

General Description

This demonstration board utilizes the AL1663 Flyback LED driver-controller providing a cost effective solution for high brightness LED applications. This user-friendly evaluation board provides users with quick connection to their different types of LEDs string. The demonstration board can also support pwm dimming mode. It works at PWM dimming mode when a digital signal is applied on APWM pin.

A bill of materials is included that describes the parts used on this demonstration board. A schematic have also been included along with measured performance characteristics. These materials can be used as a reference design for your products improving your product's time to market.

Key Features

- Active PFC with power factor >0.9
- High efficiency >84%
- Low THD
- PWM dimming mode

Applications

- LED Lighting
- PWM dimming

AL1663 Flyback Specifications

Parameter	Value
AC Input Voltage	230V/120V
Output Power	19.5W
LED Current	650mA
LED Voltage	30V
Power Factor	>0.9
Efficiency	84%
XYZ Dimension	95 x 30 x 25mm
ROHS Compliance	Yes

Evaluation Board

Figure 1: Top View

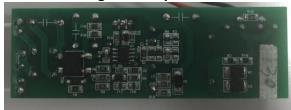


Figure 2: Bottom View

Connection Instructions:

AC+ Input: AC_L
AC- Input: AC_N
DC LED+ Output: LED+
DC LED- Output: LED-

Dimming Signal Input: APWM and PWM

Input

GND: GND

Board Layouts

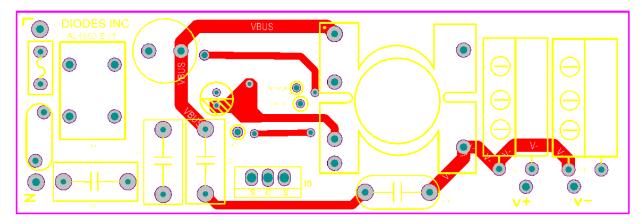


Figure 3: PCB Layout Top View

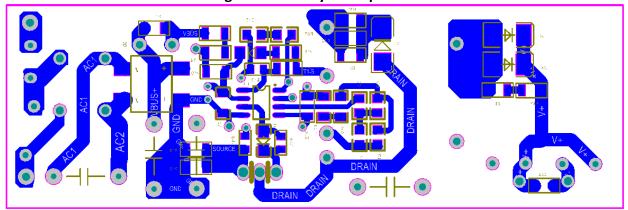


Figure 4: PCB Layout Bottom View

Quick Start Guide

- 1. Preset the isolated AC source to 230VAC.
- 2. Ensure that the AC source is switched OFF or disconnected.
- 3. Connect the anode wire of the LED string to the LED+ of the evaluation board.
- 4. Connect the cathode wire of the LED string to the LED- terminal of the evaluation board
- 5. Connect two AC line wires to the AC_L and AC_N terminals on the evaluation board.
- 6. Connect your digital signal wire to the pwm input terminal if you wanna make the evaluation board work at pwm dimming mode.
- 7. Ensure that the area around the board is clear and safe, and preferably that the board and LEDs are enclosed in a transparent safety cover.
- 8. Turn on the main switch. LED string should light up. DO NOT TOUCH THE BOARD, LEDs OR BARE WIRING.

Caution: This AL1663 evaluation board is a non-isolated design. All terminals carry high voltage during operation!

Schematic

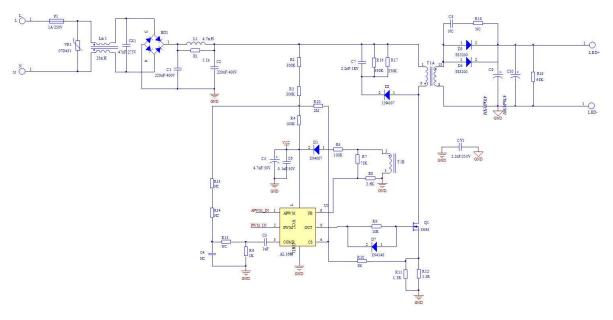


Figure 5: Schematic Circuit

Transformer Design

Bobbin and Core

• Bobbin: PQ2620, 6+8Pin

• Core: PC40

Transformer parameters

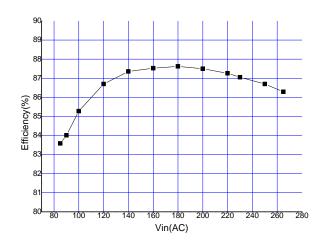
1. Primary Inductance (Pin6-Pin1, all other windings open):

