.00$
b) Fair price $=-2.00+3.00=\$ 1.00$
28. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}+\mathrm{P}_{4} \mathrm{~A}_{4}$

$$
\begin{aligned}
E & =\left(\frac{1}{10000}\right)(\$ 9,995)+\left(\frac{1}{10000}\right)(\$ 4,995)+\left(\frac{2}{10000}\right)(\$ 995)+\left(\frac{9996}{10000}\right)(-\$ 5) \\
& =\frac{9995}{10000}+\frac{4995}{10000}+\frac{1990}{10000}+\frac{49980}{10000}=\frac{33000}{10000}=-\$ 3.30
\end{aligned}
$$

29. $\frac{1}{2}(1)+\frac{1}{2}(10)=\frac{1}{2}+5=5.5=\$ 5.50$
30. $\frac{1}{2}(10)+\frac{1}{4}(-5)+\frac{1}{4}(-20)=5-1.25-5=-\$ 1.25$
31. a) $\frac{1}{2}(1)+\frac{1}{2}(5)=.50+2.50=\$ 3.00$
b) Fair price $=3.00-2.00=\$ 1.00$
32. a) $\frac{1}{2}(1)+\frac{1}{4}(5)+\frac{1}{4}(10)=.50+1.25+2.50=\$ 4.25$
b) Fair price $=4.25-2.00=\$ 2.25$
33. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}+\mathrm{P}_{4} \mathrm{~A}_{4}+\mathrm{P}_{5} \mathrm{~A}_{5}=$ $0.17(1)+0.10(2)+0.02(3)+0.08(4)+0.63(0)=$ 0.75 base
34. $\frac{1}{2}(5)+\frac{1}{4}(1)+\frac{1}{4}(10)=2.50+.25+2.50=\$ 5.25$
35. $\frac{1}{2}(-10)+\frac{1}{4}(2)+\frac{1}{4}(20)=-5+.50+5=\$ 0.50$
36. a) $\frac{1}{2}(10)+\frac{1}{4}(1)+\frac{1}{4}(5)=5+.25+1.25=\$ 6.50$
b) Fair price $=6.50-2.00=\$ 4.50$
37. a) $\frac{1}{4}(5)+\frac{3}{8}(10)+\frac{3}{8}(1)=1.25+3.75+.38=\$ 5.38$
b) Fair price $=5.38-2.00=\$ 3.38$
38. $\mathrm{E}_{\text {company }}=\mathrm{P}($ insured lives $)($ amount gained $)+$ P(insured dies)(amount lost)
$\mathrm{E}_{\mathrm{co}}=(0.994)(100)+(0.006)(9,900)=99.4-59.4$
$=\$ 40$, which is the amount the company gains on this type of policy.
39. a) $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}$

$$
\begin{aligned}
& =\frac{3}{10}(4)+\frac{5}{10}(3)+\frac{2}{10}(1)=1.2+1.5+0.2 \\
& =2.9 \text { points }
\end{aligned}
$$

b) Fair price $=2.9$ points
c) $3(E)=3(2.9)=8.7$ points
40. a) $E=P_{1} A_{1}+P_{2} A_{2}+P_{3} A_{3}$
$=\frac{3}{10}(5)+\frac{5}{10}(2)+\frac{2}{10}(-3)=1.5+1.0-0.6$
$=1.9$ points
b) Fair price $=1.9$ points
c) $3(\mathrm{E})=3(1.9)=5.7$ points
41. $(0.34)(850)+(0.66)(140)=289+92.4=$ 381.4 employees
43. $(.11)(10)+(.65)(15)+(.24)(20)=1.1+9.75+4.8=$ 15.65 minutes
45. $\mathrm{E}=\mathrm{P}(1)(1)+\mathrm{P}(2)(2)+\mathrm{P}(3)(3)+\mathrm{P}(4)(4)+\mathrm{P}(5)(5)$

$$
+\mathrm{P}(6)(6)
$$

$$
=\frac{1}{6}(1)+\frac{1}{6}(2)+\frac{1}{6}(3)+\frac{1}{6}(4)+\frac{1}{6}(5)+\frac{1}{6}(6)
$$

$=\frac{21}{6}=3.5$ points
48. Profit if Jorge sells the house $=0.06(100,000)$

$$
=\$ 6,000
$$

Profit if another Realtor sells the house $=$

$$
0.03(100,000)=\$ 3,00
$$

$$
\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}
$$

$$
=0.2(5000)+0.5(2000)+0.3(1000)
$$

$$
=\$ 1,000+\$ 1,000-\$ 300=\$ 1,700 \text { gain }
$$

Yes, in the long run if Jorge lists many of these $\$ 100,000$ homes, he can expect to make, on average, $\$ 1,700$ per listing.
50. a) $\mathrm{P}(\$ 1)=\frac{1}{6}+\frac{1}{4}=\frac{2}{12}+\frac{3}{12}=\frac{5}{12}=\frac{10}{24}$, $\mathrm{P}(\$ 10)=\frac{1}{6}=\frac{4}{24}, \mathrm{P}(\$ 20)=\frac{1}{6}+\frac{1}{8}=\frac{4}{24}+\frac{3}{24}=\frac{7}{24}$, $P(\$ 100)=\frac{1}{8}=\frac{3}{24}$
c) fair price $=$ expected value - cost to play $=$ $\$ 20.42-0=\$ 20.42$
51. $\mathrm{E}=\mathrm{P}($ insured lives $)($ cost $)+\mathrm{P}($ insured dies $)(\operatorname{cost}-$

$$
\begin{aligned}
& \$ 40,000) \\
= & 0.97(\cos t)+0.03(\operatorname{cost}-40,000) \\
= & 0.97(\cos t)+0.03(\cos t)-1200 \\
= & 1.00(\cos t)-1200
\end{aligned}
$$

Thus, in order for the company to make a profit, the cost must exceed $\$ 1,200$
42. $(.62)(2.3 \mathrm{M})+(.38)(1.7 \mathrm{M})=1.426 \mathrm{M}+.646 \mathrm{M}=$ $\$ 2.072 \mathrm{M}$
44. $(.40)(1000)+(.50)(500)+(.10)(0)=$ $400+250=\$ 650.00$
46. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}$

$$
=0.70(40,000)+0.10(0)+0.20(-30,000)
$$

$$
=28,000+0-6,000=\$ 22,000
$$

47. $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}$

$$
\begin{aligned}
& =\frac{200}{365}(110)+\frac{100}{365}(160)+\frac{65}{365}(210) \\
& =60.27+43.84+37.40=141.51 \text { calls } / \text { day }
\end{aligned}
$$

49. a) $\mathrm{P}(1)=\frac{1}{2}+\frac{1}{16}=\frac{8}{16}+\frac{1}{16}=\frac{9}{16}, \mathrm{P}(10)=\frac{1}{4}=\frac{4}{16}$, $\mathrm{P}(\$ 20)=\frac{1}{8}=\frac{2}{16}, \mathrm{P}(\$ 100)=\frac{1}{16}$
b) $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}+\mathrm{P}_{4} \mathrm{~A}_{4}$

$$
\begin{aligned}
& =\frac{9}{16}(\$ 1)+\frac{4}{16}(\$ 10)+\frac{2}{16}(\$ 20)+\frac{1}{16}(\$ 100) \\
& =\frac{9}{16}+\frac{40}{16}+\frac{40}{16}+\frac{100}{16}=\frac{189}{16}=\$ 11.81
\end{aligned}
$$

c) fair price $=$ expected value - cost to play $=$ $\$ 11.81-0=\$ 11.81$
50. b) $\mathrm{E}=\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}+\mathrm{P}_{4} \mathrm{~A}_{4}$

$$
\begin{aligned}
& =\frac{10}{24}(1)+\frac{4}{24}(10)+\frac{7}{24}(20)+\frac{3}{24}(100) \\
& =\frac{10}{24}+\frac{40}{24}+\frac{140}{24}+\frac{300}{24}=\frac{490}{24}=\$ 20.42
\end{aligned}
$$

52. No, you don't know how many others are selecting the same numbers that you are selecting.
53. $\mathrm{E}=\mathrm{P}($ win $)($ amount won $)+\mathrm{P}($ lose $)($ amount lost $)$

$$
\begin{aligned}
& =\left(\frac{1}{38}\right)(35)+\left(\frac{37}{38}\right)(-1)=\frac{35}{38}-\frac{37}{38}=-\frac{2}{38} \\
& =-\$ 0.053
\end{aligned}
$$

54. $\mathrm{E}=\mathrm{P}($ win $)($ amount won $)+\mathrm{P}($ lose $)($ amount lost $)=\left(\frac{18}{38}\right)(1)+\left(\frac{20}{38}\right)(-1)=\frac{18}{38}-\frac{20}{38}=-\frac{2}{38}=-\$ 0.053$
55. a) $\mathrm{E}=\frac{1}{12}(100)+\frac{1}{12}(200)+\frac{1}{12}(300)+\frac{1}{12}(400)+\frac{1}{12}(500)+\frac{1}{12}(600)+\frac{1}{12}(700)+\frac{1}{12}(800)+\frac{1}{12}(900)$

$$
\frac{1}{12}(1000)=\left(\frac{5500}{12}\right)=\$ 458.3 \overline{3}
$$

b) $\mathrm{E}=\frac{1}{12}(5500)+\frac{1}{12}(-1800)=\frac{3700}{12}=\$ 308.33$

Exercise Set 12.5

1. If a first experiment can be performed in M distinct way and a second experiment can be performed in N distinct ways, then the two experiments in that specific order can be performed in $\mathrm{M} \cdot \mathrm{N}$ distinct ways.
2. a) A list of all the possible outcomes of an experiment.
b) Each individual outcome in a sample space is a sample point.
3. $(2)(7)=14$ ways. Using the counting principle.
4. Answers will vary.
5. The first selection is made. Then the second selection is made before the first selection is returned to the group of items being selected.
6. $(5)(2)=10$ ways
7. a) $(50)(50)=2500$
b) $(50)(49)=2450$
8. a) $(365)(365)=133,225$
b) $(365)(364)=132,860$
9. a) $(6)(6)(6)=216$
b) $(6)(5)(4)=120$
10. a) $(10)(10)=100$
b) $(10)(9)=90$
11. a) $(2)(2)=4$ points
b)

c) $\mathrm{P}($ no heads $)=1 / 4$
d) $\mathrm{P}($ exactly one head $)=2 / 4=1 / 2$
e) $\mathrm{P}($ two heads $)=1 / 4$
12. a) $(3)(3)=9$ points
b)

c) $\mathrm{P}($ two Jacks $)=1 / 9$
d) $P($ Jack and then Queen $)=1 / 9$
e) $\mathrm{P}($ at least one King $)=5 / 9$
13. a) $(2)(2)=4$ points
b)

c) $\mathrm{P}($ two girls $)=1 / 4$
d) $\mathrm{P}($ at least one girl $)=3 / 4$
e) $\mathrm{P}\left(\right.$ girl $1^{\text {st }}$ and boy $\left.2^{\text {nd }}\right)=1 / 4$
14. a) $(3)(2)=6$ points
b)

c) $\mathrm{P}($ two Jacks $)=0 / 6=0$
d) $P($ Jack and then Queen $)=1 / 6$
e) $\mathrm{P}($ at least one King $)=4 / 6=2 / 3$
15. a) $(4)(3)=12$ points
b)

c) $\mathrm{P}($ exactly one red $)=6 / 12=1 / 2$
d) $\mathrm{P}($ at least one is not red $)=12 / 12=1$
e) $\mathrm{P}($ no green $)=6 / 12=1 / 2$
16. a) $(2)(2)(2)=8$ points
b

c) $\mathrm{P}($ no boys $)=1 / 8$
d) $\mathrm{P}($ at least one girl $)=7 / 8$
e) $\mathrm{P}($ either exactly 2 boys or 2 girls $)=6 / 8=3 / 4$
f) $\mathrm{P}\left(\right.$ boy $1^{\text {st }}$ and boy $2^{\text {nd }}$ and girl $\left.3^{\text {rd }}\right)=1 / 8$
17. a) $(4)(3)=12$ points
b)

c) $\mathrm{P}($ Persian cat $)=6 / 12=1 / 2$
d) $\mathrm{P}($ Persian cat and calico cat $)=2 / 12=1 / 6$
e) $\mathrm{P}($ not Persiann $)=6 / 12=1 / 2$
18. a) $(2)(2)(2)=8$ points
b)

c) $\mathrm{P}($ no heads $)=1 / 8$
d) $\mathrm{P}(1$ head $)=3 / 8$
e) $\mathrm{P}(3$ heads $)=1 / 8$
19. a) $(6)(6)=36$ points
b)

c) $\mathrm{P}($ double $)=6 / 36=1 / 6$
d) $\mathrm{P}($ sum of 7$)=6 / 36=1 / 6$
e) $\mathrm{P}($ sum of 2$)=1 / 36$
f) No; the $\mathrm{P}($ sum of 2$)<\mathrm{P}($ sum of 7$)$
20. a) $(3)(3)(3)=27$ points
b)

c) $\mathrm{P}($ No vote on all three motions $)=1 / 27$
d) $\mathrm{P}($ Yes vote on exactly two motions $)=6 / 27=2 / 9$
e) $\mathrm{P}($ at least one yes vote $)=19 / 27$
21. a) $(3)(3)(2)=18$
b)

c) $\mathrm{P}($ Honey $\mathrm{B} ' \mathrm{~s})=6 / 18=1 / 3$
d) $\mathrm{P}($ Rice Krispies and Ginger Ale $)=2 / 18=1 / 9$
e) $\mathrm{P}($ not black cherry $)=12 / 18=2 / 3$
22. a) $(3)(2)(1)=6$ points
b)

c) $\mathrm{P}($ Sears $-1 \mathrm{st})=2 / 6=1 / 3$
d) $\mathrm{P}\left(\right.$ Home Depot $-1^{\text {st }} /$ Outback - last $)=1 / 6$
e) $\mathrm{P}($ Sears,Outback,Home Depot $)=1 / 6$
23. a) $(4)(3)=12$ points
b)

c) $P($ M.K. or E.C. $)=6 / 12=1 / 2$
d) $\mathrm{P}($ MGM or Univ. $)=6 / 12=1 / 2$
e) $P($ M.K. and (S.W. or B.G. $))=2 / 12=1 / 6$
24. a) $(4)(2)(2)=16$ points
b)

c) $\mathrm{P}($ Apple $)=1 / 4$
d) $\mathrm{P}(\mathrm{H}-\mathrm{P})=1 / 2$
e) $\mathrm{P}($ Apple and $\mathrm{H}-\mathrm{P})=2 / 16=1 / 8$
25. a) $(3)(3)(3)=27$
b)

