Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources.* AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

Air Emissions Source Test Report

VALID RESULTS Air Emissions Testing Specialists 5223 22nd Ave. N.E., Unit B Seattle, WA 98105 Tel: (206) 522-5665 Fax: (206) 524-4710

CLIENT:

Associated Sand and Gravel Company, Inc. P.O. Box 2037 Everett, WA 98105 (206) 624-0301

SOURCE:

Associated Sand and Gravel Company asphalt plant number 14, a 300 ton per hour Boeing MS 300 asphalt drum mixer connected to a Standard Havens baghouse with a 50,000 cubic feet per minute exhaust fan and an asphalt storage silo, located in Arlington, Washington.

TEST DATE: November, 10 1993

PARTICULATE AIR EMISSIONS TEST RESULTS:

	lbs/hour	grains/dscf	milligrams/dscm
Front Half Averages	4.19	0.020	45.6
Front and Back Half Averages	4.65	0.022	50.6

*Note: Averages are based upon the results of test runs number two and three.

CERTIFICATION:

Mr. Tracy A. Prevo

I racy (1. Prevo

Mr. Andy Winkfer

Project Manager

Independent Consultant

We certify that the information contained within is accurate and complete to the best of our knowledge.

TABLE OF CONTENTS

	Pages
INTRODUCTION	1
SUMMARY OF RESULTS	1-5
QUALITY ASSURANCE	6
SOURCE OPERATION	6
SAMPLING AND ANALYSIS PROCEDURE	7
APPENDIX A - ENVIRONMENTAL REGULATIONS	8-12
APPENDIX B - FIELD DATA SHEETS	13-18
APPENDIX C - LABORATORY DATA SHEETS	19-27
APPENDIX D - QUALITY ASSURANCE	28-30
APPENDIX E - CALIBRATIONS	31-39
APPENDIX F - EXAMPLE CALCULATIONS	40-41
APPENDIX G - PERSONAL RESUME	42-43

INTRODUCTION:

On November 10, 1993 VALID RESULTS performed three one-hour United States Title 40 Code of Federal Regulations Part 60 (40CFR60) Appendix A Method 5 particulate air emission test runs on the outlet of a standard havens baghouse attached to a Boeing MS 300 asphalt drum mixer at plant 14 of Associated Sand and Gravel Company (PSAPCA registration #28469) located in Arlington, Washington.

This testing was performed to determine compliance with State of Washington Department of Ecology (WDOE) and Puget Sound Air Pollution Control Agency (PSAPCA) requirements. No regulatory agency observers were present to witness the testing.

Test results are presented in units of grains per dry standard cubic feet and milligrams per dry standard cubic meter for comparison with the emission limit guidelines listed in PSAPCA Notice of Construction number 5028 dated August 9, 1993, chapter 1 section 60.8 and sub-part I of the 40CFR60 as well as section 173.400 of the Washington State Administrative Code (WAC). Summaries of these regulations are contained in appendix A of this report.

SUMMARY OF RESULTS:

	lbs/hour	grains/dscf	milligrams/dscm
Front Half Averages	4.19	0.020	45.6
Front and Back Half Averages	4.65	0.022	50.6

*Note: Averages are based upon the test results of runs number two and three.

All calculations are made using the applicable equations as shown in the 40CFR60 Appendix A. An example calculation for the second test run is contained in Appendix F of this report.

The run one sample train failed its final leak check. An O-ring at the back of the filter holder blew out during the test resulting in a stack gas moisture content one half that of the other two runs. The second and third test runs were both valid, passing both initial and final leak checks, meeting the minimum dry standard sample volume and isokinetic sampling rate requirements.

The results from test run one are presented in this report, but are not included in the reported average particulate air emissions rates. The 40CFR60 Chapter 1 Section 60.8 allows for such uncontrollable circumstances. A summary of this section is contained in appendix A of this report.

A fourth test run was not performed due to an end in the demand for the product, a full storage silo and approaching darkness.

VALID RESULTS: Particulate Air Emission Rate Calculation Summary

ASSOCIATED SAND AND GRAVEL

Test Date:	<u>11/10/1993</u>	Standard Temperature (Tstd):	° Rankin	<u>528</u>
Operator:	<u>T. Prevo</u>	Standard Pressure (Pstd):	inches HG	<u>29.92</u>
Plant Location:	Arlington, WA	Pitot Tube Coefficient (Cp):		<u>0.84</u>
Source:	Asphalt Plant #14	Meter Coefficient (Yd):		<u>1.0334</u>
Stack Diameter:	<u>34.7 inches</u>	Stack Outlet Area (As):	square feet	<u>8.444</u>

	Units	Symbol	Run 1	Run 2	Run 3	<averages>*</averages>
Total Emission Rate	lbs/hour		7.25	5.92	3.38	4.65
Total Emission Rate	grains/dscf		0.0297	0.0282	0.0160	0.022
Total Emission Rate	mg/dscm		67.9	64.4	36.7	50.6
Total Weight Gain	milligrams	Totalmg	47.8	73.6	40.5	57.1
Front Half Emission Rate	lbs/hour		4.44	5.30	3.08	4.19
Front Half Emission Rate	grains/dscf		0.0182	0.0252	0.0146	0.020
Front Half Emission Rate	mg/dscm		41.6	57.7	33.4	45.6
Front Half Weight Gain	milligrams	FHmg	29.3	65.9	36.9	51.4
Corrected Sample Volume	dscf	Vm(std)	24.856	40.332	39.000	39.666
Corrected Sample Volume	dscm		877.665	1424.123	1377.090	1400.606
Stack Gas Flow Rate	dscf/min		28,500.6	24,537.1	24,605.0	24,571.1
Stack Gas Flow Rate	acf/min		41,782.6	46,160.0	42,745.2	44,452.6
Stack Gas Moisture	%/100	Bws	0.1225	0.2705	0.2368	0.2537
Stack Gas Velocity	feet/sec	Vs	82.47	91.11	84.37	87.74
Stack Pressure	inches HG	Ps	29.98	29.99	29.99	29.99
Stack Temperature	degrees R	Ts	680.6	726.3	701.7	714.00

Where:

Client:

lbs/hour = (grains/dscf)*(dscf/minute)*(60 minutes/hour)/(7000 grains/1 lb)
grains/dscf = (0.001 grams/milligram)*(15.43 grains/gram)*(mg)/(Vm(std))
mg/dscm = (35.31 dscf/dscm)*(milligrams)/(Vm(std)
dscf/minute = 3600*(hour/60 minutes)*(1-Bws)*Vs*As*Tstd*Ps/(Ts*Pstd)
acf/min = Vs*As*(60 sec/minute)
Tmg and FHmg are calculated on the Test Sample Weight Gain Summary (Appendix C).
Vm(std), Bws, Vs and Ps are calculated on each test runs isokinetic sample rate calculation form.

* Averages are calculated from the results of test runs two and three only. The final leak check for test run number one did not meet EPA specifications.

VALID RESULTS: Individual Test Run Isokinetic Calculation Form

Client:	ASSOCIATED SAND AND GRAVEL
Test Date:	<u>11/10/93</u>
Operator:	<u>T. Prevo</u>
Plant Location:	Arlington, WA
Source:	<u>Asphalt Plant #14</u>
Run#:	<u>1</u>

Calculated Parameters:

Name:	Symbol:	Value:	Units:	Equation:
Isokinetic Sampling Rate	Isokinetics	74.36	%	100*Ts*Vm(std)*Pstd/(60*Tstd*Vs*Time*An*Ps*(1-Bws))
Standard Meter Volume	Vm(std)	24.856	dry standard cubic feet	(Vm*Y*Pm*Tstd/(Pstd*Tm))-(Lp-La)*60
Stack Gas Velocity	Vs	82.47	feet per second	85.49*Cp* <sqrt(delta p)="">*SQRT(Ts/(Ps*Ms))</sqrt(delta>
Wet Molecular Weight	Ms	28.07	gram/gram-mole	Md*(1-Bws) + 18.0*Bws
Dry Molecular Weight	Md	29.48	gram/gram-mole	0.44*(%CO2) + 0.32*(%O2) + 0.28*(%N2 + %CO)
Stack Gas Moisture	Bws	0.1225	%/100	Vwc(std)/(Vwc(std) + Vm(std))
Standard Water Volume	Vwc(std)	3.4696	dry standard cubic feet	0.04707*(Imp ml) + 0.04715*(Silica ml)
Nozzle Area	An	0.000165	square feet	(3.14*(Dn/2)*(Dn/2))/144

Measured Parameters:

Name:	Symbol:	Value:	Units:	Equation:
Standard Temperature	Tstd	528	degrees rankin	
Standard Pressure	Pstd	29.92	inches mercury	
Barometric Pressure	Pbar	30.12	inches mercury	
Stack Static Pressure	Pstatic	-1.9	inches water	
Pitot Tube Coefficient	Ср	0.84	dimensionless	
Nozzle Diameter	Dn	0.174	inches	
Meter Coefficient	Y	1.0334	dimensionless	
Meter Volume	Vm	23.46	cubic feet	
Sample Time	Time	60	minutes	
Avg. SQRT Pitot Pressure	<sqrt(delta p)=""></sqrt(delta>	1.2771	inches water	
Avg. Orifice Pressure	<delta h=""></delta>	1.046	inches water	
Avg. Stack Temperature	<tstk></tstk>	220.6	degrees fahrenheit	
Avg. Meter Temperature	<tm></tm>	47.5	degrees fahrenheit	
Stack Temperature	Ts	680.6	degrees rankin	<tstk> + 460</tstk>
 Stack Pressure 	Ps	29.98	inches mercury	Pbar + (Pstatic/13.6)
Meter Temperature	Tm	507.5	degrees rankin	<tm> + 460</tm>
Meter Pressure	Pm	30.20	inches mercury	Pbar + (<delta h="">/13.6)</delta>
Carbon Dioxide	%CO2	6.2	%	
Oxygen	%O2	12.2	%	
Nitrogen/Carbon Monoxide	%N2 + %CO	81.6	%	
Impinger Water	Imp ml	67.5	milliliters	
Silica Water	Silica ml	6.2	milliliters	

VALID RESULTS: Individual Test Run Isokinetic Calculation Form

Client:	ASSOCIATED SAND AND GRAVEL
Test Date:	<u>11/10/93</u>
Operator:	<u>T. Prevo</u>
Plant Location:	Arlington, WA
Source:	Asphalt Plant #14
Run#:	2

Calculated Parameters:

Name:	Symbol:	Value:	Units:	Equation:
Isokinetic Sampling Rate	Isokinetics	95.31	%	100*Ts*Vm(std)*Pstd/(60*Tstd*Vs*Time*An*Ps*(1-Bws))
Standard Meter Volume	Vm(std)	40.332	dry standard cubic feet	Vm*Y*Pm*Tstd/(Pstd*Tm)
Stack Gas Velocity	Vs	91.11	feet per second	85.49*Cp* <sqrt(delta p)="">*SQRT(Ts/(Ps*Ms))</sqrt(delta>
Wet Molecular Weight	Ms	26.41	gram/gram-mole	Md*(1-Bws) + 18.0*Bws
Dry Molecular Weight	Md	29.532	gram/gram-mole	0.44*(%CO2) + 0.32*(%O2) + 0.28*(%N2 + %CO)
Stack Gas Moisture	Bws	0.2705	%/100	Vwc(std)/(Vwc(std) + Vm(std))
Standard Water Volume	Vwc(std)	14.9520	dry standard cubic feet	0.04707*(Imp ml) + 0.04715*(Silica ml)
Nozzle Area	An	0.000243	square feet	(3.14*(Dn/2)*(Dn/2))/144

Measured Parameters:

Name:	Symbol:	Value:	Units:	Equation:
Standard Temperature	Tstd	528	degrees rankin	
Standard Pressure	Pstd	29.92	inches mercury	
Barometric Pressure	Pbar	30.12	inches mercury	
Stack Static Pressure	Pstatic	-1.8	inches water	
Pitot Tube Coefficient	Ср	0.84	dimensionless	
Nozzle Diameter	Dn	0.211	inches	
Meter Coefficient	Y	1.0334	dimensionless	
Meter Volume	Vm	38.735	cubic feet	
Sample Time	Time	60	minutes	
Avg. SQRT Pitot Pressure	<sqrt(delta p)=""></sqrt(delta>	1.325	inches water	
Avg. Orifice Pressure	<delta h=""></delta>	2.77	inches water	
Avg. Stack Temperature	<tstk></tstk>	266.3	degrees fahrenheit	
Avg. Meter Temperature	<tm></tm>	71.1	degrees fahrenheit	
Stack Temperature	Ts	726.3	degrees rankin	<tstk> + 460</tstk>
Stack Pressure	Ps	29.99	inches mercury	Pbar + (Pstatic/13.6)
Meter Temperature	Tm	531.1	degrees rankin	<tm> + 460</tm>
Meter Pressure	Pm	30.32	inches mercury	Pbar + (<delta h="">/13.6)</delta>
Carbon Dioxide	%CO2	6.6	%	
Oxygen	%O2	11.9	%	
Nitrogen/Carbon Monoxide	%N2 + %CO	81.5	%	
Impinger Water	Imp ml	285.5	milliliters	
Silica Water	Silica ml	32.1	milliliters	

VALID RESULTS: Individual Test Run Isokinetic Calculation Form

Client:	ASSOCIATED SAND AND GRAVEL
Test Date:	<u>11/10/93</u>
Operator:	<u>T. Prevo</u>
Plant Location:	Arlington, WA
Source:	Asphalt Plant #14
Run#:	<u>3</u>

Calculated Parameters:

Name:	Symbol:	Value:	Units:	Equation:
Isokinetic Sampling Rate	Isokinetics	91.92	%	100*Ts*Vm(std)*Pstd/(60*Tstd*Vs*Time*An*Ps*(1-Bws))
Standard Meter Volume	Vm(std)	39.000	dry standard cubic feet	Vm*Y*Pm*Tstd/(Pstd*Tm)
Stack Gas Velocity	Vs	84.37	feet per second	85.49*Cp* <sqrt(delta p)="">*SQRT(Ts/(Ps*Ms))</sqrt(delta>
Wet Molecular Weight	Ms	26.83	gram/gram-mole	Md*(1-Bws) + 18.0*Bws
Dry Molecular Weight	Md	29.564	gram/gram-mole	0.44*(%CO2) + 0.32*(%O2) + 0.28*(%N2 + %CO)
Stack Gas Moisture	Bws	0.2368	%/100	Vwc(std)/(Vwc(std) + Vm(std))
Standard Water Volume	Vwc(std)	12.1039	dry standard cubic feet	0.04707*(Imp ml) + 0.04715*(Silica ml)
Nozzle Area	An	0.000243	square feet	(3.14*(Dn/2)*(Dn/2))/144

Measured Parameters:

Name:	Symbol:	Value:	Units:	Equation:
Standard Temperature	Tstd	528	degrees rankin	
Standard Pressure	Pstd	29.92	inches mercury	
Barometric Pressure	Pbar	30.12	inches mercury	
Stack Static Pressure	Pstatic	-1.8	inches water	
Pitot Tube Coefficient	Ср	0.84	dimensionless	
Nozzle Diameter	Dn	0.211	inches	
Meter Coefficient	Y	1.0334	dimensionless	
Meter Volume	Vm	37.338	cubic feet	
Sample Time	Time	60	minutes	
Avg. SQRT Pitot Pressure	<sqrt(delta p)=""></sqrt(delta>	1.258	inches water	
Avg. Orifice Pressure	<delta h=""></delta>	2.59	inches water	
Avg. Stack Temperature	<tstk></tstk>	241.7	degrees fahrenheit	
Avg. Meter Temperature	<tm></tm>	69.2	degrees fahrenheit	
Stack Temperature	Ts	701.7	degrees rankin	<tstk> + 460</tstk>
Stack Pressure	Ps	29.99	inches mercury	Pbar + (Pstatic/13.6)
Meter Temperature	Tm	529.2	degrees rankin	<tm> + 460</tm>
Meter Pressure	Pm	30.31	inches mercury	Pbar + (<delta h="">/13.6)</delta>
Carbon Dioxide	%CO2	6.9	%	
Oxygen	%O2	11.5	%	
Nitrogen/Carbon Monoxide	%N2 + %CO	81.6	%	
Impinger Water	Imp ml	230	milliliters	
Silica Water	Silica ml	27.1	milliliters	

QUALITY ASSURANCE:

VALID RESULTS has developed and utilizes equipment preparation, field sampling, sample chain of custody, laboratory analysis and calibration data sheets designed to follow the quality assurance guidelines outlined in the Environmental Protection Agency document EPA-600/4-77-027b "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume 3". These data sheets are contained in appendices B, C, D, E and G of this report.

Tracy Prevo, the project manager, completed the EPA Air Pollution Training Institute (APTI) Course #SI:414 "Quality Assurance for Source Emission Measurements" in March of 1993. A copy of his certificate of completion for this course is included in appendix D of this report.

