Alexander County Schools 2013-2014

Unit: Factors, Multiples, and Arrays Unit 1

Approximately 20 days

Q1

Q4

Common Core and/or Essential Standards:

4.OA. 1 Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
4.0A. 2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
4.OA.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answer using mental computation and estimation strategies including rounding.
4.OA.4 Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.
4.NBT. 4 Fluently add and subtract multi-digit whole numbers using the standard algorithm. **This standard is addressed through 10-minute math and students practice pages and will be revisited more in depth in Unit 5.

Transfer: Students will be able to independently use their learning

 to ...- solve real world problems using multiplication

Possible "I Can" Statements:

I can interpret a multiplication equation as a comparison.
I can multiply to solve word problems involving multiplicative comparison.

I can find all factors for pairs of whole numbers from 1-100. I can determine multiples of one digit numbers and determine whether a number is prime or composite.

I can solve multi-step word problems, represent these problems using equations and assess the reasonableness of my answer by using estimation strategies.

Meaning			
Understandings: Students will understand that ...	Essential Question(s):		
$\bullet \quad$ verbal statements of multiplicative comparisons can be written as	\bullet How can situations in your life bring about the use of		

multiplication equations

- a whole number is a multiple of each of its factors
- there is a process of finding factor pairs
- there is a difference between multiples and factors although they are related
- multiples can be related to skip counting
- what makes a number prime, composite or neither
- there are a variety of strategies/methods to use when multiplying

multiplication?

- Is it important to know a variety of processes to solve multiplication?
- How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Students will know: Acquisition

Students will be skilled at:

- how to identify and verbalize a quantity being multiplied and which number represents "how many" times to get a specified number.
- how to find factors and multiples of whole numbers.
- how to identify a number as prime, composite or neither.
- how to use a variety of strategies to multiply whole numbers.
- how to illustrate and explain the method/methods used to solve multiplication problems.
- writing and identifying equations and statements for multiplicative comparisons
- identifying and verbalizing which quantity is being multiplied
- multiplying
- skip counting
- identifying prime and composite numbers
- finding and identifying patterns when listing factors and multiples
- multiplying whole numbers
- using various strategies to solve problems
- illustrating their reasoning
- solving problems in and out of context

Essential Vocabulary:

Equation, multiplication, factors, products, array, mental computation, multiples, factor pairs, prime, composite, base ten blocks, place value, skip counting

IT Standards:

4.SI. 1 Apply criteria to determine appropriate information resources for specific topics and purposes.
4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.SI.1.2 Use reliable sources of information.

4.IN. 1 Apply appropriate strategies when reading for enjoyment and

 for information.4.IN.1.1 Implement appropriate reading strategies when reading for information.
4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities.

IT Strategies:

Students will use the Internet and other resources (Almanac) to research 3 facts that go with the number they are assigned for the summative project.

Students will use the Internet and other resources to find how the number they are assigned used in real world situations.

Students will choose how they display the number "family tree" for the summative project.

> | 4.TT.1.3 Use technology tools to present data and information |
| :--- |
| (multimedia, audio and visual recording, online collaboration tools, etc.). |
| 4.SE.1 Understand issues related to the safe, ethical, and |
| responsible use of information and technology resources. |
| 4.SE.1.1 Understand the guidelines for responsible use of technology |
| hardware. |
| 4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing, |
| netiquette) when using resources. |

Grade: $\mathbf{4}^{\text {th }}$ grade

Subject: Math

STAGE 2

Is it important to know a variety of processes to solve multiplication?

How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Understanding:	Classify, describe, discuss, explain, identify, locate, explain ideas or concepts? recognize, report, select, translate \& paraphrase
Remembering: Can the student recall or remember the information?	define, duplicate, list, memorize, recall, repeat, reproduce \& state

Stage 3

Approximate number of days spent on unit: approximately 20 days

W - Where are we going? Why? What is expected?
\mathbf{H} - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self -Evaluate and reflect on learning?
T - How will we Tailor learning to vary needs, interests, and styles?
\mathbf{O} - How will we Organize and sequence the learning?

Resources:

Investigations Units:

Unit 1 Factors, Multiples, and Arrays
Sessions to Skip: 3.1 (skip Activity 4 only) 3.2 (skip all)
enVision Lessons to supplement Investigations as needed:
(Remember these lessons are a starting point and may not cover all
the standards in a cluster.)
3-1, 3-2, 3-3, 3-4, 3-5, 3-6

Web Resources:

Factor Trail Game (Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L719
Factor Findings (lesson from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L872
The Product Game (lesson from Illuminations exploring products, factors and multiples and the relationship between them)
http://illuminations.nctm.org/LessonDetail.aspx?id=U100

Strategies:

Arrays
Flashcards
Timed Tests (fluency)
Skip Counting
Rhymes ' n Times
Wrap Ups
Use manipulatives to show arrays
Build arrays for equations to show the Commutative Property of Multiplication

Use word problems with multiplicative comparisons. Have students to draw a picture or create a model of the problem, write an equation and solve.
Give students a problem solving method to help them figure out how to solve word problems.

Chairs Around the Table (pattern lesson from Illuminations http://illuminations.nctm.org/LessonDetail.aspx?id=L627 Patterns That Grow (number and shape pattern unit from Illuminations http://illuminations.nctm.org/LessonDetail.aspx?id=U103
http://mathstory.com/mathlessons/arrayrace.htm
(short lesson and game for building arrays, writing equations and solving for a product)
www.k-5mathteachingresources.com
(has a collection of resources for each area taught) http://www.mathplayground.com/wordproblems.html (word problems with multiplicative comparison) http://www.uen.org/3-6interactives/math.shtml\#patterns (interactive pattern games)
enVision eTools
Promethean Planet flipcharts

Picture books:

Anno's Magic Seeds by Mitsumasa Anno (pattern)
Anno's Mysterious Multiplying Jar by Masaichiro and Mitsumasa Anno (multiplication)
Amanda Bean's Amazing Dream by Cindy Neuschwander (multiplication)
The Grapes of Math by Greg Tang
If you were a Set by Marcie Aboff
If you were a Times Sign by Trisha Speed Shaskan
Minnie's Diner A Multiplying Menu by Dayle Ann Dodds
The Best of Times by Greg Tang
Equal Shmequal by Virginia Knoll
Other teaching resources:
Teaching Student-Centered Mathematics by John Van de Walle
Navigating Through Number and Operations in Grades 3-5 by NCCTM
"Count Around the Room"-give students a rule such as count by 3's

Common Core and/or Essential Standards:

4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.NBT. 6 Find whole-number quotients and remainders with up to fourdigit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.OA.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answer using mental computation and estimation strategies including rounding.

Supporting Standards: 4.OA.1, 4.OA.2, 4.OA. 4

Transfer: Students will be able to independently use their learning to ...

- solve real world problems using multiplication and division

Possible "I Can" Statements:
I can solve multi-step word problems, represent these problems using equations and assess the reasonableness of my answer by using estimation strategies.

I can multiply multi-digit numbers.
I can use multiplication to help me solve division problems.
I can make sense of remainders by thinking of the problem's context.
I can multiply using multiples of ten.

Understandings: Students will understand that . . .

- there are a variety of strategies/methods to use when multiplying and dividing (place value, equations, halving and doubling and/or array/area models)
- remainders can be interpreted in different ways depending on the context of the question

Essential Question(s):

- How can situations in your life bring about the use of multiplication and division?
- Is it important to know a variety of processes to solve multiplication and division?
- How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)
- multiplication can be used to help solve division problems
- the effect of multiplying by multiples of ten (ex. 3×4 and 3×40)

Acquisition

Students will know:

- how to use a variety of strategies to multiply whole numbers.
- how to illustrate and explain the method/methods used to solve multiplication and division problems.

Students will be skilled at:

- identifying and verbalizing which quantity is being multiplied
- multiplying and dividing
- skip counting
- multiplying whole numbers
- using various strategies to solve problems
- illustrating their reasoning
- solving problems in and out of context

Essential Vocabulary:

Equation, multiplication, factors, products, array, mental computation, multiples, factor pairs, prime, composite, division, partial products, area model, base ten blocks, place value, remainder, skip counting

IT Standards:

4.SI. 1 Apply criteria to determine appropriate information resources

 for specific topics and purposes.4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.SI.1.2 Use reliable sources of information.
4.IN. 1 Apply appropriate strategies when reading for enjoyment and for information.
4.IN.1.1 Implement appropriate reading strategies when reading for information.

4.TT. 1 Use technology tools and skills to reinforce classroom

 concepts and activities.4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.). 4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing, netiquette) when using resources.

IT Strategies:

Students will choose how they display the number "family tree" for the summative project.

Unit Title: Multiple Towers and Division Stories Unit 3 Grade: $4^{\text {th }}$ grade

Subject: Math

Understandings:

There are a variety of strategies/methods to use when multiplying and dividing.

Remainders can be interpreted in different ways depending on the context of the question.

Multiples of ten can be used to multiply by multiples of ten.

Essential Questions:

How can situations in your life bring about the use of multiplication and division?

Is it important to know a variety of processes to solve multiplication and division?

How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Essential Questions:

How can situations in your life bring about the use of multiplication and division?

Is it important to know a variety of processes to solve multiplication and division?

How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Formative Assessments (Evidences)

Oral Assessments
Quizzes (teacher made \& textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from envisions/Investigations \& other sources)
Teacher Observation
Anecdotal Notes

Summative Assessment Individual/Group Project: "Choose a Number Project" Continue project from Unit 1

1)Teacher chooses numbers for students to draw from a container. (Numbers between 50 and 99)
2) Students select a number from the container to represent and present in a "Family Tree" (to show the relationships of the number) using a format of their choice (flipchart, PowerPoint, poster, brochure, etc.).
3) Family Tree must include:

- A pattern in which your number is the tenth term in a sequence of ten numbers
- Two different word problems in which your number is the dividend in a division problem and a factor in a multiplication problem.
- Solve the two word problems using two different strategies.

Additional assessment as needed (Investigations Assessments; Unit Test; enVision Exam View Test Generator, Moby Math, etc.)

Stage 3

Approximate number of days spent on unit: approximately 22 days

W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self -Evaluate and reflect on learning?
T - How will we Tailor learning to vary needs, interests, and styles?
\mathbf{O} - How will we Organize and sequence the learning?

Resources:

Investigations Units:

Unit 3 Multiple Towers and Division Stories
Do all sessions.
enVision Lessons to supplement Investigations as needed:
(Remember these lessons are a starting point and may not cover all the standards in a cluster.)
$4-1,4-2,4-3,4-4,4-5,5-1,5-2,5-3,5-4,5-5,5-6,5-7,5-8,7-1,7-2,7-6$

Web Resources:

Factor Trail Game (Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L719
Factor Findings (lesson from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L872
The Product Game (lesson from Illuminations exploring products, factors and multiples and the relationship between them)
http://illuminations.nctm.org/LessonDetail.aspx?id=U100
Chairs Around the Table (pattern lesson from Illuminations
http://illuminations.nctm.org/LessonDetail.aspx?id=L627
Patterns That Grow (number and shape pattern unit from Illuminations http://illuminations.nctm.org/LessonDetail.aspx?id=U103
http://mathstory.com/mathlessons/arrayrace.htm
(short lesson and game for building arrays, writing equations and solving for a product)
www.k-5mathteachingresources.com

Strategies:

Arrays
Area Models
Cluster Problems
Break One Apart
Multiplication Combinations
Fact Families to show relationship between division and multiplication

Flashcards

Timed Tests (fluency)
Skip Counting
Rhymes ' n Times
Wrap Ups
Use manipulatives to show arrays
Give students a problem solving method to help them figure out how to solve word problems.
"Count Around the Room"-give students a rule such as count by 3's
(has a collection of resources for each area taught) http://www.mathplayground.com/wordproblems.html (word problems with multiplicative comparison) http://www.uen.org/3-6interactives/math.shtml\#patterns
(interactive pattern games)
enVision eTools
Promethean Planet flipcharts

Picture books:

The Doorbell Rang by Pat Hutchins (division basics)
Anno's Magic Seeds by Mitsumasa Anno (pattern)
Anno's Mysterious Multiplying Jar by Masaichiro and Mitsumasa Anno (multiplication)
A Remainder of One by Elinor J. Pinczes
The Great Divide: A Mathematical Marathon by Dayle Ann Dodds
Amanda Bean's Amazing Dream by Cindy Neuschwander
(multiplication)
The Grapes of Math by Greg Tang
If you were a Set by Marcie Aboff
If you were a Divided-By Sign by Trisha Speed Shaskan
If you were a Times Sign by Trisha Speed Shaskan
Minnie's Diner A Multiplying Menu by Dayle Ann Dodds
Divide and Ride by Stuart J. Murphy
One Hundred Hungry Ants by Elinor J. Pinczes
The Best of Times by Greg Tang
Equal Shmequal by Virginia Knoll
Teaching Student-Centered Mathematics by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by NCCTM

Alexander County Schools 2012-2013

Unit:
 Multiplication and Division (Begin after Place Value and continue through the end of the $2^{\text {nd }}$ Quarter)
 $4^{\text {th }}$ Grade

Common Core and/or Essential Standards:

4.0A.1 Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
4.OA.4 Find all factor pairs for a whole number in the range 1-100. Recognize
that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.
4.0A. 2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.NBT. 6 Find whole-number quotients and remainders with up to fourdigit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.OA.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answer using mental

Transfer: Students will be able to independently use their learning

 to...- solve real world problems using multiplication and division

Possible "I Can" Statements:

I can interpret a multiplication equation as a comparison.
I can multiply or divide to solve word problems involving multiplicative comparison.

I can find all factors for pairs of whole numbers from 1-100. I can determine multiples of one digit numbers and determine whether a number is prime or composite.

I can solve multi-step word problems, represent these problems using equations and assess the reasonableness of my answer by using estimation strategies.

I can multiply multi-digit numbers.
I can use multiplication to help me solve division problems.
I can divide up to four digit dividends and explain my results. I can make sense of remainders by thinking of the problem's context. I can multiply using multiples of ten.
4.OA. 5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.
Meaning

Understandings: Students will understand that...

- verbal statements of multiplicative comparisons can be written as multiplication equations
- a whole number is a multiple of each of its factors
- there is a process of finding factor pairs
- there is a difference between multiples and factors although they are related
- multiples can be related to skip counting
- what makes a number prime, composite or neither
- there are a variety of strategies/methods to use when multiplying and dividing

Essential Question(s):

- How can situations in your life bring about the use of multiplication and division?
- Is it important to know a variety of processes to solve multiplication and division?
- How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Students will know:

- how to identify and verbalize a quantity being multiplied and which number represents "how many" times to get a specified number.
- how to find factors and multiples of whole numbers.
- how to identify a number as prime, composite or neither.
- how to use a variety of strategies to multiply whole numbers.
- how to illustrate and explain the method/methods used to solve multiplication and division problems.

Students will be skilled at:

- writing and identifying equations and statements for multiplicative comparisons
- identifying and verbalizing which quantity is being multiplied
- multiplying and dividing
- skip counting
- identifying prime and composite numbers
- finding and identifying patterns when listing factors and multiples
- multiplying whole numbers
- using various strategies to solve problems
- illustrating their reasoning
- solving problems in and out of context

Essential vocabulary:

- Equation, multiplication, factors, products, array, mental computation, multiples, factor pairs, prime, composite, division, partial products, area model, base ten blocks, place value, remainder, skip counting

IT Standards:
 4.SI. 1 Apply criteria to determine appropriate information
 resources for specific topics and purposes.

4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.

IT Strategies:
Students will use the Internet and other resources (Almanac) to research 3 facts that go with the number they are assigned for the summative project.

[^0]Students will use the Internet and other resources to find how the number they are assigned used in real world situations.

Students will choose how they display the number "family tree" for the summative project.

Understandings:

Verbal statements of multiplicative comparisons can be written as multiplication equations.

A whole number is a multiple of each of its factors.

There is a process of finding factor pairs.

There is a difference between multiples and factors although they are related.

Multiples can be related to skip counting.

What makes a number prime, composite or neither?

There are a variety of strategies/methods to use when multiplying and dividing.

Essential Questions:

How can situations in your life bring about the use of multiplication and division?

Is it important to know a variety of processes to solve multiplication and division?

