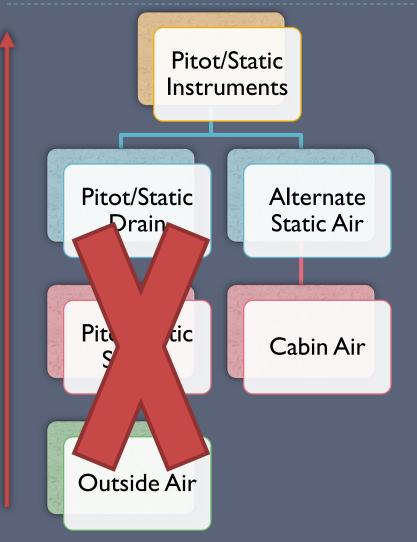


Handling Aircraft Systems Emergencies

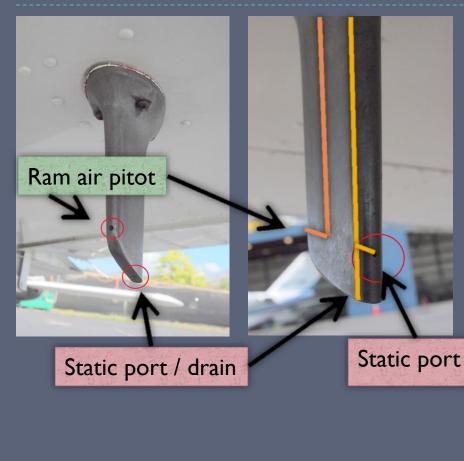
Piper Cherokee-Series

Overview


- Rather than discussing the specifics of each system, we will discuss each system from a high level
 - Knowing the basics of many systems is often more important than knowing the specifics of only a few systems

Outline

- Basic Flight Instruments
 - Pitot-Static System
- Communication & Navigation
 - Electrical System
 - Comm/Nav System
 - Autopilot/Trim System
- Engine Systems
- Control Systems


Pitot-Static System

Pitot-Static System Overview

- Completely mechanical system (no electrical power needed)
 - Excludes digital PFDs (ADAHRS)
- The <u>static</u> input measures the ambient (non-moving) air pressure
- The <u>pitot</u> input measures the ram-air (moving) air pressure
 - Subject to instrument position error

Pitot-Static System - Components

Heated pitot-static vaneNo external pitot drain

 Cabin pitot-static drain valves must be opened prior to each flight

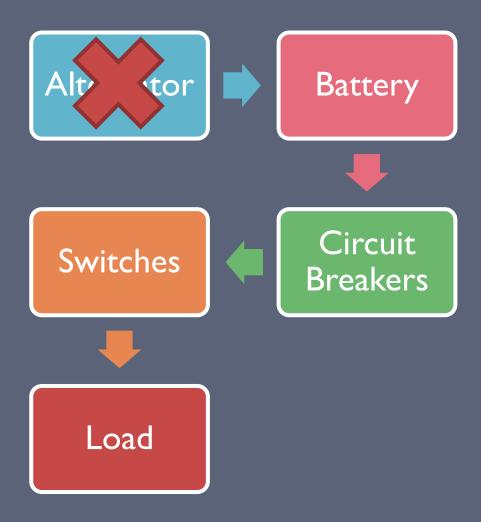
 Some aircraft have separate dual static ports

Pitot-Static Problems

Signs of blockage

- Airspeed indicating higher or lower than expected for the given pitch & power setting
- Altimeter and/or VSI not behaving as expected for the given pitch & power setting
- Large discrepancy between GPS altitude and altimeter

Pitot Blockage


- Affects only ASI
- If icing/moisture, use pitot heat

Static Blockage

- Affects ASI, VSI, altimeter, transponder, A/P Alt/VS Hold
- Use alternate static air
 - Also try pitot heat (combined pitot-static vane)

Electrical System

Electrical System Overview

Under normal operation, the battery feeds the electrical loads, and is continually charged by the alternator

 Circuit breakers protect against over-currents

- Protects the devices
 connected to the breaker
- Protects the wiring from overheating and melting

Electrical System

- I4v vs 28v system
 - Older aircraft: 14v
 - Newer aircraft: 28v
 - 28v advantages: lower current (amperage) means smaller (lighter) wires
- Battery voltage
 - For I4v systems: I2v
 - For 28v systems: 24v
 - Battery voltage is <u>less</u> than the total system voltage so there is excess capacity to charge the battery.

