& Alfresco

Alfresco Content Services 5.2

Developer Guide

Contents

Contents

DeVveloper GUIAE. ... e 3
Alfresco Content Services architeCture............cccoooi 3
Alfresco Content Services arChiteCture OVEIVIEW..........uvuuueveeevrerieerreereeerreeeeeeeeeeeeeeeen. 5

ACCESS PIrOtOCOIS.....ccceieeiieeeeeee e 18
REPOSItONY CONCEPLS.....ciiiiiiiiiiiiiei e, 19

YT T | (0 FT=T T 7S 24

AIFFESCO SDK 2.2.0. . e nnana 28
What'sS NEW?. ..o 28
Introduction to the AIfreSCO SDK........oooivviiiiiiiii 30

Getting Started with the AIfreSCO SDK........oovviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 35

Maven Archetypes - Command ReferenCe...........uuuveveiiieiieiiiiiiieeiieeeeeeeeeeeeeee e 56

Rapid Application Development (RAD).........cooooiiiiiiiii 65
AAVANCEA TOPICS...ceiiiiiiiiiiiieeeee e, 95

[0 oo [ir= o 10 To TSP 125

Using the REST APl EXPIOIer......cccooiiiiii 170

L0 LS To T 1Y 1251 ©] PP 171

Developer Guide 2

Developer Guide

Developer Guide

The Developer Guide includes extensive guidance and reference materials to aid the developer in
creating applications and extensions for Alfresco.

[l This Developer Guide PDF does not include the full developer documentation and
API references. To access the complete set of documentation, see the online Alfresco
documentation.

There are a number of approaches to developing for Alfresco depending on what you want to
do. For example, if you are writing a client application, perhaps in Ruby or Python to connect to
Alfresco either on-premise, or Alfresco in the Cloud, then you would most likely use the Alfresco
REST API. If on the other hand you wanted to write a server-side extension in Java, you would
use the Public Java API, or perhaps write a web script using Java, JavaScript and FreeMarker.
Generally if you are creating extensions to Alfresco you would use the Alfresco SDK. This allows
you to work in your IDE of choice, using technologies you already know, such as Java and
Maven.

This Developer guide attempts to lay out the various options available to you, so you can use the
right approach, depending on what you want to achieve.

Alfresco Content Services architecture

This gives a view of the architecture of Alfresco Content Services from the developer's
perspective. At its core is a repository that provides a store for content, and a wide range of
services that can be used by content applications to manipulate the content.

The following diagram illustrates the idea that can be thought of as consisting of three main
components, Platform, User Interface (Ul), and Search. These components are implemented as
separate web applications:

=

Mobile Elients We? lients
V4
J

ui

Platform Search

alfresco.war solLwar

1t Apache Tomcat

Email Server I \ JVM

(K

\

Y
Directary Server j

Alfresca AppiY Server
.
/i %

Database File system

The main component is called the Platform and is implemented in the al f r esco. war web
application. It provides the repository where content is stored plus all the associated content
services. Alfresco Share provides a web client interface (that is a User Interface, Ul) for the
repository and is implemented as the shar e. war web application. Share makes it easy for users

Developer Guide 3

http://docs.alfresco.com
http://docs.alfresco.com

Developer Guide

to manage their sites, documents, users and so on. The search functionality is implemented on
top of Apache Solr 4 and provides the indexing of all content, which enables powerful search
functionality. Besides the web clients accessing the Repository via Share there are also mobile
clients that will access the content via REST APIs provided by the platform.

If we dive deeper into the platform (packaged in al f r esco. war) we will see that it also supports
workflow in the form of the embedded Activiti Workflow Engine. The platform is usually also
integrated with a Directory Server (LDAP) to be able to sync users and groups with Alfresco
Content Services. And most installations also integrates with an SMTP server so the Platform can
send emails, such as site invitations.

For more information about the internals of the Platform, and specifically the content repository,
see the concepts section.

Besides Share there are also many other clients that can connect to the repository, including
any CMIS-compatible client, and via the Microsoft SharePoint protocol any SharePoint client.
Enterprise to Cloud Sync can synchronize content between an on-premise installation of and in
the Cloud, under user control.

The Platform also contains numerous APIs, Services, and Protocols.

The following diagram illustrates this extended architecture:
Alfresco Content Services Clients

Mabile Applications

Alfresco Share (108, Android)

Outlook Client Cloud Sync

Alfresco Content Services

Protocols APls Activiti Workflow Engine

Repository

Relational Database File system
ontent Data Stream

Note that content metadata is stored in a relational database system such as PostgreSQL,
MySQL, Oracle, and so on. The content itself is stored on the file system (or other storage system
such as Amazon S3).

Alfresco provides a number of extension points to allow you to customize it. These extensions
points have various formats, but include:

¢ Platform extension points and detailed architecture

« Share extension points and detailed architecture

e Share integration points and detailed architecture

e APIs

* Protocols

e Services

The links in the list above provide further information on each of these topics.

Developer Guide 4

http://docs.alfresco.com/activiti/topics/welcome.html

Developer Guide

Alfresco Content Services architecture overview

At the core of the Alfresco Content Services system is a repository supported by a server that
persists content, metadata, associations, and full text indexes. Programming interfaces support
multiple languages and protocols upon which developers can create custom applications and
solutions. Out-of-the-box applications provide standard solutions such as document management
and records management.

As a Java application, the system runs on virtually any system that can run Java Enterprise
Edition. At the core is the Spring platform, providing the ability to modularize functionality, such
as versioning, security, and rules. Alfresco Content Services uses scripting to simplify adding
new functionality and developing new programming interfaces. This portion of the architecture is
known as web scripts and can be used for both data and presentation services. The lightweight
architecture is easy to download, install, and deploy.

There are many ways to deploy, however most deployments follow a general pattern. Ultimately,
Alfresco Content Services is used to implement ECM solutions, such as document management
and records management. There can also be elements of collaboration and search across these
solutions.

The solutions are typically split between clients and server, where clients offer users a user
interface to the solution and the server provides content management services and storage.
Solutions commonly offer multiple clients against a shared server, where each client is tailored for
the environment in which it is used.

Clients

Alfresco Content Services offers a web-based client called Alfresco Share, built entirely with

the web script technology. Share provides content management capabilities with simple user
interfaces, tools to search and browse the repository, content such as thumbnails and associated
metadata, previews, and a set of collaboration tools such as wikis and discussions. Share is
organized as a set of sites that can be used as a meeting place for collaboration. It's a web-based
application that can be run on a different server to the server that runs the repository, providing
opportunities to increase scale and performance.

Share can be deployed to its own tier separate from the content application server. It focuses
on the collaboration aspects of content management and streamlining the user experience. It's
implemented using Surf and can be customized without JSF knowledge.

Clients also exist for portals (by using JSR-168 portlets), mobile platforms, Microsoft Office,

and the desktop. In addition, using the folder drive of the operating system, users can share
documents through a network drive. Using JLAN technology, Alfresco can look and act just like a
folder drive. JLAN is the only Java server-side implementation of the CIFS protocol, letting users
interact with Alfresco Content Services as they do any other normal file drive except the content
is now stored and managed in the content application server.

Server

The content application server comprises a content repository and value-added services for
building solutions.

The content application server provides the following categories of services built upon the content
repository:

« Content services (transformation, tagging, metadata extraction)
» Control services (workflow, records management, change sets)
« Collaboration services (social graph, activities, wiki)

Clients communicate with the content application server and its services through numerous
supported protocols. HTTP and SOAP offer programmatic access while CIFS, FTP, WebDAV,
IMAP, and Microsoft SharePoint protocols offer application access. The Alfresco Content

Developer Guide 5

Developer Guide

Services installer provides an out-of-the-box prepackaged deployment where the content
application server and Share are deployed as distinct web applications inside Apache Tomcat.