How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Revised Blooms	
Creating: can the student create new product or point of view?	assemble, construct, create, design, develop, formulate, write.
Evaluating: can the student justify a stand or decision?	appraise, argue, defend, judge, select, support, value, evaluate
Analyzing: can the student distinguish between the different parts?	appraise, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question, test.
Applying: can the student use the information in a new way?	choose, demonstrate, dramatize, employ, illustrate, interpret, operate, schedule, sketch, solve, use, write.
Understanding: can the student explain ideas or concepts?	classify, describe, discuss, explain, identify, locate, recognize, report, select, translate, paraphrase
Remembering: can the student recall or remember the information?	define, duplicate, list, memorize, recall, repeat, reproduce state

Formative Assessments (Evidences)

Oral Assessments
Quizzes (teacher made \& textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from envisions/Investigations \& other sources)
Teacher Observation Anecdotal Notes

Summative Assessment

Individual/Group Project:
"Choose a Number Project"

1) Teacher chooses numbers for students to draw from a container. (Numbers to Choose From-10,
12, 13, 14, 15, 16, 17, 18, 21, 24, $25,27,29,33,36,38,39,40,42$, 45)
2) Students select a number from the container to represent and present in a "Family Tree" (to show the relationships of the number) using a format of their choice (flipchart, PowerPoint, poster, brochure, etc.)
3) Family Tree must include:

- Factor pairs to make the number. Arrays must be shown.
- Is the number odd or even?; prime or composite?; is the number a multiple of $1,2,3,4,5,6,7,8$ or 9 ?
- A pattern in which your number is the fifth term in a sequence of ten numbers
- Four different word problems in which your number is the sum, difference, product, and quotient.
- The written word (and/or symbol) in 3 foreign languages
- 2 facts involving your number (a cheetah can run for short distances at 70 miles per hour).
- 3 photographs, drawings
$\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { or newspaper/magazine } \\ \text { clippings showing where } \\ \text { you have recently seen } \\ \text { your number used in the } \\ \text { real world } \\ \text { A drawing or design that } \\ \text { you create that represents } \\ \text { the number in a unique } \\ \text { way }\end{array} \\ \text { Additional assessment as needed }\end{array}\right\}$

W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
R - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self Evaluate and reflect on learning?
T-How will we Tailor learning to varied needs, interests, styles?
O - How will we Organize and sequence the learning?

Resources:

Investigations Units:

Unit 1 Factors, Multiples, and Arrays
Sessions 1.1-1.6A; Session 2.1-2.5; 3.1-3.4
Unit 3 Multiple Towers and Division Stories
Sessions 1.1-1.5; 2.1-2.6; 3.1-3.4; 4.1-4.5
Unit 8 How Many Packages? How Many Groups?
Sessions 1.1-1.5; 2.1-2.5; 3.1-3.6
enVision Lessons to supplement Investigations as needed: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 4-1, 4-2, 4-3, 4-4, 4-5,5-1, 5-2, 5-3, $5-4,5-5,5-6,5-7,5-8,6-1,6-2,6-3,6-4,7-1,7-2,7-3,7-4,7-5,7-$ 7, 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-7, 8-8, 8-9, 8-10, 9-7, 16-12, 18-1, 18-2, 18-3, 18-5

Web Resources:

Factor Trail Game (Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L719
Factor Findings (lesson from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L872
The Product Game (lesson from Illuminations exploring products, factors and multiples and the relationship between them) http://illuminations.nctm.org/LessonDetail.aspx?id=U100

Strategies:

Arrays
Area Models
Fact Families to show relationship between division and multiplication

Flashcards
Timed Tests (fluency)
Skip Counting
Rhymes ' n Times
Wrap Ups
Use manipulatives to show arrays
Build arrays for equations to show the Commutative Property of Multiplication

Use word problems with multiplicative comparisons. Have students to draw a picture or create a model of the problem, write an equation and solve.
Give students a problem solving method to help them figure out how to solve word problems.
"Count Around the Room"-give students a rule such as count by 3's
Chars Around the Table (pattern lesson from lluminations http://illuminations.nctm.org/LessonDetail.aspx?id=L627
Patterns That Grow (number and shape pattern unit from Illuminations
http://illuminations.nctm.org/LessonDetail.aspx?id=U103
http://mathstory.com/mathlessons/arrayrace.htm
(short lesson and game for building arrays, writing equations and solving for a product)
www.k-5mathteachingresources.com
(has a collection of resources for each area taught)
http://www.mathplayground.com/wordproblems.html
(word problems with multiplicative comparison)
http://www.uen.org/3-6interactives/math.shtml\#patterns
(interactive pattern games)
enVision eTools
Promethean Planet flipcharts

Picture books:

The Doorbell Rang by Pat Hutchins (division basics)
Anno's Magic Seeds by Mitsumasa Anno (pattern)
Anno's Mysterious Multiplying Jar by Masaichiro and Mitsumasa
Anno (multiplication)
A Remainder of One by Elinor J. Pinczes
The Great Divide: A Mathematical Marathon by Dayle Ann Dodds
Amanda Bean's Amazing Dream by Cindy Neuschwander
(multiplication)
The Grapes of Math by Greg Tang
If you were a Set by Marcie Aboff
If you were a Divided-By Sign by Trisha Speed Shaskan
If you were a Times Sign by Trisha Speed Shaskan
Minnie's Diner A Multiplying Menu by Dayle Ann Dodds
Divide and Ride by Stuart J. Murphy
One Hundred Hungry Ants by Elinor J. Pinczes
The Best of Times by Greg Tang
Equal Shmequal by Virginia Knoll

Teaching Student-Centered Mathematics by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by
NCCTM

Alexander County Schools 2013-2014

Unit 5: Landmarks and Large Numbers $2^{\text {nd }} / 3^{\text {rd }}$ Quarter
 Approximately 6 weeks

Common Core and/or Essential Standards:

4.NBT. 1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.
4.NBT. 2 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons.
4.NBT. 3 Use place value understanding to round multi-digit whole numbers to any place.
4.NBT.4 Fluently add and subtract multi-digit whole numbers using the standard algorithm.
4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

Transfer: Students will be able to independently use their learning

 to ...- understand the value of numbers in real world situations
- use mental math to solve addition and subtraction problems quickly in real world situations

Possible "I Can" Statements:

I can read, write, and sequence numbers to 1,000 and 10,000
I can add and subtract multiples of 10, 100, and 1,000
I can use multiples of 10 and 100 to find the difference between any 3digit number and 1,000

I can explain the value of each digit in a multi-digit number as ten times the digit to the right.

I can read and write a multi-digit number in standard, expanded and written form.

I can use story contexts and representations to support explanations about equivalent additions expressions and about related subtraction expressions

I can understand the structure of 10,000 and its equivalence to one thousand 10s, one hundred 100s and ten 1,000s

I can explain how to use place value in order to round a multi-digit number.

I can understand the action of subtraction problems.

Meaning	
Understandings: Students will understand that . . . - place value is related to multiplying and dividing by multiples of 10. - multi-digit whole numbers can be written in different forms: traditional, expanded and written form. - rounding is deeper than using an algorithm. Number sense plays an important role in rounding numbers. - there are multiple strategies that help make sense of the standard addition and subtraction algorithm. - develop computational fluency (addition and subtraction) which means accuracy, efficiency and flexibility. - it is mathematically possible to subtract a larger number from a smaller number, but this would result in a negative number. - making connections to various strategies for addition and subtraction in order to develop fluency with the standard algorithms	Essential Question(s): - Why is it possible to represent a multi-digit whole number in more than one way? - When comparing multi-digit whole numbers, how does place value affect the results? - What pattern exists between the digits in a multi-digit whole number? - Why would you round numbers in real life? - What strategies does someone need to efficiently and effectively solve addition and subtraction problems? - What is the structure of place value and the base ten system through 1,000,000?
Acquisition	
Students will know: - place value (ones, tens, hundreds, thousands, ten thousands, hundred thousands, millions) - comparison symbols and how to use comparison symbols to write an equation - the procedure/algorithm for rounding - how estimation can help with rounding - basic addition and subtraction facts - the standard algorithm for addition and subtraction there are negative numbers to the left of the zero on the number line	Students will be skilled at: - reading and writing number forms-traditional expanded, standard, word form \& ($285=28$ tens plus 5 ones or 1 hundred, 18 tens, and 5 ones, etc...) - recognizing place versus value - skip counting \& multiples - comparing place value - comparing multi-digit whole numbers - recording results of comparisons - locating place in a number for rounding - using a number line and hundreds chart to help with rounding explaining and reason the rounding process

Essential Vocabulary:

place value, multi-digit whole number, number forms (traditional expanded form, written form, standard form), round, <, >, =, less than, greater than, equal to, comparisons, compare, negative number, millions, ten thousands, thousands, hundred, sum, round, value, addition, subtraction, difference

IT Standards:

- 4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities.

IT Strategies:

Students will choose program to complete the newspaper for summative

- 4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.).
- 4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual recording, online collaboration tools, etc.).
- 4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.).
- 4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
- 4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
- 4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing, netiquette) when using resources.
assessment; for example: Storybook Weaver; PowerPoint; Word; Publisher

STAGE 2

Why would you round numbers in real life?

What makes a computation strategy effective and efficient?

What strategies does someone need to efficiently and effectively solve addition and subtraction problems?

Stage 3

Approximate number of days spent on unit: approximately 6 weeks	
W - Where are we going? Why? What is expected?	
H - How will we Hook and Hold students?	
E - How will we Equip students to Explore and Experience?	
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?	
\mathbf{E} - How will student self -Evaluate and reflect on learning?	
T - How will we Tailor learning to vary needs, interests, and styles?	
\mathbf{O} - How will we Organize and sequence the learning?	
Resources: Investigations Materials that should be used: Unit 5 Landmarks and Large Numbers Sessions 1.1-1.6; 2.1-2.6; 3.1-3.6A; 4.1-4.7	Strategies:
	Base Ten Blocks and other materials to build number sense
	Place Value Chart
enVision Lessons to supplement Investigations as needed: (Remember these lessons are a starting point and may not cover all the standards in a cluster.) $1-1,1-2,1-3,1-4,2-1,2-2,2-4,2-5,2-6,2-7$	Use dice to play "Who has the Largest Number?" Students draw 7 lines on their paper. You roll a die and they choose where they want to place the number you rolled in order to make the largest number. Once students place the number it cannot be moved. Continue rolling until all students have made a number. Then compare.
Teaching Student-Centered Mathematics by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by NCCTM	"Human Place Value"-Make students become a place value board using number cards to build numbers and number sense.
Picture Books: A Million Dots by Andrew Clements Earth Day-Hooray! By Stuart J. Murphy	Students can use calculators to investigate the pattern in problems: $4 \times 10=40$ $40 / 10=4$
	$4 \times 100=400 \quad 400 / 10=40$
	$4 \times 1,000=4,000 \quad 4,000 / 10=400$
Betcha! By Stuart J. Murphy (estimating)	$4 \times 10,000=40,000 \quad 40,000 / 10=4,000$
Great Estimations by Bruce Goldstone	
If You Made a Million by David Schwartz	Use a number line to help with rounding. Students will be able to se
How Much is a Million by David Schwartz	which benchmark number the number you are rounding is closest to.
Millions of Cats by Wanda Gag	
A Million Fish More or Less by McKissack	
Web Resources:	
www.k-5mathteachingresources.com	
(has a collection of resources for each area taught)	
http://www.funbrain.com/tens/index.html (identify the place a number a	

```
http://gamequarium.com/placevalue.html (collection of place value
games)
http://www.topmarks.co.uk/interactive.aspx?cat=20 (different activities
and tools to be used on Active Board)
enVision eTools
Promethean Planet flipcharts
```


Math Journal Topics

```
\(4^{\text {th }}\) Grade Math Journals which can be purchased from www.K-
5mathteachingresources.com.
```

Alexander County Schools 2012-2013

Unit:
 Multiplication and Division (Begin after Place Value and continue through the end of the $2^{\text {nd }}$ Quarter)
 $4^{\text {th }}$ Grade

Common Core and/or Essential Standards:

4.0A.1 Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
4.OA.4 Find all factor pairs for a whole number in the range 1-100. Recognize
that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.
4.0A. 2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.NBT. 6 Find whole-number quotients and remainders with up to fourdigit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.OA.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answer using mental

Transfer: Students will be able to independently use their learning

 to...- solve real world problems using multiplication and division

Possible "I Can" Statements:

I can interpret a multiplication equation as a comparison.
I can multiply or divide to solve word problems involving multiplicative comparison.

I can find all factors for pairs of whole numbers from 1-100. I can determine multiples of one digit numbers and determine whether a number is prime or composite.

I can solve multi-step word problems, represent these problems using equations and assess the reasonableness of my answer by using estimation strategies.

I can multiply multi-digit numbers.
I can use multiplication to help me solve division problems.
I can divide up to four digit dividends and explain my results. I can make sense of remainders by thinking of the problem's context. I can multiply using multiples of ten.
4.OA. 5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.
Meaning

Understandings: Students will understand that...

- verbal statements of multiplicative comparisons can be written as multiplication equations
- a whole number is a multiple of each of its factors
- there is a process of finding factor pairs
- there is a difference between multiples and factors although they are related
- multiples can be related to skip counting
- what makes a number prime, composite or neither
- there are a variety of strategies/methods to use when multiplying and dividing

Essential Question(s):

- How can situations in your life bring about the use of multiplication and division?
- Is it important to know a variety of processes to solve multiplication and division?
- How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Students will know:

- how to identify and verbalize a quantity being multiplied and which number represents "how many" times to get a specified number.
- how to find factors and multiples of whole numbers.
- how to identify a number as prime, composite or neither.
- how to use a variety of strategies to multiply whole numbers.
- how to illustrate and explain the method/methods used to solve multiplication and division problems.

Students will be skilled at:

- writing and identifying equations and statements for multiplicative comparisons
- identifying and verbalizing which quantity is being multiplied
- multiplying and dividing
- skip counting
- identifying prime and composite numbers
- finding and identifying patterns when listing factors and multiples
- multiplying whole numbers
- using various strategies to solve problems
- illustrating their reasoning
- solving problems in and out of context

Essential vocabulary:

- Equation, multiplication, factors, products, array, mental computation, multiples, factor pairs, prime, composite, division, partial products, area model, base ten blocks, place value, remainder, skip counting

IT Standards:
 4.SI. 1 Apply criteria to determine appropriate information
 resources for specific topics and purposes.

4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.

IT Strategies:
Students will use the Internet and other resources (Almanac) to research 3 facts that go with the number they are assigned for the summative project.

[^1]Students will use the Internet and other resources to find how the number they are assigned used in real world situations.

Students will choose how they display the number "family tree" for the summative project.

Understandings:

Verbal statements of multiplicative comparisons can be written as multiplication equations.

A whole number is a multiple of each of its factors.

There is a process of finding factor pairs.

There is a difference between multiples and factors although they are related.

Multiples can be related to skip counting.

What makes a number prime, composite or neither?

There are a variety of strategies/methods to use when multiplying and dividing.

Essential Questions:

How can situations in your life bring about the use of multiplication and division?

Is it important to know a variety of processes to solve multiplication and division?

How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Revised Blooms	
Creating: can the student create new product or point of view?	assemble, construct, create, design, develop, formulate, write.
Evaluating: can the student justify a stand or decision?	appraise, argue, defend, judge, select, support, value, evaluate
Analyzing: can the student distinguish between the different parts?	appraise, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question, test.
Applying: can the student use the information in a new way?	choose, demonstrate, dramatize, employ, illustrate, interpret, operate, schedule, sketch, solve, use, write.
Understanding: can the student explain ideas or concepts?	classify, describe, discuss, explain, identify, locate, recognize, report, select, translate, paraphrase
Remembering: can the student recall or remember the information?	define, duplicate, list, memorize, recall, repeat, reproduce state

Formative Assessments (Evidences)

Oral Assessments
Quizzes (teacher made \& textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from envisions/Investigations \& other sources)
Teacher Observation Anecdotal Notes

Summative Assessment

Individual/Group Project:
"Choose a Number Project"

1) Teacher chooses numbers for students to draw from a container. (Numbers to Choose From-10,
12, 13, 14, 15, 16, 17, 18, 21, 24, $25,27,29,33,36,38,39,40,42$, 45)
2) Students select a number from the container to represent and present in a "Family Tree" (to show the relationships of the number) using a format of their choice (flipchart, PowerPoint, poster, brochure, etc.)
3) Family Tree must include:

- Factor pairs to make the number. Arrays must be shown.
- Is the number odd or even?; prime or composite?; is the number a multiple of $1,2,3,4,5,6,7,8$ or 9 ?
- A pattern in which your number is the fifth term in a sequence of ten numbers
- Four different word problems in which your number is the sum, difference, product, and quotient.
- The written word (and/or symbol) in 3 foreign languages
- 2 facts involving your number (a cheetah can run for short distances at 70 miles per hour).
- 3 photographs, drawings
$\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { or newspaper/magazine } \\ \text { clippings showing where } \\ \text { you have recently seen } \\ \text { your number used in the } \\ \text { real world } \\ \text { A drawing or design that } \\ \text { you create that represents } \\ \text { the number in a unique } \\ \text { way }\end{array} \\ \text { Additional assessment as needed }\end{array}\right\}$

W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
R - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self Evaluate and reflect on learning?
T-How will we Tailor learning to varied needs, interests, styles?
O - How will we Organize and sequence the learning?