- Normal Voltages
 - I4v system: I3.8-I4.2
 - > 28v system: 27.5-28.5
- Typical battery life: 3-5 years
 - Older than that, the battery most likely won't pass a load test

Electrical Troubleshooting

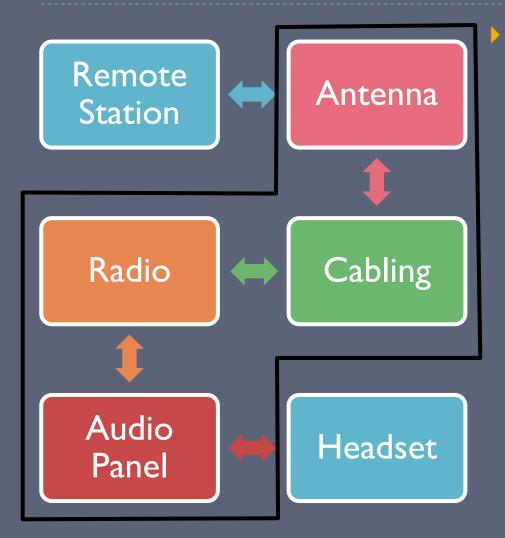
Troubleshooting

- Check annunciators
- Check electrical indicators
 - Volt-meter
 - Ammeter/Load meter
- Check alternator
 - Reset alternator
- Check for popped circuit breakers
 - Only reset a popped CB in flight if it is flight critical
 - Only reset a popped CB once

Emergency Procedures

- Reduce electrical load
 - Turn off non-essential equipment
 - Limit radio transmissions
- Use a hand-held radio
 - Preferably one with comm & nav capabilities
- Land as soon as practical

Electrical Problems


Alternator Offline

- Indications
 - Alternator warning lamp
 - Low bus voltage
 - □ Failing avionics
 - Difficulty transmitting/receiving
 - Ammeter showing a discharge
- Causes
 - Voltage regulator tripped
 - Transient trip
 - Overload/short
 - Alternator field CB
 - Failed alternator

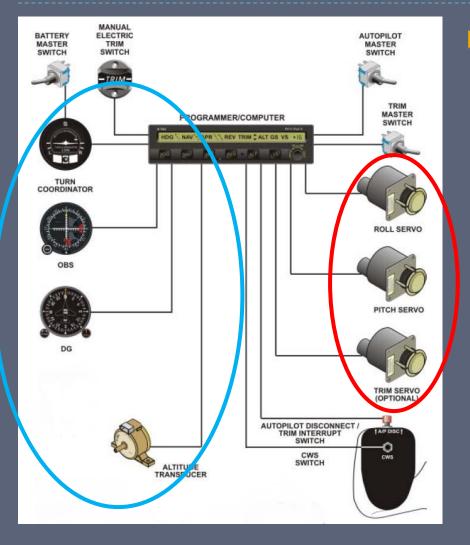
- Overload
 - Over-voltage
 - Faulty voltage regulator
 - Over-amperage
 - Faulty equipment
 - Too much electrical load
 - Electrical short

Comm/Nav System

Comm/Nav System

Factors affecting transmission & reception

- Radio power
 - Transmission power
 - Distance from station
- Antenna quality
 - Poor grounding
 - Poor connection
 - Antenna damage
- Electrostatic interference
 - Static discharge
 - Atmospheric phenomena
- Antenna positioning
 - Terrain / airframe attenuation


Comm/Nav Problems

- Poor transmission/reception
 - Check radio, audio panel, and headset volume
 - Can you hear yourself / passengers ok?
 - Check tuned frequency
 - Check squelch
 - Try the other radio
 - Check mic connection
 - Try another mic jack
 - Audio panel fail-safe
 - Check electrical system

- Alternative Comm
 - Handheld radio
 - Cell phone
 - Transponder (7600/IDENT)
- Alternative Nav
 - Pilotage/Dead-reckoning
 - VOR or GPS
 - Cell phone/tablet GPS
 - Handheld nav/com radio
 - Climb
 - Better reception, terrain avoidance, and view

Autopilot/Trim System

Autopilot-Trim System

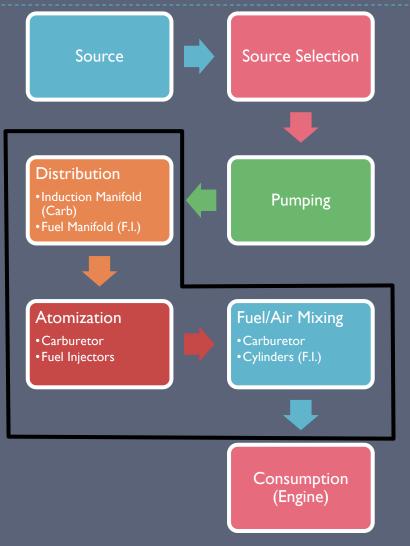
General operation

- I. Pilot selects autopilot mode
- 2. Autopilot receives inputs
 - Aircraft attitude & altitude
 - Navigation data
- 3. Servos command the control surfaces
 - Autopilot compares flight path to desired flight path
 - Servos are adjusted as needed