Calibration data sheets for the sample nozzles, s-type pitot tube, probe pitot-tube nozzle alignment, type K thermocouples, thermocouple readout and dry gas meter-critical orifice are contained in appendix E of this report.

All calculations, including field data averages, relating to these air emission test results have been checked at least twice by Tracy Prevo. A final quality assurance review was performed, prior to final publication, by independent consultant Mr. Andy Winkler. A manual calculation of the test results for run two are included in appendix F of this report.

SOURCE OPERATIONS:

Source operating conditions during the source test were recorded by and considered to be representative of normal operations by Mr. William Doane of Associated Sand and Gravel. His written record is contained in appendix B of this report.

The Boeing Construction Company model MS-300 (I.D.# BCE-542) drum mix asphalt plant tested was constructed in 1979 and modified in 1989. A Standard Havens model 211-2139 (I.D. #93633) baghouse with 608 bags abates particulate air emissions from the plant to the atmosphere. The unit was last tested in August of 1992. New NOMEX bags ($6.25'' \times 104.75''$) were installed in the baghouse in August of 1993. The pressure drop across the baghouse averaged 2.5 inches of water during the test. According to plant operators the plant produced an averaged of 250 tons per hour, using a six percent fine gravel mix with a gravel moisture content of five percent at an asphalt discharge temperature of 304 degrees Fahrenheit on the day of the test.

SAMPLING AND ANALYSIS PROCEDURE:

A diagram of the stack dimensions including sample port and point locations and the sample point labeling system is located on the VALID RESULTS Method 1,2 Field Data Sheet in appendix B of this report.

VALID RESULTS' particulate sampling train conforms to the EPA 40CFR60 Appendix A method 5 requirements with modifications including a 316 stainless steel heated probe liner, a heated filter box attached to the end of the probe with a heated teflon sample line running from the back-half of the filter holder to the inlet of the first impinger. A detailed equipment checklist is contained in appendix D of this report.

On November 10, 1993 VALID RESULTS performed three one-hour 40CFR60 Appendix A method 5 particulate air emission test runs. Isokinetic (nozzle velocity = stack gas velocity) sampling rates were maintained with the assistance of an isokinetic sampling program written on a hand-held HP-48 calculator.

40CFR60, Appendix A methods 1, 2, 3 and 4 were performed in conjunction with the method 5 particulate air emissions tests. Sample point locations were determined by method 1. Stack gas velocity and volumetric flow rate were determined by method 2. Integrated bag samples were taken during each method 5 test run and analyzed with an ORSAT to determine stack gas molecular weight according to method 3. Stack gas moisture content was determined by impinger water volume gain and silica gel weight gain according to method 4.

Front-half particulate was recovered from the probe liner and nozzle by brushing and rinsing six times with acetone. Particulate matter from the front half of the glass filter holder was rinsed with acetone into the probe liner and nozzle rinse container.

Recovery and analysis of particulate matter from the back half of the sample train, including the heated teflon sample line, was performed according to section II of the PSAPCA Particulate Source Test Procedure.

Duplicate organic extractions were performed with 100 milliliter aliquots of methylene chloride. Liquid samples were evaporated in aluminum weighing tins. All samples were weighed to the nearest 0.1 milligrams on an analytical balance.

APPENDIX A:

Environmental Regulations

PSAPCA Notice of Construction #5028:

EPA 40 CFR 60 Chapter 1 Section 60.8 Summary:

EPA 40 CFR 60 Chapter 1 Subpart I Summary:

WAC 173.400 Summary:

		Registration No. 28469
Puget Sour	d Air Pollution	
	rol Agency	Notice of 9 Construction No. 5028
	ORDER OF APPROVAL	AUG 9 1993
	NSTALL, OR ESTABLISH	
A 300 TPH Boeing MS 306 Asphalt Drum Mixer connected t	to a Standard Havens Baghouse at 50,000	cfm, and an Asphalt
Storage Silo.		
	· · · · ·	the state of the second s
GERALD CRANE		
P ASSOCIATED SAND & GRAVEL (\$71($+1$ 4))	O ASSOCIATED SAND & GRAVEL @	m(+14)
P L PO BOX 2037	W N PO BOX 2037	
	E R EVERETT WA 982	A2
C EVERETT WA 98203 A N	~ EVEREII WA 702	0
Т	ATION ADDRESS	
	_	
ASSOCIATED SAND & GRAVEL (#7), 23621 STATE RT #9, ARLING	FION, WA, 90223	
THIS ORDER IS ISSUED SUBJECT TO THE	FOLLOWING RESTRICTIONS AND CONDITIONS	
 Approval is hereby granted as provided in Article 6 of Regulation 1 of th establish the equipment, device or process described hereon at the INSTA the Engineering Division of PSAPCA. 	e Puget Sound Air Pollution Control Agency to the app ILLATION ADDRESS in accordance with the plans ap	dicant to install or d specifications on file in
 Compliance with this ORDER and its conditions does not relieve the own RCW 70.94 or any other emission control requirements, nor from the rest Regulation I requires that the owner or operator must develop and impleat 	ulting jiabilities and/or legal remedies for failure to con	nphy. Section 5.05(e) of
with Regulations I, II, and III. 3. This approval does not relieve the applicant or owner of any requirement	t of any other governmental agency.	
4. This plant is subject to 40 CFR 60 Subpart I, Standards of Performance fi		
5. Associated Sand & Gravel (ASG) shall submit a source test plan for Agen	scy approval within 30 days of this Order of Approval.	
6. ASG shall conduct source tests within 30 days after plant startup.		
7. ASG shall report source test results within 60 days after plant startup.		
 ASG shall not exceed 0.020 gr/dscf from the baghonse. After demonstration of compliance, the Agency will modify this Order of 	Approval for operation of this plant within conditions	
established during the source test including the amount of recycled materia	ei.	
10. ASG shall not exceed 10% opacity aggregated for 3 minutes in any hour	-	une marini
11. ASG shall not cause or allow the emission of fugitive dust from any man handling equipment and asphalt storage silo to exceed 10% opacity aggreg observed from any manufacturing equipment, a Notice of Construction Ag	gated for 3 minutes in any 1 hour. If fugitive emission	are
		<i>'</i>
		-
And I Alt 1200	1. AD David	D. King
FREDRICK L. AUSTIN P.F. JAY M.	WILLENBERG	S L. NOLAN
	ng Engineer Art Direct	tor of Compliance
MEJ		

Form 50-118, (1/91)

APPENDIX B:

Field Data Sheets:

M1,2 Sample Point Determination

M5 Particulate Sampling

Plant Operating Conditions

.

VALID RESULTS, EPA Method 1 & 2: Sample Point Location and Volumetric Flow Rate Determination 44 Assoc 5:6 Stack Diameter (De or Ds): 34.7 Client: A Towards 38" Date: 11-10-93 Upstream (A): 121/1" Downstream (B): Operator: T. Prevo 833/4" Plant Location: Arlington, WA Minimum # Points: z٩ 484 Asolalt Oft 14 Pitot Tube ID#: 32 Source: ß 17 Fuel Type: Diene #2 Pitot Tube Coeff. (Cp): 0.84 11/8/93 Load Rating: ~ 250 tom hr Pitot Cal Date: Barometric Pressure (Pbar): 30.12 Stack Temp TC ID#: 1-1-48 11/8/93 Standard Temperature (Tstd): 68°F TC Cal Date: Standard Pressure (Pstd): 29.92 % Oxygen (%O2): 11.5 Stack Static Pressure (Pstatic): -/.9 % Carbon Dioxide (%CO2): Equivalent Diameter = Stack Diameter (Ds) or 2*Length*Width/(Length + Width) = 34.7" 6.5 or (32"x 38")/144 = 8.444ft2 Stack Area (As) = (1/4*PIE*(Ds)*(Ds)) Moisture Content (%H2O): Time: ~ 830 cm 30% Equipment Checklist: NA Stack Pressure (Ps) = Pbar + (Pstatic/13.6) Run #: Pre-Test: Pitot Tube Leak Check: ~ Port ID# Point # % Stack ID Port Probe Cyclonic Pitot Tube Stack Temp. SORT Ts Deg F Depth Marks Zero Angle Delta P (Delta P) 25 " 3.6" 260 AI 2.37 4.25 マック 8.4" ø 615 7,12 " 2 upstream (2/4) 3 11.87 13.1 4.0 ¥ 16.62 17.9 45 2 -250 5 -5 21.38 22.6 1.5 27.4" -10 0-8 6 26.12 0.5 7 30.87 32.14 -15 230 \overline{V} ç 35.62 - 15 36.9" D.1 ÷ downstream $(3^3/4)^{1}$ BI ⁄ړ) 7.5 270 2 7 To and the second 3 3 Ч 220 -5 -10 1 -10 6.5 7 200 0 -15 0.1 75 CI 240 ø 2 3 b 2 ч 7 -to 5 200 1 Б 0.5 7/8 0:5/0.2 -10/-16 Averaģes Post-Test: Pitot Tube Leak Check: Molecular Weight Wet (MWs) = ((0.44(%CO2) + 0.32(%O2) + 0.28(%CO + %N2))*(1-%H2O) + 18(%H2O))