Resources:

Investigations Units:

Unit 1 Factors, Multiples, and Arrays
Sessions 1.1-1.6A; Session 2.1-2.5; 3.1-3.4
Unit 3 Multiple Towers and Division Stories
Sessions 1.1-1.5; 2.1-2.6; 3.1-3.4; 4.1-4.5
Unit 8 How Many Packages? How Many Groups?
Sessions 1.1-1.5; 2.1-2.5; 3.1-3.6
enVision Lessons to supplement Investigations as needed: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 4-1, 4-2, 4-3, 4-4, 4-5,5-1, 5-2, 5-3, $5-4,5-5,5-6,5-7,5-8,6-1,6-2,6-3,6-4,7-1,7-2,7-3,7-4,7-5,7-$ 7, 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-7, 8-8, 8-9, 8-10, 9-7, 16-12, 18-1, 18-2, 18-3, 18-5

Web Resources:

Factor Trail Game (Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L719
Factor Findings (lesson from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L872
The Product Game (lesson from Illuminations exploring products, factors and multiples and the relationship between them) http://illuminations.nctm.org/LessonDetail.aspx?id=U100

Strategies:

Arrays
Area Models
Fact Families to show relationship between division and multiplication

Flashcards
Timed Tests (fluency)
Skip Counting
Rhymes ' n Times
Wrap Ups
Use manipulatives to show arrays
Build arrays for equations to show the Commutative Property of Multiplication

Use word problems with multiplicative comparisons. Have students to draw a picture or create a model of the problem, write an equation and solve.
Give students a problem solving method to help them figure out how to solve word problems.
"Count Around the Room"-give students a rule such as count by 3's
Chars Around the Table (pattern lesson from lluminations http://illuminations.nctm.org/LessonDetail.aspx?id=L627
Patterns That Grow (number and shape pattern unit from Illuminations
http://illuminations.nctm.org/LessonDetail.aspx?id=U103
http://mathstory.com/mathlessons/arrayrace.htm
(short lesson and game for building arrays, writing equations and solving for a product)
www.k-5mathteachingresources.com
(has a collection of resources for each area taught)
http://www.mathplayground.com/wordproblems.html
(word problems with multiplicative comparison)
http://www.uen.org/3-6interactives/math.shtml\#patterns
(interactive pattern games)
enVision eTools
Promethean Planet flipcharts

Picture books:

The Doorbell Rang by Pat Hutchins (division basics)
Anno's Magic Seeds by Mitsumasa Anno (pattern)
Anno's Mysterious Multiplying Jar by Masaichiro and Mitsumasa
Anno (multiplication)
A Remainder of One by Elinor J. Pinczes
The Great Divide: A Mathematical Marathon by Dayle Ann Dodds
Amanda Bean's Amazing Dream by Cindy Neuschwander
(multiplication)
The Grapes of Math by Greg Tang
If you were a Set by Marcie Aboff
If you were a Divided-By Sign by Trisha Speed Shaskan
If you were a Times Sign by Trisha Speed Shaskan
Minnie's Diner A Multiplying Menu by Dayle Ann Dodds
Divide and Ride by Stuart J. Murphy
One Hundred Hungry Ants by Elinor J. Pinczes
The Best of Times by Greg Tang
Equal Shmequal by Virginia Knoll

Teaching Student-Centered Mathematics by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by
NCCTM

Alexander County Schools 2013-2014

Unit: Unit 4: Size, Shape \& Symmetry \& Part of Unit 7: Moving Between Solids \& Silhouettes Approximately 6 weeks

Common Core and/or Essential Standards:

4.MD. 1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in. Generate a conversion table forfeet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
4.MD. 3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.
4.MD. 5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement.
4.MD.5a An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "onedegree angle," and can be used to measure angles.

Transfer: Students will be able to independently use their learning

 to ...- apply knowledge of measurement in everyday life skills and real world problem solving
- describe, analyze, compare and classify two-dimensional shapes to deepen their understanding of the properties of two dimensional objects and use them to solve problems involving symmetry in real world situations

Possible "I Can" Statements:

I can develop and use benchmarks to help with measurement.
I can express measurements in larger and smaller terms and record equivalents in a table.

I can use the four operations to solve single-step and multi-step word problems and represent measurement in diagrams.

I can apply the area and perimeter formulas for rectangles in the real world.

I can draw and identify points, lines, line segments, rays, angles and parallel and perpendicular lines.

I can classify figures based on parallel and perpendicular lines and angles.

I can recognize and draw lines of symmetry.
I can recognize angles as shapes formed where two rays share an
4.MD.5b An angle that turns through n one-degree angles is said to have an angle measure of n degrees.
4.MD. 6 Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.
4.MD. 7 Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.
4.G. 1 Draw points, lines, line segments, rays, angles, (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures.
4.G.2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles
4.G. 3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
endpoint and understand the concepts of angle measurement.
I can use a protractor to measure and sketch angles.
I can solve addition and subtraction problems to find unknown angles.

Meaning

Essential Question(s):

- How do measurements solve real world problems?
- When do you use area and perimeter in your everyday life?
- How do points, lines, line segments, rays, angles, and perpendicular/parallel lines fit into the world around me?
- Why would you need to classify shapes?
- Where do you see symmetry in your environment?
- measured in many ways
- When would you use an angle measurement in real life?
smaller unit
- Why are precise measurements important?
- number line diagrams that feature a measurement scale can
- When would decomposing angles be used in the real world? the side of a container, timetable showing hours, line plot, etc.)
- a formula can be used to calculate area and perimeter
- points and lines, line segments, angles, perpendicular, and parallel lines can come together and make 2-D figures
- 2-D figures can be classified using different characteristics such as parallel and perpendicular lines or angle measurement
- 2 lines are parallel if they never intersect and are equidistant
- 2 lines are perpendicular if they intersect in right angles (90 degrees)
- objects can be sorted based on parallelism, perpendicularity and angle types
- there are different types of right triangles
- regular and non-regular polygons can be symmetrical and nonsymmetrical
- angles are connected to circular measurement (360 degrees)
- an angle is a series of "one-degree turns"
- unknown angle measures can be found by decomposing an angle into smaller parts

Students will know:

Acquisition

- units of measurement and their relative size within one system of units (km, m, cm; kg, g; lb, oz; l, ml; hr, min, sec)
- the relationships between units of measure
- how to use the four operations to solve word problems involving various forms of measurement
- the formulas for area and perimeter and why they work
- the different ways to classify 2 -dimensional figures
- how to recognize lines of symmetry
- angle measurement is additive
- how to identify parallel and perpendicular lines
- real world problems can be solved with angles
- how to use benchmark angle measurements to determine an estimated angle measure to classify an angle (90 degrees, 180 degrees, 45 degrees, etc)
- how to use a diagram to write an equation using a symbol to form an addition or subtraction problem to find an unknown angle measurement.

Students will be skilled at:

- measuring objects accurately
- recording measurement equivalents in a two-column table
- converting units of measure within the same system
- solving multi-step word problems involving measurement with distances, intervals of time, liquid volumes, masses of objects, money, simple fractions and/or decimals
- calculating area and perimeter of rectangles using the correct formula
- communicating their understanding of why the formulas work
- measuring objects to an eighth, fourth and half of an inch
- making a line plot
- interpreting line plot data
- drawing and identifying points, lines, line segments, rays, angles, perpendicular, and parallel lines.
- identifying points, lines, line segments, rays, angles, perpendicular, and parallel lines in 2-dimensional figures.
- classifying 2-D figures
- recognizing right angles
- sorting objects based on criteria
- drawing lines of symmetry
- recognizing lines of symmetry
- measuring angles with a protractor
- sketching a specific measured angle
- adding and subtracting angle measurements

Essential Vocabulary:

measurement units (metric and customary), measurement categories (mass, length, capacity etc), unit conversions, operations (addition, subtraction, multiplication, division, number line, diagram, money, fraction, decimal, area, perimeter, formula, square unit, linear unit, measure, metric, customary, relative size, liquid volume, distance, kilometer (km), meter (m), centimeter (cm), kilogram (kg), gram (g), liter (L), milliliter (mL), inch (in), foot (ft), yard (yd), mile (mi), ounce (oz), pound (lb), cup (c), pint (pt), quart (qt), gallon (gal), time, hour, minute, second, equivalent, length, polygon (regular an non-regular), rhombus, rectangle, square, triangle (right, isosceles, equilateral, scalene), quadrilateral, pentagon, hexagon, trapezoid, point, line, line segment, ray, angle, perpendicular line, parallel line, two-dimensional figure, acute angle, obtuse angle, right angle, symmetry, end point, angle measurement, reference to a circle, degrees, degrees of a circle, protractor, decompose, part/whole, classify shapes/ figures, vertex/vertices, line of symmetry, symmetric figures, attributes or features

IT Standards:
 .SI. 1 Apply criteria to determine appropriate information resources for specific topics and purposes.

4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.SI.1.2 Use reliable sources of information.

4.IN. 1 Apply appropriate strategies when reading for enjoyment and for information.

4.IN.1.1 Implement appropriate reading strategies when reading for information.

4.TT. 1 Use technology tools and skills to reinforce classroom

 concepts and activities.4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.).
4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual recording, online collaboration tools, etc.).
4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.).

4.RP. 1 Apply a research process as part of collaborative research.

4.RP.1.1 Implement a research process by collaborating effectively with other students.
4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
4.SE.1.1 Understand the guidelines for responsible use of technology hardware.

IT Strategies:

Students will research information on North Carolina to use in the brochure created as part of the summative assessment.

Students will choose a program to complete the brochure for summative assessment; for example: Storybook Weaver; PowerPoint; Word; Publisher.

Students will use different technology tools to help with their summative assessment project.
4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing, netiquette) when using resources.
4.SE.1.3 Understand internet safety precautions (personal information, passwords, etc.).

Unit Title: Unit 4: Size, Shape \& Symmetry \& Part of Unit 7: Moving Between Solids \& Silhouettes Grade: $4^{\text {th }}$ Subject: Math

STAGE 2

Understandings: Larger units can be subdivided into equivalent units (partition).	Revised Blooms		Formative Assessments (Evidences) Oral Assessments Quizzes (teacher made \& textbook) Skill Worksheets Flip Charts Active Votes Active Expressions Exit Cards Math Stations (from enVisions \& other sources) Teacher Observation Anecdotal Notes	Summative Assessment Students are to design an apartment (the futures channel) or a zoo with specifications. (For Area and Perimeter)
	Creating:	assemble, construct,		
The same unit can be repeated to determine the measure (iteration).	Can the student	create, design, develop,		
	create new product or point of view?	formulate \& write.		Students will design a brochure about objects in North Carolina.
There is a relationship between the size of a unit and the number of units needed (compensatory principle).				(one side of brochure in metric and one side in customary)
	Evaluating: Can the student justify a stand	appraise, argue, defend, judge, select, support, value \& evaluate		1) height of tallest lighthouse in North Carolina 2) weight or mass of sweet
Everyday objects have a variety of attributes and can be measured in many ways.				potatoes grown in a year in North Carolina
	Analyzin Can the studen	appraise, compare contrast, criticize,	Measure objects accurately in customary and metric	3) daily average capacity of milk produced by the dairy cow in North
You can express measurements from a larger unit in terms of a smaller unit.	distinguish between the different parts?	differentiate, discriminate, distinguish, examine, experiment, question \& tes.	Use right tools to measure objects	Carolina 4) car travel time from Murphy, NC to Manteo, NC at 60 mph
			Convert units of measure within	5) Find the value of the name "North
Number line diagrams that feature a measurement scale can represent measurement quantities (ex. ruler, volume measure on the side of a container, timetable showing hours, line plot, etc.).	Applying:	choose, demonst	the same system	Carolina" if the value of a consonant is $\$ 0.73$ and a vowel is $\$ 0.54$.
	Can the student use the information in a new way?	dramatize, employ, operate, schedule, sketch, solve,	Calculate area and perimeter using formulas and be able to explain why the formula works	Display this amount 3 different ways. Additional assessment as needed
		use \& write.		(Unit Test; enVision Exam View Test
A formula can be used to calculate area and perimeter.	Understanding: Can the student	classify, describe, discuss, explain,	Solve multi-step word problems related to measurement	Generator, ClassScape, etc.) Student Created Scavenger Hunt
Points and lines, line segments, angles, perpendicular, and parallel	explain ideas or concepts?	identify, locate, recognize, report, select, translate \& paraphrase	Produce a 2-column table to show conversions from larger to smaller units and to show equivalent	(small group) 1) Students will be placed in small groups.

lines can come together and make 2-D figures.

2-D figures can be classified using different characteristics such as parallel and perpendicular lines or angle measurement.

2 lines are parallel if they never intersect and are equidistant.

2 lines are perpendicular if they intersect in right angles (90 degrees).

Objects can be sorted based on parallelism, perpendicularity and angle types.

There are different types of right triangles: right, scalene, equilateral and isosceles.

Regular and non-regular polygons can be symmetrical and nonsymmetrical.

Angles are connected to circular measurement (360 degrees).

An angle is a series of "one-degree turns".

Unknown angle measures can be found by decomposing an angle into smaller parts.

Essential Questions:

How do measurements solve real world problems?

When do you use area and perimeter in your everyday life?

How do points, lines, line segments, rays, angles, and
define, duplicate, list, memorize, recall, repeat, reproduce \& state

Remembering:
Can the student
recall or remember the information?
measurements
2) They will choose a symbol to mark their objects. (example: star, circle, etc.)
3) Students will find the following in and around school:
(Choose 10 out of 20)

- Parallel
- Perpendicular
- Line Segment
- Point
- Right Angle
- Acute Angle
- Obtuse Angle
- Right Triangle
- Intersecting Lines
- Line of Symmetry
- Congruent Figures
- Similar Figures
- Rhombus
- Trapezoid
- Square
- Rectangle
- Pentagon
- Hexagon
- Octagon
- Parallelogram

4) Students will write a clue to find their first object. At the object they will place their symbol to mark the object. They will place their next clue for their next object. Clues must include how to find the object and a description of the geometry term they are finding. 5) After students mark their hunt, another group will complete the scavenger hunt.
*Teacher will decide how students will record what they found (for example-flip camera; draw what they found next to the clue, etc.).

Additional assessment as needed (Unit Test; enVision Exam View Test

Generator, ClassScape, etc.)

```
perpendicular/parallel lines fit into
```

the world around me?

Why would you need to classify shapes?

Where do you see symmetry in your environment?

When would you use an angle measurement in real life?

Why are precise measurements important?

When would decomposing angles be used in the real world

Stage 3

Approximate number of days spent on unit: Approximately 6 weeks

W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self -Evaluate and reflect on learning?
T - How will we Tailor learning to vary needs, interests, and styles?
\mathbf{O} - How will we Organize and sequence the learning?

Resources:

Investigations Unit:
Unit 4 (Size, Shape, and Symmetry)
Investigation 1: Linear Measurement Session 1.1-1.5

Optional LogoPaths Software is included in the Investigations materials.

After session 1.5, you may need to add in hands-on measurement activities for linear measurement. "Step by Step: A Look at Linear Measurement" (found online) is a possible resource to use. You will need to discuss metric and customary units. You will need to add in

Strategies:

Measurement Strategies:

Gallon Man-poster that can be purchased and students can make to help with gallons, pints, quarts and cups
"Pound Cake"-poster that can be purchased to help with ounces and pounds
linear measurement conversion tables, conversions from larger to smaller and word problems. Introduction of Mass benchmarks is needed. "On the Mark: Mass Benchmarks" (found online) is a possible resource to use. Hands-on measuring activities with mass are also needed.

Unit 7 (Moving Between Solids and Silhouettes)
Investigation 3: Understanding Volume (only) Session 3.5A (in Common Core Supplement Book) (Activity 1 only)
After session 3.5 a activity 1 , introduce capacity benchmarks and hands-on capacity measurement activities. "On the Mark: Capacity Benchmarks" (found online) is a possible resource to use. Then do Unit 7 Session 3.5 activity 2 only.

