Efficient Compilation of CUDA Kernels for High-Performance
Computing on FPGAs

ALEXANDROS PAPAKONSTANTINOU, University of Illinois at Urbana-Champaign
KARTHIK GURURAJ, University of California, Los Angeles

JOHN A. STRATTON and DEMING CHEN, University of Illinois at Urbana-Champaign
JASON CONG, University of California, Los Angeles

WEN-MEI W. HWU, University of Illinois at Urbana-Champaign

The rise of multicore architectures across all computing domains has opened the door to heterogeneous
multiprocessors, where processors of different compute characteristics can be combined to effectively boost
the performance per watt of different application kernels. GPUs, in particular, are becoming very popular for
speeding up compute-intensive kernels of scientific, imaging, and simulation applications. New programming
models that facilitate parallel processing on heterogeneous systems containing GPUs are spreading rapidly
in the computing community. By leveraging these investments, the developers of other accelerators have an
opportunity to significantly reduce the programming effort by supporting those accelerator models already
gaining popularity. In this work, we adapt one such language, the CUDA programming model, into a new
FPGA design flow called FCUDA, which efficiently maps the coarse- and fine-grained parallelism exposed in
CUDA onto the reconfigurable fabric. Our CUDA-to-FPGA flow employs AutoPilot, an advanced high-level
synthesis tool (available from Xilinx) which enables high-abstraction FPGA programming. FCUDA is based
on a source-to-source compilation that transforms the SIMT (Single Instruction, Multiple Thread) CUDA
code into task-level parallel C code for AutoPilot. We describe the details of our CUDA-to-FPGA flow and
demonstrate the highly competitive performance of the resulting customized FPGA multicore accelerators.
To the best of our knowledge, this is the first CUDA-to-FPGA flow to demonstrate the applicability and
potential advantage of using the CUDA programming model for high-performance computing in FPGAs.

Categories and Subject Descriptors: C.3 [Special Purpose and Application-Based Systems]: Real time
and embedded systems; C.1.4 [Processor Architectures]: Parallel Architectures

General Terms: Design, Performance

Additional Key Words and Phrases: FPGA, high-level synthesis, parallel programming model, high-
performance computing, source-to-source compiler, heterogeneous compute systems

ACM Reference Format:

Papakonstantinou, A., Gururaj, K., Stratton, J. A., Chen, D., Cong, J., and Hwu, W.-M. W. 2013. Efficient
compilation of CUDA kernels for high-performance computing on FPGAs. ACM Trans. Embedd. Comput.
Syst. 13, 2, Article 25 (September 2013), 26 pages.

DOLI: http://dx.doi.org/10.1145/2514641.2514652

Authors’ addresses: A. Papakonstantinou (corresponding author), Electrical and Computer Engineering
Department, University of Illinois at Urbana-Champaign, IL; email: apapako02@illinois.edu; K. Gururaj,
Computer Science Department, University of California, Los Angeles, CA; J. A. Stratton and D. Chen,
Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, IL; J. Cong,
Computer Science Department, University of California, Los Angeles, CA; W.-M. W. Hwu, Electrical and
Computer Engineering Department, University of Illinois at Urbana-Champaign, IL.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

(© 2013 ACM 1539-9087/2013/09- ART25 $15.00

DOTI: http://dx.doi.org/10.1145/2514641.2514652

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:2 A. Papakonstantinou et al.

1. INTRODUCTION

Parallel processing, once exclusively applied in supercomputing servers and clusters,
has permeated nearly every digital computing domain during the last decade: from
PCs and laptops to cell phones and from compute clusters in the cloud to gaming and
networking devices. Democratization of parallel computing was driven by the power
wall encountered in traditional single-core processors, and it was enabled by the con-
tinued shrinking of transistor feature size that rendered Chip MultiProcessors (CMP)
feasible. Meanwhile, the importance of parallel processing in a growing set of appli-
cations that leverage computationally heavy algorithms, such as simulation, mining,
or synthesis has underlined the need for on-chip concurrency at a granularity coarser
than instruction level. One of the strategies for achieving higher on-chip concurrency
is based on increasing the percentage of on-chip silicon real estate devoted to compute
modules. In other words, instantiating more, though simpler, cores to efficiently execute
applications with massive parallelism and regular structure (i.e., predictable control-
flow and data access patterns). This philosophy has been adopted in the architecture
of multicore devices such as the Cell-BE [IBM 2006], the TILE [TILERA 2012] family,
or the GeForce [NVIDIA 2012b] family as well as FPGAs, which offer reconfigurable
spatial parallelism. Large caches, complex branch predictors, and dynamic instruction
schedulers are usually not employed in such devices, which can provide up to one to
two orders of performance boost for applications with inherently massive parallelism.

Despite the shared philosophy of achieving a high degree of parallelism using simpler
cores, these devices possess very diverse characteristics which render them optimal for
different types of applications and different usage scenarios. For example, the IBM cell
is a MultiProcessor Systems-on-Chip (MPSoC) based on a set of heterogeneous cores.
Thus, it can serve either as a stand-alone multiprocessor or a multicore accelerator,
though at the cost of lower on-chip concurrency (i.e., it has fewer cores compared to
other types of multicore accelerators). GPUs, on the other hand, consist of hundreds
of processing cores clustered into Streaming Multiprocessors (SMs) that can handle
kernels with high degree of data-level parallelism. Launching the SMs requires a host
processor, though. As a result of the diversity in the multicore space, a growing interest
in heterogeneous compute systems either at the chip [IBM 2006; AMD 2012] or the
cluster level [Showerman et al. 2009] is observed. Especially in High-Performance
Computing (HPC), heterogeneity has been gaining great momentum. In this work we
focus on high-performance acceleration on FPGAs that offer flexible and power-efficient
application-specific parallelism through their reconfigurable fabric.

Unfortunately, the performance and power advantages of the different multicore
devices are often offset by the programmability challenges involved in the parallel
programming models they support. First, migration into the parallel programming
mindset involves an associated cost that a wide range of programmers and scientists
who enjoy the object-oriented features and simplicity of sequential languages such
as C/C++ and Java are not willing to pay. Second, achieving efficient concurrency in
several of these programming models entails partial understanding of the underly-
ing hardware architecture, thus restricting adoption. This is especially true for FPGA
programming, where the traditional programming interfaces are VHDL and Verilog,
which describe computation at the Register Transfer Level (RTL). Democratization of
parallel computing has also been hindered by domain-specific programming interfaces
(e.g., OpenGL and DirectX programming models used in GPU devices) that require
application morphing into graphics-style computation. Fortunately, the parallel pro-
gramming interface space has dramatically changed during the last years (e.g., new
advanced high-level synthesis tools for FPGAs, new programming models such as
CUDA [NVIDIA 2012a] and OpenCL [Khronos 2011]), easing the path toward parallel

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:3

&E
2 = > A
o W o o \F'\l. "~ e
ﬁ‘“‘f ﬂf S W " B-Q;ﬂ‘;e
S :
0\‘3 . B R 5"‘0\

FCUDA
unnotiied
cole

AutoPilon Lemenaits

FPGA
C code HLS

FCUDA
S5TO Design | Symthesis | Bitfile

Fig. 1. FCUDA flow.

computing. Nevertheless, achieving high performance in an efficient manner still re-
mains a challenge. The use of different parallel programming models by heterogeneous
accelerators complicates the efficient utilization of the devices available in heteroge-
neous compute clusters, which reduces productivity and restricts optimal mapping of
kernels to accelerators. In this work we describe the FCUDA framework which aims
to address both: (i) the programmability efficiency of FPGAs for massively parallel ap-
plication kernels and (ii) providing a common programming interface with GPUs and
CPUs.

The recent introduction of the CUDA programming model [NVIDIA 2012a] by Nvidia
marked a significant milestone toward leveraging the parallel compute capacity of
GPUs for nongraphics applications. CUDA provides a programming model that facili-
tates parallelism expression across a hierarchy of thread groups. The thread hierarchy
is defined within procedures that are called kernels and contain the inherently par-
allel sections of an application. Kernels are executed on the manycore GPU device
whereas the rest of the code is executed on the CPU. In this work we explore the
use of CUDA for programming FPGAs. We propose the FCUDA flow (Figure 1) which
is designed to efficiently map the coarse- and fine-grained parallelism expressed in
CUDA kernels onto the reconfigurable fabric. The proposed flow combines source-code
transformations and optimizations with High-Level Synthesis (HLS) to enable high-
performance acceleration with high programming abstraction. The input CUDA code
is initially restructured by a novel Source-to-Source Transformation and Optimization
(SSTO) engine, implemented with the Cetus compiler [Lee et al. 2003], and subse-
quently fed to an advanced high-level synthesis tool called AutoPilot! [Zhang et al.
2008; Cong et al. 2011], which generates RTL output. A recent independent evaluation
study [BDTI 2010] on the usability and quality of results of AutoPilot has concluded
that the quality of the generated RTL is comparable to hand-written RTL.

The SSTO engine performs two main types of transformations: (i) data communi-
cation and compute optimizations and (ii) parallelism mapping transformations. The
first are based on analysis of the kernel dataflow followed by data communication
and computation reorganization. This set of transformations aims to enable efficient
mapping of the kernel computation and data communication onto the FPGA hardware.
The latter expose the parallelism inferred in the CUDA kernels in the generated
AutoPilot-C descriptions which are converted by the HLS engine into parallel
Processing Engines (PEs) at Register Transfer Level (RTL).

1 AutoPilot was developed by a startup company called AutoESL and was based on the xPilot HLS system
[Chen et al. 2005] developed at UCLA. AutoESL was acquired by Xilinx in early 2011 and the AutoPilot tool
is now available from Xilinx.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:4 A. Papakonstantinou et al.

The use of CUDA for mapping compute-intensive and highly parallel kernels onto
FPGAs offers three main advantages. First, it provides a C-styled API for express-
ing coarse-grained parallelism in a very concise fashion. Thus, the programmer does
not have to incur a steep learning curve or excessive additional programming effort
to express parallelism (expressing massive parallelism directly in AutoPilot-C can in-
cur significant additional effort from the programmer). Second, the CUDA-to-FPGA
flow shrinks the programming effort in heterogeneous compute clusters with GPUs
and FPGAs by enabling a common programming model. This simplifies application
development and enables efficient evaluation of alternative kernel mappings onto the
heterogeneous acceleration devices by eliminating time-consuming application porting
tasks. Third, the wide adoption of the CUDA programming model and its popularity
render a large body of existing applications available to FPGA acceleration.

The main contributions in this article are summarized in the following.

—We describe a novel CUDA-to-FPGA programming flow which combines FPGA-
specific source-to-source optimizations and transformations with high-level
synthesis.

—We show that the CUDA programming model, though designed for the GPU comput-
ing domain, can be leveraged in the FPGA computing domain to efficiently generate
customized parallel compute architectures on the reconfigurable fabric.

—We provide a set of experimental results that show the performance benefits of the
source-to-source optimizations implemented in FCUDA.

