Air Traffic Control

A Case Study in Designing
for High Availability

The FAA has faced this problem [of complexity] throughout its decade-
old attempt to replace the nation’s increasingly obsolete air traffic
control system. The replacement, called Advanced Automation System,
combines all the challenges of computing in the 1990s. A program that
is more than a million lines in size is distributed across hundreds of
computers and embedded into new and sophisticated hardware, all of
which must respond around the clock to unpredictable real-time
events. Even a small glitch potentially threatens public safety.

— W. Wayt Gibbs [Gibbs 94]

Air traffic control (ATC) is among the most demanding of all software applica-
tions. It is hard real time, meaning that timing deadlines must be met absolutely;
it is safety critical, meaning that human lives may be lost if the system does not
perform correctly; and it is highly distributed, requiring dozens of controllers to
work cooperatively to guide aircraft through the airways system. In the United
States, whose skies are filled with more commercial, private, and military aircraft
than any other part of the world, ATC is an area of intense public scrutiny. Aside
from the obvious safety issues, building and maintaining a safe, reliable airways
system requires enormous expenditures of public money. ATC is a multibillion-
dollar undertaking.

This chapter is a case study of one part of a once-planned, next-generation
ATC system for the United States. We will see how its architecture—in particu-
lar, a set of carefully chosen views (as in Chapter 2) coupled with the right tactics
(as in Chapter 5)—held the key to achieving its demanding and wide-ranging
requirements. Although this system was never put into operation because of bud-
getary constraints, it was implemented and demonstrated that the system could
meet its quality goals.

In the United States, air traffic is controlled by the Federal Aviation Admin-
istration (FAA), a government agency responsible for aviation safety in general.
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130 Part Two Creating an Architecture 6—Air Traffic Control

The FAA is the customer for the system we will describe. As a flight progresses
from its departure airport to its arrival airport, it deals with several ATC entities
that guide it safely through each portion of the airways (and ground facilities) it is
using. Ground control coordinates the movement of aircraft on the ground at an air-
port. Towers control aircraft flying within an airport’s terminal control area, a
cylindrical section of airspace centered at an airport. Finally, en route centers
divide the skies over the country into 22 large sections of responsibility.

Consider an airline flight from Key West, Florida, to Washington, D.C.’s
Dulles Airport. The crew of the flight will communicate with Key West ground
control to taxi from the gate to the end of the runway, Key West tower during
takeoff and climb-out, and then Miami Center (the en route center whose airspace
covers Key West) once it leaves the Key West terminal control area. From there
the flight will be handed off to Jacksonville Center, Atlanta Center, and so forth,
until it enters the airspace controlled by Washington Center. From Washington
Center, it will be handed off to the Dulles tower, which will guide its approach
and landing. When it leaves the runway, the flight will communicate with Dulles
ground control for its taxi to the gate. This is an oversimplified view of ATC in
the United States, but it suffices for our case study. Figure 6.1 shows the hand-off
process, and Figure 6.2 shows the 22 en route centers.

The system we will study is called the Initial Sector Suite System (ISSS),
which was intended to be an upgraded hardware and software system for the 22
en route centers in the United States. It was part of a much larger government
procurement that would have, in stages, installed similar upgraded systems in the
towers and ground control facilities, as well as the transoceanic ATC facilities.
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FIGURE 6.1 Flying from point A to point B in the U.S. air traffic control system.
Courtesy of lan Worpole/Scientific American, 1994.
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FIGURE 6.2 En route centers in the United States

The fact that ISSS was to be procured as only one of a set of strongly related
systems had a profound effect on its architecture. In particular, there was great
incentive to adopt common designs and elements where possible because the
ISSS developer also intended to bid on the other systems. After all, these differ-
ent systems (en route center, tower, ground control) share many elements: inter-
faces to radio systems, interfaces to flight plan databases, interfaces to each other,
interpreting radar data, requirements for reliability and performance, and so on.
Thus, the ISSS design was influenced broadly by the requirements for all of the
upgraded systems, not just the ISSS-specific ones. The complete set of upgraded
systems was to be called the Advanced Automation System (AAS).

Ultimately, the AAS program was canceled in favor of a less ambitious, less
costly, more staged upgrade plan. Nevertheless, ISSS is still an illuminating case
study because, when the program was canceled, the design and most of the code
were actually already completed. Furthermore, the architecture of the system (as
well as most other aspects) was studied by an independent audit team and found
to be well suited to its requirements. Finally, the system that was deployed
instead of ISSS borrowed heavily from the ISSS architecture. For these reasons,
we will present the ISSS architecture as an actual solution to an extremely diffi-
cult problem.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.