Unit 4 Size, Shape, and Symmetry
Investigation 2: Polygons of Many Types Sessions 2.1-2.5
Additional Activities from Navigating Through Geometry (Roping in Quadrilaterals);
Triangle Types-Brainpop Video
Investigation 3: Measuring Angles Sessions 3.1-3.4a
Additional Activities for Understanding the concept of angle measurement and protractors: from Hardhatting in a Geo-World- "From Wedges to Wangles" \& "Waxed Wangles"

Investigation 4: Finding Area Sessions 4.1, 4.2 \& 4.5 only (Look at Randolph County pacing. Investigations uses "crazy cakes" to teach area. Common core calls for area of rectangles. Supplemental resources will need to be used.) Some resources: Area \& Perimeter with Cheez-its; Area \& Perimeter Task cards from Teachers Pay Teachers; Mrs. Burke's Area \& Perimeter Rap on YouTube; Area Tiles Activities from AIMS) Symmetry Activities from Navigating Through Geometry \& Finding Lines of Symmetry from NCCTM Illuminations

Ideas with Food (2 lessons from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?|D=U78
Oil Oil Everywhere (Lesson on Area from Illuminations
http://illuminations.nctm.org/LessonDetail.aspx?id=L862
Four Square Galore (lesson on Area from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L860
How Long? How Tall? How Wide? How Deep? (lesson for measurement; goes along with the book How Big is a Foot?)
http://illuminations.nctm.org/LessonDetail.aspx?id=L635
Junior Architects (designing a club house has some geometry concepts from Illuminations) http://illuminations.nctm.org/LessonDetail.aspx?id=U172
http://www.uen.org/3-6interactives/math.shtml\#fractions
(interactive measurement activities)
http://nrich.maths.org/6923
"Yard Plant"-poster that can be purchased to help with yards and feet

Containers for Measuring
Scales and Weights
Use diagrams to help solve word problems.
Have students measure the length of the room with one-inch tiles, one foot rulers and with yardsticks. Do the same activity with centimeters and meters.

Area Tiles
"Mrs. Burke's Area and Perimeter Rap" on YouTube

Geometry Strategies:

Pretzel sticks
Toothpicks and Marshmallows
Licorice
Pattern Blocks
Geo Boards
Clocks
Body Symbols for line, point and ray
Build geometric shapes with toothpicks and marshmallows

Build geometric shapes with straws and pipe cleaners
"Spaghetti Drop"-give students dry spaghetti.
Have them drop on floor and find all the geometric terms they can.

Examine and label the components of a circle

```
(Growing Rectangles-area)
http://nrich.maths.org/2663
(Fence It-perimeter)
http://www.jmathpage.com/JIMSMeasurementpage.html
(various measurement activities)
www.k-5mathteachingresources.com
(has a collection of resources for each area taught)
http://www.geogebra.org/cms/
(free mathematics software)
http://www.uen.org/Lessonplan/preview.cgi?LPid=11235
(lesson to identify and describe attributes of two-dimensional geometric shapes)
www.k-5mathteachingresources.com
(word problems with multiplicative comparison)
http://illuminations.nctm.org/LessonDetail.aspx?ID=L270
(polygon capture game)
http://nrich.maths.org/1840
(lines of symmetry)
http://www.innovationslearning.co.uk/subjects/maths/activities/year3/symmetry/shape game.asp
(symmetry)
http://www.ixl.com/math/grade-4
(measuring angles)
http://www.mathsisfun.com/angles.html
(information about angles)
http://www.mathopenref.com/
(reference tool)
enVision eTools
Promethean Planet flipcharts
```


Picture books:

```
How Big is a Foot? By Rolf Myller
Jim and the Beanstalk by Raymond Briggs
About Time: A First Look at Time and Clocks by Bruce Koscielniak
Racing Around by Stuart J. Murphy (perimeter)
Bigger, Better, Best! by Stuart J. Murphy (area)
Area (My Path to Math) Math concepts Made Easy
Spaghetti and Meatballs for All! A Mathematical Story by Marilyn Burns (area and perimeter) Game Time! by Stuart J. Murphy (time)
If you were a Quart or a Liter by Marcie Aboff
Inchworm and a Half by Elinor J. Pinczes
```

Recognize angles formed when rays are drawn for the center of the circle Measure angles with a variety of degrees

Using protractors, students draw an angle with missing measure and trade drawing. Partner finds the missing angle measure.

Polly's Pen by Stuart J. Murphy (metric)
Measuring Penny by Loreen Leedy
Millions to Measure by David M. Schwartz
Sir Cumference and the Isle of Immeter by Cindy Neuschwander
Grandfather Tang's Story by Ann Tompert
The Greedy Triangle by Marilyn Burns
Line, Segments, Rays, and Angles (My Path to Math) Math Concepts Made Simple
Polygons (My Path to Math) Math Concepts Made Simple
Hamster Champs by Stuart J. Murphy (angles)
If you were a Triangle by Marcie Aboff
If you were a Quadrilateral by Molly Blaisdell
If you were a Polygon by Marcie Aboff
Sir Cumference and the Great Knight of Angleland by Cindy Neuschwander
Sir Cumference and the First Round Table by Cindy Neuschwander
enVision Lessons: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
$16-1,16-2,16-3,16-4,16-5,16-6,16-7,16-8,16-9,16-12,11-4,12-6,13-7,14-1,14-2,14-6$ enVision Lessons: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
9-1, 9-2, 9-3, 9-4, 9-5, 9-6, 9-7, 19-4, 19-5
enVision eTools
Promethean Planet flipcharts
Teaching Student-Centered Mathematics by John Van de Walle
Navigating Through Measurement in Grades 3-5 by NCCTM

Alexander County Schools 2012-2013

Unit: Decimals (second unit in $3^{\text {rd }}$ Quarter after decimals) $4^{\text {th }}$ Grade	Q1 $\quad \square$ Q2 \quad Q3 \square Q4
Common Core and/or Essential Standards: 4.NF. 5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100 . 4.NF. 6 Use decimal notation for fractions with denominators 10 or 100. 4.NF. 7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record results of comparisons with symbols <,>,= and justify the conclusions, e.g. by using a visual model.	Transfer: Students will be able to independently use their learning to... - use decimals in real world situations and apply their learning to real world word problems Possible "I Can" Statements I can express a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100 ! I can use decimal notation for fractions with denominators of 10 or 100 ! I can compare two decimals to the hundredths place!
Meaning	
Understandings: Students will understand that . . . - you can change fractions with a 10 in the denominator into equivalent fractions that have a 100 in the denominator - you can use base ten blocks, place value models and circle models to explore the relationship between fractions and decimals with denominators of 10 and 100 - there are connections between fractions with denominator of 10 and 100 and the place value chart - decimals can be represented on a number line - decimals can be compared with area and other models - when you compare decimals you need to justify your conclusions (with models) when comparing, you use the same whole	Essential Question(s): - Why is it necessary to manipulate denominators of fractions? - Why would you need to change fractions to decimals? - Why is it important to produce models?
Acquisition	
Students will know: - a fraction can be written as a decimal and vice versa - how to manipulate fractions with 10 \& 100 as denominators - how to manipulate fractions with $10 \& 100$ as denominators to	Students will be skilled at: - using a decimal grid to shade decimals - finding equivalent fractions and decimals with denominators of 10 and 100

decimals (both represent parts of a whole)

- how to compare decimals to hundredths, using appropriate symbols and justify the results
- that a number can be represented as both a fraction and a decimal
comparisons are only valid when they refer to the same whole
- reading fraction names with denominators of 10 and 100 and rewriting them as a decimal on place value models
- using strategies to compare decimals
- drawing decimal models
- writing a decimal as a fraction

Essential Vocabulary:

fraction, numerator, denominator, equivalent, reasoning, decimal, tenths, hundredths, multiplication, visual models (area models, decimal grids, number lines, circle models and meter sticks), same wholes, comparisons/compare, <, >, =

IT Standards:

4.TT. 1 Use technology tools and skills to reinforce classroom

 concepts and activities.4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.)
4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual recording, online collaboration tools, etc.).
4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.).

4.SE. 1 Understand issues related to the safe, ethical, and

 responsible use of information and technology resources.4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing, netiquette) when using resources.

IT Strategies:

(Students will choose program to complete the activity in and choose a way to display their data (brochure, poster, etc.) for summative assessment (Storybook Weaver; PowerPoint; Word; Publisher, etc.)

Subject:

STAGE 2

Approximate number of days spent on unit: Approximately 2 weeks
W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self -Evaluate and reflect on learning?
T - How will we Tailor learning to vary needs, interests, and styles?
\mathbf{O} - How will we Organize and sequence the learning?

Resources:

Investigations Unit:

Unit 6 Fraction Cards and Decimal Squares
Investigation 3 Working with Decimals Session 3.1-3.7
enVisions Lessons: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
12-1, 12-2, 12-3, 12-4, 12-5
A Meter of Candy (Lesson on Decimals from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L861
www.k-5mathteachingresources.com
(word problems with multiplicative comparison)
http://nlvm.usu.edu/en/nav/frames asid 264 g 2 t 1.html?from=category g 2 t 1.html (interactive manipulatives)

EnVision eTools
Promethean Planet flipcharts

Picture books:

Decimals (My Path to Math) Math Concepts Made Easy
Piece=Part=Portion Fractions=Decimals=Percents by Scott Gifford
Teaching Student-Centered Mathematics in Grades 3-5 by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by NCCTM

Strategies:

10×10 grids
Money
Model tenths using dimes and hundredths with pennies
Use grid paper to line up decimals to compare
Use place value blocks (change the value-flat=1 whole; rod=1 tenth; units=1 hundredth)

Number line
Meter stick

Alexander County Schools 2012-2013

Unit: Fractions (first unit in $3^{\text {rd }}$ Quarter)
 $4^{\text {th }}$ Grade

Common Core and/or Essential Standards:

4.NF. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times$ b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
4.NF. 2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.
4.NF. 3 Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$.

Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=$ $8 / 8+8 / 8+1 / 8$.

Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.

Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

Transfer: Students will be able to independently use their learning

 to ...- use fractions in real world situations
- solve real world word problems involving addition and subtraction of fractions
- use fractions to aid in measurement skills

Possible "I Can" Statements:

I can explain, recognize and generate equivalent fractions.
I can compare fractions.
I can add and subtract fractions and mixed numbers.
I can multiply a fraction by a whole number.
I can multiply a fraction by a whole number.
I can express a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100 .

I can use decimal notation for fractions with denominators of 10 or 100. I can compare two decimals to the hundredths place.
4.NF. 4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.

Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times a) / b$.)

Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

Understandings: Students will understand that . . .

- the size of the whole affects the size of a fraction
- visual fraction models (area models, number lines or a collection/set model) can be used to find equivalent fractions by dividing a shaded region into various parts
- equivalent fractions can be created by multiplying both the numerator and denominator by the same number
- drawing fraction models can help them compare fractions
- addition is the joining or composing of fractions
- subtraction is the separating or decomposing of fractions
- mixed numbers can be decomposed in more than one way (algorithm or models)
- visual fraction models can be used to solve fraction word problems
- a fraction a / b is a multiple of $1 / b$ (for example: $3 / 6=1 / 6+1 / 6+$ $1 / 6=3 \times(1 / 6)$
- adding and subtracting fractions is joining or separating parts that are referring to the same whole
- multiplication is repeated addition, even when applied to fractions equations can be used to represent fraction word problems
- When would it be necessary to use equivalent fractions in the real world?
- How can a strong foundation of fractions determine fair shares?
- How can I use fractions in real life?
- What can drawing a model help to solve a problem?

Acquisition

Students will know:

- how to explain equivalent fractions using fraction models
- comparisons are only valid when the two fractions refer to the "same whole"
- there are different strategies to find equivalent fractions (visual models, multiplication)
- there are multiple strategies to compare fractions (using benchmark fractions, common denominators or numerators)
- a fraction with a numerator of one is called a unit fraction
- how to use visual models to help with decomposing fractions and multiplying a whole number by a fraction
- how to use visual fraction models and equations to represent fraction word problems

Students will be skilled at:

- drawing and explaining visual fraction models
- creating equivalent fractions by multiplying the numerator/denominator by the same number
- finding common numerators and denominators
- drawing fraction models to compare fractions
- justifying conclusions
- recognizing benchmark fractions
- comparing fractions
- compose and decompose fractions of the same whole
- solving addition/subtraction word problems of fractions with like denominators using visual fraction models
- adding and subtracting mixed numbers with like denominators
- creating visual models to multiply a whole number by a fraction
- multiplying fractions by a whole number solving word problems involving fractions

Essential Vocabulary:

"same whole", visual fraction model, fraction, numerator, denominator, equivalent, multiplication, compare/comparison, <, >, =, partition(ed), unit fraction, multiple, reason, benchmark fraction, operations, addition/joining, subtraction/separating, decomposing, mixed number, properties-rules about how number work, equation

IT Standards:

4.SI. 1 Apply criteria to determine appropriate information resources for specific topics and purposes.

4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.SI.1.2 Use reliable sources of information.

4.IN. 1 Apply appropriate strategies when reading for enjoyment and

 for information.4.IN.1.1 Implement appropriate reading strategies when reading for information.

4.TT. 1 Use technology tools and skills to reinforce classroom

 concepts and activities.4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.)
4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual

IT Strategies:

Students will research recipes on the Internet or in books for the summative assessment. They will then display their new recipe using a program (Word, Publisher, etc.)

recording, online collaboration tools, etc.).

4.SE. 1 Understand issues related to the safe, ethical, and
responsible use of information and technology resources.
4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
4.SE.1.3 Understand internet safety precautions (personal
information, passwords, etc.).

Subject:

STAGE 2

Understandings:

The size of the whole affects the size of a fraction.

Visual fraction models (area models, number lines or a collection/set model) can be used to find equivalent fractions by dividing a shaded region into various parts.

Equivalent fractions can be created by multiplying both the numerator and denominator by the same number.

Drawing fraction models can help compare fractions.

Addition is the joining or composing of fractions.

Subtraction is the separating or decomposing of fractions.

Mixed numbers can be decomposed in more than one way (algorithm or models).

Visual fraction models can be used to solve fraction word problems.

A fraction a / b is a multiple of $1 / b$ (for example: $3 / 6=1 / 6+1 / 6+1 / 6=3$ X (1/6).

Adding and subtracting fractions is joining or separating parts that are referring to the same whole.

Multiplication is repeated addition, even when applied to fractions.

Revised Blooms		Formative Assessments
Creating: Can the student create new product or point of view?	assemble, construct, create, design, develop, formulate \& write	Oral Assessments Quizzes (teacher made \& textbook) Skill Worksheets Flip Charts Active Votes Active Expressions Exit Cards Math Stations (from enVisions \& other sources) Teacher Observation Anecdotal Notes
Evaluating: Can the student justify a stand or decision?	appraise, argue, defend, judge, select, support, value \& evaluate	
Analyzing: Can the student distinguish between the different parts?	appraise, compare contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question \& test.	Make visual fraction models to represent fractions Addition of fractions with model and without model
Applying: Can the student use the information in a new way?	choose, demonstrate, dramatize, employ, illustrate, interpret, operate, schedule, sketch, solve, use \& write.	When drawing a diagram to compare fractions, models are the same size
Understanding: Can the student explain ideas or concepts?	classify, describe, discuss, explain, identify, locate, recognize, report, select, translate \& paraphrase	
Remembering: Can the student recall or remember he information?	define, duplicate, list, memorize, recall, repeat, reproduce \& state	

Formative Assessments (Evidences)

Oral Assessments
Quizzes (teacher made \& textbook)
Flip Charts
Active Votes
Active Expressions
Math Stations (from enVisions \& other sources)
Teacher Observation
Anecdotal Notes
Make visual fraction models to

Addition of fractions with model and

When drawing a diagram to compare fractions, models are the same size

Summative Assessment

Adjusting a Recipe Project

1) Students will find a simple recipe in a book or on the Internet with at least four fractions in the ingredient list. They will write the original recipe.
2) Students will rewrite the recipe for twice as many people. They will need to show their work and explain the strategy they used.
3) Students will rewrite the recipe to cut it in half. They will need to show their work and explain the strategy they used.
4) Students will rewrite the recipe to adjust the recipe to feed everyone in the class (including the teacher). Students will need to show their work and explain their strategy.
5) Students will present their 3 recipes in a creative way.