—We use several integer CUDA kernels to compare execution performance between
FCUDA-configured FPGAs and GPUs and we provide insight on the comparison
results based on the kernel characteristics.

In the next section we discuss FPGA computing platform features along with previ-
ous related work. Section 3 describes the characteristics of the CUDA and AutoPilot
programming models and provides insight to the suitability of the CUDA API for pro-
gramming FPGAs. The FCUDA translation details are presented in Sections 4 and
5, while Section 6 describes experimental results and shows that the proposed flow
can efficiently exploit the computational resources of FPGAs in a customized fashion.
Finally, Section 7 concludes the article and discusses future work.

2. RECONFIGURABLE COMPUTING
2.1. The FPGA Platform

As silicon process technology keeps enabling smaller feature sizes, the transistor ca-
pacity of FPGAs is increasing dramatically. Modern FPGAs, fabricated with the latest
28nm process technology, host a heterogeneous set of hard IPs (e.g., PLLs, ADCs, PCle
interfaces, general-purpose processors, and DSPs) along with millions of reconfigurable
logic cells and thousands of distributed memories (e.g., BRAMs in Xilinx Virtex-5 de-
vices [Xilinx 2012]). Their abundant compute and memory storage capacity makes
FPGAs attractive for the implementation of compute-intensive and complex applica-
tions [Che et al. 2008; Cong and Zou 2008; Cho et al. 2009], whereas the hard IP
modules offer compute (e.g., CPUs, DSPs) and data communication (e.g., PCle, Gbps
transceivers) efficiency, enabling high-performance System-on-Chip (SoC) implemen-
tations [He et al. 2009]. One of the main benefits of hardware reconfigurability is
increased flexibility with regard to leveraging different types of application-specific
parallelism, for example, coarse- and fine-grained, data- and task-level, and versatile
pipelining. Moreover, parallelism can be leveraged across FPGA devices such as in
the HC-1 Application-Specific Instruction Processor (ASIP) [Convey 2011] which com-
bines a multicore CPU with multi-FPGA-based custom instruction accelerators. The

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:5

potential of multi-FPGA systems to leverage massive parallelism has been also ex-
ploited in the recently launched Novo-G supercomputer [CHREC 2012], which hosts
192 reconfigurable devices.

Power is undeniably becoming the most critical metric of systems in all application
domains from mobile devices to cloud clusters. FPGAs offer a significant advantage
in power consumption over CPUs and GPUs. Williams et al. [2008] showed that the
computational density per watt in FPGAs is much higher than in GPUs. The 192-
FPGA Novo-G [CHREC 2012] consumes almost three orders of magnitude less power
compared to Opteron-based Jaguar and Cell-based Roadrunner supercomputers, while
delivering comparable performance for bioinformatics-related applications. In this
work we evaluate the FCUDA framework and demonstrate that for certain types of
applications, the CUDA-to-FPGA implementation can offer competitive performance
to the GPU at a fraction of the energy consumption.

2.2. Programmability

Despite the power and application customization advantages, FPGAs have not enjoyed
wide adoption due to the programmability challenges they pose. Traditionally, FPGA
programming required RTL and hardware design skills. Fortunately, the advent of sev-
eral academic [Gajski 2003; Chen et al. 2005; Diniz et al. 2005; Gupta et al. 2004] and
commercial [Impulse 2003; Zhang et al. 2008; Mentor 2012] high-level synthesis tools
has helped raise the abstraction level of the programming model. Most of these tools
generate RTL descriptions from popular High-Level programming Languages (HLLs).
The inherent sequential flow of execution in traditional programming languages re-
stricts parallelism extraction at granularities coarser than loop iterations [Diniz et al.
2005]. Thus the abundant spatial parallelism of FPGAs may not be fully exploited.
To overcome this problem, various HLS frameworks have resorted to the introduc-
tion of new parallel programming models [Hormati et al. 2008; Huang et al. 2008] or
language extensions for coarse-grained parallelism annotation [Impulse 2003; Zhang
et al. 2008]. However, expressing massive coarse-grained parallelism in several of
the proposed parallel programming models may incur significant learning and/or pro-
gramming effort. A new data-parallel programming model, OpenCL [Khronos 2011],
has been recently proposed for programming heterogeneous parallel systems. Initial ef-
forts to use OpenCL for FPGA programming include OpenRCL [Lin et al. 2010] (SIMD
multicore on FPGA) and SOpenCL [Owaida et al. 2011] (MIMD multicore on FPGA).
However, both of these works use core templates rather than HLS to customize cores
for each application. Moreover, neither of these works compares FPGA performance
with other devices. In this work we propose the use of CUDA for concise expression of
coarse-grained parallelism in inherently parallel and compute-intensive kernels. The
popularity of CUDA demonstrates its benefits in terms of learning and programming
effort. Moreover, by adopting CUDA we enable a common programming interface for
two widely used heterogeneous types of accelerators, namely GPUs and FPGAs.

2.3. Performance

There has been considerable previous research on the comparison of performance be-
tween different types of compute devices. Che et al. [2008] compare CPU, GPU, and
FPGA platforms’ performance for three types of applications: Gaussian elimination,
DES, and Needleman-Wunsch. They show that FPGAs achieve better latencies in
terms of cycles, especially for applications with bit-level and custom bitwidth oper-
ations. However, their work does not take into account clock frequency. Frequency is
a performance variable in the FPGA platform and it depends on the RTL design (i.e.,
pipelining) and the physical implementation (place and route). Williams et al. [2008]
define Computational Density (CD) and Computational Density per Watt (CDW) for

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:6 A. Papakonstantinou et al.
CUDA Kernel

Block Block GPU HW
0,0 1,0 SM SM SM

Block Block
©,1) a1 SM SM SM

Thread-Block (0,1) Streaming Multiprocessor
‘Thread|Thread|Thread
©0 | A0 | 20 SP SP
Thread|Thread|Thread SP SFU SP SFU
©n | @y | @n SP SP

Fig. 2. CUDA programming model.

fixed and reconfigurable multicore devices. They compare these metrics for FPGAs,
GPUs, and multicore CPUs and show that FPGAs offer higher computational densi-
ties for bit operations and 16-bit integer arithmetic (up to 16X and 2.7X respectively)
over GPUs but may not compete as well for wider bidwidths, such as 32-bit integer and
single-precision floating-point operations (0.98X and 0.34X respectively). In their work,
FPGA frequency is determined based on the frequency of a single ALU, not accounting
for interconnection delays between different ALUs. Random number generators for
commonly used distributions are implemented by Thomas et al. [2009] for four distinct
compute platforms: multicore CPUs, GPUs, 2D core grids, and FPGAs. They explore dif-
ferent algorithms and they conclude that none of the used algorithms is optimal across
all devices. In this work we map data-parallel CUDA kernels onto parallel custom
processing engines on the FPGA. The performance of the FCUDA-generated custom
accelerators is evaluated by taking into account both cycle latency and clock frequency.

3. OVERVIEW OF PROGRAMMING MODELS IN FCUDA
3.1.CUDAC

The CUDA programming model, developed by Nvidia, offers a simple interface for exe-
cuting general-purpose applications on Nvidia GPUs. Specifically, CUDA is designed to
expose parallelism on the SIMT (Single Instruction, Multiple Thread) architecture of
CUDA-capable GPUs [NVIDIA 2012b]. CUDA C is based on a set of extensions to the C
programming language which entail code distinction between host (i.e., CPU) and GPU
code. The GPU code is organized into procedures called kernels which contain the em-
barrassingly parallel parts of applications and are invoked from the host code. Each ker-
nel implicitly describes thousands of CUDA threads that are organized in groups called
threadblocks. Threadblocks are further organized into a grid structure (Figure 2). The
number of threadblocks per grid and threads per threadblock are specified in the host
code, whereas built-in variables (i.e., threadldx, blockldx) may be used in the kernel to
specify the computation performed by each thread in the SIMT architecture. It is the
programmer’s responsibility to partition the computation into parallel coarse-grained
tasks (threadblocks) that consist of finer-grained subtasks (threads) that can execute in
parallel. The proposed FCUDA flow maps the parallelism contained in the hierarchy of
threads and threadblocks of the kernel onto spatial hardware parallelism on the FPGA.

CUDA extends C with synchronization directives that control how threads within a
threadblock execute with respect to each other (i.e., synchronization points impose a
bulk-synchronous type of parallelism). Conversely, threadblocks may execute indepen-
dently in any parallel or sequential fashion. In recent updates of the CUDA platform,
atomic operations and fence directives can be used to enforce the order of memory ac-
cesses either at threadblock or grid level. The two granularities of CUDA parallelism
are also represented in the SIMT architecture (Figure 2), where Streaming Processors
(SPs) are clustered in Streaming Multiprocessors (SMs). Each threadblock is assigned

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 257

to one SM and its corresponding threads are executed on the SPs of the SM in par-
allel thread groups called warps. The SIMT architecture executes warps in a SIMD
(Single Instruction, Multiple Data) fashion when warp threads converge on the same
control flow. On the other hand, control-flow divergent threads within a warp execute
sequentially, limiting the amount of exploited concurrency from the SIMT hardware.
The FCUDA framework generates Processing Engines (PEs) at threadblock granu-
larity with custom warp size parallelism that is determined by the programmer and
performance-versus-resource-budget trade-offs.

The CUDA programming model entails multiple memory spaces with diverse
characteristics. In terms of accessibility, memory spaces can be distinguished into
thread-private (e.g., SP-allocated registers), threadblock-private (e.g., SM-allocated
on-chip memory), and global (e.g., off-chip DDR memory). Each SP is allocated a set
of registers out of a pool of SM registers according to the kernel’s variable use. The
SM-allocated memory is called shared memory and it is visible by all the threads
within the threadblock assigned to the corresponding SM (Figure 2). In terms of
globally visible memory spaces, CUDA specifies one read-write (global memory) space
and two read-only (constant and texture memory) spaces. Registers and shared memory
incur low access latency but have limited storage capacity (similarly to CPU register
files and tightly coupled scratchpad memories). The three globally visible memory
spaces are optimized for different access patterns and data volumes. In the FPGA
platform we leverage two main memory structures: off-chip DDR and on-chip BRAMs
and registers. The visibility and accessibility of the data stored on these memories can
be customized arbitrarily depending on the application’s characteristics.