132 Part Two Creating an Architecture

6—Air Traffic Control
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FIGURE 6.3 The ABC applied to the ATC system

6.1

Relationship to the Architecture Business Cycle

Figure 6.3 shows how the air traffic control system relates to the Architecture
Business Cycle (ABC). The end users are federal air traffic controllers; the cus-
tomer is the Federal Aviation Administration; and the developing organization is
a large corporation that supplies many other important software-intensive sys-
tems to the U.S. government. Factors in the technical environment include the
mandated use of Ada as the language of implementation for large government
software systems and the emergence of distributed computing as a routine way to
build systems and approach fault tolerance.

6.2 Requirements and Qualities

Given that air traffic control is highly visible, with huge amounts of commercial,
government, and civilian interest, and given that it involves the potential loss of
human life if it fails, its two most important quality requirements are as follows:

1. Ultrahigh availability, meaning that the system is absolutely prohibited from
being inoperative for longer than very short periods. The actual availability
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requirement for ISSS is targeted at 0.99999, meaning that the system should
be unavailable for less than 5 minutes a year. (However, if the system is able
to recover from a failure and resume operating within 10 seconds, that fail-
ure is not counted as unavailable time.)

2. High performance, meaning that the system has to be able to process large
numbers of aircraft—as many as 2,440—without “losing” any of them. Net-
works have to be able to carry the communication loads, and the software
has to be able to perform its computations quickly and predictably.

In addition, the following requirements, although not as critical to the safety of
the aircraft and their passengers, are major drivers in the shape of the architecture
and the principles behind that shape:

= Openness, meaning that the system has to be able to incorporate commer-
cially developed software components, including ATC functions and basic
computing services such as graphics display packages

= The ability to field subsets of the system, to handle the case in which the
billion-dollar project falls victim to reductions in budget (and hence func-
tionality)—as indeed happened

= The ability to make modifications to the functionality and handle upgrades
in hardware and software (new processors, new I/O devices and drivers,
new versions of the Ada compiler)

= The ability to operate with and interface to a bewildering set of external systems,
both hardware and software, some decades old, others not yet implemented

Finally, this system is unusual in that is must satisfy a great many stakeholders,
particularly the controllers, who are the system’s end users. While this does not
sound unusual, the difference is that controllers have the ability to reject the sys-
tem if it is not to their liking, even if it meets all its operational requirements. The
implications of this situation were profound for the processes of determining
requirements and designing the system, and slowed it down substantially.

The term sector suite refers to a suite of controllers (each sitting at a control
console like the one in Figure 6.4) that together control all of the aircraft in a par-
ticular sector of the en route center’s airspace. Our oversimplified view of ATC is
now enhanced by the fact that aircraft are handed off not only from center to cen-
ter but also from sector to sector within each center. Sectors are defined in ways
unique to each center. They may be defined to balance the load among the cen-
ter’s controllers; for instance, less-traveled sectors may be larger than densely
flown areas.

The ISSS design calls for flexibility in how many control stations are
assigned to each sector; anywhere from one to four are allowed, and the number
can be changed administratively while the system is in operation. Each sector is
required to have at least two controllers assigned to it. The first is the radar con-
troller, who monitors the radar surveillance data, communicates with the aircraft,
and is responsible for maintaining safe separations. The controller is responsible
for managing the tactical situation in the sector. The second controller is the data
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134 Part Two Creating an Architecture 6—Air Traffic Control

FIGURE 6.4 Controllers at a sector suite. Courtesy of William J. Hughes Technical
Center; FAA public domain photo.

controller, who retrieves information (such as flight plans) about each aircraft
that is either in the sector or soon will be. The data controller provides the radar
controller with the information needed about the aircraft’s intentions in order to
safely and efficiently guide it through the sector.

ISSS is a large system. Here are some numbers to convey a sense of scale:

= ISSS is designed to support up to 210 consoles per en route center. Each
console contains its own workstation-class processor; the CPU is an IBM
RS/6000.

= ISSS requirements call for a center to control from 400 to 2,440 aircraft
tracks simultaneously.

* There may be 16 to 40 radars to support a single facility.

= A center may have from 60 to 90 control positions (each with one or several
consoles devoted to it).

* The code to implement ISSS contains about 1 million lines of Ada.

In summary, the ISSS system must do the following:

= Acquire radar target reports that are stored in an existing ATC system called
the Host Computer System.

= Convert the radar reports for display and broadcast them to all of the con-
soles. Each console chooses the reports that it needs to display; any console
is capable of displaying any area.
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= Handle conflict alerts (potential aircraft collisions) or other data transmitted
by the host computer.

= Interface to the Host for input and retrieval of flight plans.