Sample Space

c) $\mathrm{P}(\mathrm{GE}, \mathrm{GE}, \mathrm{GE})=1 / 27$
d) $P($ not GE $)=8 / 27$
e) $\mathrm{P}($ at least 1 GE$)=19 / 27$
26. a) $(2)(3)(4)=24$ points
b)

c) $\mathrm{P}($ geo. $)=1 / 4$
d) $\mathrm{P}($ geo. or chem. $)=2 / 4=1 / 2$
e) $\mathrm{P}($ not calc. $)=16 / 24=2 / 3$
27. a) $(2)(4)(3)=24$ sample points
b)

c) $\mathrm{P}(\mathrm{M}$, black, blue $)=1 / 24$
d) $\mathrm{P}(\mathrm{F}$, blonde $)=3 / 24=1 / 8$
28. a) $(2)(2)(2)(2)=16$ sample points
b)

c) $\mathrm{P}($ round peas $)=8 / 16=1 / 2$
d) $\mathrm{P}(\mathrm{s}, \mathrm{w}, \mathrm{y}, \mathrm{p})=1 / 16$
29. a) $\mathrm{P}($ white $)=1 / 3$
b) $\mathrm{P}($ red $)=2 / 3$
c) No; $\mathrm{P}($ white $)<\mathrm{P}($ red $)$
d)

e) $\left\{\mathrm{ww}, \mathrm{wr}_{1}, \mathrm{wr}_{2}, \mathrm{r}_{1} \mathrm{w}, \mathrm{r}_{1} \mathrm{r}_{1}, \mathrm{r}_{1} \mathrm{r}_{2}, \mathrm{r}_{2} \mathrm{w}, \mathrm{r}_{2} \mathrm{r}_{1}, \mathrm{r}_{2} \mathrm{r}_{2}\right\}$
f) $\mathrm{P}(2 \mathrm{r})=4 / 9$
g) $\mathrm{P}(\mathrm{w}$, then r$)=2 / 9$
h) $\mathrm{P}(\mathrm{w}$ and r , any order $)=4 / 9$
i) $\mathrm{P}($ at least 1 r$)=8 / 9$
30. e) No; same reason as in d)
f) Yes; $(1 / 2)(1 / 2)=1 / 4$
31. 1 red, 1 blue, and 1 brown

Exercise Set 12.6

1. a) "or" means at least one event A or B must occur. b) "and" means both events, A and B, must occur.
2. a) $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
3. a) Two events are mutually exclusive if it is impossible for both events to occur simultaneously.
b) $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
4. a) $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \sqcup \mathrm{P}(\mathrm{B}$, given that A has occurred $)$
5. We assume that event A has already occurred.
6. Two events are independent if the occurrence of either event in no way affects the probability of occurrence of the other event. Ex. toss two coins; find P (tails and tails)
7. Two events are dependent if the occurrence of either event affects the probability of occurrence of the other event. Ex. Select two cards from a deck (without replacement); find P (King and King).
8. a) No, it is possible for both to like classical music.
b) No, if the mother likes classical music the daughter will be more likely to like classical music.
9. a) No, both mother and father may be teachers.
b) No, studies have shown that if the husband or wife is a teacher there is an increased probability that their spouse is also a teacher.
10. a) No, it is possible for an individual to be both happy and healthy at the same time.
b) No, if you are healthy, you are more likely to be happy.
11. If the events are mutually exclusive, the events
12. Student activity problem. cannot happen simultaneously and thus
$\mathrm{P}(\mathrm{A}$ and B$)=0$.
13. $P(A$ and $B)=0.3$
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

$$
=0.6+0.4-(0.6)(0.4)=1.0-0.3=0.7
$$

15. $\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A}$ or B$)+\mathrm{P}(\mathrm{A}$ and B$)-\mathrm{P}(\mathrm{A})$

$$
=0.8+0.1-0.4=0.5
$$

17. $\mathrm{P}(2$ or 5$)=1 / 6+1 / 6=2 / 6=1 / 3$
18. $\mathrm{P}($ greater than 4 or less than 2$)=\mathrm{P}(5,6$. or 1$)=$ $2 / 6+1 / 6=3 / 6=1 / 2$
19. Since these events are mutually exclusive,
$\mathrm{P}($ ace or king $)=\mathrm{P}($ ace $)+\mathrm{P}($ king $)=$ $=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13}$
20. Since it is possible to obtain a card that is a picture card and a red card, these events are not mutually exclusive.
$\mathrm{P}($ picture or red $)=\mathrm{P}($ pict. $)+\mathrm{P}($ red $)-\mathrm{P}($ pict. \& red $)$

$$
=\frac{12}{52}+\frac{26}{52}-\frac{6}{52}=\frac{32}{52}=\frac{8}{13}
$$

25. Since it is possible to obtain a card less than 9 that is a club, these events are not mutually exclusive. $\mathrm{P}(<7$ or club $)=\frac{24}{52}+\frac{13}{52}-\frac{6}{52}=\frac{31}{52}$
26. a) $\mathrm{P}($ frog and frog $)=\frac{5}{20} \cdot \frac{5}{20}=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}$
b) $\mathrm{P}($ frog and frog $)=\frac{5}{20} \cdot \frac{4}{19}=\frac{1}{4} \cdot \frac{4}{19}=\frac{1}{19}$
27. a) $\mathrm{P}($ lion and $\operatorname{bird})=\frac{5}{20} \cdot \frac{5}{20}=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}$
b) $\mathrm{P}($ lion and bird $)=\frac{5}{20} \cdot \frac{5}{19}=\frac{1}{4} \cdot \frac{5}{19}=\frac{5}{76}$
28. $\mathrm{P}(\mathrm{A}$ or B$)=0.9$
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
$0.9=0.5+0.6-\mathrm{P}(\mathrm{A}$ and B$)$
$\mathrm{P}(\mathrm{A}$ and B$)=0.2$
29. $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
$0.6=P(A)+0.3-0.1$
$0.6=\mathrm{P}(\mathrm{A})+0.2 \quad \mathrm{P}(\mathrm{A})=0.4$
30. $\mathrm{P}($ odd or greater than 2$)=5 / 6$
31. All numbers on the die are either >3 or <5. $\mathrm{P}(>3$ or $<5)=6 / 6=1$
32. Since it is possible to obtain a card that is both a jack and a diamond when only one card is selected, these events are not mutually exclusive. $\mathrm{P}($ jack or diamond $)=\mathrm{P}($ jack $)+\mathrm{P}($ diamond $)-$
$P($ jack and diamond $)=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}$
33. Since it is impossible to obtain a card that is both a heart and a black card, these events are mutually exclusive.
$\mathrm{P}($ club or red $)=\mathrm{P}($ club $)+\mathrm{P}($ red $)=$

$$
=\frac{13}{52}+\frac{26}{52}=\frac{39}{52}=\frac{3}{4}
$$

26. Since it is possible to obtain a card greater than 8 that is black, these events are not mutually exclusive.
$\mathrm{P}(>9$ or black $)=\frac{16}{52}+\frac{26}{52}-\frac{8}{52}=\frac{34}{52}=\frac{17}{26}$
27. a) $\mathrm{P}(3$ and 3$)=\frac{4}{20} \cdot \frac{4}{20}=\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}$
b) $\mathrm{P}(3$ and 3$)=\frac{4}{20} \cdot \frac{3}{19}=\frac{1}{5} \cdot \frac{3}{19}=\frac{3}{95}$
28. a) $\mathrm{P}(2$ and 4$)=\frac{4}{20} \cdot \frac{4}{20}=\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}$
b) $\mathrm{P}(2$ and 4$)=\frac{4}{20} \cdot \frac{4}{19}=\frac{1}{5} \cdot \frac{4}{19}=\frac{4}{95}$
29. a) $\mathrm{P}($ red bird and monkey $)=\frac{3}{20} \cdot \frac{5}{20}=\frac{3}{20} \cdot \frac{1}{4}=\frac{3}{80}$
b) $\mathrm{P}($ red bird and monkey $)=\frac{3}{20} \cdot \frac{5}{19}=\frac{15}{380}=\frac{3}{76}$
30. a) $\mathrm{P}($ odd and odd $)=\frac{12}{20} \cdot \frac{12}{20}=\frac{3}{5} \cdot \frac{3}{5}=\frac{9}{25}$
b) $\mathrm{P}($ odd and odd $)=\frac{12}{20} \cdot \frac{11}{19}=\frac{3}{5} \cdot \frac{11}{19}=\frac{33}{95}$
31. $\mathrm{P}($ monkey or even $)=\frac{5}{20}+\frac{8}{20}-\frac{2}{20}=\frac{11}{20}$
32. $\mathrm{P}($ lion or a 2$)=\frac{5}{20}+\frac{4}{20}-\frac{1}{20}=\frac{8}{20}=\frac{2}{5}$
33. $\mathrm{P}(2$ reds $)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$
34. $\mathrm{P}($ red and green $)=\frac{1}{4} \bullet \frac{1}{2}=\frac{1}{8}$
35. $\mathrm{P}(2$ yellows $)=\mathrm{P}($ red and red $)=\frac{3}{8} \cdot \frac{3}{8}=\frac{9}{64}$
36. $\mathrm{P}(2$ reds $)=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}$
37. $\mathrm{P}($ both not yellow $)=\frac{1}{2} \cdot \frac{3}{4}=\frac{3}{8}$
38. $\begin{aligned} \mathrm{P}(3 \text { girls }) & =\mathrm{P}\left(1^{\mathrm{st}} \text { girl }\right) \bullet \mathrm{P}\left(2^{\text {nd }} \text { girl }\right) \bullet \mathrm{P}\left(3^{\mathrm{rd}} \text { girl }\right) \\ & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}\end{aligned}$

$$
=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

51. $\begin{aligned} \mathrm{P}(\mathrm{G}, \mathrm{G}, \mathrm{B}) & =\mathrm{P}\left(1^{\mathrm{st}} \text { girl }\right) \bullet \mathrm{P}\left(2^{\text {nd }} \text { girl }\right) \bullet \mathrm{P}\left(3^{\mathrm{rd}} \text { boy }\right) \\ & =\frac{1}{2} \bullet \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}\end{aligned}$

$$
=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

32. a) $\mathrm{P}($ even and even $)=\frac{8}{20} \cdot \frac{8}{20}=\frac{2}{5} \cdot \frac{2}{5}=\frac{4}{25}$
b) $P($ even and even $)=\frac{8}{20} \cdot \frac{7}{19}=\frac{2}{5} \cdot \frac{7}{19}=\frac{14}{95}$
33. a) $\mathrm{P}($ lion and red bird $)=\frac{5}{20} \cdot \frac{3}{20}=\frac{1}{4} \cdot \frac{3}{20}=\frac{3}{80}$
b) $\mathrm{P}($ lion and red bird $)=\frac{5}{20} \cdot \frac{3}{19}=\frac{1}{4} \cdot \frac{3}{19}=\frac{3}{76}$
34. $\mathrm{P}($ yellow bird or $>4)=\frac{2}{20}+\frac{4}{20}=\frac{6}{20}=\frac{3}{10}$
35. $\mathrm{P}($ red bird or even $)=\frac{3}{20}+\frac{8}{20}-\frac{1}{20}=\frac{10}{20}=\frac{1}{2}$
36. $\mathrm{P}($ red and then yellow $)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$
37. $\mathrm{P}(2$ reds $)=\frac{1}{4} \bullet \frac{1}{4}=\frac{1}{16}$
38. $\mathrm{P}($ both not yellow $)=\frac{5}{8} \cdot \frac{5}{8}=\frac{25}{64}$
39. $\mathrm{P}($ red and yellow $)=\frac{1}{2} \bullet \frac{1}{4}=\frac{1}{8}$
40. $\mathrm{P}($ yellow and not yellow $)=\frac{1}{2} \cdot \frac{3}{4}=\frac{3}{8}$
41. $\mathrm{P}(3$ boys $)=\mathrm{P}\left(1^{\text {st }}\right.$ boy $) \bullet \mathrm{P}\left(2^{\text {nd }}\right.$ boy $) \bullet \mathrm{P}\left(3^{\text {rd }}\right.$ boy $)$
$=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$
42. $\mathrm{P}(\mathrm{G}, \mathrm{B}, \mathrm{G})=\mathrm{P}\left(1^{\mathrm{st}}\right.$ girl $) \bullet \mathrm{P}\left(2^{\text {nd }}\right.$ boy $) \bullet \mathrm{P}\left(3^{\mathrm{rd}}\right.$ girl $)$

$$
=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

53. a) $\mathrm{P}(5$ boys $)=\mathrm{P}(\mathrm{b}) \bullet \mathrm{P}(\mathrm{b}) \bullet \mathrm{P}(\mathrm{b}) \bullet \mathrm{P}(\mathrm{b}) \bullet \mathrm{P}(\mathrm{b})$