3.2. AutoPilot-C

AutoPilot is an advanced commercial HLS tool which takes C/C++ code and generates
an equivalent RTL description in VHDL, Verilog, and SystemC. The C/C++ input is
restricted to a synthesizable subset of the language. The main features not supported
in high-level synthesis include dynamic memory allocation, recursive functions, and,
unsurprisingly, the standard file/io library calls. The input code may be annotated by
user-injected directives that enable automatic application of different transformations.
AutoPilot converts each C procedure into a separate RTL module. Each RTL module
consists of the datapath that realizes the functionality of the corresponding C pro-
cedure along with FSM logic that implements control-flow scheduling and datapath
pipelining. Procedure calls are converted to RTL module instantiations, thus trans-
forming the procedure call graph of the application into a hierarchical RTL structure. A
pair of start/done interface signals is attached to the FSM logic to signal the beginning
and end of the module’s operation, facilitating inter-module synchronization.
AutoPilot leverages the LLVM compiler infrastructure [LLVM 2007] to perform code
transformations and optimizations before its backend RTL generator translates the de-
scribed functionality into datapath and FSM logic. Some transformations and optimiza-
tions are performed by default whereas others are triggered by user-injected directives.
In particular, AutoPilot will automatically attempt to extract parallelism both at in-
struction level and task level (i.e., multiple sequential procedure calls may be converted
to concurrent RTL modules, if proven not data dependent). On the other hand trans-
formations such as loop unrolling, loop pipelining, and loop fusion can be enabled by
user-injected directives as long as data-dependence analysis permits them (Figure 3).
With regard to data storage, AutoPilot distinguishes between two main storage
types: on-chip and off-chip. On-chip storage needs to be statically allocated and thus
it is suitable for scalar variables (mapped onto FPGA slice registers) and constant size
arrays and structures (mapped onto FPGA BRAMs). Off-chip storage can be inferred
through C pointers along with corresponding user-injected directives and its size does

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:8 A. Papakonstantinou et al.

AutoPilot-C Code
Procedure A() I

RTL Execution

Procedure B1() Unrolled by 2

Procedure B2()
Procedure B3()

N

Data Dependences

Resource

Procedure C() | A B1 © Time

Fig. 3. AutoPilot-C programming model.

not need to be statically defined (it’s the programmer responsibility to honor off-chip
memory access bounds). In the FPGA platform, the on-chip BRAMs may be organized
into multiple independent address spaces. AutoPilot maps each nonscalar variable onto
a set of BRAMs (with sufficient aggregate storage capacity) which are only accessible
by the PEs that correspond to procedures that reference the nonscalar variable.

3.3. Programming Model Translation Advantages

As compute systems become increasingly heterogeneous with different types of parallel
processing accelerators, FCUDA offers an inter-programming model translation tool for
efficient kernel portability across GPUs and FPGAs. In this work we facilitate transla-
tion of CUDA C into AutoPilot-C. Even though the CUDA programming model is closely
linked to the GPU architecture, it offers a good model for programming other platforms
such as FPGAs. This conclusion can be reinforced by comparing CUDA with the recently
introduced OpenCL [Khronos 2011] parallel programming model which offers a com-
mon API for programming heterogeneous devices. OpenCL is based on similar thread
group hierarchies, user-exposed memory spaces, and thread synchronization concepts.

The FCUDA flow combines the advantages of the CUDA programming model with
the advanced high-level synthesis engine of AutoPilot. The CUDA C programming
model provides high abstraction and incurs a low learning curve while enabling
parallelism expression in a very concise manner (i.e., enables higher programming
productivity compared to AutoPilot-C). FCUDA uses source-to-source transformations
and optimizations to convert the CUDA threadblock and thread parallelism into
procedure and loop iteration parallelism in AutoPilot’s C programming model. By
leveraging high-level source-to-source transformations rather than low-level IR
translation (e.g., from CUDA’s assembly-like PTX IR to RTL), FCUDA can efficiently
exploit different levels of coarse-grained parallelism while leveraging existing HLS
tools. Furthermore, an important benefit of leveraging CUDA for FPGA programming
is the distinction of on-chip and off-chip memory spaces in the CUDA C programming
model. This fits well with the memory view within hardware synthesis flows. Finally,
the transformations entailed in FCUDA automate the cumbersome task of replication
and interconnection of parallel Processing Engines (PEs) along with their associated
on-chip memory buffers and the data transfers from/to off-chip memories.

4. FCUDA FRAMEWORK

The proposed CUDA-to-FPGA flow (Figure 1) is based on a Source-to-Source Trans-
formation and Optimization (SSTO) engine which processes the input CUDA code and
generates C code for AutoPilot. During the SSTO processing, the implicit parallelism
in the SIMT programming model of CUDA is explicitly exposed and restructured to
better fit to the reconfigurable fabric. The transformations and optimizations applied
on the input code are partially controlled by the parameter values of the user-injected

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:9

annotations (Figure 1). Following the FCUDA SSTO phase, AutoPilot extracts fine-
grained Instruction-Level Parallelism (ILP) from the transformed code and maps the
SSTO-exposed coarse-grained parallelism onto parallel PEs at RTL level. The RTL
description is pipelined according to the programmer-specified clock period. Finally,
the FCUDA flow leverages the Xilinx ISE logic and physical synthesis tools to map
the design onto the reconfigurable fabric. In the following subsections we discuss the
overall philosophy of the SSTO engine followed by an overview of the user-injected
annotation semantics and their effect in the FCUDA flow.

4.1. CUDA C to Autopilot-C Translation Philosophy

The FCUDA translation aims to: (i) convert the implicit workload hierarchies (i.e.,
threads and threadblocks) of the CUDA programming model into explicit AutoPilot-C
work items, (ii) expose the coarse-grained parallelism and synchronization restrictions
of the kernel in the AutoPilot-C programming model, and (iii) generate AutoPilot-C
code that can be converted into high-performance RTL implementations. Hence, it is
necessary to judiciously map the coarse-grained parallelism (expressed as a hierarchy
of thread groups in CUDA) onto the spatial parallelism of the reconfigurable fabric.
Moreover, the FCUDA translation implements code restructuring optimizations
(e.g., kernel decomposition into compute and data-transfer tasks) to facilitate better
performance onto the reconfigurable architecture.

In the CUDA programming model, coarse-grained parallelism is organized in two
logical hierarchy levels: threadblocks and threads (Figure 2). The FCUDA SSTO en-
gine converts the logical thread hierarchies into explicit work items. Figure 4 depicts
this conversion for the coulombic potential (cp) kernel. The logical thread hierarchies
in CUDA are expressed via the built-in dim3 vectors (i.e., C structs comprising 3
integer values) threadldx and blockldx (Figure 4(a)). In AutoPilot-C we use for-loop
nests to express the workload of these thread-group hierarchies. At grid level, thread-
block workloads are materialized through threadblock loops (Figure 4(b)). Similarly, at
threadblock level we materialize thread workloads through thread loops (Figure 4(c)).
Coarse-grained parallelism can then be exposed by applying loop unroll-and-jam [Aho
et al. 2006] transformations on the threadblock and thread loops. Since CUDA thread-
blocks constitute subtasks that can be executed independently, threadblock-level par-
allelism is used in FCUDA for the generation of concurrently executing Processing
Engines (PEs) on the FPGA. Each PE is statically scheduled to execute a disjoint sub-
set of threadblocks in the kernel grid. On the other hand, threads within a threadblock
execute cooperatively (in terms of synchronization and data sharing) to solve the par-
ent threadblock subproblem and their parallelism is leveraged in FCUDA to reduce
the PE execution latency. Threads are also scheduled to execute in warps of size equal
to the thread loop unroll degree. The independent execution of threadblocks facilitates
more flexible mapping onto the spatial parallelism, but thread parallelism offers more
opportunity for resource sharing. Moreover, the two types of parallelism affect differ-
ently the execution frequency of the FPGA implementation. In Section 6 we will discuss
the performance impact of the two types of parallelism exposure and we will evaluate
different parallelism configurations.

Despite their flexible architecture, FPGAs bear inherent architectural differences
with respect to GPUs, which need to be considered during kernel code optimization to
achieve optimum performance. For example, FPGAs contain blocks of on-chip memory
(BRAMSs) which are better suited for use as scratchpad memories rather than caches.
In addition, it is preferred to avoid complex hardware for dynamic threadblock context
switching as well as dynamic coalescing of concurrent off-chip memory accesses on
the FPGA. Hence, the FCUDA SSTO engine implements static coalescing by aggre-
gating all the off-chip accesses into block transfers (provided memory accesses can be

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:10

A. Papakonstantinou et al.

0NN AW~

__constant__ int4 atominfol MXATMS];

#pragma FCUDA GRID x_gdim=32y gdim=32 pe=6 cluster=3x3

#pragma FCUDA BLOCK x_bdim=16 y_bdim=16

#pragma FCUDA SYNC type=sequential

#pragma FCUDA COMPUTE name=compute unroll=4 part=2 ptype=block array=energyval
#pragma FCUDA TRANSFER name=crd type=stream io=0 global=atominfo size=2000 gsize=40000
#pragma FCUDA TRANSFER name=read type=burst io=0 global=energygrid size=16 tlp=y
#pragma FCUDA TRANSFER name=write type=burst io=1 global=energygrid size=16 tlp=y
__global _ void cenergy(int numatoms, int gridspacing, int * energygrid) { // Kernel

10 | unsigned int xindex = (blockldx.x * blockDim.x) + threadldx.x;
11 | unsigned int yindex = (blockldx.y * blockDim.y) + threadIdx.y;
12 | unsigned int outaddr = (gridDim.x * blockDim.x) * yindex + xindex;
13 | int coorx = gridspacing * xindex;
14 | int coory = gridspacing * yindex;
15 | int atomid;
16 | int energyval=0;
17 | for (atomid=0; atomid<numatoms; atomid++) {
18 int dx = coorx - atominfo[atomid].x;
19 int dy = coory - atominfo[atomid].y;
20 intr 1=dx*dx + dy*dy + atominfo[atomid].z;
21 energyval += atominfo[atomid].w * r_1;
22 |}
23 | energygrid[outaddr] += energyval;
24
(a) coulombic potential (cp) CUDA kernel
1 | void cenergy(int numatoms, int gridspacing, int * energygrid, dim3 blockDim, dim3 gridDim) {
2
3 for(tbID = clID*peNum; thID < tbNum; tbID+=cINum*peNum) { // Threadblock loop
4 for(bIdx = tbID; bIdx< bldx+peNum; bIdx++) {
5
6 cenergy_read(energygrid, outaddr, energygrid local, ...); // TRANSFER task call
7 cenergy_compute(energygrid local, ...); // COMPUTE task call
8 cenergy_write(energygrid, outaddr, energygrid _local, ...); // TRANSFER task call
9| 13
10 | }
(b) threadblock loop and compute/transfer task outlining in kernel procedure
1 | void cenergy_read(energygrid, outaddr, energygrid local) { // TRANSFER Task proc.
2 for(threadldx.y = 0; threadldx.y < blockDim.y; threadldx.y++) // Thread-loop
3 memcpy(energygrid+outaddr, energygrid locall[], ...); // Burst
403
5
6 | void cenergy compute(energygrid local, ...) { // COMPUTE Task proc.
7 for(threadldx.y = 0; threadIldx.y < blockDim.y; threadldx.y++) { // Thread-loop
8 for(threadldx.x = 0; threadIldx.x < blockDim.x; threadldx.x++) {
9
0] B
1|3
12
13 | void cenergy write(energygrid, outaddr, energygrid local) { // TRANSFER task
14 for(threadldx.y = 0; threadldx.y < blockDim.y; threadldx.y++) // Thread-loop
15 memcepy(energygrid local[], energygrid + outaddr, ...); // BURST
16 | }

(¢) compute and data-transfer task procedures

Fig. 4. Converting CUDA C to AutoPilot-C.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:11

1% level task de-composition

DDR DDR (sequential)
Idle Controller Controller
Clomit Kernel Execution Coasiant Kernel Execution
transfer transfer

4

BRAM = “ time
A Interconnect BRAM Interconnect | e |
Logic A Logic < A A | buffer A A |
)& o compute
o [I3 - SRR -
Clive ompute
Logﬁc Ctr:gpil;te 2™ Jevel ta'sk de-composition
(ping-pong)
(a) sequential task (b) ping-pong task (c) 2-level task decomposition with constant data
synchronization synchronization streaming

Fig. 5. Task synchronization schemes.

coalesced). In particular, the kernel is decomposed into compute tasks and data-transfer
tasks through procedural abstraction (i.e., the inverse of function inlining) as depicted
in Figure 4(b). The off-chip memory accesses are then converted into memcpy calls
(Figure 4(c)) which are synthesized by AutoPilot into burst transfers facilitating high
utilization of the off-chip memory bandwidth. Note that coarse-grained parallelism
exposure at grid level through unroll-and-jam of the threadblock loop will result in
multiple compute task calls which AutoPilot will translate into concurrent PEs at RTL
level (task-level parallelism exposure described in Section 3.2).