= Provide extensive monitoring and control information, such as network
management, to allow site administrators to reconfigure the installation in
real time.

= Provide a recording capability for later playback.

= Provide graphical user interface facilities, such as windowing, on the con-
soles. Special safety-related provisions are necessary, such as window trans-
parency to keep potentially crucial data from being obscured.

= Provide reduced backup capability in the event of failure of the Host, the
primary communications network, or the primary radar sensors.

In the next section, we will explore the architecture that fulfilled these
requirements.

6.3 Architectural Solution

Just as an architecture affects behavior, performance, fault tolerance, and main-
tainability, so it is shaped by stringent requirements in any of these areas. In the case
of ISSS, by far the most important driving force is the extraordinarily high require-
ment for system availability: less than 5 minutes per year of downtime. This
requirement, more than any other, motivated architectural decisions for ISSS.

We begin our depiction of the ISSS architecture by describing the physical
environment hosting the software. Then we give a number of software architec-
ture views (as described in Chapter 2), highlighting the tactics (as described in
Chapter 5) employed by each. During this discussion, we introduce a new view
not previously discussed: fault tolerance. After discussing the relationships
among views, we conclude the architecture picture for ISSS by introducing a
refinement of the “abstract common services” tactic for modifiability and extensi-
bility, namely, code templates.

ISSS PHYSICAL VIEW

ISSS is a distributed system, consisting of a number of elements connected by
local area networks. Figure 6.5 shows a physical view of the ISSS system. It does
not show any of the support systems or their interfaces to the ISSS equipment.
Neither does it show any structure of the software. The major elements of the
physical view and the roles its elements play are as follows:

= The Host Computer System is the heart of the en route automation system.
At each en route center there are two host computers, one primary and the
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FIGURE 6.5 ISSS physical view

other ready to take over should there be some problem with the primary one.
The Host provides processing of both surveillance and flight plan data. Sur-
veillance data is displayed on the en route display consoles used by control-
lers. Flight data is printed as necessary on flight strip printers, and some
flight data elements are displayed on the data tags associated with the radar
surveillance information.

= Common consoles are the air traffic controller’s workstations. They provide
displays of aircraft position information and associated data tags in a plan
view format (the radar display), displays of flight plan data in the form of
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electronic flight strips,' and a variety of other information displays. They
also allow controllers to modify the flight data and to control the informa-
tion being displayed and its format. Common consoles are grouped in sector
suites of one to four consoles, with each sector suite serving the controller
team for one airspace control sector.

The common consoles are connected to the Host computers by means of the
Local Communications Network (LCN), the primary network of ISSS. Each
Host is interfaced to the LCN via dual LCN interface units (each called LIU-
H), which act as a fault-tolerant redundant pair.

The LCN is composed of four parallel token ring networks for redundancy
and for balancing overall loading. One network supports the broadcast of
surveillance data to all processors. One processor is used for point-to-point
communications between pairs of processors; one provides a channel for dis-
play data to be sent from the common consoles to recording units for layer
playback; and one is a spare. Bridges provide connections between the net-
works of the access rings and those of the backbone. The bridges also pro-
vide the ability to substitute the spare ring for a failed ring and to make other
alternative routings.

The Enhanced Direct Access Radar Channel (EDARC) provides a backup
display of aircraft position and limited flight data block information to the
en route display consoles. EDARC is used in the event of a loss of the dis-
play data provided by the host. It provides essentially raw unprocessed radar
data and interfaces to an ESI (External System Interface) processor.

The Backup Communications Network (BCN) is an Ethernet network using
TCP/IP protocols. It is used for other system functions besides the EDARC
interface and is also used as a backup network in some LCN failure conditions.

Both the LCN and the BCN have associated Monitor-and-Control (IM&C)
consoles. These give system maintenance personnel an overview of the state
of the system and allow them to control its operation. M&C consoles are
ordinary consoles that contain special software to support M&C functions
and also provide the top-level or global availability management functions.

The Test and Training subsystem provides the capability to test new hardware
and software and to train users without interfering with the ATC mission.

The central processors are mainframe-class processors that provide the data
recording and playback functions for the system in an early version of ISSS.

' A flight strip is a strip of paper, printed by the system that contains flight plan data about
an aircraft currently in or about to arrive in a sector. Before ISSS, these flight strips were
annotated by hand in pencil. ISSS was to provide the capability to manipulate strips
onscreen.
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Each common console is connected to both the LCN and the BCN. Because
of the large number of common consoles that may be present at a facility (up to
210), multiple LCN access rings are used to support all of them. This, then, is the
physical view for ISSS, highlighting the hardware in which the software resides.