Additional assessment as needed (Unit Test; enVision Exam View Test Generator, ClassScape, etc.)

Equations can be used to represent fraction word problems

Essential Questions:

When would it be necessary to use equivalent fractions in the real world?

How can a strong foundation of fractions determine fair shares?

How can I use fractions in real life?
What can drawing a model help to solve a problem?

Stage 3

Approximate number of days spent on unit: Approximately 7 weeks	
\mathbf{W} - Where are we going? Why? What is expected?	
\mathbf{H} - How will we Hook and Hold students?	
E - How will we Equip students to Explore and Experience?	
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?	
\mathbf{E} - How will student self -Evaluate and reflect on learning?	
T - How will we Tailor learning to vary needs, interests, and styles?	
\mathbf{O} - How will we Organize and sequence the learning?	
Resources:	Strategies:
Investigations Materials that should be used:	Models-fraction bars, Cuisenaire rods
Unit 6: Fraction Cards and Decimal Squares	Grids
Investigation 1: Parts of Rectangles Sessions 1.1-1.8A Investigation 2: Ordering Fractions Sessions 2.1-2.7A Investigation 3A: Multiplying Fractions Sessions 3A.1-3A. 3	Pattern Blocks (Example: If a red trapezoid is one whole, which block shows $1 / 3$?)
enVision Lessons: (Remember these lessons are a starting point and may not cover all the standards in a cluster.) $10-4,10-5,10-6,10-7,10-8,10-9,11-1,11-4$	"Foldable Fraction Models": Students will make their own fraction models
Fun with Fractions (Fraction Unit from Illuminations) http://illuminations.nctm.org/LessonDetail.aspx?id=U152	Using area models students can change a given fraction into an equivalent fraction by drawing addition vertical and or horizontal lines that result in equal parts of the whole.
Fun with Pattern Block Fractions (Unit from Illuminations) http://illuminations.nctm.org/LessonDetail.aspx?id=U113	Fraction tiles and fraction circles
Fraction Unit (from NYC schools) http://schools.nyc.gov/NR/rdonlyres/04CC9ECB-C5AB-47DA-891B-	Use a number line to compare fractions
6D8F6B6EFE88/0/NYCDOEG4MathFarmerFred Final.pdf	
Fraction Unit (DPI Wiki) http://maccss.ncdpi.wikispaces.net/file/view/4thGradeUnit.pdf	*Make sure to emphasize that comparing fractions cannot happen unless the fractions are part of the same whole when making diagrams to help.
http://nlvm.usu.edu/en/nav/grade g 2.html	
(Virtual Manipulatives) www.k-5mathteachingresources.com	Illustrate adding and subtracting fractions and mixed numbers and decomposing using number lines, fraction strips, area models, set models, rulers, etc.
(has a collection of resources for each area taught)	Use number lines, fraction strips, area models, set models, rulers to show multiple addition of unit fractions. Then connect this to

enVision eTools
Promethean Planet flipcharts

Picture books:

Piece=Part=Portion Fractions=Decimals=Percents by Scott Gifford If you were a Fraction by Trisha Speed Shaskan
Apple Fractions by Jerry Pallotta
Polar Bear Math by Ann Whitehead Nagda and Cindy Bickel
Working With Fractions by David Adler
Fraction Fun by David Adler

Teaching Student-Centered Mathematics in Grades 3-5 by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by NCCTM
multiplication of a fraction by a whole number.

Unit 6: Fractions Cards and Decimal Squares
 $3^{\text {rd }} / 4^{\text {th }}$ quarter
 Approximately 9 weeks

Common Core and/or Essential Standards:

4.NF. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times$ b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
4.NF. 2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.
4.NF. 3 Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=$ $8 / 8+8 / 8+1 / 8$.
c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using

Transfer: Students will be able to independently use their learning

to ...

- use fractions in real world situations
- solve real world word problems involving addition and subtraction of fractions
- use fractions to aid in measurement skills
- use decimals in real world situations and apply their learning to real world word problems

Possible "l Can" Statements:

I can explain, recognize and generate equivalent fractions.
I can compare fractions.
I can add and subtract fractions and mixed numbers.
I can multiply a fraction by a whole number.
I can multiply a fraction by a whole number.
I can express a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100.

I can use decimal notation for fractions with denominators of 10 or 100.
I can compare two decimals to the hundredths place.
I can express a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100 !

I can use decimal notation for fractions with denominators of 10 or
4.NF. 4 Apply and extend previous understandings of multiplication to multiply a fractions by a whole number.
a. Understand a fraction a / b as a multiple of $1 / b$.
b. Understand a multiple of a / b as a multiple of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a whole number.
c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem.
4.NF. 5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. Example: express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$
4.NF. 6 Use decimal notation for fractions with denominators 10 or 100. Example: rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram
4.NF. 7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, $=$, or < and justify the conclusions, e.g., by using a visual model.

I can compare two decimals to the hundredths place!

Understandings: Students will understand that ... \quad Essential Question(s):

- the size of the whole affects the size of a fraction
- visual fraction models (area models, number lines or a collection/set model) can be used to find equivalent fractions by dividing a shaded region into various parts
- equivalent fractions can be created by multiplying both the numerator and denominator by the same number
- drawing fraction models can help them compare fractions
- addition is the joining or composing of fractions
- subtraction is the separating or decomposing of fractions
- mixed numbers can be decomposed in more than one way
- When would it be necessary to use equivalent fractions in the real world?
- How can a strong foundation of fractions determine fair shares?
- How can I use fractions in real life?
- What can drawing a model help to solve a problem?
- Why is it necessary to manipulate denominators of fractions?
- Why would you need to change fractions to decimals?
- Why is it important to produce models?

(algorithm or models)

- visual fraction models can be used to solve fraction word problems
- a fraction a / b is a multiple of $1 / b$ (for example: $3 / 6=1 / 6+1 / 6+$ $1 / 6=3 X(1 / 6)$
- adding and subtracting fractions is joining or separating parts that are referring to the same whole
- multiplication is repeated addition, even when applied to fractions
- equations can be used to represent fraction word problems

Acquisition

Students will know:

- how to explain equivalent fractions using fraction models
- comparisons are only valid when the two fractions refer to the "same whole"
- there are different strategies to find equivalent fractions (visual models, multiplication)
- there are multiple strategies to compare fractions (using benchmark fractions, common denominators or numerators)
- a fraction with a numerator of one is called a unit fraction
- how to use visual models to help with decomposing fractions and multiplying a whole number by a fraction
- how to use visual fraction models and equations to represent fraction word problems

Students will be skilled at:

- drawing and explaining visual fraction models
- creating equivalent fractions by multiplying the numerator/denominator by the same number
- finding common numerators and denominators
- drawing fraction models to compare fractions
- justifying conclusions
- recognizing benchmark fractions
- comparing fractions
- compose and decompose fractions of the same whole
- solving addition/subtraction word problems of fractions with like denominators using visual fraction models
- adding and subtracting mixed numbers with like denominators
- creating visual models to multiply a whole number by a fraction
- multiplying fractions by a whole number
- solving word problems involving fractions
- using a decimal grid to shade decimals
- finding equivalent fractions and decimals with denominators of 10 and 100
- reading fraction names with denominators of 10 and 100 and rewriting them as a decimal on place value models
- using strategies to compare decimals
- drawing decimal models
- writing a decimal as a fraction

Essential Vocabulary: "whole", visual fraction model, fraction, numerator, denominator, equivalent, multiplication, compare/comparison, <, >, =, partition(ed), unit fraction, multiple, reason, benchmark fraction, operations, addition/joining, subtraction/separating, decomposing, mixed number, improper fraction, properties (rules about how numbers work), equation, decimal, tenths, hundredths, visual decimal model (area models, decimal grids, number lines, circle models and meter sticks)

IT Standards:

4.SI. 1 Apply criteria to determine appropriate information resources for specific topics and purposes.
4.SI.1.1 Use various types of resources to gather information
(including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.SI.1.2 Use reliable sources of information.
4.IN. 1 Apply appropriate strategies when reading for enjoyment and for information.
4.IN.1.1 Implement appropriate reading strategies when reading for information.

4.TT. 1 Use technology tools and skills to reinforce classroom

 concepts and activities.4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.).
4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual recording, online collaboration tools, etc.).
4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
4.SE.1.3 Understand internet safety precautions (personal information, passwords, etc.).

IT Strategies:

Students will research recipes on the Internet or in books for the summative assessment. They will then display their new recipe using a program (Word, Publisher, etc.).

Students will choose program to complete the activity in and choose a way to display their data (brochure, poster, etc.) for summative assessment (Storybook Weaver; PowerPoint; Word; Publisher, etc.)

Unit Title: Fractions Cards and Decimal Squares

Grade: 4

Subject: Math

STAGE 2

Understandings:

The size of the whole affects the size of a fraction.

Visual fraction models (area models, number lines or a collection/set model) can be used to find equivalent fractions by dividing a shaded region into various parts.

Equivalent fractions can be created by multiplying both the numerator and denominator by the same number.

Drawing fraction models can help compare fractions.

Addition is the joining or composing of fractions.

Subtraction is the separating or decomposing of fractions.

Mixed numbers can be decomposed in more than one way (algorithm or models).

Visual fraction models can be used to solve fraction word problems.

A fraction a / b is a multiple of $1 / b$ (for example: $3 / 6=1 / 6+1 / 6+1 / 6$ $=3 \times(1 / 6)$.

Adding and subtracting fractions is joining or separating parts that are referring to the same whole.

Revised Blooms	
Creating: Can the student create new product or point of view?	assemble, construct, create, design, develop, formulate \& write.
Evaluating: Can the student justify a stand or decision?	appraise, argue, defend judge, select, support, value \& evaluate
Analyzing: Can the student distinguish between the different parts?	appraise, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question \& test.
Applying: Can the student use the information in a new way?	choose, demonstrate, dramatize, employ, illustrate, interpret, operate, schedule, sketch, solve, use \& write.
Understanding: Can the student explain ideas or concepts?	classify, describe, discuss, explain, identify, locate, recognize, report, select, translate \& paraphrase
Remembering: Can the student recall or remember the information?	define, duplicate, list, memorize, recall, repeat, reproduce \& state

Formative Assessments (Evidences)

Oral Assessments

Quizzes (teacher made \& textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from enVisions \& other sources, such as Teachers Pay Teachers and/or Pinterest)
Teacher Observation
Anecdotal Notes
Make visual fraction models to represent fractions

Addition of fractions with model and without model

When drawing a diagram to compare fractions, models are the same size

Summative Assessment Adjusting a Recipe Project

1) Students will find a simple recipe in a book or on the Internet with at least four fractions in the ingredient list. They will write the original recipe.
2) Students will rewrite the recipe for twice as many people. They will need to show their work and explain the strategy they used.
3) Students will rewrite the recipe to cut it in half. They will need to show their work and explain the strategy they used.
4) Students will rewrite the recipe to adjust the recipe to feed everyone in the class (including the teacher). Students will need to show their work and explain their strategy.
5) Students will present their 3 recipes in a creative way.

Relay Activity

1) Students will calculate the decimal time (using stopwatch or timer) it takes to complete a teacher selected task-under a minute. (example-running relay, saying the abc's, blowing a bubble, etc.)
2) Students will take their time they completed the activity in and choose a way to display their data (brochure, poster, etc.) including all of the following ways:

- Fraction

- Base ten blocks
- On a number line
even when applied to fractions.
Equations can be used to represent fraction word problems.
You can change fractions with a 10 in the denominator into equivalent fractions that have a 100 in the denominator.

You can use base ten blocks, place value models and circle models to explore the relationship between fractions and decimals with denominators of 10 and 100.

There are connections between fractions with denominator of 10 and 100 and the place value chart.

Decimals can be represented on a number line.

Decimals can be compared with area and other models.

When you compare decimals you need to justify your conclusions (with models).

When comparing, you use the same whole.

Essential Questions:

When would it be necessary to use equivalent fractions in the real world?

How can a strong foundation of fractions determine fair shares?

How can I use fractions in real life?
What can drawing a model help to solve a problem?

- 10×10 grid
- Circle model
- Compare their data with another student
- Order their data with a group of students

3) Select another task (over a minute) and repeat the above.

Additional assessment as needed (Unit Test; enVision Exam View Test Generator, etc.)

Why is it necessary to manipulate denominators of fractions?

Why would you need to change
fractions to decimals?
Why is it important to produce
models?

Stage 3

```
Approximate number of days spent on unit: 45 days
W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\(\mathbf{R}\) - How will we help students Rethink, Rehearse, Revise, and Refine?
\(\mathbf{E}\) - How will student self -Evaluate and reflect on learning?
T - How will we Tailor learning to vary needs, interests, and styles?
\(\mathbf{O}\) - How will we Organize and sequence the learning?
```


Resources:

Investigations Materials that should be used:

Unit 6: Fraction Cards and Decimal Squares
Investigation 1: Parts of Rectangles Sessions 1.1-1.8A
Investigation 2: Ordering Fractions Sessions 2.1-2.7A
Investigation 3A: Multiplying Fractions Sessions 3A.1-3A. 3
Investigation 3B: Working with Decimals Sessions 3.1-3.7
enVision Lessons: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
$10-4,10-5,10-6,10-7,10-8,11-1,12-1,12-2,12-3,12-4,12-5$
Fun with Fractions (Fraction Unit from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=U152
Fun with Pattern Block Fractions (Unit from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=U113
Fraction Unit (from NYC schools) http://schools.nyc.gov/NR/rdonlyres/04CC9ECB-
C5AB-47DA-891B-6D8F6B6EFE88/0/NYCDOEG4MathFarmerFred Final.pdf
Fraction Unit (DPI Wiki) http://maccss.ncdpi.wikispaces.net/file/view/4thGradeUnit.pdf http://nlvm.usu.edu/en/nav/grade g 2.html
(Virtual Manipulatives)
www.k-5mathteachingresources.com
(Number and Operations-Fractions)
http://nlvm.usu.edu/en/nav/frames asid 264 g 2 t 1.html?from=category g 2 t 1.html (interactive manipulatives)A Meter of Candy (Lesson on Decimals from Illuminations) http://illuminations.nctm.org/LessonDetail.aspx?id=L861
enVision eTools
Promethean Planet flipcharts

Strategies:

Models-fraction bars, Cuisenaire rods Grids

Pattern Blocks (Example: If a red trapezoid is one whole, which block shows $1 / 3$?)
"Foldable Fraction Models": Students will make their own fraction models

Using area models students can change a given fraction into an equivalent fraction by drawing addition vertical and or horizontal lines that result in equal parts of the whole.

Fraction tiles and fraction circles
Use a number line to compare fractions
*Make sure to emphasize that comparing fractions cannot happen unless the fractions are part of the same whole when making diagrams to help.

Illustrate adding and subtracting fractions and mixed numbers and decomposing using number lines,
fraction strips, area models, set models, rulers, etc.

Picture books:

Piece=Part=Portion Fractions=Decimals=Percents by Scott Gifford
If you were a Fraction by Trisha Speed Shaskan
Apple Fractions by Jerry Pallotta
Polar Bear Math by Ann Whitehead Nagda and Cindy Bickel
Working With Fractions by David Adler
Fraction Fun by David Adler
Teaching Student-Centered Mathematics in Grades 3-5 by John Van de Walle Navigating Through Number and Operations in Grades $3-5$ by NCCTM
models, rulers to show multiple addition of unit fractions Then connect this to multiplication of a fraction by a whole number.

10x10 grids
Money
Model tenths using dimes and hundredths with pennies
Use grid paper to line up decimals to compare
Use place value blocks (change the value-flat=1 whole; rod=1 tenth; units=1 hundredth)

Number line
Meter stick

Alexander County Schools 2013-2014

Unit 5: Landmarks and Large Numbers $2^{\text {nd }} / 3^{\text {rd }}$ Quarter
 Approximately 6 weeks

Common Core and/or Essential Standards:

4.NBT. 1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.
4.NBT. 2 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons.
4.NBT. 3 Use place value understanding to round multi-digit whole numbers to any place.
4.NBT.4 Fluently add and subtract multi-digit whole numbers using the standard algorithm.
4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

Transfer: Students will be able to independently use their learning

 to ...- understand the value of numbers in real world situations
- use mental math to solve addition and subtraction problems quickly in real world situations

Possible "I Can" Statements:

I can read, write, and sequence numbers to 1,000 and 10,000
I can add and subtract multiples of 10, 100, and 1,000
I can use multiples of 10 and 100 to find the difference between any 3digit number and 1,000

I can explain the value of each digit in a multi-digit number as ten times the digit to the right.