Stack Gas Velocity (Vs) = (85.49*Cp*(SQRT(Delta P))*(Ts + 460)/(Ps*MWs)) Stack Gas Volumetric Flowrate = (60*(1-%H2O)*Vs*As*((Tstd + 460)/((Ts + 460))*(Ps/Pstd))

1-107-4

Threy a Prevo

– 4

VALID RESULTS, EPA Method 5: Particulate Air Emissions Test

huy he Huy he Sude

Client: 7	Associate of	Sand Gravel	Equipment	Material			1						
Date:	11-10-93	and onne	Nozzie		ID#		e Value		Impinger W			Charge	7
	r: T. Pren	<u>~</u>	Pitot Tube:	316 55			Dn = O		# Vfina			Solution	
Plant Lo			Stack TC:	31655	<u> </u>	11/8/9	} Cp = ()	.81	1 150	.5 100.0	50.5	DI KZO	
Source:				31655			Yd = J.c		2 116.	0 100.0	16.0	DIHO	
Fuel Typ		Plant #14 - Boghouse			1694716	10/25 9	Delta H	@= 1.9528	3 /.	2 0	1.0	Int	-1
Load Rat			Filter:	Eleas Filrer	VRIDIGF				4 243.	4 237.2	2 6.2	Silica Oel	7
	ric Pressure (O teh	Probe Liner	: 316 SS X,	Pyrex Gl	ass, (Quartz Gla	iss,				I AMAGAL VAL	긔
									Total Mois	ture Gain	= 73.7		
	uiv. Diamete			emperature (Te		28°R	1		- 11				
	pisture (%H20	O): 30		essure (Pstd):		29.92	_ T	- TURAN	I KAGNTO		07 12.	3, 12. 2, 12. 2 2, 6. 2, 6.1	
Run #:	<u> </u>		Stack Static	Pressure (Pst		-1.9	7 -	MARCY	u 10000	Jeak V	COz 6.	2,6.2,6.1 \$	104 1
Pre-Test:		t Checklist:	VREPAM1,2				Check F					<u>2@</u> "Hg	
Port ID#			Pitot Tube	Stack Temp.	Meter	Temp.	Delta H	SQRT	Filte				4
Point #	Time:	Meter Value:	Delta P	Degrees F	Tmin	Tmout		1 1			1 3	Pump	1
1	84230	573.863	7.2	272	32	32	702	(Delta P)	CFM Temp		Temp	Vacuum	4
2	845	576	6.4	272	48	37	2.93 2.65	2.68	252		30	¥	1
0 3	84730	578	4.3	262	52	<u> </u>	1.78	2.53	26/			Ý.	4
1	850	579	2.(252	50	35	0.89		<u> </u>		3	Ø	4
5	85230	581.286	1.5	244	¥9	35	0.64	1.23	242		31	ø	4
6	855	582, 208	0.65	231	49	35	0.28	0.81	240		31	Þ	4
7	59730	582.663	0.28	218	49	35	0.1Z	0.53	246		<u>SI</u>	<u> </u>	{
8	900	582.922	0.04	208	47	36	0.02	0.20	252		36 37	- Ø	1
End	90230	583.007								1.271	27	<u> </u>	{
2	911	583.007	7.5	273	45	39	3.10	2.74	256	250	37	Ø	1
- 3	95530	584.302 (584.836	6.8	234	15	39	2.98	2.61	259		37	Ø	
- V	958	587.026	2.8	218	60	45	1.26	1.67	260		38	¥	i
	100030	588.427 589.222	0.91	196	61	45	0.43	0.95	255		37	6	
6	1003		0.34	190	<u> 46</u>	39	0.16	0.58	253	742	36	d	1
Ŧ	10:0530	589.509 589.683	0.20	<u> 186</u>	47	40	0.09	0.45	255	243	36	10	
8	11:08	589.857	0.10	184	46	40	0.07	0.39	258	245	36	Ø	
End	10:000	590,078	0.10	180	<u></u>	40	0.05	0.32	260	246	35	ø	
7	10:2430	590.078	7.8	235	46	45	210	2 70					
2	10:27	592.468	5.2	232	56	43 48	3.48	2.79	258		93	1.5	
3	10:2930	594.467	2.4	228	38		2.29	2.28	260	242	42	1.0	
2	11:32	595.776	0.82	218	66	49		1.55	264	250	42	ø	
5	(1:3430	596.448	D.39	198	63	50		0.62	260	255	42		
<u><u></u></u>	11:37	596.749	0.27	194	6Z	60		0.52	262		44	ø	
	11:3932	597.025	0.20	186	60	48	Q.09	0.45	256 254		44	ø	
8	11:42	597.723	0.10	180	58	46	0.05	0.32	259	248 246	46 46	Es -	
End	11:44 30	597.323						<u></u>		676	10		
	88888888888888888	23.460								<u>├</u> ───┼			-
Averages				(2012)		HOX	U CHAR						15
					<n7.< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></n7.<>								
					N 477	۱ <i>(</i>							

(V7.5)

s Test
St Cal

										0	Xark																									•								16	2
Charge	Solution	OT U.C.	M H >	NETIN		JUR OF	(f		12.0,11.7, 11.9	6.6.6.6.6		@ /2"Hg	Pump	Vacuum	7 1	· · ·	てん	0		6		8	2	8	4	1	a	20	5		7 7		6.5		61	24) /			9	ø			
Net	Gain	53	905	1/1	102	,		317.62	4	20		. I.,	. F	Imping	Temp	62	5	04	09	17			09		53			22	, k		20			62	44	104	27	10	67	21		na			
Impinger Weight Gain	Vinitial	100	001		1 700			Total Moisture Gain =	2000	UKSAU K	Valak √		Post-Test2008	Probe	Temp	229	842	252	254	E N	246	24,	240		220	22	254	100	259	200	250	20		02.2	263	260	256	222		100	<u> </u>	£.70			
er Weig	Vfinal		107 5		1000	21097		Moisture	_	ANN M		- 11	<u>г</u> . Т.		Temp		28.8	263	765	266	270	242	268		266	┢	270	+	263		203		 	260	272	292	+	+	+	201			-		
Imping	#		2					Total			- X		ຍ		CFM .														 											╉	ſ				
	0.211"	0.84	1.0334	@= /9578				`				Total	Pre-lest crane	SQRT	(Delta P)	2.77	7.37	1.97	1.18	0.74	0.32	0.28	0.32		0.32	5		99.0	1,36	1.79	2.44	7.41		2.61	2.21	1.87	15	130	0 0	<u>'</u> '	000		ľ		
le value	Dn =	- B O	= р <u>/</u>	Delta H	-	Outotta Class	מחמווג סופ	Г		\ 	\ T-	Chool:	CLIECK	Delta H		\$.62	6.41	4.46	1.63	0.65	0.12	0.10	0.12		0.12	0.23	0.65	1.12	2.20	3.4	536	675		7.87	5.67	4.05	2.81	2.11	0.99	0, 37	2	2	ĺ,		
	11/10/93	69/9/11	11/8/53	76		5]		528 - R	29.92	-1.8	Train Loo			Tmout	مح	90	60	66	19	60	60	<i>a</i> 9		59	60	9	19	62	29	60	60		61	191	62	64	65	29	22	24	2			BAN PERSONNAL BANK
<u></u>				11-2 11-211	P. No. VRID265	Purev Glace						Cample		Meter		59	hΕ	80	87	79	76	7/	68		66	69	32	36	82	86	96	96		70	86	92	66	8	16	28	0%		,		PERSERVE STREET
Malbrid	ŝ	۶۶	SS sheet		Class:	316.55			emperature (T	Standard Pressure (Pstd):	Pressure (Ps	a1	A I	Stack Temp.	Degrees F	182	280	577	292	248	232	230	225		SE 2	542	292	142	862	283	284	281		277	280	282	281	280	342	269	245	N N			
	BIZZON	Pitot Tube:	Stack TC:	Meter:	Filter:	Prohe Liner		-	Standard 16	Standard Pr	Stack Static Pressure	VREPAM1 2		Pitot Tube	Delta P	4	5.6	3.9	1.4	0.55	0.10	0.08	01.0		0.10	0.19	0.55	0.97	1.85	3.2	4.6	5.8		6r8	4.4	3.5	2.4	1.8	0.85	0.32	0.35				
			M	17 # IV			0-12	20.2	14.42	30		st: KI		-	Meter value:	-397	.624	451	201	.662	. 644		022	251	251	. 484	- 783		I	•	562	373	834	834	822	547	198	546	951	142	666	132	38.735		
ALL ALL		ano	Let an		ipel	yot a	Phar		(00):	<u>;</u>	Ч	Checklis			N9M			- bla	622.	624	625.	625	626.	626.	626.	626	626.	623	628	630	632.	63S.	637.	634	640.	642.	645.1	647.	٩.	651.	651.	652.	38.		1010101010101010101010
0 01-11		뒥	tion: <u>A</u> M _h	Azela	. b.	2 2	ressil	Diamotor	Stack Equiv. Diameter (De)	Stack Moisture (%H2O):		Equipment Checklist:		Ë	- HIII	12:04	12:0630	12:04	12:((30	12:54	12:1630	12:19	12:2/80	12:21	12:25	0662:21	12:30	12: 3230	12:35	12:3730	ah:2/	0574:21	12:42	12:47.20	12:50	(1:3230	56.2	12:5730	13400	13:0230	305	130730			
Date 1	0410.	Uperator:	Plant Location:	Source:	Fuel Type:	Load Rating:	Barometric	Stack Earlie	Stack Equi	Stack Mois	Bun #:	Pre-Test:	#U1 +00		# 110 -	- '	4 0	13		- -	م	+	8	End	2	, , ,	0 9	<u>م</u> کا	5	0			, and	- (2		\$	6		8	End		Averages	
					_										-	(Wer	and the second							#-					1				-		L	_ L	_1	_1	1	1				4	1