MODULE DECOMPOSITION VIEW

The module elements of the ISSS operational software are called Computer Soft-
ware Configuration Items (CSClIs), defined in the government software development
standard whose use was mandated by the customer. CSCIs correspond largely to
work assignments; large teams are devoted to designing, building, and testing
them. There is usually some coherent theme associated with each CSCI—some
rationale for grouping all of the small software elements (such as packages, pro-
cesses, etc.) that it contains.
There are five CSCIs in ISSS, as follows:

1. Display Management, responsible for producing and maintaining displays
on the common consoles.

2. Common System Services, responsible for providing utilities generally use-
ful in air traffic control software—recall that the developer was planning to
build other systems under the larger AAS program.

3. Recording, Analysis, and Playback, responsible for capturing ATC sessions
for later analysis.

4. National Airspace System Modification, entailing a modification of the soft-
ware that resides on the Host (outside the scope of this chapter).

5. The IBM AIX operating system, providing the underlying operating system
environment for the operational software.

These CSClIs form units of deliverable documentation and software, they appear
in schedule milestones, and each is responsible for a logically related segment of
ISSS functionality.

The module decomposition view reflects several modifiability tactics, as dis-
cussed in Chapter 5. “Semantic coherence” is the overarching tactic for allocat-
ing well-defined and nonoverlapping responsibilities to each CSCI. The Common
System Services Module reflects the tactic of “abstract common services.” The
Recording, Analysis, and Playback CSCI reflects the “record/playback™ tactic for
testability. The resources of each CSCI are made available through carefully
designed software interfaces, reflecting “anticipation of expected changes,” “gen-
eralizing the module,” and “maintaining interface stability.”

PROCESS VIEW

The basis of concurrency in ISSS resides in elements called applications. An
application corresponds roughly to a process, in the sense of Dijkstra’s cooperat-
ing sequential processes, and is at the core of the approach the ISSS designers
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adopted for fault tolerance. An application is implemented as an Ada “main” unit
(a process schedulable by the operating system) and forms part of a CSCI (which
helps us define a mapping between the module decomposition view and this one).
Applications communicate by message passing, which is the connector in this
component-and-connector view.

ISSS is constructed to operate on a plurality of processors. Processors (as
described in the physical view) are logically combined to form a processor group,
the purpose of which is to host separate copies of one or more applications. This
concept is critical to fault tolerance and (therefore) availability. One executing
copy is primary, and the others are secondary; hence, the different application
copies are referred to as primary address space (PAS) or standby address space
(SAS). The collection of one primary address space and its attendant standby
address spaces is called an operational unit. A given operational unit resides
entirely within the processors of a single processor group, which can consist of
up to four processors. Those parts of the ISSS that are not constructed in this
fault-tolerant manner (i.e., of coexisting primary and standby versions) simply
run independently on different processors. These are called functional groups and
they are present on each processor as needed, with each copy a separate instance
of the program, maintaining its own state.

In summary, an application may be either an operating unit or a functional
group. The two differ in whether the application’s functionality is backed up by
one or more secondary copies, which keep up with the state and data of the pri-
mary copy and wait to take over in case the primary copy fails. Operational units
have this fault-tolerant design; functional groups do not. An application is imple-
mented as an operational unit if its availability requirements dictate it; otherwise,
it is implemented as a functional group.

Applications interact in a client-server fashion. The client of the transaction
sends the server a service request message, and the server replies with an acknowl-
edgment. (As in all client-server schemes, a particular participant—or application
in this case—can be the client in one transaction and the server in another.)
Within an operational unit, the PAS sends state change notifications to each of its
SASs, which look for time-outs or other signs that they should take over and
become primary if the PAS or its processor fails. Figure 6.6 summarizes how the
primary and secondary address spaces of an application coordinate with each other
to provide backup capability and give their relationship to processor groups.

When a functional group receives a message, it need only respond and
update its own state as appropriate. Typically, the PAS of an operational unit
receives and responds to messages on behalf of the entire operational unit. It then
must update both its own state and the state of its SASs, which involves sending
the SASs additional messages.

In the event of a PAS failure, a switchover occurs as follows:

1. A SAS is promoted to the new PAS.
2. The new PAS reconstitutes with the clients of that operational unit (a fixed
list for each operational unit) by sending them a message that means,
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FIGURE 6.6 Functional groups (FG), operational units, processor groups, and
primary/standby address spaces

essentially: The operational unit that was serving you has had a failure. Were
you waiting for anything from us at the time? It then proceeds to service any
requests received in response.

3. A new SAS is started to replace the previous PAS.

4. The newly started SAS announces itself to the new PAS, which starts send-
ing it messages as appropriate to keep it up to date.