I can read and write a multi-digit number in standard, expanded and written form.

I can use story contexts and representations to support explanations about equivalent additions expressions and about related subtraction expressions

I can understand the structure of 10,000 and its equivalence to one thousand 10s, one hundred 100s and ten 1,000s

I can explain how to use place value in order to round a multi-digit number.

I can understand the action of subtraction problems.

Meaning	
Understandings: Students will understand that . . . - place value is related to multiplying and dividing by multiples of 10. - multi-digit whole numbers can be written in different forms: traditional, expanded and written form. - rounding is deeper than using an algorithm. Number sense plays an important role in rounding numbers. - there are multiple strategies that help make sense of the standard addition and subtraction algorithm. - develop computational fluency (addition and subtraction) which means accuracy, efficiency and flexibility. - it is mathematically possible to subtract a larger number from a smaller number, but this would result in a negative number. - making connections to various strategies for addition and subtraction in order to develop fluency with the standard algorithms	Essential Question(s): - Why is it possible to represent a multi-digit whole number in more than one way? - When comparing multi-digit whole numbers, how does place value affect the results? - What pattern exists between the digits in a multi-digit whole number? - Why would you round numbers in real life? - What strategies does someone need to efficiently and effectively solve addition and subtraction problems? - What is the structure of place value and the base ten system through 1,000,000?
Acquisition	
Students will know: - place value (ones, tens, hundreds, thousands, ten thousands, hundred thousands, millions) - comparison symbols and how to use comparison symbols to write an equation - the procedure/algorithm for rounding - how estimation can help with rounding - basic addition and subtraction facts - the standard algorithm for addition and subtraction there are negative numbers to the left of the zero on the number line	Students will be skilled at: - reading and writing number forms-traditional expanded, standard, word form \& ($285=28$ tens plus 5 ones or 1 hundred, 18 tens, and 5 ones, etc...) - recognizing place versus value - skip counting \& multiples - comparing place value - comparing multi-digit whole numbers - recording results of comparisons - locating place in a number for rounding - using a number line and hundreds chart to help with rounding explaining and reason the rounding process

Essential Vocabulary:

place value, multi-digit whole number, number forms (traditional expanded form, written form, standard form), round, <, >, =, less than, greater than, equal to, comparisons, compare, negative number, millions, ten thousands, thousands, hundred, sum, round, value, addition, subtraction, difference

IT Standards:

- 4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities.

IT Strategies:

Students will choose program to complete the newspaper for summative

- 4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.).
- 4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual recording, online collaboration tools, etc.).
- 4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.).
- 4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
- 4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
- 4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing, netiquette) when using resources.
assessment; for example: Storybook Weaver; PowerPoint; Word; Publisher

STAGE 2

| Why would you round numbers in | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| real life? | | |
| What makes a computation strategy | | |
| effective and efficient? | | |
| What strategies does someone | | |
| need to efficiently and effectively | | |
| solve addition and subtraction | | |
| problems? | | |

Stage 3

Approximate number of days spent on unit: approximately 6 weeks

W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self -Evaluate and reflect on learning?
\mathbf{T} - How will we Tailor learning to vary needs, interests, and styles?
\mathbf{O} - How will we Organize and sequence the learning?

Resources:

Investigations Materials that should be used:

Unit 5 Landmarks and Large Numbers
Sessions 1.1-1.6; 2.1-2.6; 3.1-3.6A; 4.1-4.7
enVision Lessons to supplement Investigations as needed: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
1-1, 1-2, 1-3, 1-4, 2-1, 2-2, 2-4, 2-5, 2-6, 2-7
Teaching Student-Centered Mathematics by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by NCCTM

Picture Books:

A Million Dots by Andrew Clements

Strategies:

Base Ten Blocks and other materials to build number sense Place Value Chart

Use dice to play "Who has the Largest Number?" Students draw 7 lines on their paper. You roll a die and they choose where they want to place the number you rolled in order to make the largest number. Once students place the number it cannot be moved. Continue rolling until all students have made a number. Then compare.
"Human Place Value"-Make students become a place value board using number cards to build numbers and number sense.

Students can use calculators to investigate the pattern in problems:

$4 \times 10=40$	$40 / 10=4$
$4 \times 100=400$	$400 / 10=40$

Earth Day-Hooray! By Stuart J. Murphy
One Beyond a Million: an Amazing Math Journey by David M. Schwartz
Betcha! By Stuart J. Murphy (estimating)
Great Estimations by Bruce Goldstone
If You Made a Million by David Schwartz
How Much is a Million by David Schwartz
Millions of Cats by Wanda Gag
A Million Fish More or Less by McKissack
Web Resources:
www.k-5mathteachingresources.com
(has a collection of resources for each area taught)
http://www.funbrain.com/tens/index.html (identify the place a number a
is in)
http://gamequarium.com/placevalue.html (collection of place value
games)
http://www.topmarks.co.uk/interactive.aspx?cat=20 (different activities
and tools to be used on Active Board)
enVision eTools
Promethean Planet flipcharts
Math Journal Topics
$4^{\text {th }}$ Grade Math Journals which can be purchased from www.K-
5mathteachingresources.com.

```
\(4 \times 1,000=4,000\)
\(4,000 / 10=400\)
\(4 \times 10,000=40,000\)
\[
40,000 / 10=4,000
\]
```

Use a number line to help with rounding. Students will be able to see which benchmark number the number you are rounding is closest to.

Unit 6: Fractions Cards and Decimal Squares
 $3^{\text {rd }} / 4^{\text {th }}$ quarter
 Approximately 9 weeks

Common Core and/or Essential Standards:

4.NF. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times$ b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
4.NF. 2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.
4.NF. 3 Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=$ $8 / 8+8 / 8+1 / 8$.
c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using

Transfer: Students will be able to independently use their learning

to ...

- use fractions in real world situations
- solve real world word problems involving addition and subtraction of fractions
- use fractions to aid in measurement skills
- use decimals in real world situations and apply their learning to real world word problems

Possible "l Can" Statements:

I can explain, recognize and generate equivalent fractions.
I can compare fractions.
I can add and subtract fractions and mixed numbers.
I can multiply a fraction by a whole number.
I can multiply a fraction by a whole number.
I can express a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100.

I can use decimal notation for fractions with denominators of 10 or 100.
I can compare two decimals to the hundredths place.
I can express a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100 !

I can use decimal notation for fractions with denominators of 10 or
4.NF. 4 Apply and extend previous understandings of multiplication to multiply a fractions by a whole number.
a. Understand a fraction a / b as a multiple of $1 / b$.
b. Understand a multiple of a / b as a multiple of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a whole number.
c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem.
4.NF. 5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. Example: express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$
4.NF. 6 Use decimal notation for fractions with denominators 10 or 100. Example: rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram
4.NF. 7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, $=$, or < and justify the conclusions, e.g., by using a visual model.

I can compare two decimals to the hundredths place!

Understandings: Students will understand that ... \quad Essential Question(s):

- the size of the whole affects the size of a fraction
- visual fraction models (area models, number lines or a collection/set model) can be used to find equivalent fractions by dividing a shaded region into various parts
- equivalent fractions can be created by multiplying both the numerator and denominator by the same number
- drawing fraction models can help them compare fractions
- addition is the joining or composing of fractions
- subtraction is the separating or decomposing of fractions
- mixed numbers can be decomposed in more than one way
- When would it be necessary to use equivalent fractions in the real world?
- How can a strong foundation of fractions determine fair shares?
- How can I use fractions in real life?
- What can drawing a model help to solve a problem?
- Why is it necessary to manipulate denominators of fractions?
- Why would you need to change fractions to decimals?
- Why is it important to produce models?

(algorithm or models)

- visual fraction models can be used to solve fraction word problems
- a fraction a / b is a multiple of $1 / b$ (for example: $3 / 6=1 / 6+1 / 6+$ $1 / 6=3 X(1 / 6)$
- adding and subtracting fractions is joining or separating parts that are referring to the same whole
- multiplication is repeated addition, even when applied to fractions
- equations can be used to represent fraction word problems

Acquisition

Students will know:

- how to explain equivalent fractions using fraction models
- comparisons are only valid when the two fractions refer to the "same whole"
- there are different strategies to find equivalent fractions (visual models, multiplication)
- there are multiple strategies to compare fractions (using benchmark fractions, common denominators or numerators)
- a fraction with a numerator of one is called a unit fraction
- how to use visual models to help with decomposing fractions and multiplying a whole number by a fraction
- how to use visual fraction models and equations to represent fraction word problems

Students will be skilled at:

- drawing and explaining visual fraction models
- creating equivalent fractions by multiplying the numerator/denominator by the same number
- finding common numerators and denominators
- drawing fraction models to compare fractions
- justifying conclusions
- recognizing benchmark fractions
- comparing fractions
- compose and decompose fractions of the same whole
- solving addition/subtraction word problems of fractions with like denominators using visual fraction models
- adding and subtracting mixed numbers with like denominators
- creating visual models to multiply a whole number by a fraction
- multiplying fractions by a whole number
- solving word problems involving fractions
- using a decimal grid to shade decimals
- finding equivalent fractions and decimals with denominators of 10 and 100
- reading fraction names with denominators of 10 and 100 and rewriting them as a decimal on place value models
- using strategies to compare decimals
- drawing decimal models
- writing a decimal as a fraction

Essential Vocabulary: "whole", visual fraction model, fraction, numerator, denominator, equivalent, multiplication, compare/comparison, <, >, =, partition(ed), unit fraction, multiple, reason, benchmark fraction, operations, addition/joining, subtraction/separating, decomposing, mixed number, improper fraction, properties (rules about how numbers work), equation, decimal, tenths, hundredths, visual decimal model (area models, decimal grids, number lines, circle models and meter sticks)

IT Standards:

4.SI. 1 Apply criteria to determine appropriate information resources for specific topics and purposes.
4.SI.1.1 Use various types of resources to gather information
(including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.SI.1.2 Use reliable sources of information.
4.IN. 1 Apply appropriate strategies when reading for enjoyment and for information.
4.IN.1.1 Implement appropriate reading strategies when reading for information.

4.TT. 1 Use technology tools and skills to reinforce classroom

 concepts and activities.4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.).
4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual recording, online collaboration tools, etc.).
4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
4.SE.1.3 Understand internet safety precautions (personal information, passwords, etc.).

IT Strategies:

Students will research recipes on the Internet or in books for the summative assessment. They will then display their new recipe using a program (Word, Publisher, etc.).

Students will choose program to complete the activity in and choose a way to display their data (brochure, poster, etc.) for summative assessment (Storybook Weaver; PowerPoint; Word; Publisher, etc.)

Unit Title: Fractions Cards and Decimal Squares

Grade: 4

Subject: Math

STAGE 2

Understandings:

The size of the whole affects the size of a fraction.

Visual fraction models (area models, number lines or a collection/set model) can be used to find equivalent fractions by dividing a shaded region into various parts.

Equivalent fractions can be created by multiplying both the numerator and denominator by the same number.

Drawing fraction models can help compare fractions.

Addition is the joining or composing of fractions.

Subtraction is the separating or decomposing of fractions.

Mixed numbers can be decomposed in more than one way (algorithm or models).

Visual fraction models can be used to solve fraction word problems.

A fraction a / b is a multiple of $1 / b$ (for example: $3 / 6=1 / 6+1 / 6+1 / 6$ $=3 \times(1 / 6)$.

Adding and subtracting fractions is joining or separating parts that are referring to the same whole.

Revised Blooms	
Creating: Can the student create new product or point of view?	assemble, construct, create, design, develop, formulate \& write.
Evaluating: Can the student justify a stand or decision?	appraise, argue, defend judge, select, support, value \& evaluate
Analyzing: Can the student distinguish between the different parts?	appraise, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question \& test.
Applying: Can the student use the information in a new way?	choose, demonstrate, dramatize, employ, illustrate, interpret, operate, schedule, sketch, solve, use \& write.
Understanding: Can the student explain ideas or concepts?	classify, describe, discuss, explain, identify, locate, recognize, report, select, translate \& paraphrase
Remembering: Can the student recall or remember the information?	define, duplicate, list, memorize, recall, repeat, reproduce \& state

Formative Assessments (Evidences)

Oral Assessments

Quizzes (teacher made \& textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from enVisions \& other sources, such as Teachers Pay Teachers and/or Pinterest)
Teacher Observation
Anecdotal Notes
Make visual fraction models to represent fractions

Addition of fractions with model and without model

When drawing a diagram to compare fractions, models are the same size

Summative Assessment Adjusting a Recipe Project

1) Students will find a simple recipe in a book or on the Internet with at least four fractions in the ingredient list. They will write the original recipe.
2) Students will rewrite the recipe for twice as many people. They will need to show their work and explain the strategy they used.
3) Students will rewrite the recipe to cut it in half. They will need to show their work and explain the strategy they used.
4) Students will rewrite the recipe to adjust the recipe to feed everyone in the class (including the teacher). Students will need to show their work and explain their strategy.
5) Students will present their 3 recipes in a creative way.

Relay Activity

1) Students will calculate the decimal time (using stopwatch or timer) it takes to complete a teacher selected task-under a minute. (example-running relay, saying the abc's, blowing a bubble, etc.)
2) Students will take their time they completed the activity in and choose a way to display their data (brochure, poster, etc.) including all of the following ways:

- Fraction

- Base ten blocks
- On a number line
even when applied to fractions.
Equations can be used to represent fraction word problems.
You can change fractions with a 10 in the denominator into equivalent fractions that have a 100 in the denominator.

You can use base ten blocks, place value models and circle models to explore the relationship between fractions and decimals with denominators of 10 and 100.

There are connections between fractions with denominator of 10 and 100 and the place value chart.

Decimals can be represented on a number line.

Decimals can be compared with area and other models.

When you compare decimals you need to justify your conclusions (with models).

When comparing, you use the same whole.

Essential Questions:

When would it be necessary to use equivalent fractions in the real world?

How can a strong foundation of fractions determine fair shares?

How can I use fractions in real life?
What can drawing a model help to solve a problem?

- 10×10 grid
- Circle model
- Compare their data with another student
- Order their data with a group of students

3) Select another task (over a minute) and repeat the above.

Additional assessment as needed (Unit Test; enVision Exam View Test Generator, etc.)

Why is it necessary to manipulate denominators of fractions?

Why would you need to change
fractions to decimals?
Why is it important to produce
models?

Stage 3

```
Approximate number of days spent on unit: 45 days
W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\(\mathbf{R}\) - How will we help students Rethink, Rehearse, Revise, and Refine?
\(\mathbf{E}\) - How will student self -Evaluate and reflect on learning?
T - How will we Tailor learning to vary needs, interests, and styles?
\(\mathbf{O}\) - How will we Organize and sequence the learning?
```


Resources:

Investigations Materials that should be used:

Unit 6: Fraction Cards and Decimal Squares
Investigation 1: Parts of Rectangles Sessions 1.1-1.8A
Investigation 2: Ordering Fractions Sessions 2.1-2.7A
Investigation 3A: Multiplying Fractions Sessions 3A.1-3A. 3
Investigation 3B: Working with Decimals Sessions 3.1-3.7
enVision Lessons: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
$10-4,10-5,10-6,10-7,10-8,11-1,12-1,12-2,12-3,12-4,12-5$
Fun with Fractions (Fraction Unit from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=U152
Fun with Pattern Block Fractions (Unit from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=U113
Fraction Unit (from NYC schools) http://schools.nyc.gov/NR/rdonlyres/04CC9ECB-
C5AB-47DA-891B-6D8F6B6EFE88/0/NYCDOEG4MathFarmerFred Final.pdf
Fraction Unit (DPI Wiki) http://maccss.ncdpi.wikispaces.net/file/view/4thGradeUnit.pdf http://nlvm.usu.edu/en/nav/grade g 2.html
(Virtual Manipulatives)
www.k-5mathteachingresources.com
(Number and Operations-Fractions)
http://nlvm.usu.edu/en/nav/frames asid 264 g 2 t 1.html?from=category g 2 t 1.html (interactive manipulatives)A Meter of Candy (Lesson on Decimals from Illuminations) http://illuminations.nctm.org/LessonDetail.aspx?id=L861
enVision eTools
Promethean Planet flipcharts

Strategies:

Models-fraction bars, Cuisenaire rods Grids

Pattern Blocks (Example: If a red trapezoid is one whole, which block shows $1 / 3$?)
"Foldable Fraction Models": Students will make their own fraction models

Using area models students can change a given fraction into an equivalent fraction by drawing addition vertical and or horizontal lines that result in equal parts of the whole.