The restructuring of the kernel into compute and data-transfer tasks offers potential
benefits beyond higher off-chip memory bandwidth utilization. It also enables compute
and data-transfer overlap at a coarser granularity (i.e., task granularity) for more
efficient kernel execution. By leveraging AutoPilot’s procedure-level parallelism the
FCUDA SSTO engine can arrange the execution of data-transfer and compute tasks
in an overlapped fashion (Figure 5(b)). This implements the ping-pong task synchro-
nization scheme at the cost of more BRAM resources (i.e., twice as many BRAMs are
utilized). Tasks communicate through double BRAM buffers in a pipelined fashion
where the data producing/consuming task interchangeably writes/reads to/from one of
the two intermediate BRAM buffers (see lower part of Figure 5(c)). Alternatively, the
sequential task synchronization scheme (Figure 5(a)) schedules tasks in an interleaving
fashion. The latter scheme may be preferred for implementations on FPGAs with low
BRAM count or for kernels with very small data-transfer volumes.

4.2. FCUDA Annotation Directives

As discussed in previous sections, the FCUDA SSTO-driven translation leverages
programmer-injected annotations that guide the transformations and optimizations
applied to the kernel. The annotations comprise pragma directives which specify pa-
rameter values for the transformations and optimizations applied to the kernel. A set
of annotation directives may be attached to every kernel by insertion before the kernel
procedure declaration without affecting compilation of the kernel by other compilers
(Figure 4(a)). The Cetus compiler [Lee et al. 2003] has been extended to parse FCUDA
annotation directives which are introduced in the rest of this section.

The SYNC directive contains the type clause which specifies the task synchroniza-
tion scheme (sequential or ping-pong). COMPUTE and TRANSFER directives guide—
as the names imply—the transformations and optimizations applied on the compute
and data-transfer tasks. The name clause contains the basic seed used to form the
task name (each task name consists of the basic seed along with the kernel procedure
name and a PE ID). Other implementation information specified by the COMPUTE
directive includes degree of thread loop unrolling (unroll), degree of array partitioning
(part), array partitioning scheme (ptype), and arrays to be partitioned (array). The array

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:12 A. Papakonstantinou et al.

PE Clk Dommain I MC Clk Domain

Cluster (0 ! | aeo Channel 0

Channel |

Memory Controller (MC})| 1-======1-

\«‘r'nﬂi Alignment!
(a) PE clustering (b) custom memory interface

Fig. 6. FCUDA memory interface architecture.

partitioning scheme can be block based or cyclic based. On the other hand, TRANSFER
directives specify the direction of the transfer (o) and the off-chip memory array pointer
(global) as well as the block burst size (size), the off-chip array size (gsize), the thread
loop index (¢lp), and the type of transfer (¢ype). The type of a transfer specifies whether
the transfer corresponds to a regular burst transfer or a constant streaming transfer
(see Section 5.2.3) whereas t/p denotes the threadblock dimension to use in the thread
loop (see Section 5.1). Each TRANSFER directive corresponds to a separate transfer
statement in the kernel. The order of the TRANSFER directives needs to match the
static order of the transfer statements in the kernel code (transfer statements in callee
procedures should be treated as inlined into the kernel code). The GRID directive uses
clauses x_gdim and y_gdim to specify the CUDA grid dimensions (y_gdim clause is op-
tional and may be omitted for single-dimension grids). Grid dimensions are used during
the setup of the threadblock loop’s upper bounds. The GRID directive also specifies the
number of processing engines per cluster (pe) along with the clustering scheme (cluster).
Clustering refers to the physical grouping of PEs on the FPGA die (Figure 6(a)). Each
PE cluster contains one or more DMA engines for the communication of its PEs’ mem-
ories with the memory controller(s). The interface of the FCUDA-generated design to
the memory controller(s) can currently be materialized in two ways: (i) a PLB (Proces-
sor Local Bus) interconnection scheme supported by AutoPilot- and Xilinx-embedded
design tools (EDK) or (ii) a parallel and scalable interconnection scheme which can
offer high bandwidth on-chip communication at lower resource cost (Figure 6(b)). Note
that the clustering concept can be also used for multi-FPGA implementations where
each cluster corresponds to an FPGA device (though this is not currently supported in
FCUDA). Finally the BLOCK directive declares the threadblock dimensions (x_bdim,
y_bdim and z_bdim), through which the programmer can resize the threadblock dimen-
sions and consequently the on-chip buffers’ dimensions to better fit on the BRAMs.

5. FCUDA TRANSFORMATION AND OPTIMIZATION ALGORITHMS

In this section we first present an overview of the transformation flow followed by more
detailed discussion of some of the key transformations and optimizations.

5.1. FCUDA Translation Overview

A high-level overview of the FCUDA transformation sequence is depicted in
Algorithm 1. The first two transformation steps, constant_memory_streaming() and
global_memory _buffering(), map the CUDA memory spaces onto FPGA memories. The
constant_memory_streaming() step allocates BRAMs for buffering constant memory
data and organizes constant data prefetching to the constant data buffers in a stream-
ing fashion. The global_memory _buffering() step, on the other hand, handles BRAM

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:13

allocation for nonconstant global memory data. The algorithm and implementation
details of both memory space mapping functions are described in Section 5.2.
Subsequently, create _kernel tasks() splits the kernel into data-transfer and compute
tasks. This pass entails task-statement coalescing code motions and Common-
Subexpression-Elimination (CSE) optimizations along with procedural abstraction
(i.e., compute/transfer task outlining) transformation (see Section 5.3). The gener-
ated compute and data-transfer task procedures are subsequently optimized (lines
6-8 in Algorithm 1) before manipulating the kernel procedure (last three steps in
Algorithm 1). First, thread loop generation and fission is performed in the compute
tasks. A task-wide nested thread loop of degree equal to the number of nonunit thread
dimensions in the BLOCK directive (Section 4.2) is wrapped around the compute
code (Figure 4(c)). Loop fission is based on the algorithm proposed by Stratton et al.
[2008] to enforce correct thread synchronization and functionality in the presence of
CUDA _syncthreads() directives or other control-flow statements (e.g., loop statements
and break/continue statements). In a nutshell, loop fission recursively splits the task-
wide thread loop into smaller thread loops at the boundaries of control-flow statements.
Data-transfer tasks employ thread loop generation in a similar fashion (though, no loop
fission is required) with the only difference that the loop nest contains loops only for the
threadblock dimensions included in the ¢lp clause of the corresponding TRANSFER
annotation directive (Figure 4(c)). This way the user can hint across which threadblock
dimensions to create burst transfers for hard to analyze nonlinear addressing patterns.
Subsequently, unroll-and-jam optimization is applied to thread loops in compute tasks
by unroll thread_loop() according to the value of the unroll clause in the COMPUTE
directive (no unroll is inferred by a unit value). Thread loop unrolling helps expose the
thread parallelism in CUDA as long as array accesses do not result in a performance
bottleneck due to low BRAM port parallelism. This can be dealt with through
array partitioning (cyclic or block based) by partition_arrays() which facilitates port
parallelism enhancement through array splitting into multiple independent BRAM
buffers. The generated array partitions are allocated evenly to the unrolled threads in
compute tasks (e.g., for unroll = 4 and part = 2, two threads share one array partition).
Array partitioning is applied in the current framework only when the referenced array
elements by each thread can be contained in a cyclic or block partition. The degree of
partitioning is controlled by the part clause in the COMPUTE directive and should

ALGORITHM 1: FCUDA _Compilation(Gasr)
/* Sequence of FCUDA Transformation and Optimization passes on the CUDA abstract
syntax tree graph, Gagr*/

K < CUDA kernels

for each kernel € K do
constant_memory _streaming()
global_memory buffering ()

create_kernel tasks()
create_thread_loop()
unroll_thread_loop()
partition_arrays()
create_threadblock loop()
build task_synchronization()
unroll_threadblock loop()

© 00 3O Ut W N

e
= o

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:14 A. Papakonstantinou et al.
(bx,by) =(0,0) | | (bx,by)=(1,0) (bx,by) = (3,0)
bldx =0 bldx =1 bldx =3
cl:0, pe:0 cl:0, pe:1 cl:1, pe:0
(bx,by) =(2,1) | | (bx,by)=(3,1)
bldx =6 bldx =7
cl:2, pe:0 cl:2, pe:l
(bx,by) =(1,2) | | (bx,by) =(2,2)
bldx=9 bldx =10
cl:0, pe:0 cl:0, pe:1

(bx,by) =(0,3) (bx,by) =(3.3)
bldx =12 bldx =15
cl:1, pe:0 cl:2, pe:0

(bx,by) = (0.4) (bx,by) =(2.4) | | (bx,by) =(3.4)
bldx = 16 bldx = 18 bldx =19
cl:2, pe:l cl:0, pe:0 cl:0, pe:1

CUDA GRID

Fig. 7. Threadblock mapping onto PEs and clusters (PE#:3, Cluster#:3).

not exceed the unroll degree (no partition is inferred by a unit value). Partitioning
affects transfer tasks, which need to be updated with the partitioned local arrays.