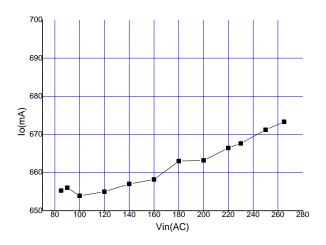
Lp=0.75mH, ±5%@1kHz

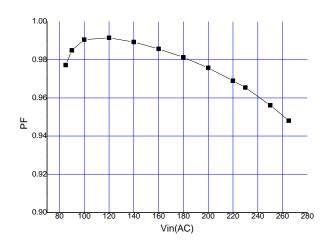
- 2. Primary Winding Turns (Pin6-Pin1): N_P=95Ts
- 3. Secondary Winding Turns(Pin13-Pin8):N_S=31Ts
- 4. Auxiliary Winding Turns (Pin3-Pin5): N_A=20Ts

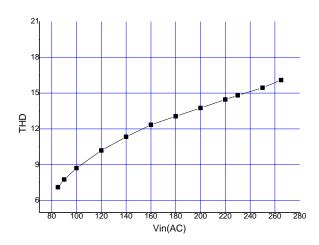
Transformer Winding Construction Diagram

Wdg Num	Winding name	Description
1	WD1 primary winding	Start from Pin6,Φ0.29mm*1, 35Ts,one layer,end at pin2.
2	Insulation tape	1layer insulation tape
3	WD2 shielding winding	Start from Pin5,Φ0.13mm*1, full one layer,end with floating.
4	Insulation tape	1layer insulation tape
5	WD3 secondary winding	Start from Pin13, triple insulation wireΦ0.5mm*1, 31Ts, 3 layers, end at Pin8.
6	Insulation tape	2layer insulation tape
7	WD4 primary winding	Start from Pin2,Φ0.29mm*1, 60Ts, 2 layers,end at Pin1.
8	Insulation tape	2 layer insulation tape
9	WD5 auxiliary winding	Start from Pin3,Φ0.15mm*1, 20Ts,1 layer,end at Pin5.
10	Insulation tape	1 layer Insulation tape