VALID RESULTS, EPA Method 5: Particulate Air Emissions Test

Client:	Associat	tal Sand + Grainel	Equipment	Material	ID#		te Value		16				
Date:	11-10	92	Nozzle	35	10#			0 011	Impinger We			Charge	1
Operator	·	Prenjo	Pitot Tube:					9.211"	# Vfinal		Gain	Solution	
Plant Loc	ation: A	ington, ulA	Stack TC:	55 Sheath	+	1109	3 Cp =	0.84	1 281.0		181	PIH20	1
Source:	Arahal	Plant #14	Meter:		N. allant		3 Yd = /	.0334	2/44.0		44	OTHIO	1
Fuel Type	e: npla		Filter:	6lass f.br	1694716		3 Delta H	@= /.9528	3 5.0		5		1
Load Rati	ing:	~ 250 foh		- 216 99 V	(1 VK 1036F				4 281.6	254.5	27.1	SiliaGel	1
Barometri	ic Pressure (Pbar): 30.12		∵ 316 SS <u> </u>	Fylex G	lass, i	Quartz Gla	ass,			2/7		1
	uiv. Diameter		Standard To	emperature (Te	otd):	Cacol		_	Total Moistu	re Gain =	<u> </u>	/	
	isture (%H2C		Standard P	ressure (Pstd):		528°R	-	1.0	n / \dots	Ne	τ η.	11 C II CII	1.
Run #:	3			Pressure (Pstu).		29.92	-	IMCY	a. baerz				" least
Pre-Test:	Equipment	Checklist: RI				-1.8				Lean		2 09,70,0	1
Port ID#			VREPAM1,		Sample	Train Lea	k Check: F	Pre-Test 0.0	by @ <u>IS</u> "Hg	, Post-Te	est 0.006	@ <u>13</u> "Hg	1
Point #	Time		Pitot Tube	Stack Temp.	Meter	r Temp.	Delta H	SQRT	Filter		Imping	Pump	
1	Time:	Meter Value:	Delta P	Degrees F	Tmin	Tmout	7	(Delta P)		Temp	Temp	Vacuum	
2	14:2530	673.613	7.6	270	73	57	7,22	2.76	758	746	48-		
3	14:28 14:3030	677.443	4.9	272	80	58	4.98	Z.21	272		48	5.5	
	14:33	680. 228	3.0	Z68	85	58	3.05		268	244	Y7	5.5	I
5	14:3570	<u>682.683</u> 684.139	0.98	256	<u> </u>	59	1.02	0.99	264	248	47		
6	14:36	684. 824	0.48	252	78	60	0.50	0.69	260	252	48		
7	14:4030	685.012	0.12	246 222	73	59	0.13	0.35	262	255		6	
8	14:43	685.185	0.05	214	<u>71</u> 70	59	0.09	0.28	265	258	51	Ø	
-End	14:4530	685.3(3		Ely_		59	0.06	0.22	263	260	53	Ø	
8	14:47	685.313	0.05	208	67	58	0.06	0.02				1	
7	14:4930	685. 436	0.10	212	67	58	0.11	0.22	760	254	50	ø	
6	14:52	685.618	0.15	226	70	56	0.17	0.39	258	256	49		
5	14:5430	685.863	0.27	225	72	56	0.31	0.52	254	258	48	\$ \$ \$	
- 4	14:57	686.246	0.86	223	77	56	0.92	0.93	250 248	260	48	_¥	
2	14:9930	687.88-	3.2	224	90	54	3.41	1.79	246	261	47 48	4	
	19:0Z 15:0430	690.014	5.3	232	97	55	5.64	2.30	250	754	49		
End	15:07	692.734	7.8	254	96	55	7.95	2.79	522	249	51	6.5	
1	15:0830	696.245	- 10								<u> </u>		
2	15:11	699.963	6.9	268	84	55	6.89	2.63	255	250	50	6.5	
3	15:1330	702.503	6-0 4.2	267	93	55	5.99	2.45	25Z	75Y	50	5.0	
Y	15:16	705.097	2.8	<u>257</u> 249	96	56	4.26	2.05	250		49	3.5	
5	15:1830	707.700	1.9	252		57	2.92	1.67	248	252	49	1.0	
6 7	15:21	709.569	0.58	252	96 94	57 58	1.98	1.38	248		50	Ø	
	15,2330	710.463	0.20	238	75	57	0.61	0.76	256		51	Ø	
8	15:26	710. 734	0.10	218	68	57	0.21	0.45	258		$\overline{\Sigma}$	ð	
End	15:1890	710.951		<u> </u>		<u>/T</u>	0.10	0.32	260	239	51	é	
		37.3387										/	
Averages												0000000000000	
					<u></u>		CERESERVED						く
					(h4	1 1							

(697)

Valid Results: Asphalt Plant Operating Conditions during Source Test

Client: associated Sano & Gradic Location: and man Plant Type: Drum M/Ker Manufacturer: Boerna / MONTERD Model #: ______ Constructed/Installed: 1979 / 1989 Identification Number: BCE < 42Date Last Tested: 8-4-92 Operating Personnel: By// Somme Process Rate: 200 TPh to 300 Tph Discharge Temp: 304 Fuel Type: 1.8 epilson Firing Rate: A/C Injection Location Drum Ents Fines in Gravel (< 200 mesh) 6% + -Gravel Moisture: 500 Asphalt Type: AR 4000 W Density (lbs/gallon): 8,5/060°F Flash Point: $475^{\circ} + -$ Fan Amperage: 175-198

Control Equipment: Manufacturer: STawARD Hadden S Model: 2/1 - 2/39Serial Number: $9 \ 3 \ 6 \ 3 \ 3$ Bag Material: Nome Number of Bags: $GO \ 8$ Bag Size: $G'/_{41} \times 104' \ 3/_{41}$ Date Bags Last Changed: S' - 93Air to Cloth Ratio: $5, 22 \ -1 \ 0.45\%CFm$ Type of Bag Cleaning: $Pulse \ 3eT$ Baghouse Inlet Temp: $312^{\circ F}$ Baghouse Pressure Drop: $2' \ 3''$ Cleaning Cycle Duration: 5m/mDisposition of Collected Dust: 100% to M/%

Authorized Plant Operator Signature:

William Strane

APPENDIX C:

Laboratory Data Sheets:

Sample Weight Gain Summary

Sample Chain of Custody

Gravimetric Sample Analysis

VALID RESULTS: EPA Method 5 Sample Weight Gain Summary Data Sheet

Client:	Associated Sand and Gravel
Test Date:	<u>11/10/93</u>
Plant Location:	Arlington, WA
Source:	Asphalt Plant #14
Recovery Date:	11/11/93
Analysis Date:	<u>11/18/93-12/1/93</u>