Having completed the manipulation of the compute and transfer tasks, the FCUDA
flow works on the kernel procedure by explicitly materializing the grid of threadblocks
in the create_threadblock loop() flow step. A blockthread loop is wrapped around the
kernel code to materialize the threadblocks for one PE cluster. In the current framework
implementation, PE clusters are designed to be identical and are only differentiated by
the cluster-ID value c/ID (Figure 4(b)). FCUDA SSTO engine and AutoPilot work on a
single cluster which is automatically replicated in the top-level FPGA design (during
interconnection with the memory controller interface) to create the total number of
PE clusters specified in the cluster clause of the GRID directive. The threadblock loop
determines the scheduling of threadblock execution as well as their mapping onto PEs
and clusters. Threadblocks are mapped onto PEs in a block-cyclic fashion (Figrue 7)
according to the number of PE clusters (c/[Num), the number of PEs per cluster
(peNum), and the number of total threadblocks (¢6Num), where cINum, peNum, and
tbNum are calculated based on the values of the GRID clauses cluster, pe, x_gdim and
y_gdim. The block-cyclic mapping is done on a flattened grid of threadblocks where the
ID of each threadblock (bIdx) is defined as: bldx = blockldx.y*x_gdim-+blockldx.x. For
kernels with 2D grids, the flattened threadblock ID, bIdx (Figure 4(b)) is translated
back to the corresponding 2D grid coordinates (i.e., blockIdx.y = bldx floor x_gdim and
blockldx.x = bldx mod x_gdim) used within the threadblock loop code.

The function build_task_synchronization() implements the synchronization of com-
pute and transfer tasks according to the type clause of the SYNC directive. More
details on how the ping-pong synchronization scheme is applied are discussed in
Section 5.4 (nothing needs to be done for the sequential scheme. Finally function
unroll_threadblock loop() fully unrolls the inner loop of the threadblock loop nest (facil-
itated by bIdx induction variable in Figure 4(b)) to expose the threadblock parallelism
specified by the pe clause in the COMPUTE directive. Compute and transfer task calls
are replicated within the outer threadblock loop and a blockIdx vector for each thread-
block is calculated and passed to the corresponding task through its parameter list.

5.2. CUDA Memory Space Mapping

As discussed in Section 3.2, CUDA exposes to the programmer different memory
spaces: (i) registers, (ii) shared memory, (iii) global memory, (iv) constant memory, and

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:15

(v) texture memory. Each memory space has different attributes in terms of access
latency and accessibility which affect its usage scenarios and consequently how they
are leveraged in FCUDA (texture memory is not currently supported in the FCUDA
framework).

5.2.1. CUDA Constant Memory. Constant memory is used to store read-only data that
are visible to all threads. In the CUDA architecture a small portion of global memory is
reserved for constant data, and access latency is improved through SM-private caches
that take advantage of temporal and spatial access locality across all SM threads. On
the FPGA, FCUDA facilitates access latency optimization through prefetching constant
data on BRAMs. This is achieved by allocating constant on-chip buffer space for each
PE (sharing constant buffers across multiple PES would result in long, high fanout in-
terconnections and memory port access bottlenecks) and decoupling constant off-chip
memory transfers from the rest of the kernel (Figure 8(a), 8(b)). In particular, a new ar-
ray is introduced to denote the constant buffer and all constant memory accesses are re-
placed by local buffer accesses (atominfo_local). Furthermore, a new procedure for con-
stant data streaming is created (cenergy_crd()) containing a data-transfer task, followed
by a kernel compute task. The two tasks may be wrapped in a constant data stream loop
(e.g., strm_count loop in Figure 8(a)) when the size value is a fraction of the gsize value
in the corresponding TRANSFER directive (Figure 4(a)). Thus, through these clauses
the programmer can control the constant buffer allocation on the FPGA to: (i) adjust
constant array sizes according to the FPGA BRAM sizes, or/and (ii) facilitate multiple
kernel calls without multiple invocations from the host CPU (the DDR part allocated for
constant data on FPGAs is not limited by the constant cache memory organization as
in GPUs). Sequential or ping-pong task synchronization schemes can be also applied on
constant data-transfer and kernel tasks independently of the synchronization scheme
at the subkernel task level. Figure 5(c) depicts the case where the sequential synchro-
nization is used in the first level (i.e., constant data-transfer and kernel tasks) while
the ping-pong scheme is used at the second level (i.e., data-transfer and compute tasks).

5.2.2. CUDA Global Memory. Most of the massively data-parallel CUDA kernels
leverage huge input and output datasets that cannot fit in on-chip memory. Signif-
icant acceleration of these compute-intensive data-parallel kernels is contingent on
efficient data communication between the device and global memory. In the CUDA
programming model it is the programmer’s responsibility to organize data transfers
across warps of threads in a coalesced way in order to achieve maximum off-chip
bandwidth utilization. However, warp sizes implemented in FCUDA may be smaller
than GPU warp sizes. In addition, hiding off-chip memory latency through fast context
switches is not feasible. FCUDA deals with these issues by decoupling global memory
references from computation, which facilitates data coalescing across wide blocks of
memory. Burst transfers can consequently be generated to achieve high utilization of
the off-chip bandwidth (Figure 4(c)).

The first step toward decoupling global memory accesses from computation is de-
scribed in Algorithm 2. The SSTO first scans the kernel for statements that contain
global memory accesses (line 6). Selection of global memory accesses is facilitated
by the TRANSFER directives through the array names linked to the global clause
(Figure 4(a)) and the order of the pragma annotations (hence, the programmer can
control which of the off-chip accesses need to be handled). Subsequently, the selected
statements are filtered with respect to whether they contain compute operations (lines
8-9). If the containing statement describes a simple data transfer without any com-
pute operations, nothing needs to be done. Otherwise, the compute part is disentangled
from the data-transfer part by introducing new variables (lines 13, 18), to buffer the
output of the computation in on-chip BRAMs (lines 14, 19). Thus the initial statement

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:16

A. Papakonstantinou et al.

O 01 NN —

10
11
12
13
14
15
16
17
18

void cenergy_cstream_crd(int numatoms,int atominfo_local[MXATMS],atominfo,strm_count) {
memcpy (atominfo_local[0], atominfo+strm_count, numatoms * sizeof(int4)); // Burst
}

void cenergy_cstream(int numatoms, int totalatoms, int gridspacing, int * energygrid) {
int4 atominfo_local)[MXATMS];
int4 atominfo local[[MXATMS];
int pingpong=0;
cenergy_cstream_crd(numatoms, atominfo_local0, atominfo,strm_count); // Transfer task (constant)
for(int strm_count = 0; strm_count < totalatoms; strm_count+=numatoms) { // Constant stream loop
if(pingpong) {
cenergy(numatoms,gridspacing,energygrid,atominfo_locall[MXATMS]); // Compute task(kernel)
cenergy_cstream_crd(numatoms,atominfo local0,atominfo,strm_count); // Transfer task(constant)
pingpong=0; }
else {
cenergy(numatoms,gridspacing,energygrid,atominfo_localO)lMXATMS]); // Compute task(kernel)
cenergy_cstream_crd(numatoms,atominfo_locall,atominfo,strm_count); // Transfer task(constant)
pingpong=1; }
1

(a) constant data streaming us ing ping-pong task synchronization

O 01O bW —

void cenergy(int numatoms, int gridspacing, int * energygrid,int4 atominfo local MAXATOMS]) {
unsigned int xindex = (blockldx.x * blockDim.x) + threadldx.x;
unsigned int yindex = (blockldx.y * blockDim.y) + threadldx.y;
unsigned int outaddr = (gridDim.x * blockDim.x) * yindex + xindex;
int coorx = gridspacing * xindex;
int coory = gridspacing * yindex;
int atomid;
int energyval[blockDim.y][blockDim.x];
energyval[threadldx.y][threadldx.x]=0;
for (atomid=0; atomid<numatoms; atomid++) {
int dx = coorx - atominfo_local[atomid].x;
int dy = coory - atominfo_local[atomid].y;
intr 1 =dx*dx + dy*dy + atominfo_local[atomid].z;
energyval[threadldx.y][threadldx.x] += atominfo_local[atomid].w *r 1; }
int energygrid_local[blockDim.y][blockDim.x];
energygrid_local[threadldx.y][threadldx.x] = energygrid[outaddr]; // TRANSFER
energygrid_local[threadldx.y][threadldx.x] += energyval[threadldx.y][threadIdx.x];
energygrid[outaddr] = energygrid_local[threadldx.y][threadldx.x]; } /| TRANSFER

(b) statement decomposition to compute and transfer operations

void cenergy(int numatoms, int gridspacing, int * energygrid,int4 atominfo_loca[MAXATOMS]) {
unsigned int xindex = (blockldx.x * blockDim.x) + threadldx.x;
unsigned int yindex = (blockldx.y * blockDim.y) + threadldx.y;
unsigned int outaddr = (gridDim.x * blockDim.x) * yindex + xindex;
int energygrid_local[blockDim.y][blockDim.x];
energygrid_local[threadldx.y][threadldx.x] = energygrid[outaddr]; // TRANSFER
int coorx = gridspacing * xindex;
int coory = gridspacing * yindex;
int atomid;
int energyval[blockDim.y][blockDim.x];
energyval[threadldx.y][threadldx.x]=0;
for (atomid=0; atomid<numatoms; atomid++) {
int dx = coorx - atominfo_local[atomid].x;
int dy = coory - atominfo_local[atomid].y;
intr 1=dx*dx + dy*dy + atominfo_local[atomid].z;
energyval[threadldx.y][threadldx.x] += atominfo_local[atomid].w *r 1; }
energygrid_local[threadldx.y][threadldx.x] += energyval[threadldx.y][threadldx.x];

energygrid[outaddr] = energygrid local[threadldx.y][threadldx.x]; } /| TRANSFER

(c) task statement coalescing

Fig. 8. SSTO transformations/optimizations in coulombic potential (cp) kernel.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:17

ALGORITHM 2: Decouple global memory accesses from compute operations

1 /* Processing of global memory accesses to ease kernel decomposition into compute
and data-transfer

2 tasks; Gagr := Abstract Syntax Tree Graph of CUDA code */
3 | HandleGlobalMemoryAccesses(Gast)
4 V e list of global variables referenced in TRANSFER directives
5 for each v e Vdo
(] s € next statement accessing v
7 M € {v| v eV and getAccess(s, v)} /* get all accesses of v in s*/
8 If (|M| > 1) handleStatement(s,M) /* multiple accesses in statement */
9 else if (not isSimpleTransfer(s)) handleStatement(s,M) /* one access in statement */
10 | HandleStatement(s,M)
11 {mL, mR} € separateLhsRhs(}) /* label accesses based on RHS/LHS location */
12 for each m ¢ mR do
13 m_local = newVariableOfType (i)
14 ss = newStatement(expression(m _local = m)
15 insertBefore(Gagsr, s, ss)
16 replaceExpression(RHS(s), m, m_local) /* substitute m with m_local in RHS */
17 for each m ¢ mL do
18 m_local = newVariableOfType(m)
19 ss = newStatement(expression(m = m_local))
20 insertAfter(Gasr, s, ss)
21 replaceExpression(LHS(s), m, m_local) /* substitute m with m_local in LHS */

is converted to a simple data-transfer assignment between the global memory variable
and the newly introduced on-chip memory variable (lines 16, 21). In the ¢p running
example, the statement in line 23 of Figure 4(a) is expanded into the set of state-
ments in lines 15-18 of Figure 8(b) and new on-chip storage, energygrid_local, is intro-
duced. Subsequently, kernel decomposition into compute and transfer tasks (described
in Section 5.3) can be carried out.