Guiding design principles

The Alfresco Content Services architecture supports the requirements of Enterprise Content
Management (ECM) applications, such as Document Management (DM), Web Content
Management (WCM), Records Management (RM), Digital Asset Management (DAM), and
Search.

Support ECM requirements

Each of these disciplines has unigque and overlapping characteristics so that the design of each
capability is not done in isolation but in the context of the whole system.

Simple, simple, simple

Alfresco Content Services aims to be as simple as possible to develop against, customize,
deploy, and use. The simplest and probably most widely deployed ECM solution is the shared
document drive: the architecture is driven by the aim to be as simple as a shared drive.

Scaling to the enterprise

Every service and feature is designed up front to scale in terms of size of data set, processing
power, and number of users.

Modular approach

Alfresco Content Services architecture takes a modular approach in which capabilities are
bundled into modules whose implementation can be replaced if required, or not included at all.
Aspect-Oriented Programming (AOP) techniques allow for fine-tuning and optimization of an ECM
solution.

Incorporating best-of-breed libraries

Where possible, Alfresco Content Services incorporates best-of-breed third-party libraries. The
open source nature lends itself to integrating with the wealth of available open source libraries.
This is done whenever it is more profitable to integrate than build or whenever expertise is better
provided in another project rather than in-house.

Environment independence

Alfresco Content Services does not dictate the environment upon which it depends, allowing
choice in the operating system, database, application server, browser, and authentication system
to use when deploying. ECM is less about the application and more about the services embedded
within an application. You can choose how to package Alfresco Content Services — for example,
as a web application, an embedded library, or portlet.

Solid core

The heart of Alfresco Content Services is implemented in Java. This decision was driven by
the wealth of available Java libraries, monitoring tools, and enterprise integrations. Java is
also a trusted runtime for many enterprises wishing to deploy applications in their data centers.
Each capability is implemented as a black-box Java service tested independently and tuned
appropriately.

Scriptable extensions

Extensions will always need to be created for custom solutions and there are many custom
solutions versus the single Alfresco Content Services core. Therefore, extension points are
developed using JVM-based scripting languages, allowing a much wider pool of developers to

Developer Guide 6

Developer Guide

build extensions versus those that can contribute to the core. Extensions are packaged entities,
allowing for the growth of a library of third-party reusable extensions.

Standards-based approach

The architecture always complies with standards where applicable and advantageous. Primary
concerns are to reduce lock-in, improve integration possibilities, and hook into the ecosystems
built around the chosen standards.

Architecture of participation

The architecture promotes a system designed for community contribution. In particular,

the architecture principles of a solid core, modularity, standards compliance, simplicity of
development, and scriptable extensions encourage contribution of plug-ins and custom ECM
solutions. Participation complements the open source approach to the development of Alfresco
Content Services and fosters growth of the Alfresco community. As the community grows,

the quality of self service improves, as well as the quality of feedback. This, in turn, enhances
Alfresco Content Services and creates the ultimate feedback loop.

Web tier and Surf

Alfresco Content Services provides ECM capabilities as data services, user interfaces, and

user applications. The user interface capabilities are provided by applications and application
components using Alfresco Content Services web tier, Surf, originally developed as a faster way
to develop content applications using scripting and REST architecture.

Development of web scripts allows for the creation of a REST-based API. Web scripts can be
executed without compilation, and provide a quick and easy way to extend and enhance Alfresco
Content Services standard services.

The web script infrastructure accommodates Java beans as easily as JavaScript. Web scripts
add little overhead but provide a great deal of flexibility and development productivity. Web scripts
in the web tier let you quickly build user interface components with Surf or simple HTML and
deploy them as Alfresco Share components, portlets, or other web platforms such as Google
Gadgets.

Alfresco Share client application

The Alfresco Content Services client application provide a means of accessing the repository.
Alfresco Content Services provides Alfresco Share which is a web-based client application,
providing an interface that allows the user to create, upload, and manage content.

The user interface is built entirely with the Alfresco web script technology, which can be used

to extend the application. Share provides content management capabilities with simple user
interfaces, tools to search and browse the repository, content such as thumbnails and associated
metadata, renditions of content, and a set of collaboration tools such as wikis, discussions, and
blogs. Alfresco Share is organized as a set of sites that can be used as a meeting place for
collaboration. Alfresco Share is a web-based application that can be run on a different server to
the server that runs the repository, providing opportunities to increase scale and performance.

Application server

At the heart of Alfresco Content Services is the application server, which manages and maintains
the repository. The server's primary responsibility is to provide services for use in building ECM
solutions. All the applications of the Alfresco Content Services suite are built upon and executed
by the application server.

The application server exposes a set of remote public interfaces for allowing a client to
communicate with it. The remote public interfaces are the only part of the server visible to the
client. There are two types:

* Remote APIs - for interacting with services of the server programmatically

Developer Guide 7

Developer Guide

* Protocol bindings - for mapping services for use by a protocol-compliant client

Remote APls Protocols
|

Web Script Framework ‘ Web Services Framework

Extensions Content Services
e Control Services
Embedded APls | Collaboration Services

Content Repository

Infrastructure |

Internally, the server comprises several layers. The foundation includes infrastructure concerns,
such as configuration, authentication, permissions, and transactions that cut across all
capabilities. Infrastructure also shields the server from being tied to any specific environmental
implementation, such as transaction managers or caching mechanisms.

The repository is built on this infrastructure, which itself is the building block for content, control,
and collaboration services. Each capability of the repository and content services is individually
bundled as a module with its own in-process interface and implementation. Modules are bound
together by the infrastructure through their interfaces.

You can deploy extensions to the content application server to extend or override its capabilities.
Their implementation might use the in-process interfaces offered by the repository and content
services.

Repository

The repository is comparable to a database, except that it holds more than data. The binary
streams of content are stored in the repository and the associated full-text indexes are maintained
by SOLR indexes.

The actual binary streams of the content are stored in files managed in the repository, although
these files are for internal use only and do not reflect what you might see through the shared
drive interfaces. The repository also holds the associations among content items, classifications,
and the folder/file structure. The folder/file structure is maintained in the database and is not
reflected in the internal file storage structure.

The repository implements services including:

» Definition of content structure (modeling)
« Creation, modification, and deletion of content, associated metadata, and relationships
¢ Query of content

» Access control on content (permissions)
» Versioning of content

¢ Content renditions

* Locking

e Events

e Audits

* Import/Export

* Multilingual

Developer Guide 8

* Rules/Actions

Developer Guide

The repository implements and exposes these services through an API, CMIS protocol bindings,
and the JSR-170 Java API. The storage engine of the repository stores and retrieves content,

metadata, and relationships, and operates on the following constructs:

« Nodes - provide metadata and structure to content. A node can support properties, such
as author, and relate to other nodes such as folder hierarchy and annotations. Parent to
child relationships are treated specially.

« Content - the content to record, such as a Microsoft Word document or an XML fragment.

Content models are registered with the repository to constrain the structure of nodes and the

relationships between them, and to constrain property values.

Content Repository

Metadata Content | Query Renditions
Maodeling | Permissions ‘ Versions Locking ‘ Relationships
Multilingual ‘ Audit Rules/Actions ‘ Import/Export Events

Storage
Storage Engine | | Users / Groups ‘
Key Value Smr:| Binary Content Store ‘ Index Store | | Admin ‘
Infrastructure
Spring Framework I Database Abstraction Layer } Lucene |

The storage engine also exposes query capabilities provided by a custom query engine built on

Apache Lucene that supports the following search constructs:

¢ Metadata filtering
» Path matching
* Full text search

¢ Any combination of these search constructs

The query engine and storage engines are hooked into the transaction and permission support

of the infrastructure, offering consistent views and permission access. Several query languages
are exposed, including native Lucene, XPath, Alfresco FTS (Full Text Search), and CMIS Query
Language (with embedded Alfresco FTS).