Total and Front Half Particulate Sample Weight Gain Summary

	Run 1		Run 2		Run 3		Run 4	
Total Particulate	47.8	mg	73.6	mg	40.5	mg	-1.2	mg
Front Half Particulate	29.3	mg	65.9	mg	36.9	mg	-0.3	mg

Particulate Sample Weight Gain Summary

	Run 1		Run 2		Run 3		Run 4	
Front Half Acetone	18.5	mg	26.5	mg	19.0	mg	-0.2	mg
Front Half Filter	10.5	mg	39.1	mg	17.6	mg	-0.1	mg
Back Half Organic 1	7.4	mg	1.9	mg	-0.3	mg	-0.25	mg
Back Half Organic 2	2.0	mg	2.2	mg	0.0	mg	-0.25	mg
Back Half Water	7.5	mg	3.1	mg	2.7	mg		
Back Half Acetone	0.7	mg	-0.4	mg	0.3	mg	-0.4	mg
Blank Correction	1.2	mg	1.2	mg	1.2	mg		
		•		•				

Back Half Water Sample Particulate Weight Gain (Volume Correction)

Run 1		Run 2		Run 3		Run 4	
2.2	mg	0.8	mg	0.8	mg	0.3	mg
110	ml	110	ml	110	ml	110	ml
1.9	mg	0.5	mg	0.5	mg		•
431.5	ml	671.5	ml	589	ml		
7.45	mg	3.05	mg	2.68	mg		
	110 1.9 431.5	110 ml 1.9 mg 431.5 ml	110 ml 110 1.9 mg 0.5 431.5 ml 671.5	110 ml 110 ml 1.9 mg 0.5 mg 431.5 ml 671.5 ml	110 ml 110 ml 110 1.9 mg 0.5 mg 0.5 431.5 ml 671.5 ml 589	110 ml 110 ml 110 ml 1.9 mg 0.5 mg 0.5 mg 431.5 ml 671.5 ml 589 ml	110 ml 110 ml 110 ml 110 1.9 mg 0.5 mg 0.5 mg 110 431.5 ml 671.5 ml 589 ml 2160

20

VALID RESULTS: Air Emission Sample - Chain of Custody

5223 22nd Ave. N.E., Unit B Seattle, WA 98105 (206) 522-5665

/

Project Manager:	<u>Tracy Prevo</u>
Laboratory Name:	Best Environmental, Inc.
Client:	Associated Sand & Gravel Company, Inc.
Location:	Arlington, WA
Source:	Asphalt Baghouse
Test Method:	EPA Method 5
Instructions:	See attached note

Sample Identification	Date Tested	Volume	Preservative	Analysis	Special
RIMSFH Actione	11-10-93	DRY	NONE	EPAMS	
K2 11	1				
R3 11					
RY 11					
RIM5 Filter					
R2 11					
R3 11					
RY II					
RIM5BHORGanie					
R2 11					
R3 11					
RY 11					
RI MS BH ORGanic 2					·
<u>R2 11</u>				ļ	
R3 11		4			
RIM5BHH20		110 ml			evaporate
R2 "					
<u>R3 (1</u>					
R4 11					
RIM5BH Acetone		liome			
R2 11					
R3 11					
RY 11		V			

Relinquished By:	Date:	Time:	Received By:
Theory Prevo	11-15-93	C1500	Michael J. Wiley
			· · · · · · · · · · · · · · · · · · ·

Relinquished By:	Date:	Time:	Received By:
	1	(

<u> </u>	Sampling Date	Sample ID	Media ID		Initial Weights	Weight Date Final	Final Weights	Net Weight Gain Total Volume (Final - Initial)	Total Volume
				10/18/93 10/20/93	2.2994	11 22 93	2.3178		¢
	11-10-93		0			11/24/93	2.3177		مرملا
•		KIMSTH Acount 1320	1320					18.5 mg	, ,
								2	
		1000			< 2.2994 >		< 2.3179		_
				10 15 93	2.2865	62/81/11	2.3131		
				10 20 93	2.2866	11 22 43	2.3131		
	65-01-11	R2M5FHActure	7329			21/22/11	1010.4		10002
								₽ • •	>
					< 2 2866 >		< 2.3131	^	
1				10 18 93	42.2854	1) 18 93	2.3045	T	
	:		8	6 20 43	CG82.7	11 11 10 10 1	3.3044		
	11-10-93	R3M5FHAreteno	7330			71 - 3111		9 () mp	100
			2						
								- 1-	
					< 2.2855 >		< 2.3045	~	
				10/18/93	2.2749	11/18/93	2.2748		
	• • • • •			10 20 93	2.2751	11 22 93	2.2748	- T	
	41-11-11					11/24/45	2.2448	* * *	2000 m
		Kym5FHHatma	1001						
								у 	
					< 2.2750 >		< 2.2748	٨	

VALID RESULTS: Gravimetric Sample Analysis - Aluminum Weighing Tins

22

VALID RESULTS: Gravimetric Sample Analysis - 102 mm Glass Fiber Filters

Client	Sampling	Sample ID	Media ID	Weight Date	Initial	Weight Date		Net Weight Gain	Total Volume
	Date		 	Initial	Weights	Final	Weights	(Final - Initial)	
				10 22 93	0.5865	11/18/43	0.5972		
, La D		DIMCEllac		10 25 93	0.5866	11/22 43	0.5972		
Issiciated	11-10-95	KIIISFILLER	25			11/24/93	0.5968	0.5	NA
Cand One	11 '	:	VR1016F			11 29 93	0.5971		,
Jun Longen			No la compañía de la				·····		
- Arman		RIMSFiller	7					-	
<averages></averages>	<u></u>	I	L		< 0.5866 >		< 0.5971 >	>	▲ <u></u>
				10/22/93	0.5825	11/18/93	0.6217		
NO				10 25 93	0.5825	11 22 93	0.6217		
45:0	(1) (9)	R2m5Filter	VRIUZEE			11/24/93	0.6214	2.	
Altor	11-10	112	20			11/29/93	0.6216	39.1	NA
Ki n. ()			2						
			2						
						1			
Averages>					< 0.5825 >		< 0.6216	>	
	[10 22 93	0.5823	11/18/93	0.6000		
NC				10 25 93	0.5823	1 22 93	0.5999		
M7.0	, 93	DODEFIL	.U			11/24/93	0.5999	-	
1 lington	11.10	R3MS Filter	20		<u></u>	11/29 93	0.6000	17.6mg	NA
Hum. 0			171036						1.1
			2						
Averages>	<u> </u>	<u> </u>	l		< 0.5823 >		< 0.5999 >	>	
5					0.201				
				10/22/93	0.5856	(1)18 43	0.5855		
AS-C	-0			10(25 93	0.5855	11/22/43	0.5856		
U	11-10-93	Dulmerfile	.4			11/24/43	0.5854		
ANIngton	111-10	Rym5Filter	16			11/29/93	0.5855	-0.1	NA
(Dung			Ĩ.			1	0.5857		
['' `			VRIDYEE						
Averages>				· · · · · · · · · · · · · · · · · · ·	< 0.5856 >		< 0.5855 >	>	

	Sampling	Sample ID	Media ID W	שו	Initial	Weight Date	Final	Net Weight Gain Lotal Volume	l otal Volume
	Date			Initial 1.0 \ 6.2	Veights	Final infielda	2 2403		
1 .				10 20 93	2.2829	11 22 93	2.2403		Sn A
	66-11-1	11-11-93 RIM5BH CKG 1	7332			11 29 93	2.2902	Tym	· · · 00
		-						×	
		Eark 1. Ove the clipe)	(1)						
1					< 2.2828 >	-	< 2.2902 >		
				10/18/93	2.2602	11 15 93	2.2623		
				10/20/93	2.2603	11/22/93	2 2622		0
	0 11	11 IN GO DIMERUNDEN 1233	7223			64/43/11	7. 4044	- 1-9 m	10 Juny
1 Juna m	(1-11-1	1 ONNUA CHI 7N						,	
					< 2.2603 >		< 2.2622	~	
				50/18/93	2.2701	11 18 93	2.2701		
				10 20 93	2.2702	11 22 93	2.2698	-	
	1-10-93	11-10-93 R3m5 BH BR61	1334					-0.3mg	νη ⁰ ,0ν ²
- Annular								7	2
			\ 						
1					< 2.2702 >		< 2.2699	^	
				10 18 93	2.2592		2.2610		
				10/20/93	1462.2	11/24/43	2 2587	T	
	11-10-93	Ryms BH ORG 1	seet			1 29 23	1.2589	~0; 2,0,2,0,4	
						•		3	À
1 201									
1					< 2.2593	~	< 2.2588	^	