5.2.3. CUDA Registers. Registers are used to store scalar and vector (e.g., int4) vari-
ables that are not specified as global, shared, or constant memory variables in the
kernel. For each register-stored variable, each thread has a private copy in a register
allocated to each thread. In fact, registers are organized in memory-like register files
with wide data ports to feed all of the concurrently active threads of a threadblock.
Implementing registers as arrays with wide ports can severely impact resource uti-
lization and consequently performance on FPGAs (i.e., arrays are materialized with
BRAMs, and high BRAM usage per PE limits the number of instantiated PEs). The
flexibility of the reconfigurable fabric is used in FCUDA to exploit register sharing
among threads. Threads within the same threadblock may share registers when ei-
ther all the threads compute the same value for the corresponding variable or the
lifetime of the variable does not cross synchronization points or task boundaries and
the threads are not active concurrently (e.g., in Figure 8(b) the lifetime of atomid
does not cross synchronization or task boundaries). Otherwise the variable is vector-
ized and materialized through BRAM memory allocation. (e.g., energyval is live in
both compute and transfer statements and gets vectorized in Figure 8(b)). Dataflow
analysis is employed in the SSTO engine to identify variables that need to be vec-
torized. Live variable analysis is used to identify variables with lifetimes spanning

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:18 A. Papakonstantinou et al.

more than one task region. Variables with different values across different threads
are identified through reaching threadldx-dependent definition analysis (RTDD).
RTDD is similar to definition reaching analysis [Aho et al. 2006] with the definition of
GEN() function being modified to the following.

GEN(n) = {v|v € set of variables defined in node n, whose definition is dependent on
CUDA threadlIdx variable or other variables included in IN(n)}

5.2.4. CUDA Shared Memory. Shared memory variables are threadblock-private (i.e.,
only threads within the corresponding threadblock have visibility and access), and
thus, can be conveniently translated into BRAM-based memories that are accessible
only by the PE executing the corresponding threadblock.

5.3. Kernel Decomposition into Compute and Data-Transfer Tasks

After compute and data-transfer operations are disentangled at the statement level
(Figure 8(a)), the SSTO engine uses procedural abstraction to outline groups of
contiguous compute statements into compute procedures and contiguous off-chip
memory references into transfer procedures. However, interleaving between compute
and data-transfer statements (e.g., energygrid off-chip accesses in Figure 8(a)) may
result in multiple small generated tasks, causing performance inefficiency due to
frequent task switching (e.g., high thread loop and synchronization redundancy).
The SSTO engine employs task-statement coalescing code motions prior to applying
procedural abstraction to avoid fragmentation of the kernel into multiple small tasks.

In particular off-chip memory read references are percolated toward the top of the
Control-Flow Diagram (CFG), whereas write statements are percolated toward the
bottom of the CFG. Both upward and downward statement percolations shift data-
transfer statements until they encounter: (i) another data-transfer statement, (ii) a
CUDA synchronization directive, or (iii) a data-dependent compute statement. Upward
code percolation is done in forward order of data-transfer statements in the CFG,
whereas downward code percolation is done in reverse order. Code percolation may
shift statements across entire control-flow constructs (e.g., energygrid read statement
is shifted across atomid loop in Figure 8(c)) as long as there are no data dependences or
contained synchronization primitives and the dynamic execution characteristics of the
statement do not change (i.e., no statement shifts into or out of control-flow bounds).

Upon completion of task-statement coalescing, Common Subexpression Elimination
(CSE) is employed to identify expressions common to all threads that can be computed
in the kernel procedure, and procedural abstraction of task regions is performed. Pro-
cedural abstraction for data-transfer tasks entails conversion of global memory reads
and writes to burst transfers. Bursts are represented by memcpy() calls (Figure 4(c)).
The conversion process facilitates the values of size and ¢lp clauses specified by the
programmer in the corresponding TRANSFER directive along with data type and ar-
ray offset information derived from the actual data-transfer statement to build the
memcpy() call parameters.

5.4. Task Synchronization

Synchronization of the compute and data-transfer tasks is performed by the SSTO
engine according to the type clause of the SYNC pragma directive. In the current
implementation the available SYNC options are sequential and ping-pong (Figure 5).
The former corresponds to a simple task synchronization scheme that does not require
any special code manipulation before HLS. It essentially results in the serialization
of all the compute and data-transfer tasks of the kernel. The ping-pong option selects
the ping-pong task synchronization scheme in which two copies of each local array

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:19

Table I. CUDA Kernels

AppLICATION — KERNEL (SUITE) DarTa sizEs DEScrIPTION
(READ/WRITE TRAFFIC)
Matrix Multiply — mm (SDK) 2048 x 2048 matrices | Computes multiplication of two 2D
(4GB/16MB) arrays (used in many applications)
Fast Walsh Transform — fwt1 (SDK) 8M Points Walsh-Hadamart transform is a
Fast Walsh Transform — fwt2 (SDK) (32MB/32MB) generalized Fourier transformation used

in various engineering applications

512 x 512 Grid, Computation of electrostatic potential

Coulombic Potential — cp (Parboil) @ 04((5)(2)21(3/[1]_3,2311313) in a volume containing charged atoms
Discreet Wavelet Transform — dwt 128K points 1D DWT for Haar Wavelet and
(SDK) (512KB/512KB) signals

are declared, doubling the amount of inferred BRAM blocks on the FPGA. Moreover,
the task procedure calls are replicated in an if-else coding structure controlled by the
ping-pong variable. This coding template guides AutoPilot to implement concurrent
compute and transfer tasks that alternate the BRAM memories they operate upon in
successive iterations of the outer loop (Figure 8(c)).

6. EXPERIMENTAL RESULTS

Our experimental study aims to: (i) evaluate the effect in performance of the different
parallelism extraction knobs implemented in FCUDA as user-injected pragma direc-
tives and (ii) compare the performance and energy characteristics of the FPGA- and
GPU-based kernel executions. The selected CUDA kernels come from the Nvidia SDK
[NVIDIA 2012a] and the Illinois Parboil [IMPACT 2012] suites. In the experiments
discussed in the following sections we focus on integer computation efficiency. Hence,
we use modified versions of the kernels that do not entail any floating-point arithmetic.
Moreover, we vary the integer arithmetic precision of the modified kernels to evaluate
the performance/energy implications of different datapath bitwidths (32 and 16 bit).
Details of the benchmarks and the entailed kernels are presented in Table I. The 15t
column lists the names of the application, the kernel, and the benchmark suite. The
27 column contains information about the data array sizes referenced by each kernel,
as well as the aggregate DDR read/write traffic (32-bit datapaths). The 3" column
provides a short description of each application. Evaluation of execution latencies
on the FPGA is based on multiplication of the measured clock cycle latencies by
the clock period achieved during logic and physical synthesis (Xilinx’s ISE synthesis
tools). Clock cycle latencies are measured on the ML510 development board [XILINX
2012] which hosts the Virtex-5 FX130T device. The FCUDA-generated RTL for each
kernel is instrumented with cycle counters that measure the PE computation and
communication clock cycles. Using the PowerPC-440 processors that are embedded on
the FX130T device we can read the counter values and also verify the functionality
of the configured FPGA (i.e., postsynthesis verification). The cycle latencies can be
used to accurately calculate the total execution latency for any Virtex-5 FPGA, by
considering the PE count and the clock frequency reported by the ISE synthesis flow.
The experimental results reported in the following sections are calculated for the
Virtex-5 SX240T device which contains a rich and evenly distributed set of BRAM and
DSP modules that serve well the compute- and data-intensive CUDA kernels.

6.1. Parallelism Extraction Impact on Performance

In this part of the experimental evaluation we examine how different FCUDA
parallelism extraction transformations affect the final execution latency. Note that in
FPGA computing latency depends on the combination of three interdependent factors:

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:20 A. Papakonstantinou et al.

Table Il. maxP Scheme Implementation Parameters

Parameter mm fwt2 fwtl cp dwt
32bit | 16bit | 32bit | 16bit | 32bit | 16bit | 32bit | 16bit | 32bit | 16bit
PE 153 162 126 180 144 171 54 99 126 144
unroll 1 1 1 1 1 1 2 4 1 1
part 1 1 1 1 1 1 1 1 1 1
Freq.(MHz) 128 129 125 117 126 162 137 187 135 171
LUT util. (%) 72 65 71 66 85 75 48 51 78 59
Latency(ms) 1570 | 1371 | 0.68 0.4 8.26 5.31 | 3562 | 2709 | 0.072 | 0.057

Table Ill. maxPxU Scheme Implementation Parameters

Parameter mm fwt2 fwtl cp dwt
32bit | 16bit | 32bit | 16bit | 32bit | 16bit | 32bit | 16bit | 32bit | 16bit
PE 45 72 45 45 36 45 36 63 18 54
unroll 8 16 8 16 4 4 4 8 16 8
part 2 1 1 1 1 1 1 2 8 2
Freq.(MHz) 156 151 164 138 170 158 147 181 173 137
LUT util. (%) 54 53 71 88 69 63 43 44 71 69

concurrency (e.g., PE count), cycles (e.g., functional unit allocation), and frequency
(e.g., interconnection complexity). The FCUDA user can affect these factors through
pragma directives: PE count (pe clause), unrolling (unroll clause), array partitioning
(part and array clauses), task synchronization scheme (¢ype clause), and PE clustering
(cluster clause). Each of these knobs can affect more than one of the performance
determining factors. First we explore the effect of threadblock- (i.e., PE count) and
thread-level (i.e., unrolling and array partitioning) parallelism on execution latency.
Then we discuss the impact of task synchronization schemes in performance. For the
following experiments we target the Virtex-5 SX240T device and we group PEs into
9 clusters. PE clusters facilitate higher-frequency interconnections between PEs and
memory controllers at the cost of higher interface logic redundancy (Figure 6(a)).

6.1.1. Threadblock- and Thread-Level Parallelism. To evaluate the effects of threadblock-
level and thread-level parallelism in performance we compare three parallelism ex-
traction schemes.

—maxP. This represents the designs that expose parallelism primarily at the thread-
block level, that is, maximize PE count given a resource constraint. Thread-level
parallelism may also be extracted if remaining resource is sufficient.

—maxPxU. This represents the designs that maximize the total concurrency, that is,
the product of PEs and thread loop unroll degree (pe x unroll). Array partitioning
may also be employed if remaining resource is sufficient.

—maxPxUxM. This represents the designs that maximize the concurrency along with
the on-chip memory bandwidth, that is, the product of PE count, unroll degree, and
array partitioning (pe x unroll x part).

