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WHY GOING 3D ?

RETINAL NEURONS AND NEUROMORPHICVISION CHIPS

Biological sensory systems provide compact, energy-efficient
models for neuromorphic electronic sensors. Engineers
attempting to duplicate the retina In silicon face a

tough challenge: the retina is only half
amillimeter thick, weighs half a gram
and consumes the equivalentof justa
tenth of awatt of power. Recentwork L_Retina
atthe University of Pennsylvania
has yielded a rudimentary
silicon retina.

CROSSSECTION OF EYE

Lens

Opticnerve

CROSS SECTION OF RETINA

——Photoreceptors
[rods and cones)

Horizontal cell
Amacrine cell

Bipolarcell

Ganglion cell

Source : Scientific American

BIOLOGICAL RETINA

The cells inthe retina, which are interconnected, extract
information from the visual field by engaging in a complex
web of excitatory (one-way arrows), inhibitory (circles on
a stick), and conductive or bidirectional (two-way arrows)
signaling. This circuitry generates the selective responses
of the four types of ganglion cells (at bottom] that make up
90 percent ofthe optic nerve's fibers, which convey visual
information to the brain. On (green) and 0ff {red] ganglion
cells elevate their firing (spike) rates when the local light
intensity is brighter or darker than the surrounding region.
Inc (blue) and Dec [yeliow) ganglion cells spike when the
intensity is increasing or decreasing, respectively.
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SILICON RETINA

Neuromorphic circuits emulate the complex
interactions that occur among the various retinal cell
types by replacing each cell’s axons and dendrites
[signal pathways) with metal wires and each synapse
with a transistor. Permutations of this arrangement
produce excitatory and inhibitory interactions that
mimic similar communications among neurons. The
transistors and the wires thatconnectthem are

laid outon silicon chips. Various regions of the chip
surface perform the functions of the different cell
layers. The large green squares are phototransistors,
which transduce light into electricity.

SILICONCHIP DETAIL

> = Amacrine
rd ‘\ : Inhibitory b /3‘
l interaction 3 ‘ Ganglion
ON INC DEC OFF
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Pixel Spiking frequency
brightness
. 1 I fuin
A >
Rate-based |11 |
input coding >
D | I I I I I I I 1:MAX
t

Classification of handwritten
numbers

Small resolution image
* 12*12 pixels
Fully-connected network

* 10 neurones : 1 neurone / class
* 144 synapses

10
11

BIOLOGICAL INSPIRED NEURONES USING OXRAM

Image 12*12

Si Real Estate: 1,8 mm?

Clock frequency: 50 MHz

10 neurones

10*144 synapses = 11,5 kOXRAMs

- NEED FOR BETTER INTEGRATION /3D
- Relative cost of Oxrams vs Neurones
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VISION PROCESSING

m Neural network for vision processing

== A SNN layer is often a 2D structure
== [Mage recognition applications need at least
two layers
This becomes inherently a 3D structure

m It lends itself well to a 3D implementation
== LOgical layers are mapped to physical tiers

2nd

m Two distinct building blocks

== A Silicon Retina
CMOS image sensor tier, with a 256x192 resolution
Pre-processing tier, which generates spiking events
corresponding to changes in pixel intensity

== A Neural processor
‘Layer 1’ extracts features: horizontal, vertical,
diagonal segments ...
‘Layer 2’ combines those features to extract complex
shapes: leads to object recognition

3D Silicon Retina 3D neural processor (x4)

| {
, . : ! .
Retina Pixels : : NN Layer 2

LOooang | B gy
Preprocessing ' i NN Layer 1

*****

Focus of
Interposer this work
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RETINE : A 3D CIRCUIT SMART-RETINA

Computer Vision applications Layer 1 : mage sensor
fast sensor (~1000 FPS)
g
' . g § Dlstrlbuati(; control
High bandwith o &
2 s Low latency
s o
Layer 2 : parallel processor
High processing power
RETINE - Layer 1 :
B ALTIS 130 nm
3D-stack : Image Sensor & Processor T IR — —
*  SIMD fully programmable accelerator m Layer 1 - image sensor :
*  Heterogenous technology, High Sensitivity o fill factor > 70 %
«  Technology ALTIS 130nm == pixel 12 pm
o . . . == pixel dynamic 1 to 8 bit image sensor
CuCu Hybrid Bonding stacking g, 9
== > 60 FPS @ 768x1024 RETINE - Layer 2 :
1 extermal 10 L2 external /0 B Layer 2 — parallel processor :
\ Cu-Cu interpixels / == SIMD matrix of 3072 ALUs (16 x 12 x 16 ALUs)
I == Computing power : 161 GOPS
== Target : 100 MHz — 175 Mhz — 210 MHz
’ w= 72 kB distributed memory + 96 kB shared RAM memory
parallel précessor

CuCu, pitch 7um Cu-Cu 1

Global signals Image Sensor pixels [S.Chevobbe, L. Millet, C. Andriamisaina, M. Duranton, D43D’15]
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m Neural Networks

3D NEURAL NETWORK CIRCUIT

== Classically divided in two layers of computation
== Difficult to implement in 2D, due to high congestions
== Very well adapted to 3D : one neuron layer per die !

g
e P
P

16 pixels (overlap) Macro-blocks Neurons

Compared to 2D,

3D offers :

2x better total area
25% better in power

| oDcicuit | 3Dcircuit [ Gain
6.6 -

Critical path (ns) 9 26%
Power (mW) 430 350 -17%
Area (mmg2) 7.9 3.6 -54%

Wires (m) 19.9 15.6 -21%

[B. Belhadj, R. Heliot, A. Vlalentian, P. Vivet, CASSES’2014]

matrix |
2

=
3 [Queoe-o™1 | More layers ?
e .| Tighter integration of Neuron, Memory, and NVM ?