». J

VALID RESULTS: Gravimetric Sample Analysis - Aluminum Weighing Tins

Client	Sampling Date	Sample ID	Media ID	Weight Date Initial	Initial Weights	Weight Date Final	Final Weights	Net Weight Gain (Final - Initial)	Total Volume
				10 18 93	2.2192	11 18 93	2.2215		
A minted 1				10 20 93	2.2193	11/22 43	2.2213		l l
Associate	11-10-93	PIMERHAP62				11/24/43	2.2211	2+0 mg	
Sand O'a		NINSUIUNOZ	1320			11/29/93	2.2213	2.0 ma	(()(.*
A L tor									1.
Arling		Back/2 Dra						7	
> i: j		RIMSBHORGZ Back KL Drg 2nd Extraction					_		
Averages>					< 2.2193 >	>	< 2.2213	>	<u></u>
]	<u> </u>	10 18 93	2.2476	11/18/93	2.7501		
NGI				10/20/93	2.2477	11/22/93	2.2498	-	٨
A510		R2m5BH0R62				11/24/93	2.2497	2.2.mg	anal
A Am	11-10-93	IR2 MSBHARG2_	1354					22 ma	$(\Omega)^{0}$
Aning		ILENO DI VIVE							100
								-	
Averages>		<u> </u>		L	< 2.2477 >	>	< 7.2499 >	>	
· · · · · · · · · · · · · · · · · · ·	1			10 18 93	2.2523	11 18 93	Z. 2660		
NC L				10 20 93	2.2524	11/22/93	7.2525		0
H5:0		R3M5BH ORG2	1338			11/24/93	2.2523	0.0mg	And
A A - ton	111-10-93	K3M5BH0K62	1,5,7					U.U.M.G	(nd.)
- Aningue.				, ,					100
								-	·
								-	
Averages>					< 2.2524 >	•	< 2.2524 >	>	
	T								
				└─── ─ ──┤					
						·· [
						+			
								-	
								-	

Net Weight Gain Total Volume (Final - Initial)	11000		J~011		5m011		11000	
Net Weight Gai (Final - Initial)	er to		-0:4 -0:4		0.3 mg		-0.4mg	
Final Weights	2.2937 2.2938 2.2938	< 2.2938 >	2.2615 2.2616 2.2615	< 2.2615 >	2. 2633 2. 2633 2. 2632	< 2.2633	2: 2599 2: 2596 7: 2596	
Weight Date Final	h 2993 11 20 93 12 1 93		11 2993 11 30 43 12 11 93		11 29 93 11 36 93 12 1 93	-	11 29 23 W 30 43 12 (1) 93	
Initial Weights	2.2931	< 2.2931 >	2.2619	< 2.2619 >	2.2630	< 2.2630 >	2.2600	
D Weight Date Initial	11 23 4 9		11 24 43		11 23 93		4/23/93 11/24/43	
Media ID	2tet		6787		Fret		Ster	
Sample ID	11-10-93 RIMSBH Active		11-10-93 R2 M5 BHActure		11-10-93 R3M5BH Active		11-10-93 Rym5BHAcetone	
Sampling Date			65-01-11		11-10-93		65-01-11	
Client	Associated Associated	<averages></averages>	AS: 6 Andreading	<averages></averages>	AS", 6 ANNumber	<averages></averages>	AS'6 Administran	

_

26

e							8 ~ ~ 1	Pino - milmenet y han l'I		,		-			x 671.5m2/100 = 3.4 mg		<u>ح</u>				nt) [, 	2.12		-			()	///	27	,
Total Volume		431,5m					146 6 has	noi/me cure	111500	1111		A 0.0 1.0	MUN I	È J	071.5mB/100		589.0m	• ^ ($\int dr $	(monthly)		89mk/100 7					(int)m	(white way)	
Net Weight Gain (Final - Initial)				Kw27	3						× *	- U.S.ma	•		> 0.5 mg x (0.5hut × 589mk/100 = 			I.	- 03mu	÷ Š	×	<pre>></pre>	
Final Weights	2.2308	2.2307	2.2307				T C C	< 2.2.30+	2.2487	2.2488	2.2487				< 2.2484	2.3037	2.3036	2.3036					< 2.3036	2,3016	2.3015	2.3015				22015	
Weight Date Final																															
Initial Weights	2.2284	2.2286						< 2.2285 >	2.2478	2. 24 79					< 2.2479 >	2.3027							< 2.3028 >	1102.2	2.3012					,	< 2.3012>
Media ID Weight Date Initial	11 23 93	11 24/93	-						11 23 93	11/24/93	1 ,					11 23 93	112493	+						11/23/43	1/10/02	1121					
Media ID			51	1300							19	1951							1240	. /							1727				
Sample ID				RIMSBAH,O		Lock h. "Drow (Iwr.)	in a simo					K2MISHIH20 11 501)						X3M (AHH. 1) / 270								11-10 42 RUMERUH.	o21111/2011/1			
Sampling Date				11-10-93								[[-(0-93							11-10-93	> > =											
Client		U 44.	N. There is	Nota Prove	Levres :	1 Numeron	0	<averages></averages>			Acresont (Name (none)	Cand i An	ANNAN	<pre></pre>		- 4.0 v	No. www.	The Comme	Sand i L	A lineaux	0	<averages></averages>		- A.	L' acuava ,	MNNY . "AA(Cambrid	A (WHIM		<averages></averages>

VALID RESULTS: Gravimetric Sample Analysis - Aluminum Weighing Tins

APPENDIX D:

Quality Assurance:

M5 Equipment Preparation

SI:414 Certificate of Completion

VALID RESULTS, EPA Method 5: Particulate Air Emissions Pre-Test Equipment Checklist

	-		_	
Client:				
Date:				
Prepare	r:			
Plant Lo	C	atic	n	
Source:				

Associated Sand: Gran
11-9-93
T. Previo
Aslington, WA
Acushalt Plant # 14

Nozzies:Material33Size37Probe LinerMaterialSSLength48"Tared FiltersMaterialMaterialNumber8×Filter HoldersMaterialAterialNumber3×Filter FritMaterialAterialAterialNumber	Tared Filters Filter Holders	Material Material	glass fiber	Number Number	8x 3x
---	---------------------------------	----------------------	-------------	------------------	----------

Personal Protective Equipment:

Hard Hat Steel Toe Boots Gloves Hot Gloves Respirator Ear Plugs Safety Glasses Coveralls Rain Gear	× × × × × × × × × × × × × × × × × × ×
--	---------------------------------------

Sample Recovery:

Triple Beam Balance Graduated Cylinder Distilled Water Acetone Probe Brush Nozzle Brush Sample Jars Aluminum Foil Parafilm	× × × × × × × × × ×
--	--

		<u>^</u>
Field Data Sheets	3x M1,2	<u> </u>
Field Data Sheets	7x M5	
Calculator - Isokinetics Program	-	
Clip Board, Pens	-	V
	Number	2
Heated Filter Box	Number	4.14
Probe Stand	Length	
Heated Sample Line	Length	18
Umbilical	Number	
Impinger Buckets		<u> </u>
Sample Pump	Type Yd	Tolon Hard the
Dry Gas Meter	Delta H@	1.0334
Critical Orifice		1.9528
Dual Slant Tube Manometer	Range	0-10.
Thermocouple Readout	Number	TESA
Variac Heat Controllers	Number	<u> </u>
Plug Strips	Number	<u> </u>
100' Extension Cords	Number	<u>3x</u>
15' Extension Cords	Number	<u> </u>
Rope	Length	50'
Ice Chests	Number	<u>3×</u>
lce	Number	6000
Tared Silica Gels	Number	6× 1
Probe Stand	-Number-	
Unirails	Length	NA
Port Adaptors	Туре	None
Tarps	Number	2×
Tedlar Bags	Number	4×
White Out		
Misc. Tubing		
Glass Tape		
Huge Pipe Wrench		
Tool Bucket		

United States Environmental Protection Agency

Air Pollution Training Institute

Tracy Allen Prevo

has successfully completed

COURSE # SI:414 QUALITY ASSURANCE FOR SOURCE EMISSION MEASUREMENTS

Chief, Air Pollution Training Branch

JOMM Registrar 3.5 CEU

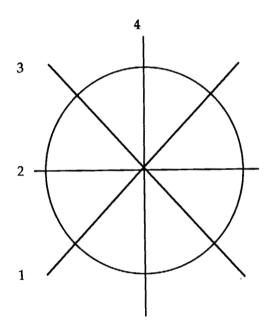
APPENDIX E:

Calibrations

Nozzle

Pitot Tube

Pitot Tube-Nozzle Alignment

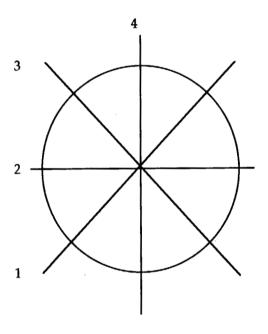

Type K Thermocouple

Thermocouple Readout

Dry gas meter and Critical Orifice

VALID RESULTS: Nozzle Calibration Data Form

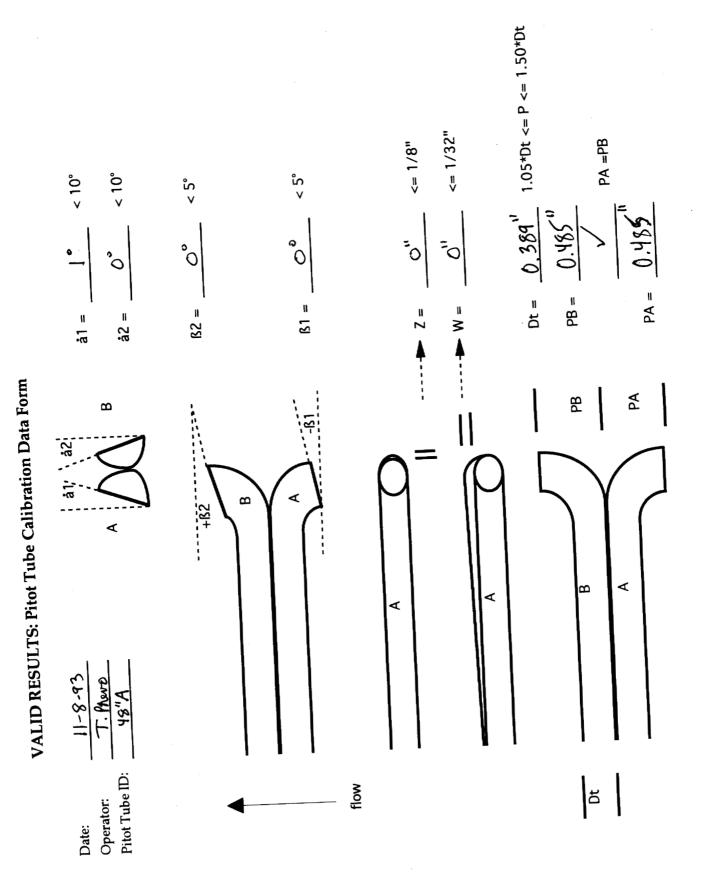
Date:	11-8-93
Operator:	T. Prevo
Nozzle Type:	31655
Nozzle ID:	55-5A
Ambient Temperature:	S4°F


Measured Nozzle Diameters:

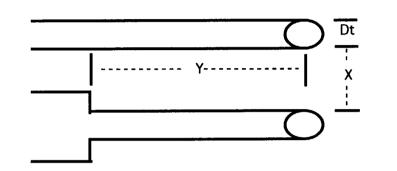
.

D1 =	0.774"
D2 =	0.173"
D3 =	0.174"
D4 =	0.174"
Average	< 0.174">

VALID RESULTS: Nozzle Calibration Data Form

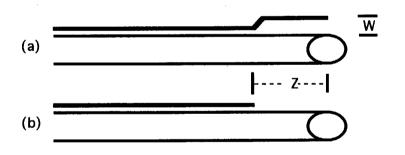

Date:	11-8-93
Operator:	T. Prevo
Nozzle Type:	316 55
Nozzle ID:	
Ambient Temperature:	54° F

Measured Nozzle Diameters:


.

······································		
D1 =	0.211"	
D2 =	0.211"	
D3 =	0.210"	
D4 =	0.211"	
Average	< 0.211 ">	

VALID RESULTS: Pitot Tube Nozzle Alignment Calibration Data Form


Date:	11-9-93
Operator:	T. Prevo
Probe ID:	48''
Pitot Tube ID:	୍ୟଞ"୍ୟ
Nozzle ID:	VR 555A

$$Dt = \frac{0.389^{11}}{X} = 3/16" \le Dt \le 3/8"$$

$$X = \frac{0.762^{12}}{3} \ge 3/4" \text{ for } Dn = 1/2"$$

$$Y = \frac{3^{11}}{3} \ge 3"$$

$$W = \frac{N|A}{N|A} >= 3/4"$$

$$Za = \frac{N|A}{2} >= 3"$$

$$Zb = \frac{2^{1}|\$}{2} >= 2"$$

Nozzle opening even with or in front of pitot tube opening?

ω

VALID RESULTS: Type-K Thermocouple Calibration Data Form

liO gniliod

Boiling Water

Meter Out

∀-9

Ambient Temperature:	Johs
Barometric Pressure:	000.15
Reference Thermometer:	Maraunt
Operator:	arvarg. T
Date:	26-8-11

Ø	25	25	Ice Water		
			liO gnilioð	1	{
£4.0	SIZ	hIZ	Boiling Water	Meter In	¥-9
¢	22	28	Ice Water		
<u> </u>	<u></u>	· ·	liO guiliog	<u></u>	1
\$,	412	hIZ	Boiling Water	inO .qmI	∀-₩
ø	ZE	26	Ice Water		
		r	liO guiliog	·	
Eh.o	SIZ	hIZ	Boiling Water	Filter	∀- ε
P	35	25	Ice Water		v c
		·			
			liO guiliod		1
ø	hiz	piz 1	Boiling Water	Probe	5-∀-48
Ø	28	ZE	Ice Water		
ø	225	225	liO gnilioa	I	1
9	h12	<u>لاتح</u> باتح	Boiling Water	Stack	8 1 -V-I
-j	28	25	Ice Water		0, , ,
ding % Differe	Reference Thermometer Rea	Thermocouple Reading	Reference Point	Identification	# əĮdnozouu
			July July		
					Johs

p12

hiz

Ø

APPENDIX F:

Example Calculation (Run 2)

n Sheet
Calculation
Example Ca
Emission Rates
te Air
articulate

Client:Associated Sand and GravelTest Date:November 10, 1993Location:Arlington, WASource:Asphalt Plant #14Test Run #:2

<u>26.41</u> (gm/gm-mole) **29.532** (gm/gm-mole) grains per dry standard cubic foot = $((\frac{73.6}{13.6} \text{ mg})/(\frac{332}{10.332} \text{ Vm(std)}))^*(15.43 \text{ grains/gm})^*(0.001 \text{ gm/mg}) = 0.0282$ (grains/dscf) <u>64.4</u> (mg/dscm) <u> 정식 537</u> (dscf/min) 91.11 (feet/sec) 0.2705 (%/100) <u>5.42</u> (lbs/hr) 16160 (acfm) 14.952 (dscf) 40.332 (dscf) stack gas flow rate = $60*(\frac{91.1l}{1.000} \text{ Vs})*(\frac{9494}{1.000} \text{ As})*(528 \text{ Tstd})*(29.94 \text{ Ps})*(1 - 0.2705 \text{ Bws})/((\frac{726.3}{1.000} \text{ Ts})*(29.94)) =$ stack gas velocity = 85.49*(0.84 Cp)*(1.325<SQRT(DeltaP)>)*SQRT((1.36.3 Ts)/((.39.37 Ps)*(.36.41 Ms))) = molecular weight dry = $0.44^{*}(66 \% CO2) + 0.32^{*}(11.3\% O2) + 0.28^{*}(100 - ((6.6\% CO2) + (11.3\% O2)) =$ standard meter volume = $(38.35 \text{ Vm})^{*}(10334 \text{ Y})^{*}(30.32 \text{ Pm})^{*}(528 \text{ Tstd})/((29.92 \text{ Pstd})^{*}(531.1 \text{ Tm})) =$ pounds per hour = (0.0232 grains/dscf)*(24537 dscf/min)*(60 min/hr)/(7000 grains/pound) = milligrams per dry standard cubic meter = $(35.31 \text{ dscf/ dscm})^*(\overline{73.6} \text{ mg})/(\underline{40.33}\text{ ZVm(std)}) =$ stack gas moisture content = $(\frac{14.952}{14.952} \text{ Vwc(std)})/((\frac{14.952}{14.952} \text{ Vwc(std)}) + (\frac{10.332}{140.332} \text{ Vm(std)}) =$ standard water volume = 0.04707*(385.5 Imp ml) + 0.04715*(32.1 Silica ml) =molecular weight wet = $(39.532 \text{ Md})^{*}(1 - 0.2705 \text{Bws}) + 18.0^{*}(0.2705 \text{ Bws}) =$ actual cubic feet per minute = (60 sec/minute)*(<u>91.11</u> Vs)*(<u>8.444</u> As) = 41