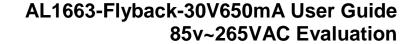

Bill of Material



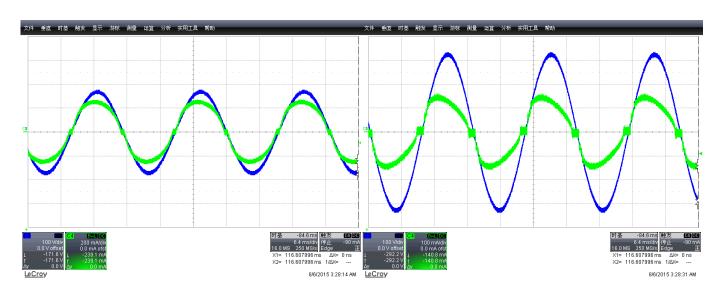

#	Item	Quantity	Package	Description
1	CX1	1	DIP	X-Cap, 47nF/275VAC, Pitch=10mm
2	C1	1	DIP	220nF/400V, CL21, Pitch=10mm
3	C2	1	DIP	220nF/400V, CL21, Pitch=10mm
4	C3	1	0805	Ceramic Cap, 1uF/16V,X7R
5	C5	1	DIP	E-Cap, 130°C,4.7uF/50V,5*9mm
6	C6	1	0805	Ceramic Cap, 0.1uF/50V,X7R
7	C7	1	1206	Ceramic Cap, 2.2nF/1KV,X7R
8	C4,C8	0		NC
9	C9,C10	2	DIP	E-Cap, 130°C,470uF/50V,10*20mm
10	CY1	1	DIP	Y-Cap, 2.2nF/250VAC, 10mm
11	BD1	1	SOPA-4	Rectifier Bridge,DB107S,1A/1KV
12	D1	1	SOD-123	Diode, 1N4007,1A/1KV
13	D2	1	SMA	Diode, 1N4007,1A/1KV
14	D3,D4	2	SMB	Schottky, SS3200, 3A/200V
15	D7	1	SOD-123	Switching Diode, 1N4148
16	VR1	1	DIP	Varistor, 07D431
17	F1	1	DIP	Fuse,1A/250V
18	R1	1	1206	SMD Resistor,5.1K, 5%, 1/4W
19	R2,R3	2	1206	SMD Resistor,300K, 5%, 1/4W
20	R4	1	1206	SMD Resistor,100K, 5%, 1/4W
21	R5	1	1206	SMD Resistor,100R, 5%, 1/4W
22	R6	1	0805	SMD Resistor,1K, 5%, 1/4W
23	R7	1	1206	SMD Resistor,75K, 5%, 1/4W
24	R8	1	1206	SMD Resistor,3.6K, 5%, 1/4W
25	R9	1	0805	SMD Resistor, 10R, 5%, 1/4W
26	R10	1	0805	SMD Resistor, 3K, 5%, 1/4W
27	R11	1	1206	SMD Resistor, 1.3R, 1%, 1/4W
28	R12	1	1206	SMD Resistor, 1.5R, 1%, 1/4W
29	R13,R14,R1 5,R18	0		NC
30	R16,R17	2	1206	SMD Resistor,330K, 5%, 1/4W
31	R19	1	1206	SMD Resistor,68K, 5%, 1/4W
32	R20	1	1206	SMD Resistor,2M, 5%, 1/4W
33	L1	1	DIP	Inductor 4.7mH, 10*12mm
34	Lm1	1	DIP	Common Inductor, 25mH
35	T1	1	DIP	Transformer,PQ2620,0.75mH
36	Q1	1	TO-220	Mosfet, 5N65, 5A/650V


37	U1	1	SOIC-8	AL1663, high PFC Controller
38	PCB	39		FR4 Double layer, 95*31mm

Functional Performance



Functional Waveform

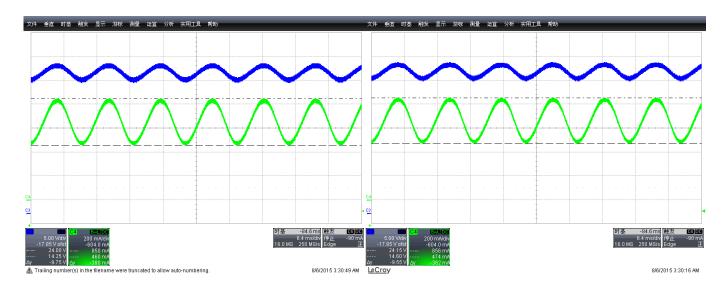

Waveforms:

Input Voltage & Input Current
Vin=120V

Input Voltage Input Current

Input Voltage & Input Current Vin=230V

Input Voltage Input Current

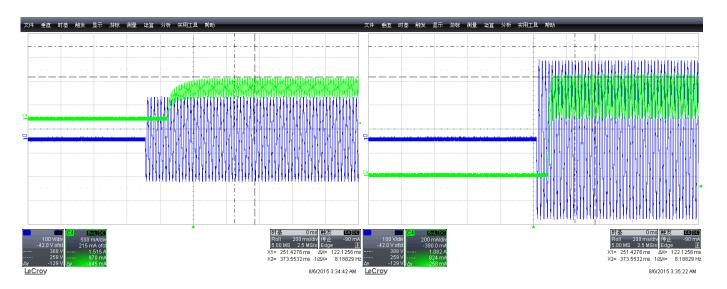


Output Voltage & Output Current Vin=120V

Output Voltage Output Current

Output Voltage & Output Current Vin=230V

Output Voltage Output Current


Startup Overshoot
Vin=120VAC (No overshoot current)