$$
=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{32}
$$

b) $\mathrm{P}($ next child is a boy $)=\frac{1}{2}$
55. a) $\mathrm{P}($ Titleist $/$ Pinnacle $)=\frac{4}{7} \cdot \frac{1}{7}=\frac{4}{49}$
b) $\mathrm{P}($ Titleist $/$ Pinnacle $)=\frac{4}{7} \cdot \frac{1}{6}=\frac{4}{42}=\frac{2}{21}$
57. a) $\mathrm{P}($ at least 1 Top Flite $)=\frac{2}{7} \cdot \frac{5}{7}+\frac{5}{7} \cdot \frac{2}{7}+\frac{2}{7} \cdot \frac{2}{7}=\frac{24}{49}$
b) $\mathrm{P}($ at least 1 Top Flite $)=\frac{2}{7} \cdot \frac{5}{6}+\frac{5}{7} \cdot \frac{2}{6}+\frac{2}{7} \cdot \frac{1}{6}=\frac{11}{21}$
59. P (neither had trad. ins. $)=\frac{26}{40} \bullet \frac{25}{39}=\frac{10}{24}=\frac{5}{12}$
61. P(trad. ins./ trad. ins.) or P(trad. ins./trad. ins.)
$=\left(\frac{14}{40} \cdot \frac{26}{39}\right)+\left(\frac{14}{40} \cdot \frac{13}{39}\right)=\frac{28}{60}+\frac{7}{60}=\frac{35}{60}=\frac{7}{12}$
63. $\mathrm{P}($ all recommended $)=\frac{19}{30} \cdot \frac{18}{29} \cdot \frac{17}{28}=\frac{969}{4060}$
65. $\mathrm{P}($ no $/$ no $/$ not sure $)=\frac{6}{30} \cdot \frac{5}{29} \cdot \frac{5}{28}=\frac{5}{812}$
67. The probability that any individual reacts favorably is $70 / 100$ or 0.7 .
$\mathrm{P}($ Mrs. Rivera reacts favorably $)=0.7$
68. Since it is assumed the sample is representative of the entire population, it must be assumed this experiment is done with replacement. If done w/o replacement, the number in the population must be known. In addition, since the population is so large, reducing the numerator and/or denominator by 1 has no appreciable effect on the answer.
P(Mr. Rivera and Mrs. Rivera react favorably and Carlos is unaffected $)=\mathrm{P}($ Mr. Rivera reacts favorable) • $\mathrm{P}($ Mrs. Rivera reacts favorable $) \bullet$ $\mathrm{P}($ Carlos is unaffected $)=0.7 \bullet 0.7 \bullet 0.2=0.098$
54. a) $\mathrm{P}(7$ girls $)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{128}$
b) $\mathrm{P}($ next child is a girl $)=\frac{1}{2}$
56. a) $\mathrm{P}($ Top Flite/ Top Flite $)=\frac{5}{7} \cdot \frac{5}{7}=\frac{25}{49}$
b) $\mathrm{P}($ Top Flite/ Top Flite $)=\frac{5}{7} \cdot \frac{4}{6}=\frac{20}{42}=\frac{10}{21}$
58. a) $\mathrm{P}($ Pinnacle $/$ Pinnacle $)=\frac{1}{7} \cdot \frac{1}{7}=\frac{1}{49}$
b) $\mathrm{P}($ Pinnacle $/$ Pinnacle $)=\frac{1}{7} \bullet \frac{0}{6}=0$
60. $\mathrm{P}($ both have managed care $)=\frac{22}{40} \cdot \frac{21}{39}=\frac{77}{260}$
62. $\mathrm{P}($ trad. ins./managed care $)=\frac{14}{40} \cdot \frac{22}{39}=\frac{77}{390}$
64. $\mathrm{P}($ no $/$ yes $/$ yes $)=\frac{6}{30} \cdot \frac{19}{29} \cdot \frac{18}{28}=\frac{171}{2030}$
66. $\mathrm{P}(\mathrm{yes} / \mathrm{no} / \mathrm{no})=\frac{19}{30} \cdot \frac{6}{29} \cdot \frac{5}{28}=\frac{19}{812}$
70. One does not react favorably if the reaction is unfavorable or if it is unaffected. $\mathrm{P}($ not favorable $)=0.1+0.2=0.3$. Therefore, $P($ none reacts favorably $)=(0.3)^{3}=0.027$
71. Since each question has four possible answers of which only one is correct, the probability of guessing correctly on any given question is $1 / 4$. $\mathrm{P}($ correct answer on any one question $)=1 / 4$
72. If you have guessed correctly on only the first question, then you have missed the last four. The probability of missing any given question is 3/4.
$\mathrm{P}\left(\right.$ only the $1^{\text {st }}$ correct $)=\mathrm{P}\left(1^{\text {st }}\right.$ corr $) \bullet \mathrm{P}\left(2^{\text {nd }}\right.$ incorr $)$ $\bullet \mathrm{P}\left(3^{\text {rd }}\right.$ incorr $) \bullet \mathrm{P}\left(4^{\text {th }}\right.$ incorr $) \bullet \mathrm{P}\left(5^{\text {th }}\right.$ incorr $)$ $=(1 / 4)(3 / 4)(3 / 4)(3 / 4)(3 / 4)=81 / 1024$
69. $\mathrm{P}($ all 3 react favorably $)=0.7 \bullet 0.7 \bullet 0.7=0.343$
73. $\mathrm{P}\left(\right.$ only the $3^{\text {rd }}$ and $4^{\text {th }}$ questions correct $)=$

$$
\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=\frac{27}{1024}
$$

75. $\mathrm{P}($ none of the 5 questions correct $)=$ $\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)=\frac{243}{1024}$
76. $\mathrm{P}\left(\right.$ bell on $1^{\text {st }}$ reel $)=3 / 22$
77. $\mathrm{P}($ no $\mathrm{bar} /$ no $\mathrm{bar} /$ no bar $)=\left(\frac{20}{22}\right)\left(\frac{20}{22}\right)\left(\frac{21}{22}\right)=\frac{1050}{1331}$
78. $\mathrm{P}($ yellow/yellow $)=\left(\frac{1}{8}\right)\left(\frac{2}{12}\right)=\frac{2}{96}=\frac{1}{48}$
79. $\mathrm{P}($ not red on outer and not red on inner $)=$

$$
\frac{8}{12} \cdot \frac{5}{8}=\frac{5}{12}
$$

85. $\mathrm{P}($ no hit/no hit $)=(0.6)(0.6)=0.36$
86. $\mathrm{P}($ both hit $)=(0.4)(0.9)=0.36$
87. a) No; The probability of the $1^{\text {st }}$ depends on the outcome of the first.
b) $\mathrm{P}($ one afflicted $)=.001$
c) $\mathrm{P}($ both afflicted $)=(.001)(.04)=.00004$
d) $\mathrm{P}($ not afflicted $/$ afflicted $)=(.999)(.001)=.000999$
e) $\mathrm{P}($ not affl $/$ not affl $)=(.999)(.999)=.99801$
88. $\mathrm{P}($ all 5 questions correct $)=$

$$
\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)=\frac{1}{1024}
$$

76. $\mathrm{P}($ at least one is correct $)=1-\mathrm{P}$ (none are correct)

$$
=1-\frac{243}{1024}=\frac{781}{1024}
$$

78. $\mathrm{P}($ orange on all 3 reels $)=$
$\mathrm{P}\left(\right.$ Or on $\left.1^{\text {st }}\right) \mathrm{P}\left(\right.$ Or on $\left.2^{\text {nd }}\right) \mathrm{P}\left(\right.$ Or on $\left.3^{\text {rd }}\right)=$

$$
\left(\frac{5}{22}\right)\left(\frac{4}{22}\right)\left(\frac{5}{22}\right)=\frac{100}{10648}=\frac{25}{2662}
$$

80. $\mathrm{P}(7 / 7 / 7)=\left(\frac{1}{22}\right)\left(\frac{1}{22}\right)\left(\frac{1}{22}\right)=\frac{1}{10648}$
81. $\mathrm{P}($ red on outer and blue on inner $)=$ $\frac{4}{12} \cdot \frac{2}{8}=\frac{1}{3} \cdot \frac{1}{4}=\frac{1}{12}$
82. $\mathrm{P}($ at least one is red $)=1-\mathrm{P}($ neither is red $)=$ $1-\frac{5}{12}=\frac{7}{12}$
83. $\mathrm{P}($ hit $/$ no hit $)=(0.4)(0.1)=0.04$
84. $\mathrm{P}\left(1^{\text {st }} \mathrm{miss} / 2^{\text {nd }}\right.$ hit $)=(0.6)(0.4)=0.24$
85. a) $\mathrm{P}($ Mrs. Jones \# is selected $)=(1 / 10)(1 / 10(1 / 10)$ $=.001$
86. $\mathrm{P}($ audit this year $)=.032$
87. $\mathrm{P}($ audited next 2 years $)=(.032)(.032)=.001024$
88. $\mathrm{P}($ audit $/$ no audit $)=(.032)(.968)=.030976$
89. $\mathrm{P}($ no audit $/$ no audit $)=(.968)(.968)=.937024$
90. $\mathrm{P}($ at least 1 yen $)=$

$$
\begin{aligned}
& =\left(\frac{3}{10}\right)\left(\frac{7}{9}\right)+\left(\frac{7}{10}\right)\left(\frac{3}{9}\right)+\left(\frac{3}{10}\right)\left(\frac{2}{9}\right) \\
& =\left(\frac{21}{90}\right)+\left(\frac{21}{90}\right)+\left(\frac{6}{90}\right)=\frac{48}{90}=\frac{8}{15}
\end{aligned}
$$

97. $\mathrm{P}($ no diamonds $)=\left(\frac{39}{52}\right)\left(\frac{38}{51}\right)=\frac{1482}{2652}=.56$

The game favors the dealer since the probability of no diamonds is greater than $1 / 2$.

100. $\mathrm{P}(3 / 3)=(3 / 6)(3 / 6)=9 / 36=1 / 4$
101. $\mathrm{P}($ even or $<3)=2 / 6+3 / 6-2 / 6=3 / 6=1 / 2$
102. $\mathrm{P}($ odd or $>1)=4 / 6+5 / 6-3 / 6=6 / 6=1$

Exercise Set 12.7

1. The probability of E_{2} given that E_{1} has occurred.
2. $P\left(E_{2} \mid E_{1}\right)=\frac{n\left(E_{1} \text { and } E_{2}\right)}{n\left(E_{1}\right)}$
3. $P\left(E_{2} \mid E_{1}\right)=\frac{n\left(E_{1} \cap E_{2}\right)}{n\left(E_{1}\right)}=\frac{4}{12}=\frac{1}{3}$
4. $\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right)=\frac{5}{22}$
5. $\mathrm{P}(5 \mid$ orange $)=1$
6. $\mathrm{P}(3 \mid$ yellow $)=0$
7. $\mathrm{P}($ even \mid not orange $)=3 / 5$
8. $\mathrm{P}($ red \mid orange $)=0$
9. $\mathrm{P}(>2 \mid<5)=1 / 4$
10. $\mathrm{P}(>3 \mid$ yellow $)=1 / 2$
11. $\mathrm{P}\left(\right.$ circle $\left.\left.\right|_{\text {odd }}\right)=3 / 4$
12. $\mathrm{P}(\operatorname{circle} \mid \geq 5)=2 / 3$
13. $\mathrm{P}($ red \mid even $)=2 / 3$
14. $\mathrm{P}($ circle \mid even $)=0$
15. $\mathrm{P}($ circle or square $\mid<4)=2 / 3$
16. $\mathrm{P}($ circle \mid even $)=0$
17. $\mathrm{P}(5 \mid$ red $)=1 / 3$
18. $\mathrm{P}($ even \mid red $)=1 / 3$
19. $\mathrm{P}($ purple \mid odd $)=2 / 6=1 / 3$
20. $\mathrm{P}(>4 \mid$ red $)=1$
21. $\mathrm{P}(>4 \mid$ purple $)=3 / 5$
22. $\mathrm{P}($ even \mid red or purple $)=4 / 8=1 / 2$
23. $\mathrm{P}($ gold $\mid>5)=1 / 7$
24. $\mathrm{P}($ gold $\mid>10)=0$
25. $\mathrm{P}(1$ and 1$)=(1 / 4)(1 / 4)=1 / 16$
26. $\mathrm{P}(1$ and 1$)=1 / 4$
27. $\mathrm{P}(5 \mid$ at least a 5$)=1 / 7$
28. $\mathrm{P}($ sum $=6)=5 / 36$
29. $\mathrm{P}\left(>5 \mid 2^{\text {nd }}\right.$ bill $\left.=10\right)=2 / 4=1 / 2$
30. $P(6 \mid 3)=1 / 6$
31. $P(6 \mid 1)=1 / 6$
32. $P\left(\right.$ even $\left.\mid 2^{\text {nd }} \operatorname{die}=2\right)=3 / 6=1 / 2$
33. $\mathrm{P}\left(>7 \mid 2^{\text {nd }} \mathrm{die}=5\right)=4 / 6=2 / 3$
34. $\mathrm{P}(\mathrm{Pepsi})=107 / 217$
35. $\mathrm{P}($ Coke \mid woman $)=50 / 112=25 / 56$
36. $\mathrm{P}($ man \mid prefers Coke $)=60 / 110=12 / 22=6 / 11$
37. $\mathrm{P}($ girl $)=160 / 360=4 / 9$
38. $\mathrm{P}($ elephant \mid boy $)=110 / 200=11 / 20$
39. $\mathrm{P}($ boy \mid elephant $)=110 / 195=22 / 39$
40. $\mathrm{P}($ only tapes $)=133 / 300$
41. $\mathrm{P}(\mathrm{DVD} \mid<30)=60 / 120=1 / 2$
42. $\mathrm{P}(>30 \mid$ both VTs and DVDs $)=21 / 43$
43. $\mathrm{P}($ Air Force $)=8833 / 27630=0.3197$
44. $\mathrm{P}($ acquitted \mid Army $)=434 / 5458=0.0795$
45. $\mathrm{P}($ Army \mid convicted $)=5024 / 26056=0.1928$
46. $\mathrm{P}($ good $)=\frac{300}{330}=\frac{10}{11}$
47. $\mathrm{P}($ defective $\mid 20$ watts $)=\frac{15}{95}=\frac{3}{19}$
48. $\mathrm{P}(\operatorname{good} \mid 50$ or 100 watts $)=\frac{220}{235}=\frac{44}{47}$
49. $\mathrm{P}(\mathrm{ABC}$ or NBC$)=\frac{110}{270}=\frac{11}{27}$
50. $\mathrm{P}(\mathrm{ABC}$ or $\mathrm{NBC} \mid \operatorname{man})=\frac{50}{145}=\frac{10}{29}$
51. $\mathrm{P}(\mathrm{ABC}, \mathrm{NBC}$, or $\mathrm{CBS} \mid \operatorname{man})=\frac{11}{29}$
52. $\mathrm{P}($ large company stock $)=93 / 200$
53. $\mathrm{P}\left(7\right.$ or $\left.11 \mid 1^{\text {st }} \mathrm{die}=5\right)=2 / 6=1 / 3$
54. $\mathrm{P}($ woman $)=112 / 217$
55. $\mathrm{P}($ Pepsi \mid male $)=45 / 105=9 / 21=3 / 7$
56. $\mathrm{P}($ woman \mid prefers Pepsi $)=62 / 107$
57. $\mathrm{P}($ child selected lion $)=165 / 360=33 / 72$
58. $\mathrm{P}($ lion \mid girl $)=75 / 160=15 / 32$
59. $\mathrm{P}($ girl \mid lion $)=75 / 165=13 / 33=5 / 11$
60. $\mathrm{P}(\geq 30)=180 / 300=3 / 5$
61. $\mathrm{P}($ both VTs and DVDs $\mid \geq 30)=22 / 180=11 / 90$
62. $\mathrm{P}(\geq 30 \mid \mathrm{VTs}$ only $)=94 / 133$
63. $\mathrm{P}($ acquitted $)=1574 / 27630=0.0570$
64. $\mathrm{P}($ convicted \mid Navy-MC $=12866 / 13339=0.9645$
65. $\mathrm{P}($ Air Force \mid acquitted $)=667 / 1574=0.4238$
66. $\mathrm{P}(\operatorname{good} \mid 50$ watts $)=\frac{100}{105}=\frac{20}{21}$
67. $\mathrm{P}(\operatorname{good} \mid 100$ watts $)=\frac{120}{130}=\frac{12}{13}$
68. $\mathrm{P}($ defective \mid not 50 watts $)=\frac{25}{225}=\frac{1}{9}$
69. $\mathrm{P}(\mathrm{ABC} \mid$ woman $)=\frac{50}{125}=\frac{2}{5}$
70. $\mathrm{P}($ not $\mathrm{CBS} \mid$ woman $)=\frac{105}{125}=\frac{21}{25}$
71. $\mathrm{P}(\mathrm{NBC}$ or $\mathrm{CBS} \mid \mathrm{Woman})=\frac{30}{125}=\frac{6}{25}$
72. $\mathrm{P}($ value stock $)=73 / 200$
73. $\mathrm{P}($ blend \mid medium co. stock $)=15 / 52$
74. a) $n(A)=140 \quad$ b) $n(B)=120$
c) $\mathrm{P}(\mathrm{A})=140 / 200=7 / 10$
d) $\mathrm{P}(\mathrm{B})=120 / 200=6 / 10=3 / 5$
e) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{n}(\mathrm{B} \text { and } \mathrm{A})}{\mathrm{n}(\mathrm{B})}=\frac{80}{120}=\frac{2}{3}$
f) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{n}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{n}(\mathrm{B})}=\frac{80}{140}=\frac{4}{7}$
g) $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\left(\frac{7}{10}\right)\left(\frac{3}{5}\right)=\frac{21}{50}$