Query Engine
1
MNative Lucene
|
o]
0 [XPath
g 2
~ aE CMIS QL
@ |
Alfresco FTS
L |

Developer Guide 9

Developer Guide

By default nodes are stored in an RDBMS while content is stored in the file system. Using a
database provides transaction support, scaling, and administration capabilities. A database
abstraction layer is used for interacting with the database, which isolates the storage engine from
variations in SQL dialect. This eases the database porting effort, allowing certification against all
the prominent RDBMS implementations. The file system stores content to allow for very large
content, random access, streaming, and options for different storage devices. Updates to content
are always translated to append operations in the file system, allowing for transaction consistency
between database and file system.

You can bundle and deploy the repository independently or as part of a greater bundle, such as
the application server.

Content services

Services address the core use cases for content management applications including the logical
organization of content, file management, version control, and security. Services also support
the control of content through workflow and process management, and social and collaborative
applications.

Alfresco Content Services exposes services at various levels including:
* Java
» Scripting
e REST
* Web services
» Client interfaces, such as Alfresco Share

Some services are considered internal; others are public. For example, the Java level services
are internal. The majority of these are accessible through other public interfaces including the
public APIs, client applications, and CMIS.

Services are divided into two main categories; application services and repository services.

Programming models

A number of programming models are available for building an application using the content
application server.

¢ The simplest model for non-programmers is to use out-of-the-box components of the
Alfresco Share application and the Rules and Actions model, a set of conditions and
actions to take on content based on those conditions. You can define rules and actions
using a wizard and perform actions such as converting content, moving content, or
executing a simple JavaScript snippet.

* Web scripts let you perform more sophisticated processing without complex programming.
The Content Management Interoperability Services (CMIS) implementation was built
using web scripts. By using JavaScript to build these data services, it is easy to create
new services. To build new user interfaces or extensions to Share, you can also use web
scripts by using a web templating language like FreeMarker. Most of Sharewas built using
web scripts.

* To use Java to build applications or extend Share, you can use the many tools associated
with Java that were used to build the system. Surf, the web runtime framework, lets you
extend Share and build web applications. Because Share was built using Surf, you can
build your own extensions as a combination of Java programming and web scripts, or with
Java alone. You can also use Java to access or even replace whole pieces of Alfresco
Content Services, content application server, or Share by using the Spring platform. You
can use the source code as an example for rewriting pieces and using Spring beans and
configuration to extend or replace functionality in Alfresco Content Services.

Developer Guide 10

Developer Guide

« To write applications that use Alfresco Content Services but are portable to other ECM
systems, you can use Content Management Interoperability Services (CMIS), the OASIS
standard for accessing content repositories.

APls

To access and extend out-of-the-box services, the content application server exposes two flavors
of API, each designed for a specific type of client.

The two main categories of APl are embedded and remote APIs.

Embedded APIs

The Embedded API is used for developing extensions to the application server. Extensions
deployed into the server often depend on existing services provided by the server. Therefore,
developers of extensions use the Embedded API to gain access to those services.

The Embedded API comes in several forms, where each form is structured for a particular need
or kind of extension:

« Alfresco Public Java API - a set of public Java interfaces exposed by services built into the
content application server

» JavaScript API - an object-oriented view of the Java Foundation API specifically tailored for
use in JavaScript. There is a JavaScript API for the repository tier and a JavaScript API for
the Share tier.

» FreeMarker API - an object-oriented view of the Java Foundation API specifically tailored
for use in FreeMarker templates

« Content Definition - an API for creating and editing content models
« Workflow Definition - an API for defining business processes

The JavaScript and Template APIs are the key building blocks for web scripts to develop the
RESTful APlIs.

Custom REST API
+

Alfresco Content Services

‘Web Script Java Foundation AP |

Action JCR

Transformer

i

i

|
JavaScript API |
|

Policy FreeMarker AP

uGsuaIRg

Id¥ PRppaquy

Service

Content Definition |

Caontent Model

Warkflow Workflow Definition]

Web scripts are a popular extension for the content application server. They allow you to define
your own Remote API for clients to interact with the content application server. A web script
implementation can use any of the Embedded APIs, such as the Public Java API, JavaScript,
and FreeMarker, for its implementation. Developing your own Remote API is very useful for the
following scenarios:

« Exposing new extension services deployed into the application server to remote clients
« Providing alternate batching or transaction demarcation of existing services

Developer Guide 11

Developer Guide

« Creating a facade for integration with a third-party tool, such as a Forms engine

There is another use case for the Embedded API. An application or client can also directly embed
the content application server to inherit its suite of content services.

Host Application
Embedded Alfresco Content Services
Java Foundation API
I
| JCR
> I
= JavaScript API
% I
8- FreeMarker API
a
by
3
Content Definition
1
Workflow Definition

The infrastructure of the server means it can be deployed into a number of environments, not just
as a web application. Essentially, the content application server is treated as a library, where any
of its services, including the content repository, can be chosen independently or mixed to provide
a custom solution. The server can scale down as well as up.

Remote APIs

The Remote API is primarily used to build ECM solutions against the content application server.
There are three main remote APIs:

1. Alfresco Content Services API
2. CMIS API
3. Repository REST API (Deprecated)

The Alfresco Content Services APl was introduced with version 4.x, and is also present

in Alfresco Content Services in the Cloud. It provides the main remote API, and is the
recommended API for developing remote client applications to work across cloud, on-premise
and hybrid deployments. It comprises two sub-APIs, the Alfresco Content Services REST API for
gaining access to Alfresco Content Services-specific functionality such as sites, and a standard
CMIS API for repository manipulation and management. SDKs such as the Mobile SDK for
Android and the Mobile SDK for iOS both use the services of the Alfresco Content Services API.

CMIS provides a standardized set of common services for working with content repositories.
CMIS is not language-specific, it does not dictate how a repository works, and it does not

seek to incorporate every feature of every repository. Alfresco Content Services provides an
implementation of CMIS Web service and RESTful bindings, as well as a CMIS client API for use
in Surf and other environments.

The Repository REST API provides access to the core repository functionality using a RESTful
approach. This is useful where the developer does not want to, or have a need to, write custom
web scripts, and is developing a client-side application. This APl can be thought of as a ready-
built collection of web scripts that can be called from any client capable of making REST requests
and receiving the associated responses.

Developer Guide 12

Developer Guide

For more information about the APIs and their support status see the API overview page.

Content modeling

Content modeling is a fundamental building block of the repository that provides a foundation for
structuring and working with content.

& For more information about working with custom metadata models (aspects, types and
forms), flexible content organization and actions in the Model Manager, see Content
modeling.

Content modeling specifies how nodes stored in the repository are constrained, imposing a
formal structure on nodes that an application can understand and enforce. Nodes can represent
anything stored in the repository, such as folders, documents, XML fragments, renditions,
collaboration sites, and people. Each node has a unique ID and is a container for any number of
named properties, where property values can be of any data type, single or multi-valued.

Nodes are related to each other through relationships. A parent/child relationship represents a
hierarchy of nodes where child nodes cannot outlive their parent. You can also create arbitrary
relationships between nodes and define different types of nodes and relationships.

A content model defines how a node in the repository is constrained. Each model defines one

or more types, where a type enumerates the properties and relationships that a node of that

type can support. Often, concepts that cross multiple types of node must be modeled, which the
repository supports through aspects. Although a node can only be of a single type, you can apply
any number of aspects to a node. An aspect can encapsulate both data and process, providing a
flexible tool for modeling content.