Autopilot-Trim Issues

- Un-commanded pitch
 - First reaction: disconnect A/P
 - Be prepared to counter heavy trim forces
- Unexpected turn
 - First reaction: disconnect A/P
 - Then determine problem

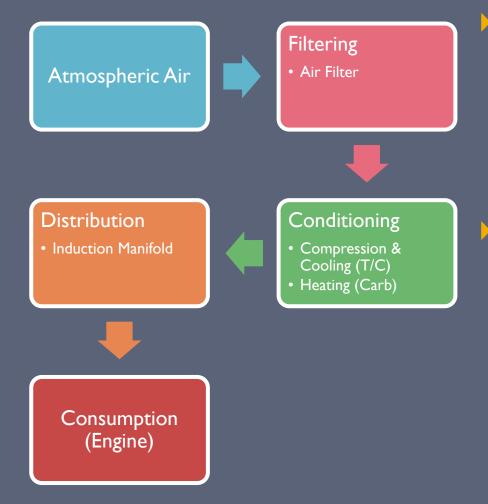
- Ways to disable A/P
 - Disconnect button
 - Use of manual electric trim
 - A/P master switch
 - A/P circuit breaker
 - Avionics master switch
- Ways to disable trim
 - Trim master switch
 - Trim circuit breaker
 - Avionics master switch


Miscellaneous Emergencies

- Runaway pitch trim
 - What would you do?
 - Disconnect autopilot
 - □ Yoke disconnect
 - □ Autopilot master switch
 - □ Pull circuit-breaker
 - Disable electric pitch trim
 - Electric pitch trim master switch
 - Pull circuit-breaker
 - Turn off avionics master switch
 - Turn off master switch

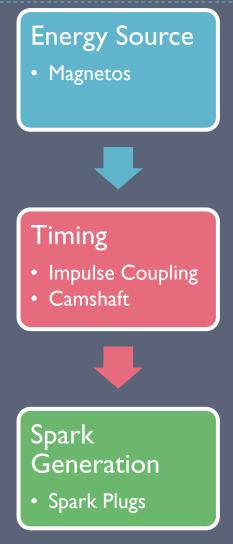
- Autopilot servos are designed to be overpowered by the pilot
- There is also a speed sensor that disables the electric trim over 140 KIAS (Archers)

Engine Components


Fuel System

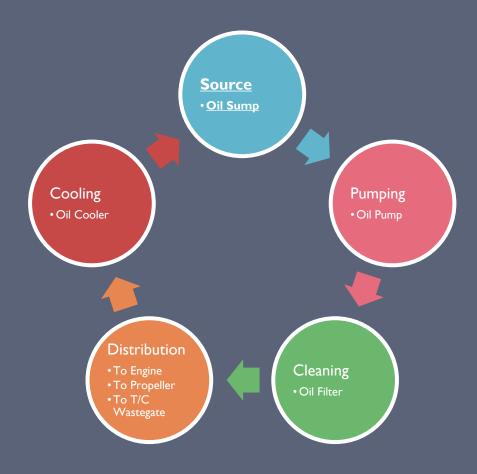
Primary purpose of the fuel system

- To transfer fuel from one or more sources to each cylinder of the engine in a useable (atomized) form
- Secondary purpose of the fuel system
 - To maintain horizontal (and in some cases, lateral) CG balance


Induction System

Primary purpose of the induction system

- To transfer air (oxygen) from the atmosphere to each cylinder of the engine
- Secondary purpose of the induction system
 - To condition the air to an appropriate form for combustion


Ignition System

Primary purpose of the ignition system

- To control the combustion of the fuel-air mixture in each cylinder
- Secondary purpose of the ignition system
 - To start the engine

Oil System

Primary purpose of the oil system

- To lubricate, clean, cool, seal, and preserve the engine
- Secondary purpose of the oil system
 - To provide hydraulic control for controllablepitch propellers and turbocharger wastegates