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \quad \mathrm{P}(\mathrm{~A}) \bullet \mathrm{P}(\mathrm{~B}) \quad \frac{2}{3} \neq \frac{21}{50}
$$

A and B are not independent events.
78. $\mathrm{P}($ green circle $\mid+)=1 / 3$
80. $\mathrm{P}($ yellow circle $\mid-)=1 / 3$
82. $\mathrm{P}($ green or orange circle \mid green +$)=1$

Exercise Set 12.8

1. Answers will vary.
2. $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \cdot \cdot 3 \cdot 2 \cdot 1$
3. The number of permutations of n items taken r at a time.
4. ${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!}$
5. $6!=720$
6. ${ }_{6} \mathrm{P}_{2}=\frac{6!}{4!}=6 \cdot 5=30$
7. $0!=1$
8. ${ }_{8} \mathrm{P}_{0}=\frac{8!}{8!}=1$
9. $\mathrm{P}($ large co. stock \mid blend stock $)=23 / 50$
10. $P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{1} \text { and } E_{2}\right)}{P\left(E_{1}\right)}=\frac{\frac{n\left(E_{1} \text { and } E_{2}\right)}{n}}{\frac{n\left(E_{1}\right)}{n}}$

$$
=\frac{n\left(E_{1} \text { and } E_{2}\right)}{n} \cdot \frac{n}{n\left(E_{1}\right)}=\frac{n\left(E_{1} \text { and } E_{2}\right)}{n\left(E_{1}\right)}
$$

$$
\therefore \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right)=\frac{\mathrm{n}\left(\mathrm{E}_{1} \text { and } \mathrm{E}_{2}\right)}{\mathrm{n}\left(\mathrm{E}_{1}\right)}
$$

77. a) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{n}(\mathrm{B} \text { and } \mathrm{A})}{\mathrm{n}(\mathrm{B})}=\frac{0.12}{0.4}=0.3$
b) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{n}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{n}(\mathrm{A})}=\frac{0.12}{0.3}=0.4$
c) Yes, $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and $\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A})$.
78. $\mathrm{P}(+\mid$ orange circle $)=2 / 3$
79. $\mathrm{P}($ green $+\mid+)=1 / 3$
80. $\mathrm{P}($ orange circle $\mathrm{w} /$ green $+\mid+)=1 / 3$
81. Answers will vary.
82. Multiply the counting numbers from n down to 1 .
83. $\frac{\mathrm{n}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\cdots \mathrm{n}_{\mathrm{r}}!}$
84. Yes, because $0!=1!=1$
85. $8!=40320$
86. ${ }_{5} \mathrm{P}_{2}=\frac{5!}{3!}=5 \cdot 4=20$
87. ${ }_{6} \mathrm{P}_{4}=\frac{6!}{2!}=6 \cdot 5 \cdot 4 \cdot 3=360$
88. ${ }_{5} \mathrm{P}_{0}=\frac{5!}{5!}=1$
89. ${ }_{9} \mathrm{P}_{4}=\frac{9!}{5!}=9 \cdot 8 \cdot 7 \cdot 6=3024$
90. ${ }_{8} \mathrm{P}_{5}=\frac{8!}{3!}=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4=6720$
91. $(10)(10)(10)(10)=10000$
92. a) $(26)(25)(24)(10)(9)(8)=11,232,000$
b) $(26)(26)(26)(10)(10)(10)=17,576,000$
93. a) $5^{5}=3125$
b) $\frac{1}{3125}=0.00032$
94. $7 \bullet 6 \bullet 5=210$
95. a) $5!=120$
b) $5!=120$
c) $4!=24$
d) $3!=6$
96. ${ }_{8} \mathrm{P}_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!}=336$
97. $10^{10}=10,000,000,000$ possible ISBN numbers
98. a) $8!=40320$
b) $3 \bullet 6!\bullet 2=720 \bullet 6=4320$
c) $5 \bullet 4 \bullet 6!=14400$
99. $(26)(10)(9)(8)(7)=131,040$
100. $(10)(10)(10)(26)(26)=676,000$
101. $(5)(4)(8)(26)(25)=104,000$
102. a) $(8)(10)(10)(10)(10)(10)(10)=8,000,000$
b) $(8)(10)(10)(8,000,000)=6,400,000,000$
c) $\left.(8)(10)(10)(8)\left(10^{10}\right)\right)=(64)\left(10^{12}\right)$
$=64,000,000,000,000$
103. ${ }_{4} \mathrm{P}_{4}=\frac{4!}{0!}=4!=24$
104. ${ }_{10} \mathrm{P}_{6}=\frac{10!}{4!}=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5=151200$
105. $(8)(7)=56$
106. a) $(36)(36)(36)(36)=1,679,616$
b) $(62)(62)(62)(62)=14,776,336$
107. $10^{9}=1,000,000,000$
108. $(34)(36)(36)(36)(36)=57,106,944$
109. $8 \bullet 10 \bullet 9=720$ systems
110. a) $6!=720$
b) $5!=120$
c) $4!=24$
d) $5!\bullet 5=600$
111. ${ }_{8} \mathrm{P}_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!}=336$
112. a) There are 12 individuals and they can be arranged in $12!=479,001,600$ ways
b) $10!=3,628,800$ different ways
c) $5!\cdot 5!=14,400$ different ways
113. $(26)(25)(10)(9)(8)(7)=650 \bullet 5040=3,276,000$
114. $(26)(26)(10)(10)(10)(10)=6,760,000$
115. $(4)(25)(10)(9)(8)(7)=504,000$
116. $(10)(9)(8)(26)(25)=468,000$
117. $(9)(9)(8)(26)(25)=421,200$
118. ${ }_{12} \mathrm{P}_{3}=\frac{12!}{9!}=\frac{(12) \cdot(11) \cdot(10) \cdot(9!)}{9!}=1,320$
119. ${ }_{15} \mathrm{P}_{6}=\frac{15!}{9!}=\frac{(15)(14)(13) \cdot(12) \cdot(11)(10)(9!)}{9!}$

$$
=3,603,800
$$

48. Since the order of the answers is important, this is a permutation problem. ${ }_{10} \mathrm{P}_{10}=\frac{10!}{(10-10)!}=\frac{10!}{0!}$ $=(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)=3,628,800$
49. $(5)(4)(7)(2)=280$ systems
50. ${ }_{9} \mathrm{P}_{9}=\frac{9!}{0!}=9!=362,880$
51. $\frac{12!}{4!3!2!}=\frac{479001600}{(24)(6)(2)}=1,663,200$
52. $\frac{7!}{2!2!2!}=\frac{(7)(6)(5)(4)(3)(2)(1)}{(2)(1)(2)(1)(2)(1)}=630$
53. The order of the flags is important. Thus, it is a permutation problem.

$$
{ }_{8} \mathrm{P}_{5}=\frac{8!}{(8-5)!}=\frac{8!}{3!}=\frac{40320}{6}=6,720
$$

49. ${ }_{7} \mathrm{P}_{7}=\frac{7!}{0!}=\frac{7!}{1}=7!=5,040$
50. $(3)(3)(3)(3)(3)(3)=3^{6}=729$ ways
51. $(5)(2)(6)=60$
52. $\frac{10!}{2!2!}=\frac{3628800}{4}=907,200$
53. $\frac{11!}{4!4!2!}=34,650$
54. $\frac{7!}{3!2!}=\frac{(7)(6)(5)(4)(3!)}{(3!)(2)(1)}=420$
(There are 3 2's, 2 3's)
55. The order of the flags is important. Thus, it is a permutation problem.
${ }_{8} \mathrm{P}_{5}=3^{10}=59,049$
56. a) Since the pitcher must bat last, there is only one possibility for the last position.
-------- 1 There are 8 possible batters left for the 1 st position. Once the 1 st batter has been selected, there are 7 batters left for the $2^{\text {nd }}$ position, 6 for the third, etc.
(8) (7) (6) (5) (4) (3) (2) (1) (1) $=40,320$
b) $9!=(9)(8)(7)(6)(5)(4)(3)(2)(1)=362,880$
57. a) Since each arrangement is distinct, this is a permutation. Many problems of this type can be done with both the counting principal and the permutation formula.
counting principal $=(5)(4)(3)(2)(1)=120$
permutation formula $={ }_{5} \mathrm{P}_{5}=\frac{5!}{(5-5)!}=\frac{5!}{0!}=120$
58. b) Consider the possible arrangements as indicated by the dashes. _-_-_ There is only one possibility for the middle position. - - 1 After the middle one is placed there are 4 possibilities for the $1^{\text {st }}$ position, 3 for the 2 nd , 2 for the 4 th, and only 1 for the final position.
(4) (3) (1) (2) (1) $=24$
59. a) $5^{5}=3125$ different ways
b) $400,000 \div 3,125=128$ cars
c) $\frac{128}{400000}=\frac{1}{3125}=0.00032$
60. ${ }_{7} \mathrm{P}_{3}+1=\frac{7!}{4!}+1=7 \cdot 6 \cdot 5+1=210+1=211$
61. ${ }_{7} \mathrm{P}_{5}=\frac{7!}{2!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2!}{2!}=2,520$ different letter permutations
62. $\frac{7!}{3!2!}=420, \quad$ Time $=420 \times 5 \mathrm{sec} .=2,100 \mathrm{sec}$. or 35 min .