Content modeling puts the following constraints on the data structure:
¢ A node must be of a given kind.
¢ A node must carry an enumerated set of properties.
< A property must be of a given data type.
¢ A value must be within a defined set of values.
* A node must be related to other nodes in a particular way.
These constraints allow the definition (or modeling) of entities within the domain. For example,

many applications are built around the notion of folders and documents. It is content modeling
that adds meaning to the node data structure.

A]
ko
] o
—fBoc}—

The repository provides services for reading, querying, and maintaining nodes. Events are fired
on changes, allowing for processes to be triggered. In particular, the repository provides the
following capabilities based on events:

« Policies: event handlers registered for specific kinds of node events for either all nodes or
nodes of a specific type

Developer Guide 13

Developer Guide

¢ Rules: declarative definition of processes based on addition, update, or removal of nodes
(for example, the equivalent of email rules)

Models also define kinds of relationships, property data types, and value constraints. A special
data type called cont ent allows a property to hold arbitrary length binary data. Alfresco Content
Services comes prepackaged with several content models. You can define new models for
specific use cases from scratch or by inheriting definitions from existing models.

Protocols

The content application server supports many folder and document-based protocols to access
and manage content held within the repository using familiar client tools.

All the protocol bindings expose folders and documents held in the repository. This means a
client tool accessing the repository using the protocol can navigate through folders, examine
properties, and read content. Most protocols also permit updates, allowing a client tool to modify
the folder structure, create and update documents, and write content. Some protocols also allow
interaction with capabilities such as version histories, search, and tasks.

Internally, the protocol bindings interact with the repository services, which encapsulate the
behavior of working with folders and files. This ensures a consistent view and update approach
across all client tools interacting with the content application server.

A subsystem for file servers allows configuration and lifecycle management for each of the
protocols either through property files or IMX.

Protocols

> CIFs |«—| OSFiesystem |

3 |

§ WebDAY |<—;~ Content Application
el |8 |
2 g FTP |4!—!- File Transfer Client |
2 2 [

%’ IMAP |«<—| EmailClent |

2 |

w Microsoft SharePoint |1—:~ Office Integration |

[

Supported protocols include:

CIFS (Common Internet File System)

CIFS allows the projection of Alfresco Content Services as a native shared file drive. Any
client that can read and write to file drives can read and write to Alfresco Content Services,
allowing the commonly used shared file drive to be replaced with an ECM system without
users even knowing.

WebDAV (Web-based Distributed Authoring and Versioning)

WebDAYV provides a set of extensions to HTTP for managing files collaboratively on web
servers. It has strong support for authoring scenarios such as locking, metadata, and
versioning. Many content production tools, such as the Microsoft Office suite, support
WebDAV. Additionally, there are tools for mounting a WebDAYV server as a network drive.

FTP (File Transfer Protocol)

FTP is a standard network protocol for exchanging and manipulating files over a network.
This protocol is particularly useful for bulk loading folders and files into the repository.

Developer Guide 14

IMAP (Internet Message Access Protocol)

Developer Guide

IMAP is a prevalent standard for allowing email access on a remote mail server. Alfresco
presents itself as a mail server, allowing clients such as Microsoft Outlook, AppleMail, and
Thunderbird to connect to and interact with folders and files held within the repository. IMAP

supports three modes of operation:

1. Archive: allows email storage in the repository by using drag/drop and copy/paste from
the IMAP client

2. Virtual: folders and files held in the repository are exposed as emails within the IMAP
client with the ability to view metadata and trigger actions using links embedded in the

email body
3. Mixed: a combination of both archive and virtual

Microsoft SharePoint Protocols

Alfresco Office Services support Microsoft SharePoint Protocols. This allows Alfresco Content
Services to act as a SharePoint server, creating tight integration with the Microsoft Office
suite. A user who is familiar with the Microsoft task pane can view and act upon documents
held within the repository. Collaborative features of Microsoft SharePoint are mapped to
Alfresco Share site capabilities.

Modularity

The Alfresco Content Services system is modular. Every moving part is encapsulated as a
service, where each service provides an external face in a formally defined interface and has one

or more black-box implementations.

The system is designed this way to allow for:

¢ Pick and mix of services for building an ECM solution

* Reimplementation of individual services

« Multiple implementations of a service, where the appropriate implementation is chosen

based on the context within which the solution is executed
« A pattern for extending Alfresco Content Services (at design and runtime)

« Easier testing of services

To support this approach, Alfresco Content Services used the Spring framework for its factory,
Dependency Injection, and Aspect-Oriented Programming (AOP) capabilities. Services are bound
together through their interfaces and configured using Spring’s declarative Dependency Injection.

Subsystem Interface

Service Interface

Service Interface

Service
Implementation

Service
Implementation

Subsystem
Lifecycle

Configuration

Spring Framework

A service interface is defined as a Java interface. For services that form the internal embedded
API for extensions, cross-cutting concerns such as transaction demarcation, access control,
auditing, logging, and multi-tenancy are plugged in through Spring AOP behind the service
interface. This means that service implementations are not polluted with these concerns. It
also means the cross-cutting concerns can be configured independently or even switched off

Developer Guide 15

Developer Guide

across the server if, for example, performance is the top-most requirement and the feature is not
necessary.

Multiple services are aggregated into an Alfresco Content Services subsystem where a
subsystem represents a complete coherent capability of the Alfresco Content Services server,
such as authentication, transformation, and protocols. As a unit, subsystems have their own
lifecycle where they can be shut down and restarted while the server is running. This is useful
to disable aspects of the server, or reconfigure parts of it, such as how LDAP synchronization
is mapped. Each subsystem supports its own administration interface that is accessible through
property files or IMX.

Web application framework

Alfresco Share and all new web applications are built on Surf. This web application framework
provides the typical features of this kind of framework and supports web content management
needs.

At the heart of Surf is a site assembly framework that bundles a full site construction object model
and toolkit for building websites and applications.

Its features include:

« A Site Dispatcher to create pages easily, link them to the overall navigation of a website,
and build pages in a way that promotes reusability.

« Templates for defining a page layout once and then reusing it across a large set of pages.
You can develop pages using FreeMarker, JSP, HTML, or Java.

« AUl Library containing reusable Ul components comprising back-end application logic
and front-end presentation code that can be bound into regions (or slots) within a page or
template.

e Pages that you can render in multiple formats, such as print, PDF, or mobile device.
* AJAX support for integration with the Yahoo! User Interface (YUI) library.
« Forms in a rich forms engine for rendering and collecting data.

e
{Apptcation}
’— Share ‘ Admin Conscle ‘
Spring Surl i
Dispatcher Forms ‘ Ajax I Ul Library
Pages Templates Components | Bindings Drata Sources
[pria Wb serpn]. _ e
[Maodel View Controller | Remote Credentials

Surf embeds Spring web scripts, allowing developers to use the same techniques that were used
when building content application server RESTful APls. Often, a Surf website requires access to
and management of content held within the application content server, such as to support user-
generated content, dynamic site artifacts, personalized presentation, and tagging. To support this,
Surf provides the following integration services:

* Remote: encapsulates any number of data sources with out-of-the-box support for the
content application server

e Credentials: manages user authentication with out-of-the-box support for the content
application server

With the CMIS client API, Surf provides an open stack for implementing web-based, content-
enabled applications.

Developer Guide 16

Developer Guide

Alfresco Content Services 5.2 includes the new Ul framework built on Surf, Aikau. Aikau provides
a modern, higher-level approach to developing custom Ul applications, and features a simplified
method for creating pages and widgets. New pages with standard widgets can be created
through JSON code, and then extended as required using JavaScript.

Deployment options

You can deploy Alfresco Content Services in many different forms and topologies. Because its
infrastructure foundation protects Alfresco Content Services from the environment within which it
executes, you can choose components such as operating system, database, application server,
web browser, and authentication system. It's designed to scale down as well as up.