........................................................
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Towards High Density
Interconnects
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3D PARTITIONNING LEVELS

Partitioning
Alternative to scaling
Shorter Interconnects

Y - Form Factor

3D sequential Yield /'Cost ¢

Perf /"Interconnect / Density
Heterogeneity

3D packaging



Interposer for
specialization:

3D INTEGRATION: A TOOL BOX FOR
NOVEL COMPUTING ARCHITECTURES

Chiplet concept: Memory proximity — high bandwith

Integration for high
performance:

* Scale-out

* Many-core
architecture

System-in-
Package, Silicon
(Passive or active)
photonic
Heterogeneous
integration
enablement
Application
specific

Chiplet for low cost:

* Small to medium
size chips (1 cm?
max)

* Advanced
technology node

a * @Generic
Sy (iE] EC.
Intact * High volume

Smaller diameters

Higher Aspect Ratios

~ Adhesive

Si Carrier
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3D INTEGRATION:
HIGH DENSITY HYBRID BONDING

] 5§
wwww HHEE 8888
5 5 4 4 .
a| Bacsr: wiafer wiith Cu paed o Falsring ancl praparation i Watar banding o Thermal annealing TOWE:II’dS Sma”er p|tCh
& multi layers
PROCESS FLOW

Dermixing
| Cud,

Single Die Handling

*

Solution to provide small High reliability solution Best of Class Signal
pitch integration capability for multi-stacks, to Noise figures
for application with high density high temperature
interconnect requirements & secure solutions
QI ELEC ! Increasing throughput
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leti 3D SEQUENTIAL INTEGRATION: ... ALARGE RANGE OF APPLICATIONS
caceen  COOLCUBE...

QUANTUM NEUROMORPHIC
" COMPUTING COMPUTING
Low resistivity Low thermal -t

3D connections ' ' g = Budget top layer

High quality J _ : Local
top film Interconnect Level

Thermal stability
and low resistivity

3D PIXEL N\/\fsms

NEMS ASIC

Bottom MOS FET
thermal stability

, N/P PARTITIONNING

‘% CHALLENGES

* Process Flow Validation « Cost Analysis E’

* Low Temperature Epitaxy » Design Flow and Tools
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MEMORY: _
A UNIQUE VALUE PROPOSITION 4 >,

DEFINITION OF TECHNOLOGY
SPECIFICATIONS

Largeé vari:;éty-of
avadatie

V-

GeSbhTe
SiOx
TaOx
Z2rO2
AlOx
VOX

DESIGN ENABLEMENT & HfAIXOy

MODULE DEVELOPMENT

GeAsSbTe

200/300 MM

INTEGRATION Large varietysol

available

pSTT-Magnetic RAM
Conductive Bridge RAM
Oxide Resistive RAM
Ferro-electric RAM
Phase — Change Memory

MODELING, . AN

SIMULATION & NANO- ‘ Dt "’,’”
CHARACTERIZATION ,

© Jayet/cea

TEST & CHARACTERIZATION

© Guilly/cea

NICE 2019




PERSPECTIVES

EXPLORING THE VALUE OF

« STACKING TWO DOUBLE LAYERS OF
LOGIC + RRAM STACKS...

COOLCUBE™

-
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COOLCUBE™

... TO MIMIC CORTICAL
COLUMNS
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CONCLUSION

= DEEP NEURAL NETWORKS, Al ALGORITHMS
= Are already supported by 3D technologies
= Digital Architrectures using Interposer and HBM memories

Pascal GP100

P Begdatam

10 TeraFLOPS FP32

N 020 TeraFLOPS FP16

TN h,  ©16GB HEM - 750G8/5
= 300W TOP

D S6TGRLOPS/W (FP16}

#16nm process

#160G8/s NV Link

= NEED TO GO FURTHER

to pursue integration and reduce power consumption for embedded applications
= Start with biological inspired systems
= Analog circuitry
= Non volatile memories

= High density 3D -> Hybrid bonding fine pitch and/or Monolithic Integration

European Research Council

Patented IMC-
cube

- Interaction Architecture, design, technology
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Caltech

PARTNERSHIPS WITH INDUSTRY/ACADEMIA
'} Exploration of New Materials & Process Integration
|j Joint Developments Programs with Equipment Manufacturers

Joint Technology Development & Exploration of New Concepts

Technology Transfer to Fab
(IDMs, Foundries)

,
-1 Prototyping / MPW Shuttles
m,