68. $\mathrm{A} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \mathrm{B}$
 $\begin{array}{lllllll}1-7 & 2-6 & 3-5 & 4-4 & 5-3 & 6-2 & 7-1\end{array}$
 $7+6+5+4+3+2+1=28$
 $(28)(2)=56$ tickets

Exercise Set 12.9

1. The selection of a certain number of items without regard to their order.
2. ${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$
3. If the order of the items is important then it is a permutation problem. If order is not important then it is a combination problem.
4. ${ }_{5} \mathrm{C}_{3}=\frac{5!}{(5-3)!3!}=\frac{(5)(4)(3)(2)(1)}{(2)(1)(3)(2)(1)}=10$
5. a) ${ }_{6} \mathrm{C}_{4}=\frac{6!}{4!2!}=\frac{(6)(5)}{(2)(1)}=15$
b) ${ }_{6} \mathrm{P}_{4}=\frac{6!}{(6-4)!}=\frac{6!}{2!}=(6)(5)(4)(3)=360$
6. a) ${ }_{8} \mathrm{C}_{0}=\frac{8!}{8!0!}=1$
b) ${ }_{8} \mathrm{P}_{0}=\frac{8!}{(8-0)!}=\frac{8!}{8!}=1$
7. a) ${ }_{10} \mathrm{C}_{3}=\frac{10!}{7!3!}=\frac{(10)(9)(8)(7!)}{(7!)(3)(2)(1)}=120$
b) ${ }_{10} \mathrm{P}_{3}=\frac{10!}{(10-3)!}=\frac{(10)(9)(8)(7!)}{7!}=720$
8. No, Ex. ${ }_{3} P_{2} \neq{ }_{3} P_{(3-2)}$
$\frac{3!}{1!} \neq \frac{3!}{2!} \quad$ because $\quad 6 \neq 3$
9. 25 stops $24+23+22+21+20+19+18=172$
$172-25=147$
$17+16+15+14+13+12+11+10=108$
$9+8+7+6+5+4+3+2+1=45$
$147+108+45=300 \quad(300)(2)=600$ tickets
10. The number of combinations possible when r items are selected from n items.
11. ${ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}$
12. There will be more permutations.
13. ${ }_{7} \mathrm{C}_{2}=\frac{7!}{5!2!}=\frac{(7)(6)}{(2)}=21$
14. a) ${ }_{8} \mathrm{C}_{2}=\frac{8!}{6!2!}=\frac{(8)(7)}{(2)(1)}=28$
b) ${ }_{8} \mathrm{P}_{2}=\frac{8!}{(8-2)!}=\frac{8!}{6!}=(8)(7)=56$
15. a) ${ }_{12} \mathrm{C}_{8}=\frac{12!}{8!4!}=\frac{(12)(11)(10)(9)(8!)}{(8!)(4)(3)(2)(1)}=495$
b) ${ }_{12} \mathrm{P}_{8}=\frac{12!}{(12-8)!}=\frac{12!}{4!}$

$$
=(12)(11)(10)(9)(8)(7)(6)(5)=19,958,400
$$

14. a) ${ }_{5} \mathrm{C}_{5}=\frac{5!}{0!5!}=\frac{5!}{5!}=1$
b) ${ }_{5} \mathrm{P}_{5}=\frac{5!}{(5-5)!}=\frac{5!}{1}=120$
15. $\frac{{ }_{5} \mathrm{C}_{3}}{{ }_{5} \mathrm{P}_{3}}=\frac{\frac{5!}{2!3!}}{\frac{5!}{2!}}=\left(\frac{5!}{2!3!}\right)\left(\frac{2!}{5!}\right)=\frac{1}{3!}=\frac{1}{6}$
16. $\frac{{ }_{6} \mathrm{C}_{2}}{{ }_{6} \mathrm{P}_{2}}=\frac{\frac{6!}{4!2!}}{\frac{6!}{4!}}=\left(\frac{6!}{4!2!}\right)\left(\frac{4!}{6!}\right)=\frac{1}{2!}=\frac{1}{2}$
17. $\frac{{ }_{8} \mathrm{C}_{5}}{{ }_{8} \mathrm{P}_{5}}=\frac{\frac{8!}{3!5!}}{\frac{8!}{6!2!}}=\left(\frac{8!}{3!5!}\right)\left(\frac{6!2!}{8!}\right)=\frac{6}{3}=2$
18. $\frac{{ }_{6} \mathrm{C}_{6}}{{ }_{8} \mathrm{C}_{0}}=\frac{\frac{6!}{\frac{6!6!}{8!}}}{\frac{1}{8!0!}}=\frac{1}{1}=1$
19. $\frac{{ }_{9} \mathrm{P}_{5}}{{ }_{10} \mathrm{C}_{4}}=\frac{\frac{9!}{4!}}{\frac{10!}{6!4!}}=\frac{(9)(8)(7)(6)(5)}{\frac{(10)(9)(8)(7)}{(4)(3)(2)(1)}}=\frac{144}{2}=72$
20. ${ }_{9} \mathrm{C}_{6}=\frac{9!}{3!6!}=\frac{(9)(8)(7)(6!)}{(3)(2)(1)(6!)}=\frac{504}{6}=84$ ways
21. ${ }_{20} \mathrm{C}_{3}=\frac{20!}{17!3!}=\frac{(20)(19)(18)(17!)}{(17!)(3)(2)(1)}=1140$
22. ${ }_{5} \mathrm{C}_{4}=\frac{5!}{1!4!}=5$
23. ${ }_{10} \mathrm{C}_{4}=\frac{10!}{6!4!}=\frac{(10)(9)(8)(7)}{(4)(3)(2)(1)}=210$
24. ${ }_{8} \mathrm{C}_{3}=\frac{8!}{5!3!}=\frac{(8)(7)(6)}{(3)(2)(1)}=56$
25. ${ }_{9} \mathrm{C}_{5}=\frac{9!}{4!5!}=\frac{(9)(8)(7)(6)}{(4)(3)(2)(1)}=126$
26. ${ }_{10} \mathrm{C}_{3}=\frac{10!}{7!3!}=\frac{(10)(9)(8)}{(3)(2)(1)}=120$
27. ${ }_{12} \mathrm{C}_{8}=\frac{12!}{4!8!}=\frac{(12)(11)(10)(9)}{(4)(3)(2)(1)}=495$
28. ${ }_{24} \mathrm{C}_{20}=\frac{24!}{4!20!}=\frac{(24)(23)(22)(21)}{(4)(3)(2)(1)}=10,626$
29. ${ }_{10} \mathrm{C}_{8}=\frac{10!}{2!8!}=\frac{(10)(9)}{(2)(1)}=45$
30. ${ }_{6} \mathrm{C}_{4}=\frac{6!}{2!4!}=\frac{(6)(5)}{(2)(1)}=15$
31. ${ }_{9} \mathrm{C}_{3} \cdot{ }_{6} \mathrm{C}_{2}=$

$$
\left(\frac{9!}{6!3!}\right)\left(\frac{6!}{4!2!}\right)=\left(\frac{(9)(8)(7)}{(3)(2)(1)}\right)\left(\frac{(6)(5)}{(2)(1)}\right)=1260
$$

33. ${ }_{8} \mathrm{C}_{2}=\frac{8!}{6!2!}=\frac{(8)(7)}{(2)(1)}=28$ tickets
34. Part I: $\quad 5 \mathrm{C}_{3}=\frac{5!}{2!3!}=\frac{(5)(4)}{(2)(1)}=10$

Part II: $\quad 6 \mathrm{C} 4=\frac{6!}{2!4!}=\frac{(6)(5)}{(2)(1)}=15$
$10 \cdot 15=150$ possible combinations
35. ${ }_{12} \mathrm{C}_{3} \cdot{ }_{8} \mathrm{C}_{2}=$
$\left(\frac{12!}{9!3!}\right)\left(\frac{8!}{6!2!}\right)=\left(\frac{(12)(11)(10)}{(3)(2)(1)}\right)\left(\frac{(8)(7)}{(2)(1)}\right)=6160$
37. Mathematics: $\quad{ }_{8} \mathrm{C}_{5}=\frac{8!}{3!5!}=\frac{(8)(7)(6)}{(3)(2)(1)}=56$

Computer Sci. $\quad{ }_{5} \mathrm{C}_{3}=\frac{5!}{2!3!}=\frac{(5)(4)}{(2)(1)}=10$
$(56)(10)=560$ different choices
39. Teachers: ${ }_{6} \mathrm{C}_{2}=\frac{6!}{4!2!}=\frac{(6)(5)}{(2)(1)}=15$

Students: $\quad{ }_{50} \mathrm{C}_{3}=\frac{50!}{47!3!}=\frac{(50)(49)(48)}{(3)(2)(1)}=19600$
$(1)(19,600)=294,000$ ways to select the comm.
41. ${ }_{8} \mathrm{C}_{3} \cdot{ }_{5} \mathrm{C}_{2}=$
$\left(\frac{8!}{5!3!}\right)\left(\frac{5!}{3!2!}\right)=\left(\frac{(8)(7)(6)}{(3)(2)(1)}\right)\left(\frac{(5)(4)}{(2)(1)}\right)=560$
43. ${ }_{6} \mathrm{C}_{3} \bullet{ }_{5} \mathrm{C}_{2} \bullet{ }_{4} \mathrm{C}_{2}=$

$$
\begin{aligned}
& \left(\frac{6!}{3!3!}\right)\left(\frac{5!}{3!2!}\right)\left(\frac{4!}{2!2!}\right)= \\
& \left(\frac{(6)(5)(4)}{(3)(2)(1)}\right)\left(\frac{(5)(4)}{(2)(1)}\right)\left(\frac{(4)(3)}{(2)(1)}\right)=1200
\end{aligned}
$$

45. a) ${ }_{10} \mathrm{C}_{8}=\frac{10!}{2!8!}=\frac{(10)(9)}{(2)(1)}=45$
b) ${ }_{10} \mathrm{C}_{9}=\frac{10!}{1!9!}=\frac{(10)(9!)}{(1)(9!)}=10 \quad{ }_{10} \mathrm{C}_{10}=\frac{10!}{10!}=1$

$$
{ }_{10} \mathrm{C}_{8}+{ }_{10} \mathrm{C}_{9}+{ }_{10} \mathrm{C}_{10}=45+10+1=56
$$

36. ${ }_{10} \mathrm{C}_{6} \bullet{ }_{9} \mathrm{C}_{6}=$
$\left(\frac{10!}{4!6!}\right)\left(\frac{9!}{3!6!}\right)=\left(\frac{(10)(9)(8)(7)}{(4)(3)(2)(1)}\right)\left(\frac{(9)(8)(7)}{(3)(2)(1)}\right)$
$=17,640$
37. Regular soda: ${ }_{10} \mathrm{C}_{5}=\frac{10!}{5!5!}=\frac{(10)(9)(8)(7)(6)}{(5)(4)(3)(2)(1)}=252$

Diet soda: $\quad{ }_{7} \mathrm{C}_{3}=\frac{7!}{4!3!}=\frac{(7)(6)(5)}{(3)(2)(1)}=35$
$(252)(35)=8,820$ ways to select the soda
40. Difficult questions: ${ }_{6} \mathrm{C}_{3}=\frac{6!}{3!3!}=\frac{(6)(5)(4)}{(3)(2)(1)}=20$

Average questions: ${ }_{10} \mathrm{C}_{4}=$

$$
\frac{10!}{6!4!}=\frac{(10)(9)(8)(7)}{(4)(3)(2)(1)}=210
$$

Easy questions: $\quad{ }_{12} \mathrm{C}_{3}=\frac{12!}{9!3!}=\frac{(12)(11)(10)}{(3)(2)(1)}=220$
Total number of 10 -question tests $=(20)(210)(220)$ $=924,000$
42. ${ }_{6} \mathrm{C}_{3} \cdot{ }_{8} \mathrm{C}_{3}=$

$$
\left(\frac{6!}{3!3!}\right)\left(\frac{8!}{5!3!}\right)=\left(\frac{(6)(5)(4)}{(3)(2)(1)}\right)\left(\frac{(8)(7)(6)}{(3)(2)(1)}\right)=1120
$$

44. ${ }_{7} \mathrm{C}_{3} \bullet{ }_{8} \mathrm{C}_{5} \bullet{ }_{4} \mathrm{C}_{2}=$

$$
\begin{aligned}
& \left(\frac{7!}{4!3!}\right)\left(\frac{8!}{3!5!}\right)\left(\frac{4!}{2!2!}\right)= \\
& \left(\frac{(7)(6)(5)}{(3)(2)(1)}\right)\left(\frac{(8)(7)(6)}{(3)(2)(1)}\right)\left(\frac{(4)(3)}{(2)(1)}\right)=11,760
\end{aligned}
$$

46. a) ${ }_{4} \mathrm{C}_{2}=6$
b) ${ }_{5} \mathrm{C}_{2}=10$
c) ${ }_{\mathrm{n}} \mathrm{C}_{2}$
47. a)

b) $\begin{array}{lllllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$
48. a) $4!=24 \quad$ b) $4!=24$
49. ${ }_{n} \mathrm{C}_{(\mathrm{n}-\mathrm{r})}=\frac{n!}{(n-(n-r))!(n-r)!}=\frac{n!}{(n-n+r)!(n-r)!}$

$$
=\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!r!}={ }_{n} C_{r}
$$

Exercise Set 12.10

1. $\mathrm{P}(4$ red balls $)=\frac{\text { no. of } 4 \text { red ball comb. }}{\text { no. of } 4 \text { ball comb. }}=\frac{{ }_{6} \mathrm{C}_{4}}{{ }_{10} \mathrm{C}_{4}}$
2. $\mathrm{P}(3$ vowels $)=\frac{\text { no. of } 3 \text { vowel comb. }}{\text { no. of } 3 \text { letter comb. }}=\frac{{ }_{5} \mathrm{C}_{3}}{{ }_{26} \mathrm{C}_{3}}$
3. $\mathrm{P}($ all 7 are Palaminos $)=$

$$
\frac{\text { no. of } 5 \text { Palamino comb. }}{\text { no. of } 5 \text { horse comb. }}=\frac{{ }_{10} C_{5}}{{ }_{18} C_{5}}
$$

7. $\mathrm{P}($ none of the 9 are oak $)=$

$$
\frac{\text { no. of } 9 \text { non-oak comb. }}{\text { no. of } 9 \text { tree comb. }}=\frac{{ }_{14} C_{9}}{{ }_{30} C_{9}}
$$