Embedded Alfresco Content Services

An embedded Alfresco Content Services is contained directly within a host where the host
communicates with Alfresco Content Services through its embedded API, meaning the host and
Alfresco Content Services reside in the same process. Typical hosts include content-rich client
applications that require content-oriented storage, retrieval, and services, but can also include
hosts such as test harnesses and samples. A client can choose to embed the web application
framework or content application server, or both, treating Alfresco Content Services as a third-
party library. In any case, the client can pick and mix the services to embed, allowing very small-
footprint versions. The host is responsible for the start up and shutdown of Alfresco Content
Services.

Content application server

An content application server is a stand-alone server capable of servicing requests over remote
protocols. A single server can support any number of different applications and clients where new
applications can be arbitrarily added. Clients communicate through its Remote API and protocol
bindings, although you can configure a server to omit or prohibit specific access points. This

type of deployment takes advantage of an application server where Alfresco Content Services

is bundled as a web application. Application server features, such as transaction management
and resource pooling, are injected into the infrastructure foundation, allowing Alfresco Content
Services to take advantage of them.

For example, you can embed the content application server inside Apache Tomcat for the
lightest-weight deployment, as well as inside Java Enterprise Edition compliant application
servers from JBoss, Oracle, or IBM to take advantage of advanced capabilities such as
distributed transactions.

Clustered

To support large-scale systems, you can cluster Alfresco Content Services. This lets you set up
multiple servers to work with each other, allowing client requests to be fulfilled across a number of
processors. You can cluster both the web application framework and content application server,
allowing each tier to scale out independently. Each node of a clustered content application server
shares the same content repository store, although the store itself can be replicated across the
nodes, if required. Caches and search indexes are also distributed, meaning that a clustered
content application server looks and acts like a single content application server.

Typically, a load balancer is placed in front of the clustered content application server to distribute
requests across the nodes. This setup also supports Cloud deployments. Alfresco Content
Services provides images and tools for easily deploying a clustered content application server
across multiple Amazon EC2 virtual nodes.

Backup server

This is a special case of the clustered deployment where, in case of failure, an application can
switch to a backup version of the deployed stack. Depending upon configuration, the backup

Developer Guide 17

Developer Guide

version might be available immediately on failure (known as hot backup) or shortly after failure,
following some configuration changes (known as warm backup). One of the nodes in the cluster
is designated the master, which supports the live application, while the other node is designated
the slave, which keeps itself replicated with the master. The slave remains read-only until the
point of switchover.

Multi-tenancy

Multi-tenancy allows a single content application server (clustered or not) to support multiple
tenants, where a tenant such as a customer, company, or organization believes they are the only
user of the server as they connect to a logical partition. Physically, all tenants share the same
infrastructure, such as deployed nodes in a cluster and content, repository storage. However,
data maintained by one tenant cannot be read or manipulated by another tenant. A deployment
of this type eases administration and reduces the cost associated with maintaining many different
applications and user bases, in particular when upgrading core services or performing backups,
as this only needs to be done once for all tenants.

Alfresco Content Services provides administration tools for managing tenants, including the
creation of tenants at runtime. In conjunction with clustering, multi-tenancy provides an ideal
deployment option for the Cloud.

Access protocols

Alfresco Content Services supports a number of different protocols for accessing the content
repository. Their availability extends the options available to developers, when building their own
applications and extensions.

Protocols provide developers with another possible avenue for building their own applications
and extensions. For example, if you are building a client application to connect with multiple
repositories from multiple vendors, including Alfresco Content Services, then CMIS is a
consideration. If you are building a client to connect via the SharePoint Protocol, then use the
Alfresco Office Services (AOS). Protocols provide a resource for developers, in addition to the
numerous other extension points and APIs built into Alfresco.

When any of these protocols are used to access or upload content to the repository, access
control is always enforced based on configured permissions, regardless of what protocol that is
used.

The following table list some of the main protocols supported by Alfresco Content Services and
links to more detailed documentation.

Protocol Description Support Status

HTTP The main protocol used to Standard in Alfresco Content
access the repository via for Services and Community
example the REST APIs. Edition.

WebDAV Web-based Distributed Standard in Alfresco Content
Authoring and Versioning is a Servicesand Community Edition.

set of HTTP extensions that lets
you manage files collaboratively
on web servers.

FTP File Transfer Protocol - standard | Standard in Alfresco Content
network protocol for file upload, Services and Community.
download and manipulation.
Useful for bulk uploads and
downloads.

Developer Guide 18

Developer Guide

Protocol

Description

Support Status

CIFS

Common Internet File System -
allows the projection of Alfresco
Content Services as a native
shared drive. Any client that

can read or write to file drives
can read and write to Alfresco
Content Services, allowing the
commonly used shared file drive
to be replaced with an ECM
system, without users knowing.

Standard in Alfresco Content
Servicesand Community Edition.

SPP

Enables Alfresco Content
Services to act as a Microsoft
SharePoint Server. Allows
Microsoft Office users to access
documents within the Alfresco
repository.

Supported as part of Alfresco
Office Services (AOS).
Community versions have
support for the older SharePoint
Protocol Support.

Alfresco Office Services

Alfresco Office Services (AOS)
allow you to access Alfresco
Content Services directly

from all your Microsoft Office
applications.

Standard in Alfresco Content
Services and Community
Edition.

CMIS

Alfresco fully implements both
the CMIS 1.0 and 1.1 standards
to allow your application to
manage content and metadata
in an on-premise repository or
Alfresco Content Services in the
cloud.

Standard in Alfresco Content
Services and Community
Edition.

IMAP

Internet Message Access
Protocol - allows access to
email on a remote server.
Alfresco Content Services

can present itself as an email
server, allowing clients such as
Microsoft Outlook, Thunderbird,
Apple Mail and other email
clients to access the content
repository, and manipulate

folders and files contained there.

Standard in Alfresco Content
Services and Community
Edition.

SMTP

It is possible to email

content into the repository
(InboundSMTP). A folder can be
dedicated as an email target.

Standard in Alfresco Content
Services and Community
Edition.

Repository concepts

It is important as a developer to have a good understanding of the fundamental concepts of
Alfresco Content Services when implementing extensions. Important concepts covered include
repository, nodes, stores, types, aspects and so on.

Key Concepts

Developer Guide 19

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis

Developer Guide

All files that are stored in Alfresco Content Services are stored in what is referred to as the
repository. The repository is a logical entity that consists of three important parts:

1. The physical content files that are uploaded

2. The index files created when indexing the uploaded file so it is searchable

3. The metadata/properties for the file, which are stored in a relational database management
system (RDBMS).

When a file is uploaded to the repository it is stored on disk in a special directory structure that is
based on the date and time of the upload. The file name is also changed to the UUID (Universally
Unique Identifier) assigned to the file when it is added to the repository. The file's metadata is
stored in an RDBMS such as PostgreSQL. Indexes are also stored on the disk. When the file is
added to the repository it is stored in a folder, and the folder has domain specific metadata, rules,
and fine grained permissions. The top folder in the repository is called Company Home, although
it will be referred to with the name repository in the Alfresco Share user interface.

Logical Structure

All the files and folders that are uploaded and created in the repository are referred to as nodes.
Some nodes, such as folders and rules, can contain other nodes (and are therefore known as
container nodes). Nodes can also be associated with other nodes in a peer to peer relationship,
in a similar fashion to how an HTML file can reference an image file. All nodes live in a Store.
Each store has a root node at the top, and nodes can reference specific files, as shown in the
following diagram:

Alfresco Repository . Folder Node

O File Node

[Physical Fite
Parent-Child
Relationship

sy, Source-Torget

Relationship (Peer)

Stores Overview

The Repository contains multiple logical stores. However, a node lives only in one store. Most
of the stores are implemented as data in the connected RDBMS, only the Content Store is
implemented so as to store items on disk:

Alfresco Repository System Store

RM Module

data

Version Store (metadata) Working Store (metadata) Archive Store
(metadata)

Document cehive st Document
e

ContentStore {Physical Files)

File: File

The main stores

Developer Guide 20

Developer Guide

The Working Store (wor kspace: / / SpacesSt or e) contains the metadata for all active/live nodes
in the Repository. This store is implemented using a database (RDBMS).