Tables II, III, and IV list the design parameters (i.e., PE, unroll, part) selected for all
the kernels under the three different parallelism extraction schemes (2"—4th rows).
As expected, the maxP scheme entails high PE counts with almost no thread loop un-
rolling or array partitioning. Additionally, the maxPxU scheme instantiates fewer PEs
but entails high PEx unroll concurrency with almost no array partitioning. Finally,
maxPxUxM results in less PEs than the two previous schemes, but facilitates high
unroll and partitioning factors achieving maximum PExunrollxpart products. Table
rows 5 and 6 contain frequency and LUT utilization results derived from ISE physical

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:21

Table IV. maxPxUxM Scheme Implementation Parameters

Parameter Mm fwt2 fwtl cp dwt

32bit | 16bit | 32bit | 16bit | 32bit | 16bit | 32bit | 16bit | 32bit | 16bit
PE 27 27 27 27 72 90 9 18 36 18
unroll 8 16 8 8 2 2 8 16 8 16
part 8 16 4 8 1 1 8 16 8 16
Freq.(MHz) 154 127 106 104 174 173 183 155 138 123
LUT util. (%) 48 44 78 69 68 45 29 30 76 55

8 EmaxP B maxPxU maxPxUxM

S
|

)
|

Latency (normalized
over maxP)
i
|

S
I

mm 32 mm 16 fwt2 32 fwt2 16 fwtl 32 fwtl 16 cp 32 cp 16 dwt 32 dwt 16

Fig. 9. Performance comparison of parallelism extraction schemes.

synthesis. The LUT utilization can be interpreted as a metric of the logic complexity of
each kernel configuration. An upper LUT utilization bound of 85% was applied during
configuration selection. Note that LUTs are not the bounding resource in every case
(e.g., BRAMs are the parallelism-constraining resource for kernel cp). The observed
frequency and utilization values show the complex effects of parallelism extraction
across different dimensions. FCUDA provides the programmer with a convenient and
efficient tool flow for exploring different configurations of kernel parallelism extraction
on the FPGA.

Figure 9 depicts the kernel execution latencies for the three schemes, normalized
against the latencies of the maxP scheme (Table Il row 7). We can observe that no single
scheme achieves best performance across all the kernels due to their diverse character-
istics. The maxP scheme provides the lowest (=best) latency results for kernels fw¢1 and
dwt. This can be attributed to the fact that these two kernels contain complicated array
access patterns which inhibit array partition for most of their arrays (i.e., partitioning
degrees in dwt refer to arrays that represent a very small percentage of array accesses).
High unrolling degrees in the maxPxU scheme are not efficient without array partition-
ing (i.e., thread-level parallelism extraction is bottlenecked by the fixed on-chip memory
bandwidth). On the other hand, the balance between unrolling and array partitioning
achieved in the maxPxUxM scheme offers higher performance for half of the kernels.

6.1.2. Compute and Data-Transfer Task Parallelism. To evaluate the effect of the ping-pong
task synchronization scheme on performance we use the MM kernel, which entails
a loop comprising a data-transfer task and a compute task. Through ping-pong task
synchronization it is possible to overlap compute and data-transfer tasks. However, the
efficiency of task concurrency comes at the cost of higher resource utilization and lower
execution frequencies, due to more complex interconnection between compute logic and
BRAM buffers (ping-pong synchronization leads to 27% clock frequency degradation
compared to sequential). Figure 10 compares the execution latency between sequential
(seq) and ping-pong (pp) task synchronization for three different off-chip memory band-
width scenarios: (i) BW1, which corresponds to a low off-chip bandwidth and makes
the pp-based execution bound by data-transfer latency, (ii) BW2, which is close to
the bandwidth required to achieve an equilibrium between compute and data-transfer

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:22 A. Papakonstantinou et al.

1(2) H maxP 8 = maxP
Q
;% 8 H maxPxU ’g 6 7 HmaxPxU
> 6) |
% . maxPxUxM > 4 maxPxUxM
5, 5 5.
3
0 0 -
seq pp seq pp
BWI1 ‘ BW2 ‘ BW3 ‘ BWI1 BW2 BW3
(a) mm_32 (b) mm_16

Fig. 10. Task synchronization evaluation.

latencies, and (iii) BW3, which provides 10X higher bandwidth than BW2 and facilitates
smaller data-transfer latencies compared to compute latencies. We can observe that
for both versions of the MM kernel (32 and 16 bit), pp synchronization provides better
execution latency for lower bandwidth values, BW1 and BW2. However, for higher
bandwidths (BW3) the sequential synchronization scheme achieves faster execution.
In conclusion, pp synchronization is useful for kernels that are data communication
bound whereas compute bound kernels will most likely gain from the sequential syn-
chronization scheme.

6.2. FPGA vs. GPU

In this set of experiments we evaluate the performance of the FCUDA-generated FPGA
accelerator against the GPU execution. For a fair comparison the devices we use are
fabricated with the same process technology (65nm) and provide comparable transis-
tor capacities: Nvidia G92 (128 Stream Processors (SPs) running at 1500 MHz and
64GB/sec peak off-chip memory bandwidth) and Xilinx Virtex-5-SX240T (1056 DSPs,
1032 BRAMs with aggregate capacity of roughly 2MB). Note that the BRAM memory
on the FPGA is used for storing: (i) input data read from off-chip memory, (ii) interme-
diate data across synchronization points, and (iii) output data written back to off-chip
memory. The total required on-chip data storage depends on the array dimensions of the
input, output, and intermediate data as well as the tiling of the input/output data con-
tainers across threadblocks. For some kernels, such as matrix-multiply (mm), the same
input data tile may be referenced by multiple threadblocks; hence it may be stored on
different BRAMs. Currently, it is the programmer’s responsibility to choose appropriate
threadblock sizes and partitioning degrees to enable efficient BRAM utilization.

One of the most critical performance factors is data communication bandwidth,
especially for off-chip memory transfers. In our experimental study we leverage the
scalable data communication scheme depicted in Figure 6(b). The Memory Controller
(MC) and the PEs run on different clock domains connected through dual-clock
FIFO buffers. Leveraging the parallelism of PEs and clusters we can control transfer
bandwidths by scaling the number of DDR2 channels/MCs (similar to the architecture
in Convey [2011], which achieves 80GB/sec with 16 channels). We compare execution
latencies for two different off-chip transfer bandwidths: 16 and 64GB/sec. The lower
value represents a realistic off-chip bandwidth value for single-FPGA systems (e.g.,
NALLATECH [2012]), whereas the higher value may be realized on multi-FPGA
systems (e.g., Convey [2011]) and offers the opportunity to compare the compute
efficiency of the two devices for equal off-chip memory bandwidths. Consideration
of communication latency in the overall execution latency is achieved by scaling
the off-chip communication latency measured on the development board [XILINX
2012] according to the ratio of the target system’s bandwidth over the ML510 board

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:23

35 7 mGPU 0%
§ X FPGA (16GB/s)
5 B FPGA (64GB/s) = 2
£ 2.5 &
© — 20%
= 5]
R 2701 1 Z
= = 15%
s b
2 ERT
SRR g
1) =}
£ ‘ \ | g
< 0.5 4 — >
0 i

N
fwt2 16 s ———
16 p———

dwt 16 |

o o A o o I
N N N P VIR DRI I R I A I
@/&Q@/@x ;\/ D7 K7 C’Q/&\'/b&\/ g g 5 T2 55 _%
= =g [l
(a) performance comparison (b) energy comparison

Fig. 11. FPGA vs. GPU.

bandwidth (since off-chip transfers are organized into threadblock burst transfers, it is
easy to calculate total execution latency by combining compute and transfer latencies).

Figure 11(a) depicts the execution latencies of the FCUDA-generated accelerators,
normalized over the GPU execution latencies. Note that GPU execution latencies are
based on 32-bit kernels. This ensures best performance on the 32-bit GPU architec-
ture (e.g., GPU performance is 8.7X and 3.5X lower for 16-bit fwt2 and fwtl kernels,
compared to 32-bit kernels) and also provides a common reference for comparing the
32-bit and 16-bit FPGA implementations. The FPGA execution latencies compared in
Figure 11(a) are based on the best-performing parallelism extraction scheme (maxP,
maxPxU, or maxPxUxM) for each kernel. Note that higher FPGA performance may be
possible through further tuning of the FCUDA parallelism extraction knobs based on
frequency and cycle information feedback from synthesis.

From the chart in Figure 11(a) we observe that 16-bit kernel versions have lower
latency than 32-bit ones. This is expected and it is due to higher concurrency (fewer
resources per operation) and lower cycle counts (shorter critical paths and fewer cycles
per operation) feasible with narrower datapaths. With regard to off-chip bandwidth
(BW), comparison of the 2" and 3" bars in Figure 11(a) shows that high off-chip BW
is extremely important for these massively data-parallel kernels. Interestingly the cp
kernel seems to be insensitive to off-chip BW. The main reason for this is that its
compute-to-communication ratio is much higher than the other kernels. Useful con-
clusions can be drawn by comparing the 1% and 3™ bars in Figure 11(a). In particular
we can observe that the FPGA integer compute latency is highly competitive to the
compute latency of the GPU, especially considering the big difference in clock speed
(GPU SPs run at 1500 MHz, i.e., 10X faster than the FPGA, while the rest of the GPU
runs at 600 MHz, i.e., 4X faster than the FPGA). In addition, the compute characteris-
tics of the kernels affect the relative performance of the FPGA implementation (bar 3)
with respect to GPU (bar 1). For example mm_32 and cp_32 are multiply intensive
with each 32-bit multiply based on 3 interconnected DSP multipliers. This results in
resource pressure for DSPs, while rendering the multiplier datapaths susceptible to
routing congestion. On the other hand, kernels like fwt2 that do not need DSPs for
wide bitwidth operations (fwt2 contains only 32-bit addition which is implemented
with LUTs) and contain control flow that facilitates high ILP extraction during HLS
offer superior performance on the FPGA. Finally, high compute-to-communication ratio
is extremely important in FPGA-based computing for two reasons: (i) higher thread

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:24 A. Papakonstantinou et al.

ILP extraction within each PE offsets lower clock frequency, (ii) static scheduling of
threadblock execution does not allow off-chip communication latency hiding (as en-
abled by quick context switching in GPUs). This can be confirmed by the c¢p_16 kernel
which is highly compute intensive and, unlike cp-32, does not contain 32-bit multiplies
(Virtex-5 DSPs do not provide efficient 32-bit multiplication).

Figure 11(b) compares energy consumption between the same pair of FPGA and
GPU devices. We use the Xilinx Power estimator to estimate energy consumption on
the FPGA device, whereas GPU energy values are based on reported average power
dissipation (i.e., ~100W). As depicted in Figure 11(b), execution on the FPGA is signif-
icantly more energy efficient, ranging between 6% and 27% of the corresponding GPU
execution energy for the chosen set of kernels.