9. ${ }_{5} \mathrm{C}_{3}=\frac{5!}{2!3!}=\frac{(5)(4)}{(2)(1)}=10$
${ }_{9} \mathrm{C}_{3}=\frac{9!}{6!3!}=\frac{(9)(8)(7)}{(3)(2)(1)}=84$
$\mathrm{P}(3$ reds $)=\frac{10}{84}=\frac{5}{42}$
10. a) ${ }_{46} \mathrm{C}_{6}=\frac{46!}{40!6!}=9,366,819$
b) ${ }_{47} \mathrm{C}_{6}=\frac{47!}{41!6!}=10,737,573$
c) ${ }_{48} \mathrm{C}_{6}=\frac{48!}{42!6!}=12,271,512$
d) ${ }_{49} \mathrm{C}_{6}=\frac{49!}{43!6!}=13,983,816$
e) No
11. a) The order of the numbers is important. For example: if the combination is $12-4-23$, the lock will not open if 4-12-23 is used. Since repetition is permitted, it is not a true permutation problem.
b) $(40)(40)(40)=64,000$
c) $(40)(39)(38)=59,280$
12. $\mathrm{P}($ all girls $)=\frac{\text { no. of girls }}{\text { no. of students }}=\frac{{ }_{19} \mathrm{C}_{12}}{{ }_{34} \mathrm{C}_{12}}$
13. $\mathrm{P}(3$ aces $)=\frac{3 \text { aces of } 3 \text { cards }}{\text { no. of } 3 \text { letter comb. }}=\frac{{ }_{3} \mathrm{C}_{3}}{{ }_{52} \mathrm{C}_{3}}$
14. $\mathrm{P}(4$ dancers have college degrees $)=$ $\frac{\text { no. of } 4 \text { college degrees }}{\text { no. of college degs. }}=\frac{{ }_{28} \mathrm{C}_{4}}{{ }_{80} \mathrm{C}_{4}}$
15. $\mathrm{P}($ none of the 9 are $\mathrm{T}-\mathrm{I})=$ $\frac{\text { no. of non-October b-days }}{\text { no. of } 3 \text { person groups }}=\frac{{ }_{12} \mathrm{C}_{3}}{{ }_{16} \mathrm{C}_{3}}$
16. ${ }_{3} \mathrm{C}_{2}=\frac{3!}{1!2!}=3$
${ }_{6} \mathrm{C}_{2}=\frac{6!}{4!2!}=\frac{(6)(5)}{(2)(1)}=15$
$P(2$ evens $)=\frac{3}{15}=\frac{1}{5}$
17. ${ }_{8} \mathrm{C}_{5}=\frac{8!}{3!5!}=\frac{(8)(7)(6)}{(3)(2)(1)}=56$
${ }_{14} \mathrm{C}_{5}=\frac{14!}{5!9!}=\frac{(14)(13)(12)(11)(10)}{(5)(4)(3)(2)(1)}=2002$
$P(5$ men's names $)=\frac{56}{2002}=\frac{4}{143}$
18. ${ }_{5} \mathrm{C}_{3}=\frac{5!}{2!3!}=\frac{(5)(4)}{(2)(1)}=10$
${ }_{10} \mathrm{C}_{3}=\frac{10!}{7!3!}=\frac{(10)(9)(8)}{(3)(2)(1)}=120$
$P(3$ greater than 4$)=\frac{10}{120}=\frac{1}{12}$
19. $6 \mathrm{C} 3=\frac{6!}{3!3!}=\frac{(6)(5)(4)}{(3)(2)(1)}=20$
$11 \mathrm{C}_{3}=\frac{11!}{8!3!}=\frac{(11)(10)(9)}{(3)(2)(1)}=165$
$P($ all from manufacturing $)=\frac{20}{165}=\frac{4}{33}$
20. ${ }_{46} \mathrm{C}_{6}=\frac{46!}{40!6!}=9,366,819 \quad{ }_{6} \mathrm{C}_{6}=1$
$\mathrm{P}($ win grand prize $)=\frac{1}{9,366,819}$
21. ${ }_{3} \mathrm{C}_{2}=\frac{3!}{1!2!}=3 \quad 5 \mathrm{C}_{2}=\frac{5!}{3!2!}=\frac{(5)(4)}{(2)(1)}=10$
$\mathrm{P}($ no cars $)=\frac{3}{10}$
22. $\mathrm{P}($ at least 1 car $)=1-\mathrm{P}($ no cars $)=1-1-\frac{3}{10}=\frac{7}{10}$
23. ${ }_{4} \mathrm{C}_{2}=\frac{4!}{2!2!}=\frac{(4)(3)}{(2)(1)}=6$
${ }_{8} \mathrm{C}_{2}=\frac{8!}{6!2!}=\frac{(8)(7)}{(2)(1)}=28$
$P($ two $\$ 5$ bills $)=\frac{6}{28}=\frac{3}{14}$
24. $6 \mathrm{C}_{4}=\frac{6!}{2!4!}=\frac{(6)(5)}{(2)(1)}=15$
$10 \mathrm{C}_{4}=\frac{10!}{6!4!}=\frac{(10)(9)(8)(7)}{(4)(3)(2)(1)}=210$
$\mathrm{P}($ all 4 ride Huffy $)=\frac{15}{210}=\frac{3}{42}=\frac{1}{14}$
25. $8 \mathrm{C}_{4}=\frac{8!}{4!4!}=\frac{(8)(7)(6)(5)}{(4)(3)(2)(1)}=70$
$15 \mathrm{C}_{4}=\frac{15!}{11!4!}=\frac{(15)(14)(13)(12)}{(4)(3)(2)(1)}=1365$
$\mathrm{P}(4$ students $)=\frac{70}{1365}=\frac{2}{39}$
26. ${ }_{52} \mathrm{C}_{5}=\frac{52!}{47!5!}=\frac{(52)(51)(50)(49)(48)}{(5)(4)(3)(2)(1)}$
$=2,598,960$
${ }_{26} \mathrm{C}_{5}=\frac{26!}{21!5!}=\frac{(26)(25)(24)(23)(22)}{(5)(4)(3)(2)(1)}=65,700$
$\mathrm{P}(5 \mathrm{red})=\frac{65700}{2598960}=\frac{253}{9996}=0.253$
27. ${ }_{2} \mathrm{C}_{2}=\frac{2!}{0!2!}=1 \quad 5 \mathrm{C}_{2}=\frac{5!}{3!2!}=\frac{(5)(4)}{(2)(1)}=10$
$\mathrm{P}($ both cars $)=\frac{1}{10}$
28. ${ }_{2} \mathrm{C}_{1}=\frac{2!}{1!\cdot 1!}=2 \quad{ }_{3} \mathrm{C}_{1}=\frac{3!}{2!\cdot 1!}=3 \quad{ }_{5} \mathrm{C}_{2}=\frac{5!}{3!2!}=10$
$\mathrm{P}($ exactly on car $)=\frac{2 \cdot 3}{10}=\frac{6}{10}=\frac{3}{5}$
29. ${ }_{6} \mathrm{C}_{3}=\frac{6!}{3!3!}=\frac{(6)(5)(4)}{(3)(2)(1)}=20$
30. $15 \mathrm{C}_{3}=\frac{15!}{12!\cdot 3!}=\frac{(15)(14)(13)}{(3)(2)(1)}=455$
${ }_{25} \mathrm{C}_{3}=\frac{25!}{3!22!}=\frac{(25)(24(23)}{(3)(2)(1)}=2300$
$\mathrm{P}(3$ infielders $)=\frac{20}{2300}=\frac{1}{115}$
31. ${ }_{10} \mathrm{C}_{2}=\frac{10!}{8!2!}=45 \quad{ }_{6} \mathrm{C}_{1}=\frac{6!}{5!1!}=6$
$\mathrm{P}(2$ pitchers and 1 infielder $)=\frac{(45)(6)}{2300}=\frac{27}{230}$
32. $10 \mathrm{C}_{1}=\frac{10!}{9!1!}=10 \quad 9 \mathrm{C}_{2}=\frac{9!}{7!2!}=\frac{(9)(8)}{(2)(1)}=36$ $\mathrm{P}(1$ pitc. and 2 non-pitch/non-inf $)=\frac{(10)(36)}{2300}=\frac{18}{115}$

For problems $27-30$, use the fact that ${ }_{39} \mathrm{C}_{12}=\frac{39!}{27!12!}=3,910,797,436$
27. $22 \mathrm{C}_{12}=\frac{22!}{10!12!}=646,646$
29. $17 \mathrm{C}_{6}=\frac{17!}{11!6!}=12,376$
$\mathrm{P}($ all women $)=\frac{646646}{3910797436}=0.0001653$
28. $22 \mathrm{C}_{8}=\frac{22!}{14!8!}=319,770$

$$
17 \mathrm{C}_{4}=\frac{17!}{13!4!}=2,380
$$

$$
\mathrm{P}(8 \text { women } / 4 \mathrm{men})=\frac{(319770)(2380)}{3910797436}=0.1946
$$

$$
{ }_{22} \mathrm{C}_{6}=\frac{22!}{16!6!}=74,613
$$

$\mathrm{P}(6$ men $/ 6$ women $)=\frac{(12376)(74613)}{3910797436}=0.236$
30. $\mathrm{P}($ at least one man $)=1-\mathrm{P}($ no men $)$
$=1-\mathrm{P}($ all women $)$
$=1-0.0001653=0.9998$

For problems $31-34$, use the fact that $15 \mathrm{C}_{5}=\frac{15!}{10!5!}=\frac{(15)(14)(13)(12)(11)}{(5)(4)(3)(2)(1)}=3003$
31. $4 \mathrm{C}_{3}=\frac{4!}{3!1!}=4 \quad 6 \mathrm{C}_{2}=\frac{6!}{4!2!}=\frac{(6)(5)}{(2)(1)}=15$
$\mathrm{P}(3$ in $\mathrm{FL} / 2$ in VA$)=\frac{(4)(15)}{3003}=\frac{60}{3003}=\frac{20}{1001}$
33. $5 \mathrm{C}_{2}=\frac{5!}{2!3!}=\frac{(5)(4)}{(2)(1)}=10 \quad 4 \mathrm{C}_{1}=\frac{4!}{3!1!}=4$
${ }_{6} \mathrm{C}_{2}=\frac{6!}{2!4!}=\frac{(6)(5)}{(2)(1)}=15$
$\mathrm{P}(1 \mathrm{in} \mathrm{FL} / 2$ in $\mathrm{KY} / 2$ in VA$)=\frac{(10)(4)(15)}{3003}=\frac{200}{1001}$
32. $5 \mathrm{C}_{4}=\frac{5!}{4!1!}=5 \quad 4 \mathrm{C}_{1}=\frac{4!}{3!1!}=4$
$\mathrm{P}(4$ in $\mathrm{KY} / 1$ in FL$)=\frac{(5)(4)}{3003}=\frac{20}{3003}$
34. $9 \mathrm{C}_{5}=\frac{9!}{5!4!}=\frac{(9)(8)(7)(6)}{(4)(3)(2)(1)}=126$
$P($ no $V A)=\frac{126}{3003}$
$\mathrm{P}(\geq 1 \mathrm{VA})=1-\mathrm{P}($ no VA $)=$
$1-\frac{126}{3003}=\frac{3003}{3003}-\frac{26}{3003}=\frac{2877}{3003}=\frac{137}{143}$

For problems $35-37$, use the fact that $11 \mathrm{C}_{5}=\frac{11!}{6!5!}=\frac{(11)(10)(9)(8)(7)}{(5)(4)(3)(2)(1)}=462$
35. ${ }_{6} \mathrm{C}_{5}=\frac{6!}{1!5!}=6$
$P(5$ women first $)=\frac{6}{462}=\frac{1}{77}$
36. $5 \mathrm{C}_{5}=\frac{5!}{0!5!}=1 \quad \mathrm{P}($ no women first $)=\frac{1}{462}$
$\mathrm{P}($ at least 1 woman 1 st$)=$
$1-\frac{1}{462}=\frac{462}{462}-\frac{1}{462}=\frac{461}{462}$
37. Any one of the 6 women can sit in any one of the five seats -30 possibilities.
$\mathrm{P}($ exactly 1 woman $)=\frac{30}{462}=\frac{5}{77}$
38. P (3 women and then 2 men)
$\left(\frac{{ }_{6} \mathrm{C}_{3}}{{ }_{11} \mathrm{C}_{3}}\right)\left(\frac{{ }_{5} \mathrm{C}_{2}}{{ }_{8} \mathrm{C}_{2}}\right)=\left(\frac{20}{165}\right)\left(\frac{10}{28}\right)=\frac{10}{231}$
40. $4 \mathrm{C}_{3}=\frac{4!}{1!3!}=4 \quad 4 \mathrm{C}_{2}=\frac{4!}{2!2!}=\frac{(4)(3)}{(2)(1)}=6$
and from problem $9,{ }_{52} \mathrm{C}_{5}=2,598,960$
$P(3$ kings, 2 five's $)=\frac{4 \cdot 6}{2598960}=\frac{1}{108290}$
41. ${ }_{7} \mathrm{C}_{5}=\frac{7!}{2!5!}=\frac{(7)(6)}{(2)(1)}=21$ and from problem $9,{ }_{52} \mathrm{C}_{5}=2,598,960$
a) $\mathrm{P}($ royal spade flush $)=\frac{21}{2598960}=\frac{1}{123,760}$
b) $\mathrm{P}($ any royal flush $)=\frac{4}{123760}=\frac{1}{30,940}$
42.

$$
\begin{aligned}
& \left(\frac{\left({ }_{8} C_{3}\right)\left({ }_{12} \mathrm{C}_{4}\right)\left({ }_{5} \mathrm{C}_{2}\right)}{{ }_{25} \mathrm{C}_{9}}\right)= \\
& \frac{(8)(7)(6)(12)(11)(10)(9)(5)(4)}{(3)(2)(4)(3)(2)(2)}=\frac{277200}{2042975}
\end{aligned}
$$

$\mathrm{P}(3$ waiters/4 waitresses $/ 2$ cooks $)=0.1357$
43. a) $\left(\frac{\left({ }_{4} \mathrm{C}_{2}\right)\left({ }_{4} \mathrm{C}_{2}\right)\left({ }_{44} \mathrm{C}_{1}\right)}{{ }_{52} \mathrm{C}_{5}}\right)=\frac{1584}{2598960}=\frac{33}{54,145}$
$P(2$ aces $/ 28$'s/other card \quad ace or 8$)=\frac{33}{54,145}$
b) P (aces of spades and clubs/8's of spades and clubs $/ 9$ of diamonds $)=$

$$
\left(\frac{1}{52}\right)\left(\frac{1}{51}\right)\left(\frac{1}{50}\right)\left(\frac{1}{49}\right)\left(\frac{1}{48}\right)=\frac{1}{2,598,960}
$$

44. $\left(\frac{3}{6}\right)\left(\frac{2}{5}\right)\left(\frac{1}{4}\right)\left(\frac{3}{3}\right)\left(\frac{2}{2}\right)\left(\frac{1}{1}\right)=\frac{1}{20}$
2 ways: $\frac{1}{20}+\frac{1}{20}=\frac{2}{20}=\frac{1}{10}$
45. a)

$$
\begin{aligned}
& \left(\frac{1}{15}\right)\left(\frac{1}{14}\right)\left(\frac{1}{13}\right)\left(\frac{5}{12}\right)\left(\frac{4}{11}\right)\left(\frac{3}{10}\right)\left(\frac{2}{9}\right)\left(\frac{1}{8}\right) \\
& =\frac{120}{259459200}=\frac{1}{2,162,160}
\end{aligned}
$$

b) $\mathrm{P}($ any 3 of 8 for officers $)=\frac{(8)(7)(6)}{2162160}=\frac{1}{6435}$
46. Given any four different numbers, there are $(4)(3)(2)(1)=24$ different ways they can be arranged. One of these is in ascending order. Thus, the probability of the numbers being in ascending order is $1 / 24$.
47. Since there are more hairs than people, 2 or more people must have the same number of hairs.