The Content Store contains the physical files uploaded to the Repository and is located in the
{Alfresco install dir}/alf_data/contentstore directory on the filesystem by default, but
can also be configured to use other storage systems, for example, Amazon S3. It is also possible
to define content store policies for storing files on different storage systems, effectively defining
more than one physical content store.

Whenever a node is deleted, the metadata for the node is moved to the Archive Store

(archi ve: / / SpacesSt or e), which uses the configured database. The physical file for a
deleted node is moved (by default after 14 days) to the { Al fresco install dir}/alf_data/
cont ent st or e. del et ed directory, where it stays indefinitely. However, a clean-up job can be
configured to remove the file at a certain point in time (referred to as eager clean-up).

When the ver si onabl e aspect is applied to a node, a version history is created in the Version
Store (wor kspace: //1i ght Wi ght Ver si onSt or e). Versioned node metadata is stored in the
database and files remain in the { Al fresco install dir}/alf_data/contentstore directory.
Versioning is not applicable to folder nodes.

The System Store is used to save information about installed Alfresco Content Services
extension modules.

Content Store Implementation

When considering file storage, it should be noted that files added to Alfresco Content Services
can be of almost any type, and include images, photos, binary document files (Word, PPT,
Excel), as well as text files (HTML, XML, plain text). Some binary files such as videos and
music files can be relatively large. Content store files are located on the disk, rather than in the
database as BLOBs. There are several reasons for this:

1. It removes incompatibility issues across database vendors.

2. The random file access support (as required by CIFS and other applications) cannot be
provided by database persistence without first copying files to the file system.

3. Possibility of real-time streaming (for direct streaming of files to browser).

4. Standard database access would be difficult when using BLOBs as the most efficient
BLOB APIs are vendor-specific.

5. Faster access.

Content Store Selectors

The content store selector provides a mechanism to control the physical location on disk for
a content file associated with a particular content node. This allows storage polices to be
implemented to control which underlying physical storage is used, based on your applications
needs or business policies.

For example, it is possible to use a very fast tier-1 Solid State Drive (SSD) for our most important
content files. Then, based on business policies that have been decided, gradually move the data,
as it becomes less important, to cheaper tier-2 drives such as Fiber Channel (FC) drives or Serial
ATA drives. In this way, it is possible to manage the storage of content more cost effectively:

Working Store

House jpeg Invoice.doc Userguide pdf

Content Store A Content Store B
(Z:\images) (D:\docs)
Solid State Drive Fibre Channel

$5% $$

Store Reference

Developer Guide 21

Developer Guide

When working with the APIs a store is accessed via its store reference, for example

wor kspace: / / SpacesSt or e. The store reference consists of two parts: the protocol and the
identifier. The first part (for example wor kspace) is called the protocol and indicates the content
you are interested in, such as live content (wor kspace: / / SpacesSt or €) or archived content
(archi ve: // SpacesSt or e). The second part is the identifier (the type of store) for the store, such
as SpacesSt or e, which contains folder nodes (previously called spaces) and file nodes data, or
for example | i ght Wi ght Ver si onSt or e that contains version history data.

1 The reason some things are referred to as spaces (for example SpacesStore) is that in
previous versions of Alfresco Content Services a folder used to be called a space. The
Share user interface has generally been changed to use the name folder instead of the
name space. However, there is functionality, such as Space Templates, that still uses the
term "space". A space can simply be thought of as a folder.

Node Information

A node usually represents a folder or a file. Each store also contains a special root node at the
top level with the type sys: st ore_r oot . The root node can have one or more child nodes, such
as the Company Home folder node. Each node has a primary path to a parent node and the
following metadata:

e Type: a node is of one type, such as Folder, File, Marketing Document, Rule, Calendar
Event, Discussion, Data List and so on.

» Aspects: a node can have many aspects applied, such as Versioned, Emailed,
Transformed, Classified, Geographic and so on.

* Properties: both types and aspects define properties. If it is a file node then one of the
properties points to the physical file in the content store.

* Permissions: access control settings for the node.
» Associations: relationships to other nodes (peer or child).

Node Reference

A node is uniquely identified in the Repository via its node reference, also commonly referred
to as NodeRef. A node reference points to a store and a node in that store. A node reference
has the following format: { st ore protocol ://store identifier}/UU Dsuch as for example
wor kspace: / / SpacesSt or e/ 986570b5- 4alb- 11dd- 823c- f 5095e006c11. The first part is the
store reference and the second part is a Universally Unique Identifier (UUID) for that store. Node
references are used a lot in the available APIs so it is good to have an idea of how they are
constructed.

Node Properties

The node properties, also referred to as the node's metadata, contains the majority of the
information for a node. The sys: st ore- prot ocol , sys: store-identifier,andsys: node-

uui d properties contains all the data needed to construct the NodeRef, uniquely identifying the
node. The special property called cm cont ent points to where the physical content file is stored
on disk (unless it is a folder or other contentless node type). All properties are either contained in
a type or in an aspect defined in a content model. When a node is created some properties are
automatically set by the system and cannot be easily changed, they are called audit properties
(from the cm audi t abl e aspect) and are Created Date, Creator, Modified Date, Modifier, and
Accessed. Defining new domain specific node properties, together with the types and aspects
that contain them, is the primary way of classifying a node so it can be easily found via searches.

Metadata/Property Extractors

Some of the properties of a file node are set automatically when it is uploaded to the Repository,
such as author. This is handled by metadata extractors. A metadata extractor is set up to extract
properties from a specific file MIME type. There are numerous metadata extractors available out-

Developer Guide 22

Developer Guide

of-the-box covering common MIME types such as MS Office document types, PDFs, Emails,
JPEGs, HTML files, DWG files and more. The metadata extractors are implemented via the
Tika library, although custom metadata extractors are available. Each metadata extractor
implementation has a mapping between the properties it can extract from the content file, and
what content model properties that should be set as hode metadata.

Node Associations
There are two types of associations:

» Parent to Child associations - these are for example folder to file associations where
deleting the folder will cascade delete its children.

» Peer to Peer - an example could be article to image associations where deleting the article
does not affect the related image node(s). These associations are also referred to as
source to target associations.

QName

All properties are defined within a specific content model, which also defines a unique
namespace. For example, a property called descri pti on can be part of many namespaces
(content models). To uniquely identify what descri pti on property is being referenced, a
fully qualified name, or a QNane, is used. A QName has the following format: { nanmespace
URL} property | ocal nane, for example:

{http://ww. al fresco. org/ nodel / content/ 1. 0}descri ption

The first part in curly braces is the namespace identifier defining the content model that the
property is part of. The second part is the local name of the property (that is description in this
case).

A QName is used for types, aspects, properties, associations, constraints and so on. The
QName for the generic folder type that is part of the out-of-the-box document content model is
cm f ol der. Note the use of cmto denote the namespace. Each content model defines a prefix for
each namespace that is used in the content model. Each type, aspect, property and so on in the
content model definition uses the namespace prefix instead of the full namespace URL. You will
also use the prefix when referring to entities such as types, aspects, properties, in the different
APlIs.