If failure is detected within a SAS, a new one is started on some other processor.
It coordinates with its PAS and starts receiving state data.
To add a new operational unit, the following step-by-step process is employed:

= Identify the necessary input data and where it resides.

= Identify which operational units require output data from the new opera-
tional unit.

= Fit this operational unit’s communication patterns into a systemwide acyclic
graph in such a way that the graph remains acyclic so that deadlocks will
not occur.

= Design the messages to achieve the required data flows.
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= Identify internal state data that must be used for checkpointing and the state
data that must be included in the update communication from PAS to SAS.

= Partition the state data into messages that fit well on the networks.

= Define the necessary message types.

= Plan for switchover in case of failure: Plan updates to ensure complete state.

* Ensure consistent data in case of switchover.

= Ensure that individual processing steps are completed in less time than a
system “heartbeat.”

= Plan data-sharing and data-locking protocols with other operational units.

This process is not for novices, but can be navigated straightforwardly by experi-
enced team members. A tactic discussed in a section that follows—code tem-
plates—was used to make the process more repeatable and much less error prone.
The process view reflects several availability tactics, including “state resyn-
chronization,” “shadowing,” “active redundancy,” and “removal from service.”

99 <

CLIENT-SERVER VIEW

Because the applications in the process view interact with each other in client-
server fashion, it is reasonable to show a client-server view of ISSS as well,
although the behavior it describes largely mirrors that captured by the process
view shown earlier. For completeness, Figure 6.7 shows a client-server view of
the system.

Client Operational Unit

Service

Request Service
Request
Response

Server Operational Unit

Key: UML

FIGURE 6.7 Applications as clients and servers
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The clients and servers were carefully designed to have consistent (as opposed
to ad hoc) interfaces. This was facilitated by using simple message-passing protocols
for interaction. The result reflects the modifiability tactics of “maintaining inter-

9 <

face stability,” “component replacement,” and “adherence to defined protocols.”

CODE VIEW

One view not discussed in Chapter 2 but which sometimes appears in architec-
tures of large systems is the code view. A code view shows how functionality is
mapped to code units.

In ISSS, an Ada (main) program is created from one or more source files; it
typically comprises a number of subprograms, some of which are gathered into
separately compilable packages. The ISSS is composed of several such pro-
grams, many of which operate in a client-server manner.

An Ada program may contain one or more fasks, which are Ada entities
capable of executing concurrently with each other. These are the code-view corol-
lary of the processes described in the process view. Because Ada tasks are managed
by the Ada runtime system, ISSS also employs a mapping of Ada tasks onto
UNIX (AIX) processes, which means that all individual threads of control
(whether separate Ada programs or tasks within a single Ada program) are inde-
pendent AIX processes operating concurrently.

Applications (i.e., operational units and functional groups) are decomposed
into Ada packages, some of which include only type definitions and some of
which are re-used across applications. Packaging is a design activity intended to
embody abstraction and information hiding, and it is carried out by an opera-
tional unit’s chief designer.

LAYERED VIEW

Underlying the operation of the ATC application programs on the ISSS proces-
sors system is a commercial UNIX operating system, AIX. However, UNIX does
not provide all the services necessary to support a fault-tolerant distributed sys-
tem such as ISSS. Therefore, additional system services software was added. Fig-
ure 6.8 shows as a set of layers the overall software environment in a typical ISSS
processor.”

The lowest two rows of elements above AIX represent extensions to AIX that
run within the AIX kernel’s address space. Because of performance requirements

?Strictly speaking, Figure 6.8 is an overlay between a layered view and a component-and-
connector view, because it shows runtime connections between the submodules in the lay-
ers. In two cases, AAS Services and Other Device Driver, the connections among these
and other submodules within the layered view are not shown, because there are so many
that it would clutter the diagram. These services are freely used by most of the layered sys-
tem. The actual connections would be listed in the supporting documentation for this view.
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FIGURE 6.8 ISSS software architecture layers. The associations show data
and/or control flow, making this an overlay of layers and a component-and-
connector view.
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and for compatibility with the AIX operating system, these extensions are gener-
ally small programs written in the C language. Since they run within the kernels’
address space, faults in these programs can potentially damage AIX itself; hence,
they must be relatively small, trusted programs reflecting the “limit exposure” tactic,
discussed in Chapter 5. Although the tactic is security based—namely, to prevent
denial of service—in ISSS it is used to enhance availability, which is a comple-
mentary goal. Happily, sometimes tactics serve multiple quality attributes well.