Exercise Set 12.11

1. A probability distribution shows the probability associated with each specific outcome of an experiment. In a probability distribution every possible outcome must be listed and the sum of all the probabilities must be 1 .
2. Each trial has two possible outcomes, success and failure. There are n repeated independent trials.
3. $\mathrm{P}(x)={ }_{n} \mathrm{C}_{x} p^{x} q^{n-x}$
4. p is the probability of success, $\mathrm{q}=1-\mathrm{p}$ is the probability of failure.
5. $\mathrm{P}(2)={ }_{4} \mathrm{C}_{2}(0.3)^{2}(0.7)^{4-2}=\frac{4!}{2!2!}(.09)(.49)=0.2646$
6. $\mathrm{P}(2)={ }_{3} \mathrm{C}_{2}(0.6)^{2}(0.4)^{3-2}=\frac{3!}{2!!!}(.36)(.4)=0.4320$
7. $\mathrm{P}(2)={ }_{5} \mathrm{C}_{2}(0.4)^{2}(0.6)^{5-2}=\frac{5!}{2!3!}(.16)(.216)=0.3456$
8. $\mathrm{P}(3)={ }_{3} \mathrm{C}_{3}(0.9)^{3}(0.1)^{3-3}=\frac{3!}{3!}(.729)(1)=0.729$
$P(0)={ }_{6} C_{0}(0.5)^{0}(0.5)^{6-0}$
$=\frac{6!}{0!6!}(1)(.0156252)=0.015625$
9. $\mathrm{p}=0.14, \mathrm{q}=1-\mathrm{p}=1-0.14=0.86$
a) $\mathrm{P}(x)={ }_{n} \mathrm{C}_{x}(0.15)^{x}(0.85)^{n-x}$
b) $\mathrm{n}=12, \mathrm{x}=2, \mathrm{p}=0.14, \mathrm{q}=0.86$

$$
\mathrm{P}(2)={ }_{12} \mathrm{C}_{2}(0.14)^{2}(0.86)^{12-2}
$$

$P(1)={ }_{6} C_{4}(0.3)^{4}(0.7)^{6-4}$
$=\frac{6!}{4!2!}(.0081)(.49)=0.05954$
$P(2)={ }_{3} C_{2}(0.96)^{2}(0.04)^{3-2}$
15.

$$
=\frac{3!}{2!1!}(.9216)(.04)=0.1106
$$

$$
\begin{aligned}
\mathrm{P}(4) & ={ }_{6} \mathrm{C}_{4}(0.92)^{4}(0.08)^{6-4} \\
\text { 17. } \quad & =\frac{6!}{4!2!}(.7164)(.0064)=0.06877
\end{aligned}
$$

17.
18. a) $\mathrm{P}(x)={ }_{n} \mathrm{C}_{x}(0.0237)^{x}(0.9763)^{n-x}$
b) $\mathrm{P}(5)={ }_{20} \mathrm{C}_{5}(0.0237)^{5}(0.9763)^{20-5}$
19. $\mathrm{P}(5)={ }_{8} \mathrm{C}_{5}(0.6)^{5}(0.4)^{8-5}$
$=\frac{8!}{5!3!}(.07776)(.064)=0.27869$
20.

$$
\begin{aligned}
\mathrm{P}(4) & ={ }_{6} \mathrm{C}_{4}(0.8)^{4}(0.2)^{6-4} \\
& =\frac{6!}{4!2!}(.4096)(.04)=0.24576
\end{aligned}
$$

18. $\begin{aligned} \mathrm{P}(2) & ={ }_{4} \mathrm{C}_{2}(0.01)^{2}(0.99)^{4-2} \\ & =\frac{4!}{2!2!}(.0001)(.9801)=0.000588\end{aligned}$
19.

$$
\begin{aligned}
\mathrm{P}(4) & ={ }_{5} \mathrm{C}_{4}(.8)^{4}(.2)^{5-4} \\
& =\frac{5!}{1!4!}(.4096)(.2)=0.4096
\end{aligned}
$$

$$
\mathrm{P}(0)={ }_{5} \mathrm{C}_{0}(0.6)^{0}(0.4)^{5-0}
$$

21. a)

$$
=\frac{5!}{5!}(1)(.01024)=0.01024
$$

b) $\mathrm{P}($ at least 1$)=1-\mathrm{P}(0)=0.98976$
23. a)

$$
\begin{aligned}
\mathrm{P}(3) & ={ }_{6} \mathrm{C}_{3}\left(\frac{12}{52}\right)^{3}\left(\frac{40}{52}\right)^{3} \\
& \frac{6!}{3!3!}(.01229)(.45517)=0.11188 \\
\mathrm{P}(2) & ={ }_{6} \mathrm{C}_{2}\left(\frac{13}{52}\right)^{2}\left(\frac{39}{52}\right)^{4} \\
& =\frac{6!}{2!4!}(.0625)(.3164)=0.29663
\end{aligned}
$$

20. a)

$$
\begin{aligned}
\mathrm{P}(0) & ={ }_{4} \mathrm{C}_{0}(.25)^{0}(.75)^{4-0} \\
& =\frac{4!}{4!}(1)(.3164)=0.3164
\end{aligned}
$$

b) $\mathrm{P}($ at least 1$)=1-\mathrm{P}(0)=1-0.3164=0.6836$
22. a)

$$
\begin{aligned}
\mathrm{P}(3) & ={ }_{5} \mathrm{C}_{3}\left(\frac{40}{80}\right)^{3}\left(\frac{40}{80}\right)^{2} \\
& =\frac{5!}{3!2!}(.125)(.25)=0.3125
\end{aligned}
$$

b)

$$
\mathrm{P}(3)={ }_{5} \mathrm{C}_{3}\left(\frac{20}{80}\right)^{3}\left(\frac{60}{80}\right)^{2}
$$

$$
=\frac{5!}{3!2!}(.015625)(.5625)=0.08789
$$

24. a)

$$
\begin{aligned}
\mathrm{P}(3) & ={ }_{5} \mathrm{C}_{3}(0.7)^{3}(0.3)^{2} \\
& =\frac{5!}{3!2!}(.343)(.09)=0.3087
\end{aligned}
$$

b) $\mathrm{P}($ at least 3$)=\mathrm{P}(3)+\mathrm{P}(4)+\mathrm{P}(5)$

$$
\begin{aligned}
& =0.3087+0.3602+0.1681 \\
& =0.8370
\end{aligned}
$$

25. The probability that the sun would be shining would equal 0 because 72 hours later would occur at midnight.

Review Exercises

1. Relative frequency over the long run can accurately be predicted, not individual events or totals.
2. Roll the die many times then compute the relative frequency of each outcome and compare with the expected probability of $1 / 6$.
3. $\mathrm{P}($ mountain bike $)=\frac{8}{40}=\frac{1}{5}$
4. $\mathrm{P}($ watches ABC$)=\frac{80}{200}=\frac{2}{5}$
5. $\mathrm{P}($ even $)=\frac{5}{10}=\frac{1}{2}$
6. $\mathrm{P}($ odd or $>5)=\frac{5}{10}+\frac{4}{10}-\frac{2}{10}=\frac{7}{10}$
7. $\mathrm{P}(>2$ or $<5)=\frac{7}{10}+\frac{5}{10}-\frac{2}{10}=\frac{10}{10}=1$
8. $\mathrm{P}($ even and $>4)=\frac{2}{10}=\frac{1}{5}$
9. $\mathrm{P}($ Grand Canyon $)=\frac{50}{240}=\frac{5}{24}$
10. $\mathrm{P}($ Yosemite $)=\frac{40}{240}=\frac{1}{6}$
11. $\mathrm{P}($ Rocky Mtn. or Smoky Mtn. $)=$

$$
\frac{35}{240}+\frac{45}{240}=\frac{80}{240}=\frac{1}{3}
$$

13. $\mathrm{P}($ not Grand Canyon $)=\frac{190}{240}=\frac{19}{24}$
14. $\mathrm{P}($ wins Triple Crown $)=\frac{3}{85}$
15. a) $\begin{aligned} \mathrm{E} & =\mathrm{P}(\text { win } \$ 200) \bullet \$ 198+\mathrm{P}(\text { win } \$ 100) \bullet \$ 98 \\ & +\mathrm{P}(\operatorname{lose}) \bullet(-\$ 2) \\ & =(.003)(198)+(.002)(98)-(.995)(2) \\ & =.594+.196-1.990=-1.200 \rightarrow-\$ 1.20\end{aligned}$
b) The expectation of a person who purchases three tickets would be $3(-1.20)=-\$ 3.60$.
c) Expected value $=$ Fair price - Cost
$-1.20=$ Fair price $-2.00 \quad \$.80=$ Fair price
16. a) $9: 1 \quad$ b) $1: 9$
17. $5: 3$
18. $7: 3$
19. a) $\mathrm{E}_{\text {Cameron }}=\mathrm{P}($ pic. card $)(\$ 9)+\mathrm{P}($ pic. card $)(-\$ 3)$

$$
=\left(\frac{12}{52}\right)(9)-\left(\frac{40}{52}\right)(3)=\approx-\$ 0.23
$$

b) $\mathrm{E}_{\text {Lindsey }}=\mathrm{P}($ pic. card $)(-\$ 9)+\mathrm{P}($ pic. card $)(\$ 3)$

$$
=\frac{-27}{13}+\frac{30}{13}=\frac{3}{13} \approx \$ 0.23
$$

c) Cameron can expect to lose $(100)\left(\frac{3}{13}\right) \approx \$ 23.08$
20. $\mathrm{E}=\mathrm{P}($ sunny $)(1000)+\mathrm{P}($ cloudy $)(500)+\mathrm{P}($ rain $)(100)=0.4(1000)+0.5(500)+0.1(100)=400+250+10$ $=660$ people
21. a)

b) Sample space:
\{TJ,TG,TC,JT,JG,JC,GT,GJ,GC,CT,CJ,CG \}
c) $\mathrm{P}($ Gina is Pres. and Jake V.P. $)=1 / 12$
23. $\mathrm{P}($ even and even $)=(4 / 8)(4 / 8)=16 / 64=1 / 4$
25. P (outer odd and inner < 6)

$$
=\mathrm{P}(\text { outer odd }) \mathrm{P}(\text { inner }<6)=\frac{4}{8} \cdot \frac{5}{8}=\frac{1}{2} \cdot \frac{5}{8}=\frac{5}{16}
$$

27. $\mathrm{P}($ inner even and not gold $)=\frac{1}{2}+\frac{6}{8}-\frac{2}{8}=\frac{1}{2}+\frac{4}{8}=1$
28. $\mathrm{P}($ all 3 are Hersheys $)=\frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10}=\frac{60}{1320}=\frac{1}{22}$
29. a)

b) Sample space: $\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4\}$
c) $\mathrm{P}($ heads and odd $)=(1 / 2)(2 / 4)=2 / 8=1 / 4$
d) $\mathrm{P}($ heads or odd $)=(1 / 2)(2 / 4)+(1 / 2)(2 / 4)$

$$
=4 / 8+2 / 8=6 / 8=3 / 4
$$

24. P (outer is greater than 5 and inner is greater than 5)

$$
=\mathrm{P}(\text { outer is }>5) \cdot \mathrm{P}(\text { inner is }>5)=\frac{3}{8} \cdot \frac{3}{8}=\frac{9}{64}
$$

26. P (outer is even or less than 6)

$$
\begin{aligned}
& =\mathrm{P}(\text { even })+\mathrm{P}(<6)-\mathrm{P}(\text { even and }<6) \\
& =\frac{4}{8}+\frac{5}{8}-\frac{2}{8}=\frac{7}{8}
\end{aligned}
$$

28. P (outer gold and inner not gold)

$$
=\left(\frac{2}{8}\right)\left(\frac{6}{8}\right)=\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=\frac{3}{16}
$$

30. $\mathrm{P}($ none are Nestle $)=\frac{8}{12} \cdot \frac{7}{11} \cdot \frac{6}{10}=\frac{336}{1320}=\frac{14}{55}$
31. $\mathrm{P}($ at least one is Nestle $)=1-\mathrm{P}$ (none are Nestle) $=1-\frac{14}{55}=\frac{55}{55}-\frac{14}{55}=\frac{41}{55}$
32. $\mathrm{P}($ yellow $)=1 / 4$
33. $\$ 5$ for red; $\$ 10$ for yellow; $\$ 20$ for green
$\mathrm{P}($ green $)=1 / 2 ; \mathrm{P}($ yellow $)=1 / 4 ; \mathrm{P}($ red $)=1 / 4$

$$
\mathrm{EV}=(1 / 4)(5)+(1 / 4)(10)+(1 / 2)(20)=\$ 13.75
$$

37. $\mathrm{P}($ not green $)=1 / 4+1 / 4+1 / 8=5 / 8$
38. $\mathrm{E}=\mathrm{P}($ green $)(\$ 10)+\mathrm{P}($ red $)(\$ 5)+\mathrm{P}($ yellow $)(-\$ 20)$

$$
\begin{aligned}
& =(3 / 8)(10)+(1 / 2)(5)-(1 / 8)(20) \\
& =(15 / 4)+(10 / 4)-(10 / 4)=15 / 4 \rightarrow \$ 3.75
\end{aligned}
$$