Permissions

Permissions are set up per node and a node can inherit permissions from its parent node. A Role
(Group) Based Access Control configuration is the preferred way to set up permissions in the
repository. However, permissions can also be set for an individual user. Groups and users can be
synchronized with an external directory such as LDAP or MS Active Directory. Some groups are
created automatically during installation:

« EVERYONE - all users in the system

e ALFRESCO_ADMINISTRATORS — administrators with full access to everything in the
Repository.

» ALFRESCO_SEARCH_ADMINISTRATORS - can access the Search Manager tool and
set up search filters (facets).

* SITE_ADMINISTRATORS - can access the Site Manager tool and change visibility of
sites, delete sites, and perform site related operations.

* E-MAIL_CONTRIBUTORS - users that can send email with content into Alfresco Content
Services.

Permission settings involve three entities:

Developer Guide 23

Developer Guide

There are a number of out-of-the-box roles:

1. Consumer
2. Contributor
3. Editor
4. Collaborator
5. Coordinator
Whenever a Share site is created there are also four associated groups created that are used to

set up permissions within the site. In the repository, groups are prefixed with GROUP_ and roles
with ROLE_, this is important when referring to a group or role when using one of the APIs.

[t ASiteis a collaboration area in Alfresco Share where a team of people can collaborate on
content.

Owner

The Repository contains a special authority called owner. Whoever creates a node in the
repository is called the owner of the node. Owner status overrides any other permission setting.
As owner you can do any operation on the node (basically the same as being coordinator/admin).
Anyone with Coordinator or Admin status can take ownership of a node (cm ownabl e is then
applied).

Folder Node and File Node Overview

The diagram illustrates a typical folder node with a child file node when it has been classified with
the out-of-the-box default document content model:

Mini glossary

Terms and concepts used when developing for Alfresco Content Services.

Term Description

Actions Actions typically work in conjunction with Rules.
When creating a rule you specify the action to be
carried out when the rule is activated. There are
standard actions, but you can also create custom
actions. Custom actions are implemented in Java
as Spring beans.

Developer Guide 24

Developer Guide

Term

Description

Aspects

While nodes must be of a single Type, they can
have multiple Aspects applied to them. Dublin
Core, Taggable, EXIF, Geographic, Emailed are
all examples of aspects. Also a single aspect can
be applied to multiple types.

Associations

Relationships between Types are modeled
with Associations. There are two types: Child
Associations and Peer Associations.

Attributes

Attributes provide a global means of storing key-
value data. Whereas properties are attached

to a node, attributes are system-wide, and not
stored per-node. They can be quickly searched for
without the need for an index and are cluster-safe.

Auditing

Auditing allows you to track events that occur in
Alfresco Content Services. The events that you
audit are completely configurable.

Configuration

Platform provides many points at which the
configuration of the system can be changed. For
example, changes may be made to al f r esco-
gl obal . properti es or many of the other
configuration files. In addition, Share is highly
configurable.

Content

This is the piece of content to be stored in the
repository. It could be a Word document, a PDF, a
PNG image file, an audio file and so on. Note that
the content itself will be stored on the file system,
while its corresponding node, containing metadata,
will be stored in an RDBMS.

Content Model

The content model describes the nodes and the
hierarchical relationship between them, as well
as any constraints that may exist. For example,
nodes that are of container type can contain other
nodes.

Content Renditions

Renditions are manipulations of content that
typically involves some content transformation,
followed by some other operation such as crop
or resize. For example, you might have a PDF
document, which you might convert the first page
of to a PNG, and then crop and resize that image
to create a thumbnail view of the document. The
key service is the Rendition Service.

Content Store

The repository has multiple content stores.
Typically this would include a main content store,
an encrypted content store, an archive content
store (for deleted items), and a version store (to
hold previous versions of documents). It is also
possible for developers to create custom content
stores for specific purposes.

Developer Guide 25

Developer Guide

Term

Description

Content Transformation

Content transformation transforms one format
of content into another. There are numerous
applications of this, such as converting content
into plain text for indexing and generating

PDF versions of Word files. Transformations
can be chained together, for example DOC

to PDF using LibreOffice. Key service is the
ContentTransformation Service.

Extension

Extensions can be thoughts of as server-side
additions to Alfresco Content Services. There
are two main types of extension: Platform and
Share. Each of these extension types are fully
described in this documentation, along with all
officially supported extension points.

Events

Data structures created on various changes within
the repository, such as name change of a piece of
content. There are three types of Event:

1. Inbound event - content arriving into a
folder

Outbound event - content leaving a folder
Update event - content being modified

Indexing

As content is added to Alfresco Content Services
it is indexed by an indexer such as Solr. Solr
indexes both meta data and the plain text
content of files added. The content model
defines the metadata (aspects, properties,
types, associations) that are to be indexed via
the <t okeni se> element. The indexes can
be queried using a variety of query languages,
including:

« fts-alfresco

e storeroot

e noderef

e Xxpath

e lucene

e cmis-strict

e cmis-alfresco

e db-afts

e db-cmis
Queries can be executed from JavaScript

and Java code, and also in the Node Browser
(available under Admin Tools in Share).

Developer Guide 26

Developer Guide

Term

Description

Nodes

Each piece of content in the repository has a node
associated with it. The node contains information
about the content, such as its metadata and
location within the content store. The node is
stored in a RDBMS such as PostgreSQL, the
content itself is stored on the file system.

Predefined Content Model

There are pre-defined content models provided
out-of-the-box, these include Folder/Document
hierarchy, Dublin Core, blogs, Wiki, Sites.

Policies These are event handlers triggered by certain
node events for either all nodes or just nodes of a
specific type.

Metadata Most content has metadata associated with it. For

example, photographs have EXIF metadata. Word
documents would have Author, Creation Date,
and so on. The metadata provides very useful
information for document discovery, without the
overhead of having to extract and process the full
content of a document.

Metadata extraction

Content type (mimetype) can automatically be
identified for the standard types by Tika. This
metadata can be extracted from the content

and copied into the content's associated node
(properties). For custom content types it is
possible to create Custom metadata extractors.
Key service is the MetadataExtractor Service. You
can also create custom metadata extractors.

Mimetypes

The mimetype essentially identifies the type

of content. Alfresco Content Services can
automatically identify content types and establish
mimetype (using Tika). It is also possible to create
custom content identification through custom
mimetypes.

Module

A module is the format in which an extension is
packaged.

Property

Properties are named items of metadata
associated with a Type. Each Property is of

a specific data type (such as Text or Date).
Constraints can be applied to restrict the value of a
Property.

Repository

This is where content is stored, and can be
thought of as the content stores and all the
related services. It consists of the filesystem or
storage service where the content is stored and
a database containing metadata. See Repository
Concepts for an overview.

Developer Guide 27

Developer Guide

Term Description

Rules Declarative definition of processes based on
addition, update, or removal of nodes with respect
to folders (think email rules for content). These are
set up for a folder in Share. See documentation
and videos on applying rules to folders. Note that
Rules can be filtered based on conditions/criteria:

e Allitems (no filter)

e Items with a specific mimetype (for example
. doc, . pdf)

¢ Contained in a category

« Specific content type applied to a specific

aspect file name pattern (for example * -
context.xm)

Boolean NOT can be used (for example not
. pdf). There are no limits to the number of
conditions that can be applied to each Rule.

Type A node is always of a single Type. A Type is
similar to a class in Object-Oriented Programming,
Types can be inherited from a parent Type in the
content model.

Alfresco SDK 2.2.0

This documentation covers version 2.2.0 of the Alfresco SDK. The Alfresco SDK is a Maven
based development kit that provides an easy to use approach to developing applications and
extensions for Alfresco.

With this SDK you can develop, package, test, run, document and release your Alfresco
extension project. It is important to note that while previous versions of the Alfresco SDK were
based around Ant, the latest versions of the SDK are based on Maven.