The Atomic Broadcast Manager (ABM) plays a key role in the communica-
tion among the Local Availability Manager modules within a sector suite to man-
age the availability of suite functions. The Station Manager provides datagram
services on the LCN and serves as the local representative of the LCN network
management services. The Network Interface Sublayer provides a similar func-
tion for the point-to-point messages, sharing its network information with the
Station Manager.

The next two layers represent operating system extensions that execute out-
side the AIX kernel’s address space and therefore cannot directly damage AIX if
they contain faults. These programs are generally written in Ada.

Prepare Messages handles LCN messages for application programs. Prepare
BCN Messages performs a similar function for messages to be sent on the BCN.
One function of these programs is to determine which of the multiple redundant
copies of an application program within a sector suite is the primary and thus is
to receive messages. The Local Availability Manager provides the control infor-
mation needed to make this determination.

The top layer is where the applications reside. The Local Availability Man-
ager and the Internal Time Synchronization programs are application-level system
services. The Local Availability Manager is responsible for managing the initia-
tion, termination, and availability of the application programs. It communicates
with each address space on its own processor to control its operation and check
its status. It also communicates with the Local Availability Manager on the other
processors within its sector suite to manage the availability of suite functions,
including switching from a primary to a backup copy of an application program
when appropriate. The Local Availability Manager communicates with the Global
Availability Management application that resides on the M&C consoles to report
status and to accept control commands. The Internal Time Synchronization pro-
gram synchronizes the processor’s clock with that of the other ISSS processors,
which is crucial to the operation of the availability management functions. (See
the fault tolerance view, in Figure 6.9.)

A NEW VIEW: FAULT TOLERANCE

As we said, the views listed in Chapter 2 are not exhaustive. In fact, there is no
exhaustive list of views that constitute the complete software architecture for all
systems or for any system. A welcome trend in software architecture is the recog-
nition of the importance of architecture in achieving quality attributes, and there-
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FIGURE 6.9 ISSS component-and-connector view for fault tolerance

fore the importance of explicitly stating the quality attributes that the architecture
is to provide. Toward this end, architects often produce views that show how the
architecture achieves a particular quality attribute: a security view, for example.
For runtime qualities, these views are in the component-and-connector category,
showing runtime element interactions. For non-runtime qualities, these views are
in the module category, showing how the implementation units are designed to
achieve (for example) modifiability.

The high availability requirements for ISSS elevated fault tolerance to an
important role in the design of the system. For one thing, a cold system restart in
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the event of a failure was out of the question. Immediate (or at least rapid)
switchover to a component on standby seemed the best approach. As design pro-
gressed and this idea became clearer, a new architectural structure emerged: the
fault-tolerant hierarchy (Figure 6.9). This structure describes how faults are
detected and isolated and how the system recovers. Whereas the PAS/SAS
scheme traps and recovers from errors that are confined within a single applica-
tion, the fault-tolerant hierarchy is designed to trap and recover from errors that
are the result of cross-application interaction.

The ISSS fault-tolerant hierarchy provides various levels of fault detection
and recovery. Each level asynchronously

= Detects errors in self, peers, and lower levels.
= Handles exceptions from lower levels.
= Diagnoses, recovers, reports, or raises exceptions.

Each level is meant to produce another increment in system availability above
that produced by the lower levels. The levels are as follows:

= Physical (network, processor, and I/O devices)
= Operating system

= Runtime environment

= Application

= Local availability

= Group availability

= Global availability

= System monitor and control

Fault detection and isolation are performed at each level in the hierarchy. Fault
detection is by built-in tests, event time-outs, network circuit tests, group mem-
bership protocol, and, as a last resort, human reaction to alarms and indicators.
Fault recovery is performed at each level in the software hierarchy and can be
automatic or manual. For the Local, Group, and Global Availability managers, the
recovery methods are table driven. In a PAS, there are four types of recovery from
failure. The type of recovery used depends on the current operational status and is
determined by the Local Availability Manager using decision tables, as follows:

= In a switchover, the SAS takes over almost immediately from its PAS.
= A warm restart uses checkpoint data (written to nonvolatile memory).
= A cold restart uses default data and loses state history.

= A cutover is used to transition to new (or old) logic or adaptation data.

Redundancy is provided by network hardware (LCN, BCN, and associated
bridges), processor hardware (up to four processors per processor group, redun-
dant recording), and software (multiple address spaces per operational unit).

In addition to the availability tactics already seen with the process view, the
fault tolerance view adds “ping/echo” and “heartbeat” as ways to detect failures,
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exception to percolate errors to the appropriate place for correction, and spare to
perform recovery.