41. $\mathrm{P}(<6$ defects \mid American built $)=89 / 106=0.84$
42. $\mathrm{P}(\geq 6$ defects \mid foreign built $)=19 / 74=0.26$
43. $\mathrm{P}($ right handed $)=\frac{230}{400}=\frac{23}{40}$
44. $\mathrm{P}($ right handed \mid no predominance $)=\frac{60}{80}=\frac{3}{4}$
45. a) $4!=(4)(3)(2)(1)=24$
b) $\mathrm{E}=(1 / 4)(10 \mathrm{~K})+(1 / 4)(5 \mathrm{~K})+(1 / 4)(2 \mathrm{~K})$

$$
+(1 / 4)(1 \mathrm{~K})=(1 / 4)(18 \mathrm{~K})=\$ 4,500.00
$$

51. ${ }_{10} \mathrm{C}_{3}=\left({ }_{10} \mathrm{P}_{3}\right)\left(\frac{10!}{7!3!}\right)=\frac{(10)(9)(8)(7!)}{(7!)(3)(2)(1)}=120$
52. $6 \mathrm{C} 3=\frac{6!}{3!3!}=\frac{(6)(5)(4)}{(3)(2)(1)}=20$
53. P(Hershey and Hershey and Reese)

$$
=\frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10}=\frac{60}{1320}=\frac{1}{22}
$$

34. Odds against yellow $3: 1$ Odds for yellow $1: 3$
35. $\mathrm{P}($ red, then green $)=\mathrm{P}($ red $) \mathrm{P}($ green $)$

$$
=(1 / 4)(1 / 2)=1 / 8
$$

38. Odds in favor of green $3: 5$

Odds against green 5:3
40. $\mathrm{P}($ at least one red $)=1-\mathrm{P}($ none are red $)$ $=1-(1 / 2)(1 / 2)(1 / 2)=1-1 / 8=7 / 8$
42. $\mathrm{P}(<6$ defects \mid foreign built $)=55 / 74=0.74$
44. $\mathrm{P}(\geq 6$ defects \mid American built $)=17 / 106=0.16$
46. $\mathrm{P}($ left brained \mid left handed $)=\frac{30}{170}=\frac{3}{17}$
48. $\mathrm{P}($ right brained \mid left handed $)=\frac{120}{170}=\frac{12}{17}$
50. \# of possible arrangements $=\left(5 \mathrm{C}_{2}\right)\left(3 \mathrm{C}_{2}\right)\left(1 \mathrm{C}_{1}\right)$

$$
=\left(\frac{5!}{3!2!}\right)\left(\frac{3!}{1!2!}\right)\left(\frac{1!}{1!}\right)=\frac{(5)(4)(3)}{(2)(1)}=30
$$

52. $9 \mathrm{P}_{3}=\frac{9!}{6!3!}=\frac{(9)(8)(7)(6)}{(3)(2)(1)}=(9)(8)(7)=504$
53. a) $15 \mathrm{C}_{10}=\frac{15!}{5!10!}=\frac{(15)(14)(13)(12)(11)}{(5)(4)(3)(2)(1)}=3003$
b) number of arrangements $=10!=3,628,800$
54. a) $\mathrm{P}($ match 5 numbers $)=\frac{1}{{ }_{52} \mathrm{C}_{5}}$

$$
=\frac{1}{\frac{50!}{45!5!}}=\frac{45!5!}{50!}=\frac{1}{2,118,760}
$$

b) $\mathrm{P}($ Big game win $)=\mathrm{P}($ match 5 \#s and Big \# $)$ $=\mathrm{P}($ match $5 \# \mathrm{~s}) \sqcup \mathrm{P}($ match Big \#)

$$
=\left(\frac{1}{2118760}\right)\left(\frac{1}{36}\right)=\frac{1}{76,275,360}
$$

58. $\mathrm{P}($ two aces $)=\frac{{ }_{4} \mathrm{C}_{2}}{{ }_{52} \mathrm{C}_{2}}=\frac{\frac{4!}{2!2!}}{\frac{52!}{50!2!}}$

$$
=\left(\frac{4!}{2!2!}\right)\left(\frac{50!2!}{52!}\right)=\frac{1}{221}
$$

61. $\mathrm{P}\left(1^{\text {st }}\right.$ red, $2^{\text {nd }}$ white, $3^{\text {rd }}$ blue $)$

$$
=\left(\frac{5}{10}\right)\left(\frac{3}{9}\right)\left(\frac{2}{8}\right)=\frac{1}{24}
$$

63. $\mathrm{P}(3 \mathrm{~N} \& \mathrm{WRs})=$

$$
\frac{{ }_{5} \mathrm{C}_{3}}{{ }_{14} \mathrm{C}_{3}}=\frac{\frac{5!}{3!2!}}{\frac{14!}{3!11!}}=\frac{5!3!11!}{3!2!14!}=\frac{(5)(4)(3)}{(14)(13)(12)}=\frac{5}{182}
$$

$$
\frac{{ }_{8} \mathrm{C}_{3}}{{ }_{14} \mathrm{C}_{3}}=\frac{\frac{8!}{3!5!}}{\frac{14!}{3!11!}}=\frac{8!3!11!}{3!5!14!}
$$

$$
=\frac{(8)(7)(6)}{(14)(13)(12)}=\frac{336}{2184}=\frac{2}{13}
$$

68. $\mathrm{n}=5, \mathrm{x}=3, \mathrm{p}=1 / 5, \mathrm{q}=4 / 5$

$$
\mathrm{P}(3)={ }_{5} \mathrm{C}_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{2}=10 \cdot\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{2}=0.0512
$$

56. $\left(8 \mathrm{C}_{2}\right)\left(10 \mathrm{C}_{4}\right)=$

$$
\left(\frac{8!}{6!2!}\right)\left(\frac{10!}{6!4!}\right)=\frac{(8)(7)(10)(9)(8)(7)}{(2)(1)(4)(3)(2)(1)}=5880 \text { combos. }
$$

57. $\left(8 \mathrm{C}_{3}\right)\left(5 \mathrm{C}_{2}\right)=$

$$
\left(\frac{8!}{5!3!}\right)\left(\frac{5!}{2!3!}\right)=\frac{(8)(7)(6)(5)(4)}{(3)(2)(1)(2)(1)}=560
$$

59. $\mathrm{P}($ all three are red $)=\left(\frac{5}{10}\right)\left(\frac{4}{9}\right)\left(\frac{3}{8}\right)=\frac{1}{12}$
60. $\mathrm{P}\left(1\right.$ st 2 are red $/ 3^{\mathrm{rd}}$ is blue $)=\left(\frac{5}{10}\right)\left(\frac{4}{9}\right)\left(\frac{2}{8}\right)=\frac{1}{18}$
61. $\mathrm{P}($ at least one red $)=1-\mathrm{P}($ none are red $)$

$$
=1-1-\left(\frac{5}{10}\right)\left(\frac{4}{9}\right)\left(\frac{3}{8}\right)=1-\frac{1}{12}=\frac{11}{12}
$$

64. $\mathrm{P}(2 \mathrm{NWs} \& 1$ Time $)=$

$$
\begin{aligned}
& \frac{\left({ }_{6} \mathrm{C}_{2}\right)\left({ }_{3} \mathrm{C}_{1}\right)}{{ }_{14} \mathrm{C}_{3}}=\frac{\left(\frac{6!}{2!4!}\right)\left(\frac{3!}{1!2!}\right)}{\frac{14!}{3!11!}} \\
& =\frac{(6)(5)(3)(3)(2)(1)}{(2)(1)(14)(13)(12)}=\frac{45}{364}
\end{aligned}
$$

66. $1-\frac{2}{13}=\frac{11}{13}$
67. a) $P(x)={ }_{n} C_{x}(0.6)^{x}(0.4)^{n-x}$
b) $\mathrm{P}(75)={ }_{100} \mathrm{C}_{75}(0.6)^{75}(0.4)^{25}$
68. a) $\mathrm{n}=4, \mathrm{p}=0.6, \mathrm{q}=0.4$

$$
\begin{aligned}
\mathrm{P}(0) & ={ }_{4} \mathrm{C}_{0}(0.6)^{0}(0.4)^{4} \\
& =(1)(1)(0.4)^{4}=0.0256
\end{aligned}
$$

b) $\mathrm{P}($ at least 1$)=1-\mathrm{P}(0)=1-0.0256=0.9744$

Chapter Test

1. P (fishing for bass) $=\frac{22}{30}=\frac{11}{15}$
2. $\mathrm{P}(\mathrm{odd})=\frac{5}{9} \approx 0.55$
3. $\mathrm{P}($ odd and $>4)=\frac{3}{9}=\frac{1}{3} \approx 0.33$
4. $\mathrm{P}($ both even $)=\frac{4}{9} \cdot \frac{3}{8}=\frac{1 \cdot 1}{3 \cdot 2}=\frac{1}{6}$
5. $\mathrm{P}($ neither $>6)=\frac{6}{9} \cdot \frac{5}{8}=\frac{1 \cdot 5}{3 \cdot 4}=\frac{5}{12}$
6. 1 die $(6)(3)=18$
7.

13. $\mathrm{P}($ blue and 1$)=\frac{1}{18}$
19. $\mathrm{E}=\mathrm{P}(\mathrm{club})(\$ 8)+\mathrm{P}($ heart $)(\$ 4)$ +P (spade or diamond) ($-\$ 6$)

$$
\begin{aligned}
& =\left(\frac{1}{4}\right)(8)+\left(\frac{1}{4}\right)(4)+\left(\frac{2}{4}\right)(-6) \\
& =\frac{8}{4}+\frac{4}{4}-\frac{12}{4}=\$ 0.00
\end{aligned}
$$

20. d) $\mathrm{P}($ GW Bridge $\mid \mathrm{car})=\frac{120}{214}=\frac{60}{107}$
21. $(>7)=\frac{2}{9} \approx 0.22$
22. $\mathrm{P}(\geq 4)=\frac{7}{9} \approx 0.78$
23. $\mathrm{P}($ both $>5)=\frac{4}{9} \cdot \frac{3}{8}=\frac{12}{72}=\frac{1}{6}$
24. $\mathrm{P}(1$ st odd, 2 nd even $)=\frac{5}{9} \cdot \frac{4}{8}=\frac{5}{9} \cdot \frac{1}{2}=\frac{5}{18}$
25. P (red or picture)

$$
=\mathrm{P}(\mathrm{red})+\mathrm{P}(\text { picture })-\mathrm{P}(\text { red and picture })
$$

$$
=\frac{26}{52}+\frac{12}{52}-\frac{6}{52}=\frac{32}{52}=\frac{8}{13}
$$

14. $\mathrm{P}($ blue or 1$)=\frac{6}{18}+\frac{3}{18}-\frac{1}{18}=\frac{8}{18}=\frac{4}{9}$
15. $\mathrm{P}($ not red or odd$)=\frac{12}{18}+\frac{9}{18}-\frac{6}{18}=\frac{15}{18}=\frac{5}{6}$
16. Number of codes $=(9)(26)(26)(10)(10)=608,400$
17. a) $5: 4$
b) $5: 4$
18. odds against Aimee winning are 5:2 or
$\frac{5}{2}=\frac{5 / 7}{2 / 7}=\frac{\mathrm{P} \text { (not winning) }}{\mathrm{P} \text { (winning) }}$
Therefore, $\mathrm{P}($ Aimee wins $)=2 / 7$
19. a) $\mathrm{P}(\mathrm{car})=\frac{214}{456}=\frac{107}{228}$
b) $\mathrm{P}($ Golden Gate $)=\frac{230}{456}=\frac{115}{228}$
c) $\mathrm{P}(\mathrm{SUV} \mid$ Golden Gate $)=\frac{136}{230}=\frac{68}{115}$
20. ${ }_{6} \mathrm{P}_{3}=\frac{6!}{(6-3)!}=\frac{6!}{3!}=6 \cdot 5 \cdot 4=120$
21. $\mathrm{P}($ neither is good $)=\frac{8}{20} \cdot \frac{7}{19}=\frac{2}{5} \cdot \frac{7}{19}=\frac{14}{95}$
22. $7 \mathrm{C}_{3}=\frac{7!}{4!3!}=\frac{(7)(6)(5)}{(3)(2)(1)}=35$
$5 \mathrm{C}_{2}=\frac{5!}{3!2!}=\frac{(5)(4)}{(2)(1)}=10$
$10 \mathrm{C}_{5}=\frac{12!}{7!5!}=\frac{(12)(11)(10)(9)(8)}{(5)(4)(3)(2)(1)}=792$
$P(3$ red and 2 green $)=\frac{(35)(10)}{792}=\frac{350}{792}=\frac{175}{396}$
23. $\mathrm{P}(\geq 1$ good $)=1-\mathrm{P}($ neither - good $)=1-\frac{14}{95}=\frac{81}{95}$
24. $(0.1)(0.1)(0.1)=0.001$
$(0.1)(0.1)(0.1)(0.9)(0.9)=0.00081$
${ }_{5} \mathrm{C}_{3}=\frac{5!}{3!2!}=\frac{(5)(4)}{(2)(1)}=10$
$(10)(.00081)=0.0081$

Group Projects

1. 0 because no measurement is exact.
2. a) 0.30199
b) 0.10737
c) 0.89263
d) 0.00000
e) 0.30199
f) They should be the same.
3. a) $10^{5}=100,000$
b) $5^{5}=3125$
c) $\frac{1}{3125}$
d) 3125
e) 3125
f) $\frac{1}{3125}$
g) same likelihood
h) More 5 digit codes are available.