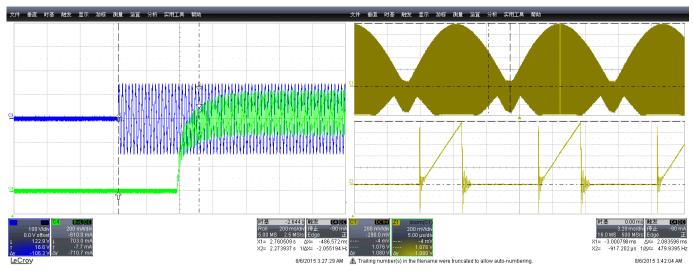
Input Voltage Output Current

Startup Overshoot

Vin=230VAC (No overshoot current)

Input Voltage Output Current

Startup time


Vin=120VAC Start time=482ms

Input Voltage Output Current

CS Vcs Waveform

Vin=120VAC V_{RRM MAX}=1.08V

Output V_{cs}

CS Vcs Waveform

Drain V_{Drain} Waveform

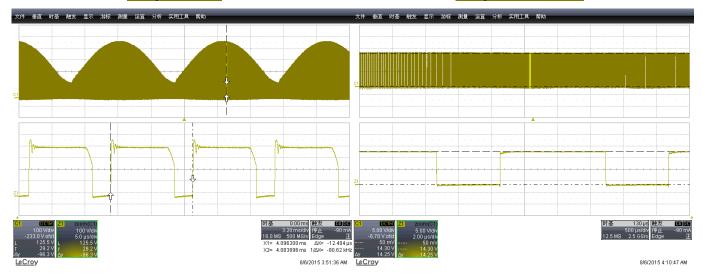


Vin=230VAC V_{RRM MAX}=910mV

Vin=120VAC Frequency=55kHz

Output V_{cs}

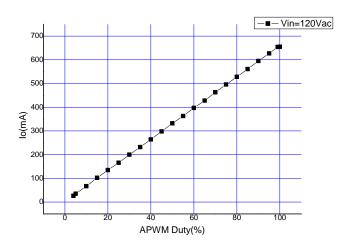
Output V_{Drain}

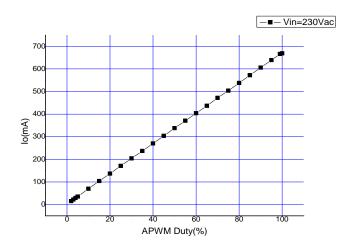


Drain Waveform
Vin=230VAC Frequency=80kHz

Gate Vgate Waveform Vin=120VAC V_{gate}=14.3V

Output V_{Drain}


Output Diode V_{cs}


PWM Dimming Functional Performance

PWM Frequency:1kHz Vin=120V

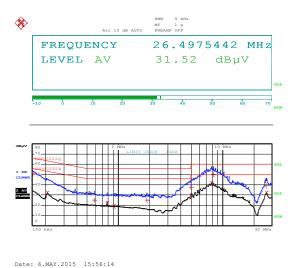
PWM Frequency:1.01kHz Vin=230V

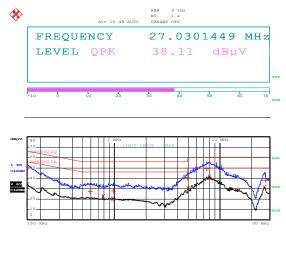
PWM Dimming Functional Waveform

Waveforms:

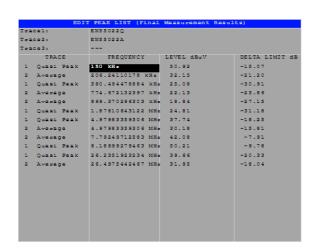
Output V_{Drain} Output Current

Drain V_{Drain} & Output Current PWM duty=10%

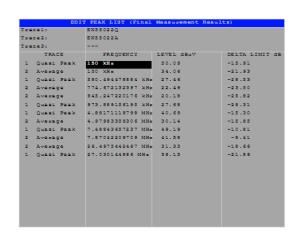

Output V_{Drain} Output Current


EMI Conduction Test

Line Terminal Vin=230VAC/50Hz LIMIT CHECK PASS



Neutral Terminal Vin=230VAC/50Hz LIMIT CHECK PASS



Date: 6.MAY.2015 16:00:13

Line Terminal Vin=230VAC/50Hz Margin>7dB

Neutral Terminal Vin=230VAC/50Hz Margin>8dB

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2013, Diodes Incorporated

www.diodes.com