RELATING THE VIEWS TO EACH OTHER

During the preceding discussion, the elements in one view made “guest appear-
ances” in other views. Although views form the backbone of understanding a sys-
tem, deeper insight is often gained by examining the relations the views have to
each other and, in particular, from examining mappings from view to view. This
imparts a more holistic view of the architecture.

In ISSS, CSCIs are elements in the module decomposition view. They are
composed of applications, which in turn are elements in the process view and the
client-server view. Applications are implemented as Ada programs and packages,
shown in the code view, which in turn map to threads, which are elements in the
concurrency view (not shown). The layered view describes the functionality
assigned to the modules in the decomposition view in a way that shows what they
are allowed to use. Finally, a specialized view focusing on the achievement of a
particular runtime quality attribute—the fault tolerance view—uses the elements
of the process, layer, and module views.

Chapter 9, which covers how to document a software architecture, will pre-
scribe a special place in the documentation package for capturing view relation-
ships. For ISSS, that mapping would include tables that list the elements from the
various views and show how they correspond to each other as described above.

ADAPTATION DATA

ISSS makes extensive use of the modifiability tactic of “configuration files,”
which it calls adaptation data. Site-specific adaptation data tailors the ISSS sys-
tem across the 22 en route centers in which it was planned to be deployed, and
so-called preset adaptation data tailors the software to changes that arise during
development and deployment but which do not represent site-specific differences.
Adaptation data represents an elegant and crucial shortcut to modifying the sys-
tem in the face of site-specific requirements, user- or center-specific preferences,
configuration changes, requirements changes, and other aspects of the software
that might be expected to vary over time and across deployment sites. In effect, the
software has been designed to read its operating parameters and behavioral spec-
ifications from input data; it is therefore completely general with respect to the set
of behaviors that can be represented in that data (reflecting the “generalize the
module” tactic). For example, a requirements change to split the data in one ATC
window view into two separate windows—a nontrivial change in many systems—
could be accomplished by changing the adaptation data and a few lines of code.
The negative side is that adaptation data presents a complicated mechanism
to maintainers. For example, although it is trivial (from an operational point of
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view) to add new commands or command syntax to the system, the implementa-
tion of this flexibility is in fact a complicated interpretive language all its own.
Also, complicated interactions may occur between various pieces of adaptation
data, which could affect correctness, and there are no automated or semiauto-
mated mechanisms in place to guard against the effects of such inconsistencies.
Finally, adaptation data significantly increases the state space within which the
operational software must correctly perform, and this has broad implications for
system testing.

REFINING THE “ABSTRACT COMMON SERVICES” TACTIC:
CODE TEMPLATES FOR APPLICATIONS

Recall that the primary—secondary address space scheme described earlier relies
on redundancy to achieve fault tolerance: Copies of the software are stored on
different processors. While the primary copy is executing, it sends state informa-
tion from time to time to all of the secondary copies so that they can take up exe-
cution when called on. The implementation plan for these copies called for both
to come from true copies of the same source code. Even though the primary and
secondary copies are never doing the same thing at the same time (the primary is
performing its duty and sending state updates to its backups, and the secondaries
are waiting to leap into action and accepting state updates), both programs come
from identical copies of the same source code. To accomplish this, the contractor
developed a standard code template for each application; the template is illus-
trated in Figure 6.10.

The structure is a continuous loop that services incoming events. If the event
is one that causes the application to take a normal (non-fault-tolerant-related)
action, it carries out the appropriate action, followed by an update of its backup
counterparts’ data so that the counterpart can take over if necessary. Most appli-
cations process between 50 and 100 normal events. Other events involve the
transfer (transmission and reception) of state and data updates. The last set of
events involves both the announcement that this unit has become the primary
address space and requests from clients for services that the former (now failed)
primary address space did not complete.

This template has architectural implications: It makes it simple to add new
applications to the system with a minimum of concern for the actual workings of
the fault-tolerant mechanisms designed into the approach. Coders and maintain-
ers of applications do not need to know about message-handling mechanisms
except abstractly, and they do not need to ensure that their applications are fault
tolerant—that has been handled at a higher (architectural) level of design.