Fraction tiles and fraction circles
Use a number line to compare fractions
*Make sure to emphasize that comparing fractions cannot happen unless the fractions are part of the same whole when making diagrams to help.

Illustrate adding and subtracting fractions and mixed numbers and decomposing using number lines,
fraction strips, area models, set models, rulers, etc.

Picture books:

Piece=Part=Portion Fractions=Decimals=Percents by Scott Gifford
If you were a Fraction by Trisha Speed Shaskan
Apple Fractions by Jerry Pallotta
Polar Bear Math by Ann Whitehead Nagda and Cindy Bickel
Working With Fractions by David Adler
Fraction Fun by David Adler
Teaching Student-Centered Mathematics in Grades 3-5 by John Van de Walle Navigating Through Number and Operations in Grades $3-5$ by NCCTM
models, rulers to show multiple addition of unit fractions Then connect this to multiplication of a fraction by a whole number.

10x10 grids
Money
Model tenths using dimes and hundredths with pennies
Use grid paper to line up decimals to compare
Use place value blocks (change the value-flat=1 whole; rod=1 tenth; units=1 hundredth)

Number line
Meter stick

Alexander County Schools 2013-2014

Unit 8: Multiplication and Division: Many Packages? How Many Groups?

Approximately 18 days

Common Core and/or Essential Standards:

4.OA.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answer using mental computation and estimation strategies including rounding.
4.OA. 5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.
4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.NBT.6 Find whole-number quotients and remainders with up to fourdigit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. lllustrate and explain the calculation by
using equations, rectangular arrays, and/or area models.

Meaning

Meaning	
Understandings: Students will understand that . . . - a whole number is a multiple of each of its factors - there is a difference between multiples and factors although they are related - there are a variety of strategies/methods to use when multiplying and dividing	Essential Question(s): - How can situations in your life bring about the use of multiplication and division? - Is it important to know a variety of processes to solve multiplication and division? - How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply/divide)

Acquisition

Students will know:

Students will be skilled at:

- how to identify and verbalize a quantity being multiplied and which number represents "how many" times to get a specified number.
- how to find factors and multiples of whole numbers.
- how to use a variety of strategies to multiply whole numbers.
- how to illustrate and explain the method/methods used to solve multiplication and division problems.
- identifying and verbalizing which quantity is being multiplied
- multiplying and dividing
- skip counting
- finding and identifying patterns when listing factors and multiples
- multiplying whole numbers
- using various strategies to solve problems
- illustrating their reasoning
- solving problems in and out of context

Essential Vocabulary:

- Equation, unknown, multiplication, factors, products, rectangular array, mental computation, estimation, rounding, reasonableness, multiples, factor pairs, division, quotient, partial products, area model, base ten blocks, place value, remainder, skip counting, strategies

IT Standards:

4.SI. 1 Apply criteria to determine appropriate information resources for specific topics and purposes.
4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities.
4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.). 4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing,

IT Strategies:

Students will create an advertisement using Microsoft Word or Publisher for the newspaper in order to get students to buy it.

Unit Title: Unit 8: Multiplication and Division: Many Packages? How Many Groups? Subject: Math

Grade: $\mathbf{4}^{\text {th }}$

STAGE 2Understandings:

A whole number is a multiple of each of its factors.

There is a difference between multiples and factors although they are related.

Multiples can be related to skip counting.

There are a variety of strategies/methods to use when multiplying and dividing.

Essential Questions:

How can situations in your life bring about the use of multiplication and division?

Is it important to know a variety of processes to solve multiplication and division?

How can you save time? (multiply vs. repeated addition, using most effective strategy to multiply, reason for knowing primes/composite numbers and how that can help)

Revised Blooms	
Creating: Can the student create new product or point of view?	assemble, construct, create, design, develop, formulate \& write.
Evaluating: Can the student justify a stand or decision?	appraise, argue, defend, judge, select, support, value \& evaluate
Analyzing: Can the student distinguish between the different parts?	appraise, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question \& test.
Applying: Can the student use the information in a new way?	choose, demonstrate, dramatize, employ, illustrate, interpret, operate, schedule, sketch, solve, use \& write.
Understanding: Can the student explain ideas or concepts?	classify, describe, discuss, explain, identify, locate, recognize, report, select, translate \& paraphrase
Remembering: Can the student recall or remember the information?	define, duplicate, list, memorize, recall, repeat, reproduce \& state

Formative Assessments (Evidences)

Oral Assessments
Quizzes (teacher made \& textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from
enVisions/Investigations \& other sources)
Teacher Observation
Anecdotal Notes

Summative Assessment

School Newspaper
Your class has agreed to publish a 26 page school-wide newspaper for each of the 740 students (or use the number of students at your school). Both sides of the paper will be printed to help save money. A package of 50 sheets of special newsprint paper costs $\$ 1.00$.

- Find the cost of publishing the newspaper if you can make the copies at school for no additional cost other than purchasing the paper. Explain how you know.
- How many extra copies of the newspaper could you make using the paper that you purchased? How do you know?
- If the school decided to charge $\$ 20$ for the use of the copy machine, how would this change your answers?
- Your class decided to sell the newspapers to students. They will be sold at a cost of $\$ 0.25$. Since you are not sure that every student will buy one, you
\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}\text { are printing enough } \\
\text { newspapers for every student. } \\
\text { Will you make enough money } \\
\text { to cover the cost of the paper if } \\
\text { only } \\
\text { students purchase one? }\end{array} \\
\text { Explain your thinking. }\end{array}
$$\right] \begin{array}{l}- If each of the teachers in your

school also wanted a copy of

the newspaper, show how that

would change your results.\end{array}\right\}\)| - Create an advertisement |
| :--- |
| using Microsoft Word or |
| Publisher for the newspaper in |
| order to get students to buy it. |
| (From common Core Georgia Performance |
| standards framework) |

Stage 3

Approximate number of days spent on unit: 18 days

W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
\mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine?
\mathbf{E} - How will student self -Evaluate and reflect on learning?
T - How will we Tailor learning to vary needs, interests, and styles?
\mathbf{O} - How will we Organize and sequence the learning?

Resources:

Investigations Units:

Unit 8 How Many Packages? How Many Groups?
Sessions 1.1-1.5; 2.1-2.5; 3.1-3.6

enVision Lessons to supplement Investigations as needed:

(Remember these lessons are a starting point and may not cover all the standards in a cluster.)
$5-1,5-2,5-3,5-4,5-5,6-1,6-3,7-1,7-2,7-3,7-4,7-5,7-6,8-1,8-2,8-3$, 8-4, 18-3

Web Resources:

Factor Trail Game (Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L719
Factor Findings (lesson from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L872
The Product Game (lesson from Illuminations exploring products, factors and multiples and the relationship between them)
http://illuminations.nctm.org/LessonDetail.aspx?id=U100
Chairs Around the Table (pattern lesson from Illuminations
http://illuminations.nctm.org/LessonDetail.aspx?id=L627
Patterns That Grow (number and shape pattern unit from Illuminations http://illuminations.nctm.org/LessonDetail.aspx?id=U103
http://mathstory.com/mathlessons/arrayrace.htm
(short lesson and game for building arrays, writing equations and solving for a product)
www.k-5mathteachingresources.com
(has a collection of resources for each area taught)

Strategies:

Arrays
Area Models
Fact Families to show relationship between division and multiplication
Flashcards
Timed Tests (fluency)
Skip Counting
Rhymes ' n Times
Wrap Ups
Use manipulatives to show arrays.
Build arrays for equations to show the Commutative Property of Multiplication.

Give students a problem solving method to help them figure out how to solve word problems.
"Count Around the Room"-give students a rule such as count by 15's.

```
http://www.uen.org/3-6interactives/math.shtml#patterns
(interactive pattern games)
enVision eTools
Promethean Planet flipcharts
```


Picture books:

```
The Doorbell Rang by Pat Hutchins (division basics)
Anno's Magic Seeds by Mitsumasa Anno (pattern)
Anno's Mysterious Multiplying Jar by Masaichiro and Mitsumasa Anno (multiplication)
A Remainder of One by Elinor J. Pinczes
The Great Divide: A Mathematical Marathon by Dayle Ann Dodds
Amanda Bean's Amazing Dream by Cindy Neuschwander
(multiplication)
The Grapes of Math by Greg Tang
If you were a Set by Marcie Aboff
If you were a Divided-By Sign by Trisha Speed Shaskan
If you were a Times Sign by Trisha Speed Shaskan
Minnie's Diner A Multiplying Menu by Dayle Ann Dodds
Divide and Ride by Stuart J. Murphy
One Hundred Hungry Ants by Elinor J. Pinczes
The Best of Times by Greg Tang
Equal Shmequal by Virginia Knoll
Teaching Student-Centered Mathematics by John Van de Walle Navigating Through Number and Operations in Grades 3-5 by NCCTM
```

Alexander County Schools 2012-2013

Common Core and/or Essential Standards:

4.MD. 1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table forfeet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
4.MD. 3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.
4.MD. 4 Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
4.MD. 5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement.
4.MD. 6 Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.

Transfer: Students will be able to independently use their learning

 to...- apply knowledge of measurement in everyday life skills and real world problem solving
- describe, analyze, compare and classify two-dimensional shapes to deepen their understanding of the properties of two dimensional objects and use them to solve problems involving symmetry in real world situations

Possible "I Can" Statements:

I can express measurements in larger and smaller terms and record equivalents in a table.

I can use the four operations to solve word problems and represent measurement in diagrams.

I can apply the area and perimeter formulas for rectangles in the real world.

I can make a line plot to display data in fractions and solve problems involving addition and subtraction of fractions.

I can draw and identify points, lines, line segments, rays, angles and parallel and perpendicular lines.

I can classify figures based on parallel and perpendicular lines and angles.

I can recognize and draw lines of symmetry!
I can recognize angles as shapes formed where two rays share an endpoint.
4.MD. 7 Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.
4.G.1 Draw points, lines, line segments, rays, angles, (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures.
4.G. 2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles
4.G. 3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

I can use a protractor to measure and sketch angles!
I can solve addition and subtraction problems to find unknown angles!

Understandings: Students will understand that...

- larger units can be subdivided into equivalent units (partition)
- the same unit can be repeated to determine the measure (iteration)
- there is a relationship between the size of a unit and the number of units needed (compensatory principle)
- everyday objects have a variety of attributes and can be measured in many ways
- you can express measurements from a larger unit in terms of a smaller unit
- number line diagrams that feature a measurement scale can represent measurement quantities (ex. ruler, volume measure on the side of a container, timetable showing hours, line plot, etc.)
- a formula can be used to calculate area and perimeter
- points and lines, line segments, angles, perpendicular, and parallel lines can come together and make 2-D figures
- 2-D figures can be classified using different characteristics such as parallel and perpendicular lines or angle measurement
- 2 lines are parallel if they never intersect and are equidistant

Essential Question(s):

- How do measurements solve real world problems?
- When do you use area and perimeter in your everyday life?
- How do points, lines, line segments, rays, angles, and perpendicular/parallel lines fit into the world around me?
- Why would you need to classify shapes?
- Where do you see symmetry in your environment?
- When would you use an angle measurement in real life?
- Why are precise measurements important?
- When would decomposing angles be used in the real world?
- 2 lines are perpendicular if they intersect in right angles (90 degrees)
- objects can be sorted based on parallelism, perpendicularity and angle types
- there are different types of right triangles
- regular and non-regular polygons can be symmetrical and nonsymmetrical
- angles are connected to circular measurement (360 degrees)
- an angle is a series of "one-degree turns"
- unknown angle measures can be found by decomposing an angle into smaller parts

Acquisition

Students will know:

- units of measurement and their relative size within one system of units (km, m, cm; kg, g; lb, oz; l, ml; hr, min, sec)

Students will be skilled at:

- measuring objects accurately
- recording measurement equivalents in a two-column table
- the relationships between units of measure
- how to use the four operations to solve word problems involving
- converting units of measure within the same system various forms of measurement
- the formulas for area and perimeter and why they work
- line plots can be used to record measurement data
- the different ways to classify 2 -dimensional figures
- how to recognize lines of symmetry
- angle measurement is additive
- how to identify parallel and perpendicular lines
- real world problems can be solved with angles
- how to use benchmark angle measurements to determine an estimated angle measure to classify an angle (90 degrees, 180 degrees, 45 degrees, etc)
- how to use a diagram to write an equation using a symbol to form an addition or subtraction problem to find an unknown angle measurement.
- solving multi-step word problems involving measurement with distances, intervals of time, liquid volumes, masses of objects, money, simple fractions and/or decimals
- using various diagrams to record and determine correct measurement quantities (line plot)
- calculating area and perimeter of rectangles using the correct formula
- communicating their understanding of why the formulas work
- measuring objects to an eighth, fourth and half of an inch
- making a line plot
- interpreting line plot data
- drawing and identifying points, lines, line segments, rays, angles, perpendicular, and parallel lines.
- identifying points, lines, line segments, rays, angles, perpendicular, and parallel lines in 2-dimensional figures.
- classifying 2-D figures
- recognizing right angles
- sorting objects based on criteria
- drawing lines of symmetry
- recognizing lines of symmetry
- measuring angles with a protractor
- sketching a specific measured angle
- adding and subtracting angle measurements

Essential vocabulary:
measurement units (metric and customary), measurement categories (volume, mass, length, etc), unit conversions, operations (addition, subtraction, multiplication, division, number line, diagram, money, fraction, decimal, area, perimeter, formula, square unit, linear unit, measure, metric, customary, relative size, liquid volume, distance, kilometer (km), meter (m), centimeter (cm), kilogram (kg), gram (g), liter (L), milliliter (mL), inch (in), foot (ft), yard (yd), mile (mi), ounce (oz), pound (lb), cup (c), pint (pt), quart (qt), gallon (gal), time, hour, minute, second, equivalent, line plot, length, polygon (regular an non-regular), rhombus, rectangle, square, triangle (right, isosceles, equilateral, scalene), quadrilateral, pentagon, hexagon, trapezoid, point, line, line segment, ray, angle, perpendicular line, parallel line, two-dimensional figure, acute angle, obtuse angle, right angle, equidistant, symmetry, end point, angle measurement, reference to a circle, degrees, degrees of a circle, protractor, decompose, part/whole, classify shapes/ figures, vertex/vertices, line of symmetry, symmetric figures

IT Standards:

4.SI. 1 Apply criteria to determine appropriate information

 resources for specific topics and purposes.4.SI.1.1 Use various types of resources to gather information (including print and online media).
4.SI.1.2 Use relevant sources of information for an assigned task.
4.SI.1.2 Use reliable sources of information.

4.IN. 1 Apply appropriate strategies when reading for enjoyment

 and for information.4.IN.1.1 Implement appropriate reading strategies when reading for information.

4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities.

4.TT.1.1Use a variety of technology tools to gather data and information (e.g., Web-based resources, e-books, online communication tools, etc.).
4.TT.1.2 Use a variety of technology tools to organize data and information (e.g., word processor, graphic organizer, audio and visual recording, online collaboration tools, etc.).
4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.). 4.RP. 1 Apply a research process as part of collaborative research.
4.RP.1.1 Implement a research process by collaborating effectively with other students.
4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing, netiquette) when using resources.
4.SE.1.3 Understand internet safety precautions (personal information, passwords, etc.).

IT Strategies:

Students will research information on North Carolina to use in the brochure created as part of the summative assessment.

Students will choose a program to complete the brochure for summative assessment; for example: Storybook Weaver; PowerPoint; Word; Publisher.

Students will use different technology tools to help with their summative assessment project.

Understandings:

Larger units can be subdivided into equivalent units (partition).

The same unit can be repeated to determine the measure (iteration).

There is a relationship between the size of a unit and the number of units needed (compensatory principle).

Everyday objects have a variety of attributes and can be measured in many ways.

You can express measurements from a larger unit in terms of a smaller unit.

Number line diagrams that feature a measurement scale can represent measurement quantities (ex. ruler, volume measure on the side of a container, timetable showing hours, line plot, etc.).

A formula can be used to calculate area and perimeter.

Points and lines, line segments, angles, perpendicular, and parallel lines can come together and make 2-D figures.

2-D figures can be classified using different characteristics such as parallel and perpendicular lines or angle measurement.

2 lines are parallel if they never intersect and are equidistant.