7. CONCLUSION AND FUTURE DIRECTIONS

In this article we present FCUDA, a new FPGA programming tool which offers an
efficient flow for accelerating massively parallel CUDA kernels on reconfigurable
hardware. FCUDA combines source-code transformations and optimizations with
High-Level Synthesis (HLS) to enable FPGA programming with a programming model
that offers high abstraction and concise parallelism expression. Moreover, FCUDA
eliminates significant coding effort during application porting between heterogeneous
acceleration devices, such as GPUs and FPGAs. The programmer can inject simple
pragma annotations into the code to efficiently specify how coarser-grained parallelism
across different granularities may be exposed in the generated RTL. A Source-to-Source
Transformation and Optimization (SSTO) engine then transforms the code according
to the programmer’s annotations while leveraging compute and data-transfer task
decoupling for high-performance application-specific acceleration. Our experimental
study has helped demonstrate the performance trade-offs that the programmer needs
to consider when deciding how to extract parallelism at different granularities within
inherently parallel kernels. Moreover, we demonstrated that FPGA execution of integer
kernels processed through the FCUDA flow is highly competitive with execution on the
GPU. FCUDA provides a useful tool for exploring the impact of different parallelism
extraction decisions on the reconfigurable hardware performance. We believe that
FCUDA is an important step toward a new set of tools that enable efficient acceleration
on configurable hardware by combining platform-specific code transformations and
optimizations in tandem with HLS-based translation of high-level language code to
RTL descriptions. Moreover, tools like FCUDA are essential for democratizing the
performance, power, and cost benefits of heterogeneous compute systems.

As we discussed in previous sections, there are several advantages of programming
FPGAs at the abstraction of the CUDA programming model. Nevertheless, as CUDA
is designed to target GPU architecture, some of its features may not map optimally
on the reconfigurable fabric in terms of performance. In this work we have used code
transformations in tandem with user annotations to deal with several of them (e.g.,
static memory access coalescing, customization of multigranularity parallelism expo-
sure onto FPGA resources, array partitioning to deal with BRAM access bandwidth
bottlenecks, etc.). One of the inherent characteristics of the GPU architecture reflected
in the CUDA model is the data and synchronization independence between thread-
blocks. Hence, data shared between concurrently executing threadblocks needs to be
separately transferred for each threadblock. This has a significant impact on the FPGA
execution latency. Furthermore, inter-block synchronization can only be achieved via
kernel invocation (i.e., splitting computation into multiple kernels) requiring redun-
dant storing/loading of data to off-chip memory across kernels. The architecture flexi-
bility offered by FPGAs can be better exploited to organize computation so as to avoid

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

Efficient Compilation of CUDA Kernels for High-Performance Computing on FPGAs 25:25

off-chip transfers via on-chip data sharing and inter-PE data streaming. Our future
work includes integration of new and more aggressive code transformations to facil-
itate: (i) higher data sharing between PEs of a single kernel and (ii) data streaming
between PEs of data-dependent kernels.

Even though our experimental study did not include kernels with Floating-Point
(FP) arithmetic, the FCUDA flow supports FP computation through a library of Xilinx
floating-point IP cores available within AutoPilot. Nevertheless, the efficiency of FP
arithmetic on the FPGA is relatively low compared to integer arithmetic. For example,
each PE of the floating-point mm version takes 2.9X more LUTs and 1.67X more DSPs
than the corresponding integer version. Additionally, the cycle latency of the FP version
is 2.66X higher than the integer version. Recent reconfigurable computing advances
[Parker 2011] show promise for efficient FP arithmetic on FPGAs. We plan to explore
possible ways of leveraging such advanced FP compilation techniques in FCUDA.

Supporting OpenCL is also included in our future work plans. Our current CUDA-
based flow can be relatively easily extended to support the programming extensions
introduced in OpenCL. As the core OpenCL parallelism organization resembles CUDA’s
SIMT model, we will extend our current framework to achieve high-performance
OpenCL kernel execution on FPGAs (note that previous efforts in OpenCL-to-FPGA
flows do not address high performance). In addition, supporting OpenCL onto FPGAs
requires implementation of the host runtime API for queuing and executing kernels
on FPGA device coprocessors (only partially implemented in previous efforts).

REFERENCES

Ano, A. V., Lam, M. S., SeTHI, R., aAnp ULLMAN, J. D. 2006. Compilers, Principles, Techniques and Tools, 2" ed.
Addison-Wesley.

ALLEN, R. aND KENNEDY, K. 2002. Optimizing Compilers for Modern Architectures. Morgan Kaufmann, Aca-
demic Press.

AMD. 2012. Accelerated processing units. http://www.amd.com/us/products/technologies/fusion/Pages/fusion.
aspx.

BDTI. 2010. An independent evaluation of: The autoesl autopilot high-level synthesis tool. http://www.bdti.
com/MyBDTI/pubs/AutoPilot.pdf.

CHE, S., L1, J., SHEAFFER, J. W., SKADRON, K., AND LAcH, J. 2008. Accelerating compute-intensive applications
with GPUs and FPGAs. In Proceedings of the 6" Symposium on Application Specific Processors. IEEE,
101-107.

CHEN, D., Cong, J., Fan, Y., Han, G., Jiang, W., AND ZHANG Z. 2005. XPilot: A platform-based behavioral
synthesis system. In Proceedings of the TechCon Conference.

CHo, J., MirzAEI, S., OBERG, dJ., AND KASTNER, R. 2009. Fpga-based face detection system using haar classi-
fiers. In Proceedings of the International Symposium on Field Programmable Gate Arrays. ACM Press,
New York, 103-112.

CHREC. 2012.NSF center for high performance reconfigurable computing. http:/www.chrec.org/facilities.
html.

Cong, J., Liu, B., NEUENDORFFER, S., NOGUERA, J., VissErs, K., AND ZHANG, Z. 2011. High-level synthesis for
FPGA: From prototyping to deployment. Comput. Aid. Des. Integr. Circ. Syst. 30, 4, 473—-491.

Cong, J. aND Zou, Y. 2008. Lithographic aerial image simulation with FPGA-based hardware acceleration.
In Proceedings of the 16" International Symposium on Field Programmable Gate Arrays. ACM Press,
New York.

ConvEY CoMPUTER. 2011. http://www.conveycomputer.com.

Dmniz, P, Hawn, M., Pagrg, J., So, B., aND ZieGLER, H. 2005. Automatic mapping of C to FPGAs with the
DEFACTO compilation and synthesis system. Microprocess. Microsyst. 29, 2-3, 51-62.

Gasski, D. 2003. NISC: The ultimate reconfigurable component.Tech. rep. 03-28. Center for Embedded Com-
puter Systems, UCI. http://www.cecs.uci.edu/technical_report/TR03-28.pdf.

GUPT4, S., Guprta, R. K., Durt, N. D., anp Nicorau, A. 2004. Coordinated parallelizing compiler optimizations
and high-level synthesis. ACM Trans. Des. Autom. Electron. Syst. 9, 4, 441-470.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

25:26 A. Papakonstantinou et al.

Hg, C., PAPAKONSTANTINOU, A., AND CHEN, D. 2009. A novel soc architecture on fpga for ultra fast face detection.
In Proceedings of the 27" International Conference on Computer Design. IEEE, 412-418.

Huang, S. S., Hormati, A., Bacon, D. F., anp RaBeag, R. 2008. Liquid metal: Object-oriented programming
across the hardware/software boundary. In Proceedings of the 22" European Conference on Object-
Oriented Programming. Springer, 76-103.

IBM. 2006. The cell architecture. http:/domino.research.ibm.com/comm/research.nsf/pages/r.arch.innovation.
html.

Impact. 2012. Parboil benchmarks. http://impact.crhe.illinois.edu/parboil.aspx.

ImpuLsk. 2003. Impulse accelerated technologies inc. http://www.impulseaccelerated.com.

HorwMmari, A., KUupLUR, M., MAHLKE, S., BAcoN, D., AND RaBBaH, R. 2008. Optimus: Efficient realization of stream-
ing applications on FPGAs. In Proceedings of Conference on Compilers, Architectures and Synthesis for
Embedded Systems. ACM Press, New York, 41-50.

Kuronos. 2011. OpenCL specification, version 1.1. http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

LEE, S., Jonnson, T. A., aND Eicenmann, R. 2003. Cetus - An extensible compiler infrastructure for source-to-
source transformation. In Proceedings of the 16" International Workshop on Languages and Compilers
for Parallel Computing. Springer, 539-553.

Lin, M., LEBeDEY, 1., AND WAWRZYNEK, J. 2010. OpenRCL: Low-power high-performance computing with re-
configurable devices. In Proceedings of the International Conference on Field Programmable Logic and
Applications. IEEE, 458-463.

Ling, L., OLIVER, N., BHusHAN, C., Qicanc, W., CHEN, A., ET AL. 2009. High-performance, energy-efficient
platforms using in-socket fpga accelerators. In Proceedings of the International Symposium on Field
Programmable Gate Arrays. ACM Press, New York, 61-264.

LLVM. 2007. The LLVM compiler infrastructure. http://www.llvm.org.

MEeNTOR GRAPHICS. 2012. Catapult C synthesis overview. http://www.mentor.com/esl/catapult/overview/.

NavratecH. 2012. DATA v5. http://www.nallatech.com/Modules/data-v5-xilinx-virtex-5-fpga-ddr2-sdramqdr-
ii-sram-and-io-module.html.

Nvipia. 2012a. CUDA developer zone. http://developer.nvidia.com/category/zone/cuda-zone.

Nvipia. 2012b. GeForce 8 series. http://www.nvidia.com/page/geforce8.html.

Owama, M., BeLLas, N., DavLoukas, K., AND ANToNoPOULOS, C. 2011. Synthesis of platform architectures from
opencl programs. In Proceedings of the 19" Symposium on Field-Programmable Custom Computing
Machines. IEEE, 178-185.

ParkER, M. 2011. Hardware-based floating-point design flow. In Proceedings of the DesignCon Conference.

SHOWERMAN, M., ENos, dJ., KiprRATENKO, C., STEFFER, C., PENNINGTON, R., AND Hwu, W. W. 2009. QP: A hetero-
geneous multi-accelerator cluster. In Proceedings of the 10" LCI International Conference on High-
Performance Clustered Computing.

STrATTON, J. A., STONE, S. S., AND Hwu, W. W. 2008. MCUDA: An efficient implementation of CUDA kernels
for multi-core CPUs. In Proceedings of the 21 International Conference on Languages and Compilers
for Parallel Computing. Lecture Notes in Computer Science, vol. 56335, Springer, 16—30.

Taomas, D. B., Howgs, L., axp Luk, W. 2009. A comparison of CPUs, GPUs, FPGAs, and massively parallel
processor arrays for random number generation. In Proceedings of the International Symposium on Field
Programmable Gate Arrays. ACM Press, New York, 63—72.

TiLERA. 2012. Tilera corporation. http://www.tilera.com.

WiLL1AMS, J., RICHARDSON, J., GosraNI, K., AND SuresH, S. 2008. Computational density of fixed and reconfig-
urable multi-core devices for application acceleration. In Proceedings of the 4" Annual Reconfigurable
Systems Summer Institute.

Xiinx. 2012. Virtex-5 FXT ML510 embedded development platform. http:/www.xilinx.com/products/boards-
and-kits/HW-V5-ML510-G.htm.

ZHANG, Z., FaN, Y., Jiang, W., HAN, G., Yang, C., anp Cong, J. 2008. AutoPilot: A platform-based ESL synthesis
system. In High-Level Synthesis: From Algorithm to Digital Circuit, P. Coussy and A. Morawiec, Eds.,
Springer, 99-112.

Received March 2011; revised February 2012; accepted August 2012

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2, Article 25, Publication date: September 2013.