Engine Overview

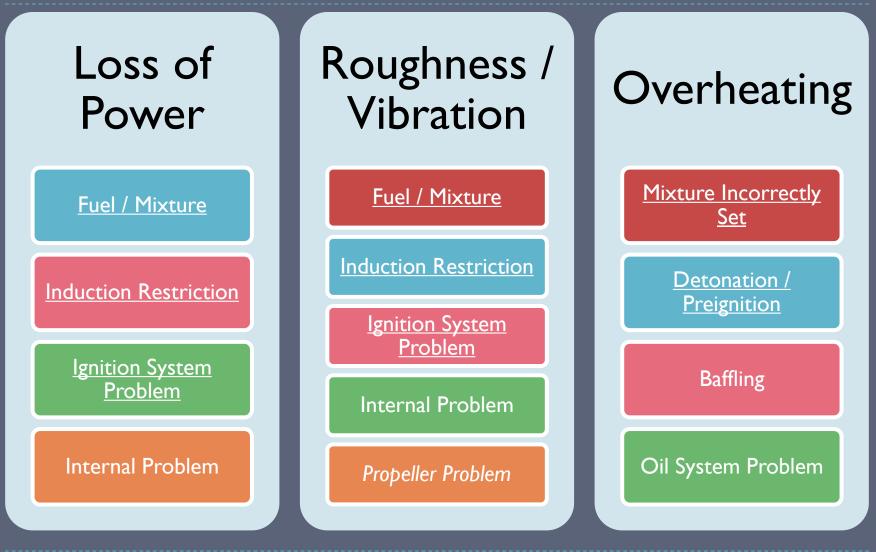
- Primary purpose of the internal combustion engine
 - To convert a source of chemical energy into rotational energy
- Primary needs of the internal combustion engine
 - Fuel
 - Air (oxygen)
 - Spark (ignition)

Byproducts of combustion

- Heat
 - From internal engine friction
 - From combustion
- Water
- Waste gasses
- Energy
 - Only about 20% of the energy of combustion is converted into useful energy
 - Even less energy is converted into useful thrust

Engine Components

- Crankcase
 - The skeleton of the engine


Cylinders

- Converts the <u>chemical</u> <u>energy</u> of the fuel-air mixture into <u>linear motion</u>
- Crankshaft
 - The "back bone" of the engine
 - Converts the <u>linear motion</u> of the cylinders into <u>rotational motion</u> for the propeller & accessories

Driven Accessories

- Fuel Pump
- Magnetos
- Oil Pump
- Vacuum Pump
- Alternator(s)
- Static Accessories
 - Fuel-Air Controller
 - Carburetor
 - Fuel Injectors
 - Turbocharger
 - Driven by exhaust gasses

Types of Engine Problems

Types of Propeller Problems

Vibration

Static Imbalance

lcing (weight imbalance)

Damage

Overspeed

Lack of Oil Pressure

Governor Problem

Propeller / Engine Internal Problem

Control Systems

Control System Failures

FAR Part 23

- > 23.2135 Controllability
 - Summary: The airplane must be safely controllable within the approved operating envelope even with a flight control or propulsion system failure.

▶ 23.2140 – Trim

 (C) Summary: Residual control forces must not fatigue or distract the pilot during normal operations of the airplane and likely abnormal or emergency operations, including a critical loss of thrust on multiengine airplanes.

Control Problems

- Loss of primary pitch control
 - One direction: use opposite trim
 - Both directions: use trim and power
- Loss of primary roll control
 - Use rudder

- Loss of yaw control
 - Use ailerons be careful of stalling!
- Jammed trim
 - Disable electric trim
 - Manually oppose trim forces
 - Try changing airspeed
 - Try changing flap/gear configuration

Control Problems

- Broken throttle cable
 - Adjust power using the mixture & propeller control
 - Can also use carb heat and a single magneto to reduce power
 - Consider switching mags if operating on a single magneto for an extended period of time to prevent fouling of the unused plugs

- Controllability anomalies
 - Disable A/P & electric trim
 - Out of CG range?
 - Wing contamination
 - Try different flap / gear / power settings at altitude
 - Always experiment with more than enough altitude than you think you'll need

Summary & Questions

Closing Comments

Always consider the <u>big picture</u>

- What is the most flight-critical issue to deal with?
- Does it require immediate action?
- What are your options?
- Start from a high level and work towards the details
 - Don't start flipping switches or changing configuration until you have <u>identified</u> the problem
- Don't lose your situational awareness while troubleshooting an issue
 - Above all else, <u>fly the airplane!</u>

Questions?

More Information

- AFM or POH
 - Dakota: 761-689
 - Archer II: 761-722
 - Archer III: 761-868
 - Arrow II: 761-493
 - Warrior II: 761-649
- Operator's Manual
 - Lycoming O/IO-360: 60297-12
 - Lycoming O-540
- Airplane Maintenance Manual

- Type Certificate
 - Aircraft
 - Piper PA-28
 - Engine
 - Lycoming O-360
 - Lycoming O-540
 - Propeller
 - Sensenich 76E-series
 - Hartzell F2YR-series
- Pilot's Handbook of Aeronautical Knowledge (FAA-H-8083-25A)

Open Sky Aviation, LLC. http://openskyaviation.biz gbaluha@openskyaviation.biz