

AIRPACT-5 : PM_{2.5} and O₃ Evaluation

Vikram Ravi, Serena Chung, Joe Vaughan, Brian Lamb Laboratory for Atmospheric Research Washington State University

> Farren Herron-Thorpe Washington Department of Ecology

NW-AIRQUEST Annual Meeting, June 15-17 2015 Pullman, WA

Simulation time periods

- Different episodes considered
 - -July 2012
 - -August 2012
 - -August 2015
 - Large wildfire season, monitors across the domain impacted
- O_3 and total $PM_{2.5}$ We compare the model results w.r.t. AIRNow / AQS data for the urban sites
- PM_{2.5} species Model comparison w.r.t. IMPROVE / CSN sites

AIRPACT-5: Key differences w.r.t. AIRPACT-4

- Emissions primary aerosol emissions are divided into many more species
- Gas phase mechanism CB05 (AIRPACT-4 used SAPRC99)
- Aerosol treatment AERO6 module (AIRPACT-4 used AERO5)
- Corrects for the plume rise error for fires (now considers fire emissions above 1st layer)
 - -Thus, more PM emissions from fires
 - -Doesn't affect any gas phase species
- Currently AIRPACT-5 uses 37 vertical layers.
 - -All results shown here based on 21 MCIP layers
 - -Possible impacts on O₃ performance

Performance Evaluation at Urban sites

 $PM_{2.5}$ and O_3

Some large fires in August 2015

Fire name	SMARTFIRE2 acres	Burn reports acres
North Star Fire	147,096	218,138
Tunk Block Fire	194,578	165,947
Okanogan Complex (Lime Belt Fire)	133,728	133,707
Chelan Complex Fire	57,226	88,985
Grizzly Bear Complex Fire	22,494	83,148
Kettle Complex Fires	49,404	76,549
Wolverine Fire	80,692	65,512
Carpenter Road Fire	47,610	63,972
Cougar Creek Fire	62,330	53,534
Highway 8 Fire	7,900	33,100
Tower Fire (Kaniksu Complex)	22,218	24,711
Colville Complex Fire	966	11,522
Twisp River Fire	7,184	11,222

statistic	AIRPACT-4	AIRPACT-5
mean observed (µg/m³)	13	8.5
# obs	33	389
mean modeled (µg/m ³)	4.3	10.4
Bias (µg/m ³)	-14.2	-8.1
Error (µg/m³)	14.5	9.6
Fractional bias (%)	-83.5	-49.4
Fractional error (%)	92.1	63.1
Normalized bias (%)	-48.4	-28.7
Normalized error (%)	60.9	49.1
RMSE	29.3	20.6

Spatial Distribution of FB

AIRPACT-5 PM_{2.5} performance at AIRNow sites: August 2015

- Plume error correction significantly improves AIRPACT-5 performance
- Specially true at higher observed concentrations

O₃: Performance statistics

	July 2-14, 2012	August 2-18, 2012			July 28 – August 3, 2015		
	AP4	AP5	AP4	AP5	AP4	AP5	
MB (ppb)	6.4	2.4	7.5	3.4	7.9	5.2	
ME (ppb)	10.2	8.0	11.1	8.8	10.7	9.6	
FB (%)	15.0	5.7	21.9	11.9	23.4	16.5	
FE (%)	32.8	28.3	34.0	29.7	33.5	31.5	
NB (%)	32.4	19.0	46.3	29.2	44.9	35.8	
NE (%)	46.2	37.1	56.2	43.7	53.2	48.2	
RMSE	13.1	10.4	14.5	11.5	13.8	12.7	
<pre># pairs approx.</pre>	10700		16600		7000)/	

AP5 generally shows improvement

Improvement also seen for MDA8hr O_3 MFB (based on July 2012 simulations)

Model	FB (%)	FE (%)
AP4	13	21
AP5	-1	15

Ozone: August 2015

PM performance evaluation at IMPROVE and CSN sites

PM_{2.5}, OC, EC, SO₄, NO₃, NH₄

Fractional Bias and Error

- EC, SO₄ and NH₄ are fairly well predicted
- Underprediction of $PM_{2.5}$ and OC
- Also underpredicts NO₃, but concentrations are very small

FB as a function of OC/EC ratio

- Similar behavior for PM_{2.5} and OC (which form bulk of PM_{2.5})
- Little variability in FB for SO4 indicating model robustness for SO₄
- Variability also small for NH₄ and NO₃

Relative contribution of PM species – modeled vs observed

Distribution at different IMPROVE/CSN sites

Observed 6 5 Concentration $\mu g/m^3$ 3 2 0 Modeled 6 NH4 5 Concentration $\mu g/m^3$ NO3 SO4 OC 3 EC 2 1 0 Kalmiopsis IMPROVE Klamath Falls CSN Redwood NP IMPROVE Flathead IMPROVE Starkey IMPROVE Hells Canyon IMPROVE Hawthorne CSN Olympic IMPROVE Beacon Hill IMPROVE White Pass IMPROVE Pasayten IMPROVE Sula Peak IMPROVE IMPROVE Sawtooth NF IMPROVE NCORE - Sieben Flats CSN Gates of the Mountains IMPROVE IMPROVE Lakevie Bountiful Viewmont CSN Marysville - 7th Ave CSN North Cascades Yakima - 4th Ave CSN Lassen Volcanic NP IMPROVE St. Luke's Meridian CSN Craters of the Moon NM IMPROVE Cabinet Mountains Butte Greeley School CSN Crater Lake NP IMPROVE Three Sisters Wilderness Oakridge - (OAK) CSN Snoqualmie Pass IMPROVE Tacoma - L Street CSN Lava Beds NM Lindon Monture CSN CSN Trinity IMPROVE IMPROVE IMPROVE IMPROVE

July 2012

Distribution at different IMPROVE/CSN sites

August 2015

Summary

- Correction to fire emissions has significantly improved the performance for PM_{2.5} compared to AIRPACT-4
- AIRPACT-5 performance has improved for ozone episodes considered
- Comparison with IMPROVE / CSN sites show that we're still under-predicting for OC, which forms bulk of PM_{2.5}

Fire PM emissions in August 2015

QQ and Spatial Distribution of FB

Carlton et al., 2010, Yu Marino 2014