2 lines are perpendicular if they

Revised	Blooms
Creating: can the student create new product or point of view? assemble, construct, create, design, develop, formulate, write. appraise, argue, defend, judge, select, support, value, evaluate student justify a stand or decision?	
Analyzing: can the student distinguish between the different parts?	appraise, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question, test.

demonstrate,

dramatize, employ,

illustrate, interpret,

operate, schedule,

sketch, solve, use,

write.\end{array}\right|\)

Formative Assessments (Evidences)

Oral Assessments
Quizzes (teacher made \&
textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from enVisions \&
other sources)
Teacher Observation
Anecdotal Notes
Measure objects accurately in customary and metric

Use right tools to measure objects
Convert units of measure within the same system

Calculate area and perimeter using formulas and be able to explain why the formula works

Solve multi-step word problems related to measurement

Produce a 2-column table to show conversions from larger to smaller units and to show equivalent measurements

Summative Assessment

Students are to design an

 apartment (the futures channel) or a zoo with specifications. (For Area and Perimeter)
Students will design a brochure

 about objects in North Carolina. (one side of brochure in metric and one side in customary)1) height of tallest lighthouse in North Carolina
2) weight or mass of sweet potatoes grown in a year in North Carolina
3) daily average capacity of milk produced by the dairy cow in
North Carolina
4) car travel time from Murphy,

NC to Manteo, NC at 60 mph
5) Find the value of the name "North Carolina" if the value of a consonant is $\$ 0.73$ and a vowel is $\$ 0.54$. Display this amount 3 different ways.

Investigations Unit can be used

 to assess line plot using fractions of a unit. Teacher choice performance activity.Additional assessment as needed (Unit Test; enVision Exam View Test Generator, ClassScape, etc.)

Student Created Scavenger

Hunt (small group)

1) Students will be placed in
small groups.
2) They will choose a symbol to mark their objects. (example: star, circle, etc.)
3) Students will find the following
intersect in right angles (90 degrees).

Objects can be sorted based on parallelism, perpendicularity and angle types.

There are different types of right triangles.

Regular and non-regular polygons can be symmetrical and nonsymmetrical.

Angles are connected to circular measurement (360 degrees).

An angle is a series of "onedegree turns".

Unknown angle measures can be found by decomposing an angle into smaller parts.

Essential Questions:

How do measurements solve real world problems?

When do you use area and perimeter in your everyday life?

How do points, lines, line segments, rays, angles, and perpendicular/parallel lines fit into the world around me?

Why would you need to classify shapes?

Where do you see symmetry in your environment?

When would you use an angle measurement in real life?

in and around school.

(Choose 10 out of 20)

- Parallel
- Perpendicular
- Line Segment
- Point
- Right Angle
- Acute Angle
- Obtuse Angle
- Right Triangle
- Intersecting Lines
- Line of Symmetry
- Congruent Figures
- Similar Figures
- Rhombus
- Trapezoid
- Square
- Rectangle
- Pentagon
- Hexagon
- Octagon
- Parallelogram

4) Students will write a clue to find their first object. At the object they will place their symbol to mark the object. They will place their next clue for their next object.

Clues must include how to find

 the object and a description of the geometry term they are finding.5) After students mark their hunt another group will complete the scavenger hunt.
*Teacher will decide how students will record what they found (for example-flip camera; draw what they found next to the clue, etc.).

Additional assessment as needed
(Unit Test; enVision Exam View
Test Generator, ClassScape, etc.)

W - Where are we going? Why? What is expected?
H - How will we Hook and Hold students?
E - How will we Equip students to Explore and Experience?
R - How will we help students Rethink, Rehearse, Revise, and Refine?
E - How will student self Evaluate and reflect on learning?
T-How will we Tailor learning to varied needs, interests, styles?
O-How will we Organize and sequence the learning?

Resources:

Investigations Unit:

Unit 4 (Size, Shape, and Symmetry)
Investigation 1: Linear Measurement Session 1.1-1.5
Unit 7 (Moving Between Solids and Silhouettes)
Investigation 3: Understanding Volume (only) Sessions 3.5A

\& Session 3.5 B only

Unit 4 Size, Shape, and Symmetry
Investigation 2: Polygons of Many Types Sessions 2.1-2.5
Investigation 3: Measuring Angles Sessions 3.1-3.4a
Investigation 4: Finding Area Sessions 4.1, 4.2 \& 4.5 only

Ideas with Food (2 lessons from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?ID=U78
Oil Oil Everywhere (Lesson on Area from Illuminations
http://illuminations.nctm.org/LessonDetail.aspx?id=L862
Four Square Galore (lesson on Area from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=L860
How Long? How Tall? How Wide? How Deep? (lesson for measurement; goes along with the book How Big is a Foot?)
http://illuminations.nctm.org/LessonDetail.aspx?id=L635
Junior Architects (designing a club house has some geometry concepts from Illuminations)
http://illuminations.nctm.org/LessonDetail.aspx?id=U172
http://www.uen.org/3-6interactives/math.shtml\#fractions
(interactive measurement activities)
http://nrich.maths.org/6923
(Growing Rectangles-area)
http://nrich.maths.org/2663
(Fence It-perimeter)

Measurement Strategies:

Gallon Man-poster that can be purchased and students can make to help with gallons, pints, quarts and cups
"Pound Cake"-poster that can be purchased to help with ounces and pounds
"Yard Plant"-poster that can be purchased to help with yards and feet

Containers for Measuring
Scales and Weights
Use diagrams to help solve word problems.

Have students measure the length of the room with one-inch tiles, one foot rulers and with yardsticks. Do the same activity with centimeters and meters.

Area Tiles
"Mrs. Burke's Area and Perimeter

http://www.jmathpage.com/JIMSMeasurementpage.html (various measurement activities)	Rap" on YouTube
www.k-5mathteachingresources.com	
(has a collection of resources for each area taught)	Geometry Strategies:
http://www.geogebra.org/cms/	Pretzel sticks
(free mathematics software) http://www.uen.org/Lessonplan/preview.cgi?LPid=11235	Toothpicks and Marshmallows
(lesson to identify and describe attributes of two-dimensional geometric shapes)	Pattern Blocks
www.k-5mathteachingresources.com	Geo Boards
(word problems with multiplicative comparison) http://illuminations.nctm.org/LessonDetail.aspx?ID=L270	Clocks
(polygon capture game) http://nrich.maths.org/1840	Body Symbols for line, point and ray
(lines of symmetry)	
http://www.innovationslearning.co.uk/subjects/maths/activities/year3/symmetry/shape game.asp (symmetry)	toothpicks and marshmallows
http://www.ixl.com/math/grade-4	Build geometric shapes with straws
(measuring angles) http://www.mathsisfun.com/angl	and pipe cleaners
(tp.//wation about angles)	"Spaghetti Drop"-give students dry spaghetti. Have them drop on floor
http://www.mathopenref.com/ (reference tool)	and find all the geometric terms they can.
enVision eTools	
Promethean Planet flipcharts	Examine and label the components of a circle
Picture books:	Recognize angles formed when rays are drawn for the center of the circle
How Big is a Foot? By Rolf Myller Jim and the Beanstalk by Raymond	Measure angles with a variety of
About Time: A First Look at Time and Clocks by Bruce Koscielniak	degrees
Racing Around by Stuart J. Murphy (perimeter)	
Bigger, Better, Best! by Stuart J. Murphy (area)	
Area (My Path to Math) Math concepts Made Easy	angle with missing measure and
Spaghetti and Meatballs for All! A Mathematical Story by Marilyn Burns (area and perimeter)	trade drawing. Partner finds the
Game Time! by Stuart J. Murphy (time)	missing angle measure.
If you were a Quart or a Liter by Marcie Aboff	
Inchworm and a Half by Elinor J. Pinczes	
Polly's Pen by Stuart J. Murphy (metric)	
Measuring Penny by Loreen Leedy	
Millions to Measure by David M. Schwartz	
Sir Cumference and the Isle of Immeter by Cindy Neuschwander	

Grandfather Tang's Story by Ann Tompert

The Greedy Triangle by Marilyn Burns
Line, Segments, Rays, and Angles (My Path to Math) Math Concepts Made Simple
Polygons (My Path to Math) Math Concepts Made Simple
Hamster Champs by Stuart J. Murphy (angles)
If you were a Triangle by Marcie Aboff
If you were a Quadrilateral by Molly Blaisdell
If you were a Polygon by Marcie Aboff
Sir Cumference and the Great Knight of Angleland by Cindy Neuschwander
Sir Cumference and the First Round Table by Cindy Neuschwander
enVision Lessons: (Remember these lessons are a starting point and may not cover all the standards in a cluster.)
$16-1,16-2,16-3,16-4,16-5,16-6,16-7,16-8,16-9,16-12,11-4,12-6,13-7,14-1,14-2,14-6$
enVision Lessons: (Remember these lessons are a starting point and may not cover all
the standards in a cluster.)
9-1, 9-2, 9-3, 9-4, 9-5, 9-6, 9-7, 19-4, 19-5
enVision eTools
Promethean Planet flipcharts
Teaching Student-Centered Mathematics by John Van de Walle
Navigating Through Measurement in Grades 3-5 by NCCTM

Alexander County Schools 2013-2014

Unit 9: Penny Jars and Plant Growth Approximately 8 days	Q1\square Q2
Common Core and/or Essential Standards: 4.OA.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.	Transfer: Students will be able to independently use their learning to ... - Create and extend a numerical or shape pattern from a given rule. - Generate a rule based on a given numerical or shape pattern. - Recognize whether a pattern is a repeating pattern or a growing pattern. - Find unknown values in patterns by identifying a rule or using one that is given. - Identify and justify features of a pattern that are not related to the rule itself (Example: 1, 3, 9, 27, 81, 243 Rule: Multiply by 3; Additional Features: All numbers are odd). See Unpacking Document for additional examples.
Meaning	
Understandings: Students will understand that ... - Number and shape patterns follow a given rule - Patterns often contain other features not related to the rule - Patterns and rules are related - Patterns can either repeat or grow	Essential Question(s): - Why is it important to recognize and generate patterns in everyday life?
Acquisition	
Students will know: - How to generate a pattern that follows a given rule. - How to identify and explain additional patterns or behaviors that go beyond the given rule.	Students will be skilled at: - Identifying rules and features from numerical and shape patterns that may or may not be explicit in the rule - Generating a numerical or shape pattern from a given rule
Essential Vocabulary: Pattern (number or shape), pattern rule number pattern	
IT Standards: 4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities. 4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.	IT Strategies: Students will use google chrome to make a powerpoint slide. Each individual slide will be put together into a class powerpoint.

STAGE 2

Understandings:

- Number and shape patterns follow a given rule
- Patterns often contain other features not related to the rule
- Patterns and rules are related
- Patterns can either repeat or grow

Essential Questions: Why is it important to recognize and generate patterns in everyday life?

Revised Blooms	
Creating: Can the student create new product or point of view?	assemble, construct, create, design, develop, formulate \& write.
Evaluating: Can the student justify a stand or decision?	appraise, argue, defend, judge, select, support, value \& evaluate
Analyzing: Can the student distinguish between the different parts?	appraise, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question \& test.
Applying: Can the student use the information in a new way?	choose, demonstrate dramatize, employ, illustrate, interpret, operate, schedule, sketch, solve, use \& write.
Understanding: Can the student explain ideas or concepts?	classify, describe, discuss, explain, identify, locate, recognize, report, select, translate \& paraphrase
Remembering: Can the student recall or remember the information?	define, duplicate, list, memorize, recall, repeat, reproduce \& state

Formative Assessments (Evidences)

Oral Assessments
Quizzes (teacher made \&
textbook)
Skill Worksheets
Flip Charts
Active Votes
Active Expressions
Exit Cards
Math Stations (from envisions/Investigations \& other sources)
Teacher Observation
Anecdotal Notes
Take pictures of student work of different pattern situations used in Session 2.1.

Summative Assessment
http://www.insidemathematics.org/problems-of-the-month/pom-tritriangles.pdf
Teacher may choose which level they would need for each student.

This project asks students to use algebraic thinking to solve problems involving patterns, sequences, generalizations, and linear and nonlinear functions. This project may be extended by having them develop their own pattern with both shapes and numbers, including writing questions about their pattern. Students can then make their pattern on a powerpoint slide using Google Chrome to develop a class pattern powerpoint. Then students could complete other students' pattern questions.

Approximate number of days spent on unit: 8 days	
W - Where are we going? Why? What is expected? \mathbf{H} - How will we Hook and Hold students? E - How will we Equip students to Explore and Experience? \mathbf{R} - How will we help students Rethink, Rehearse, Revise, and Refine? \mathbf{E} - How will student self -Evaluate and reflect on learning? T - How will we Tailor learning to vary needs, interests, and styles? \mathbf{O} - How will we Organize and sequence the learning?	
Resources: Investigations Unit 9: Penny Jars and Plant Growth only Session 2.1-2.8 Growing Pattern Activities: http://www.mathwire.com/problemsolving/4firtree.pdf http://www.mathwire.com/problemsolving/4hexagondragons.pdf http://www.mathwire.com/algebra/tableschairs.pdf Pattern Word Problems: http://www.mathwire.com/problemsolving/3favoriteshells.pdf http://www.mathwire.com/problemsolving/4marathontraining.pdf Literature Connections: Two of Everything One Grain of Rice The Kings Chessboard Bats on Parade	Strategies: Anno's Magic Seeds Activity (in dropbox) Square Numbers Activity (in dropbox) Triangular Numbers Activity (in dropbox) From PBS Teachers: Snake Patterns -s-s-s: Students will use given rules to generate several stages of a pattern and will be able to predict the outcome for any stage. http://www.pbs.org/teachers/mathline/lessonplans/atmp/snake/sna ke_procedure.shtm In order for students to be successful later in the formal study of algebra, their algebraic thinking needs to be developed. Understanding patterns is fundamental to algebraic thinking. Students have experience in identifying arithmetic patterns, especially those included in addition and multiplication tables. Contexts familiar to students are helpful in developing students' algebraic thinking.

Guess My Function Game:

http://mathwire.com/games/guessmyrulegame.pdf
From PBS Teachers: Snake Patterns -s-s-s: Students will use given rules to generate several stages of a pattern and will be able to predict the outcome for any stage.
http://www.pbs.org/teachers/mathline/lessonplans/atmp/snake/sna ke procedure.shtm
nctm.org (Illuminations) Patterns that Grow - Growing Patterns. Students use numbers to make growing patterns. They create, analyze, and describe growing patterns and then record them. They also analyze a special growing pattern called Pascal's triangle.
nctm.org (Illuminations): Patterns that Grow - Exploring Other Number Patterns. Students analyze numeric patterns, including Fibonacci numbers. They also describe numeric patterns and then record them in table form.
nctm.org (Illuminations): Patterns that Grow - Looking Back and Moving Forward. In this final lesson of the unit, students use logical thinking to create, identify, extend, and translate patterns. They make patterns with numbers and shapes and explore patterns in a variety of mathematical contexts.

Students should generate numerical or geometric patterns that follow a given rule. They should look for relationships in the patterns and be able to describe and make generalizations.

As students generate numeric patterns for rules, they should be able to -undo the pattern to determine if the rule works with all of the numbers generated. For example, given the rule, -Add 4 starting with the number 1 , the pattern $1,5,9,13,17, \ldots$ is generated. In analyzing the pattern, students need to determine how to get from one term to the next term. Teachers can ask students, -How is a number in the sequence related to the one that came before it?, and -If they started at the end of the pattern, will this relationship be the same? Students can use this type of questioning in analyzing numbers patterns to determine the rule. Students should also determine if there are other relationships in the patterns. In the numeric Pattern generated above, students should observe that the numbers are all odd numbers.

[^0]: 4.SI.1.2 Use reliable sources of information.
 4.IN. 1 Apply appropriate strategies when reading for enjoyment and for information.
 4.IN.1.1 Implement appropriate reading strategies when reading for information.
 4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities.
 4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.). 4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
 4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
 4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing netiquette) when using resources.

[^1]: 4.SI.1.2 Use reliable sources of information.
 4.IN. 1 Apply appropriate strategies when reading for enjoyment and for information.
 4.IN.1.1 Implement appropriate reading strategies when reading for information.
 4.TT. 1 Use technology tools and skills to reinforce classroom concepts and activities.
 4.TT.1.3 Use technology tools to present data and information (multimedia, audio and visual recording, online collaboration tools, etc.). 4.SE. 1 Understand issues related to the safe, ethical, and responsible use of information and technology resources.
 4.SE.1.1 Understand the guidelines for responsible use of technology hardware.
 4.SE.1.2 Understand ethical behavior (copyright, not plagiarizing netiquette) when using resources.