Code templates represent a refinement of the “abstract common services”
tactic; the part of each application that is common is instantiated in the template.
This tactic is related to several other tactics for modifiability. It reflects an “antici-
pation of expected changes” in the parts it leaves variable and it gives the processes
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terminate:= false
initialize application/application protocols

ask for current state (image request)
Loop

Get_event

Case Event_Type is

-- "normal" (non-fault-tolerant-related) requests to perform actions;
-- only happens if this unit is the current primary address space
when X=> Process X

Send state data updates to other address spaces
when Y=>Process Y

Send state data updates to other address spaces

when Terminate Directive => clean up resources; terminate := true

when State Data Update => apply to state data
-- will only happen if this unit is a secondary address space, receiving
-- the update from the primary after it has completed a "normal" action

-- sending, receiving state data
when Image Request => send current state data to new address space
when State Data Image => Initialize state data

when Switch Directive => notify service packages of change in rank

-- these are requests that come in after a PAS/SAS switchover; they

-- report services that they had requested from the old (failed) PAS

-- which this unit (now the PAS) must complete. A,B, etc. are the names
-- of the clients.

when Recon_from A=>reconstitute A

when Recon_ from B=>reconstitute B

when others=>log error
end case

exit when terminate

end loop

FIGURE 6.10 Code structure template for fault-tolerant ISSS applications

a “semantic coherence,” because they all do the same thing when viewed
abstractly. The template lets programmers concentrate on the details of their
application, leading to “generalizing the module.” And by making the interfaces
and protocols part of the template, they “maintain interface stability” and achieve
“adherence to defined protocols.”

Table 6.1 summarizes the approaches and tactics by which the ISSS soft-
ware architecture met its quality goals.
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TABLE 6.1

6—Air Traffic Control

How the ATC System Achieves Its Quality Goals

Goal

How Achieved

Tactic(s) Used

High Availability

High Performance

Hardware redundancy (both
processor and network); soft-
ware redundancy (layered fault
detection and recovery)

Distributed multiprocessors;
front-end schedulability analy-
sis, and network modeling

State resynchronization; shadow-
ing; active redundancy; removal

from service; limit exposure; ping/
echo; heartbeat; exception; spare

Introduce concurrency

Openness Interface wrapping and Abstract common services; main-
layering tain interface stability
Modifiability Templates and table-driven Abstract common services;
adaptation data; careful semantic coherence; maintain
assignment of module interface stability; anticipate
responsbilities; strict use of expected changes; generalize the
specified interfaces module; component replacement;
adherence to defined procotols;
configuration files
Ability to Field Appropriate separation of Abstract common services
Subsets concerns

Client-server division of func-
tionality and message-based
communications

Interoperability Adherence to defined protocols;

maintain interface stability

6.4 Summary

Like all of the case studies in this book, ISSS illustrates how architectural solu-
tions can be the key to achieving the needs of an application. Table 6.1 summa-
rized the key approaches used. Because of its projected long life, high cost, large
size, important function, and high visibility, ISSS was subject to extraordinary
change pressures over and above its demanding operational requirements. Human—
computer interfaces, new hardware, new commercial components, operating system
and network upgrades, and capacity increases were not just likely but foregone
conclusions. The architecture, by using a wide range of fault tolerance mechanisms
(and code templates), including hardware and software redundancy and layered
fault detection, and by using distributed multiprocess computing with client-
server message passing, was able to satisfy its complex, wide-ranging operational
requirements.

A footnote to our story is the intensive software audit that was carried out on
the ISSS architecture by a blue-ribbon panel of experts when the U.S. govern-
ment was considering abandoning ISSS in favor of a simpler, less expensive solu-
tion. The audit assessed the architecture’s ability to deliver the required
performance and availability and included modifiability exercises that walked
through several change scenarios, including the following:
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= Making major modifications to the M&C position’s human—computer
interface

= Importing third-party-developed air traffic applications into the ISSS system

= Adding new ATC views to the system

= Replacing the RS/6000 processors with a chip of similar capability

= Deleting electronic flight strips from the requirements

= Increasing the system’s maximum capacity of flight tracks by 50 percent

In every case, the audit found that the ISSS software architecture had been
designed so that the modifications would be straightforward and, in some cases,
almost trivial. This is a tribute to its careful design and its explicit consideration
of quality attributes and the architectural tactics to achieve them.

6.5 For Further Reading

The saga of the FAA’s attempts to upgrade its air traffic control software has been
written about extensively; for example, by [Gibbs 94]. The effort to audit the
ISSS system for salvageability was reported by [Brown 95]. In these papers,
maintainability is treated as a dual quality related not only to the properties of the
system but also to the capabilities of the organization slated to perform the main-
tenance. This important aspect of maintainability—the necessary fit between the
maintenance that a system needs and the maintenance that an organization is pre-
pared to provide for it—is not usually discussed.

6.6 Discussion Questions

1. High availability was a main impetus behind the architecture presented in
this chapter. How were other quality attributes, such as performance, affected
by this requirement? How might the architecture change if this requirement
were removed?

2. How many architectural patterns can you recognize in the architecture for
ISSS?

3. Construct quality attribute scenarios, as described in Chapter 4, for as many
of the requirements given in Section 6.2 as you can. Where necessary infor-
mation is missing, propose reasonable substitutions.
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