Links to documentation for previous versions are available on this page.

¢ This is the PDF version of this documentation and is not complete. Please refer to Alfresco
Documentation online for access to the complete set of documentation.

The Alfresco SDK 2.2 includes a number of Maven archetypes. These archetypes aim to provide
a standardized approach to development, release, and deployment of Alfresco extensions.

Project documentation, website, and support
From version 2.0 and up, releases for the Alfresco SDK are available in Maven Central.
The Alfresco SDK source code is hosted on GitHub.
The Alfresco SDK issue tracking is hosted on GitHub.

The Alfresco SDK forum for support is hosted on Alfresco Forums.

What's new?

New features in this version of the Alfresco SDK.

Developer Guide 28

http://docs.alfresco.com/
http://docs.alfresco.com
http://docs.alfresco.com
https://github.com/Alfresco/alfresco-sdk/
https://github.com/Alfresco/alfresco-sdk/issues
http://forums.alfresco.com/forum/developer-discussions/development-environment

Developer Guide

What's new in Alfresco SDK 2.2.0

Support for Alfresco 5.1

Alfresco REST API Explorer is now available with the r un profile (http://localhost:8080/api-
explorer)

All-In-One AMP module names and ID now includes AIO name to make them unique

Aligned Module version with Artifact version - 5.0 and 5.1 supports SNAPSHOT versions in
nmodul e. properties

Numerous bug fixes. See the release notes for detalils.

Issues: you will have to run without Spring Loaded with AIO and Repo AMP, only works
with Share AMP at the moment.

What's new in Alfresco SDK 2.1.1

Reintroduce support for Java 7
Numerous bug fixes. See the release notes for details.

What's new in Alfresco SDK 2.1

Support for Solr 4

Regression testing Share Webapp with Alfresco Share Page Object (PO) tests
Functional testing of Custom Pages with Alfresco Share PO

Rapid Application Development (RAD) improvements:

« New al fresco: refresh-repo goal for alfresco-maven-plugin for automatic refresh
of repository (al f resco. war)

* New al fresco: refresh-share goal for alfresco-maven-plugin for automatic
refresh of Share (shar e. war)

Automatic JavaScript compression
Custom package name can be used when generating projects

Records Management profile 'rm' removed, now included as other AMPs in the repository
and Share WAR POMs

Run script for Windows now available (r un. bat)

Upgraded to Alfresco Community Edition 5.0.d and Enterprise 5.0.1 (JDK8)
Fixed DB initialization error (dbObject cannot be null)

Fixed blank Admin Console bug

What's new in Alfresco SDK 2.0

Support for Alfresco 5.0

Name changed from Maven Alfresco SDK to Alfresco SDK.
New Share AMP archetype.

RAD in Eclipse and IntelliJ.

Now requires Maven 3.2.2

RAD with Spring Loaded.

Support for JRebel has been deprecated.

Introduction of enterprise profile option -Penterprise.

What was new in Alfresco SDK 1.1.1

Bug fixes.

Developer Guide 29

https://github.com/Alfresco/alfresco-sdk/issues?q=milestone%3A2.2.0+is%3Aclosed
https://github.com/Alfresco/alfresco-sdk/issues?q=milestone%3A2.1.1+is%3Aclosed

Developer Guide

What was new in Alfresco SDK 1.1.0

* Runs in Tomcat7 (replaces Jetty)

¢ Remote running of JUnit

* JRebel integration

* Improved IDE integration

What was in Alfresco SDK 1.0.x

¢ Use of Alfresco POMs
¢ Relied on a number of components:

The SDK parent POM providing full Alfresco project lifecycle feature, to be added as
a <par ent > in your projects

Archetypes like the AMP or all-in-one providing sample project to kickstart your
Alfresco development and boost it with best practices
The Alfresco Maven Plugin to manage AMP packaging and dependencies

Alfresco Platform Distribution POM can (optionally) be used to provide centralized
<dependencyManagement> on a particular Alfresco version / edition (Community
Edition / Enterprise)

The Alfresco Artifacts Repository provides backing for this SDK. Check the Alfresco
Wiki for Community Edition / Alfresco One access information

¢ Embedded Jetty server and H2 database

What was in Maven Alfresco Lifecycle

e First implementation of Alfresco Maven SDK (Now deprecated)

* No use of Alfresco POMs

« Available archetypes and plugins:

maven- al f r esco- ext ensi on- ar chet ype to create WAR packaged webapps that
can provide all Maven lifecycle and features

maven- al f r esco- shar e- ar chet ype to create and manage Alfresco Share
customization webapps

maven- al f r esco- shar e- nodul e- ar chet ype to create and manage Alfresco Share
custom dashlets, pages as JARs

maven- al f r esco- anp- ar chet ype to create maven- anp- pl ugi n managed web
apps, which can provide all Maven lifecycle and features to Alfresco modules. The
maven- anp- pl ugi n is also used as a replacement to MMT to unpack AMPs into
WARSs builds, using the Maven dependency mechanism provided by the maven-

anp- pl ugi n

« Embedded Jetty server and H2 database to run Alfresco or Share

* Possible to use Maven standard dependency management to pull in AMPs in your build

* Further information

Introduction to the Alfresco SDK

You will learn about the different Maven Archetypes that can be used to generate Alfresco
extension projects.

You will learn which SDK version is compatible with which Alfresco version, and you will find links
to some useful community resources.

Developer Guide 30

https://wiki.alfresco.com/wiki/Managing_Alfresco_Lifecyle_with_Maven

Developer Guide

Introduction to Maven archetypes
There are three Maven archetypes that can be used to generate Alfresco extension projects.
The following project types, and archetypes, are available:

» Alfresco Repository AMP: this archetype is used to create extensions for the Alfresco
Repository Web Application (al f r esco. war) in the form of Alfresco Module Packages
(AMP).

* Alfresco Share AMP: this archetype is used to create extensions for the Alfresco Share
Web Application (shar e. war) in the form of AMPs.

¢ Alfresco all-in-one (AlO): this archetype is a multi-module project that leverages the
Alfresco SDK's powerful capabilities to customize and run the full Alfresco platform
embedded with all its components. The archetype does not require additional downloads
and provides a perfect starting point for full-blown Alfresco projects.

You can view these archetypes when you obtain a list of archetypes from Maven Central:

mvn archetype: generate -Dfilter=org.alfresco:
& Note the use of a filter to display only archetypes in the nhamespace or g. al fresco.

Repository AMP archetype

The Alfresco Repository (Repo) AMP Archetype generates a sample project for managing
Alfresco Repository extensions/customizations. These extensions are packaged as Alfresco
Module Packages (AMP).

This archetype should be used to extend the Alfresco Repository web application
(al fresco. war).

The following are typical use-cases for when this archetype should be used:

* You work in a bigger team and want to develop, tag, and release a Repo module
separately from the main Alfresco Extension project (All-in-One) that it is included in.

¢ You want to add, and contain, an extra Repo module in an All-In-One Project (useful when
you don't have a Nexus artifacts repo to which you can release individual repo AMPS).

¢ You intend to build an Add-On, Component, Module etc that should be distributed
independently.

If you intend to build an extension for the Alfresco Share web application, use the Share AMP
archetype instead.

The main features of this archetype are:

* AMP packaging - the supported packing type for Alfresco extensions.

* AMP dependency management in Maven.

* Installation of AMPs into an Alfresco WAR.

« Sample repository web script demonstrating how to implement a custom REST-based API.

» Content Model Skeleton XML file ready to be filled in with your domain specific content
model.

* AMP Unit Testing support. Just run the standard nvn test and see your src/test/java
Alfresco unit tests run. An sample Unit Test is provided in this archetype.

* Run embedded in Tomcat with an embedded H2 database for demo purposes (-Pamp-to-
war), rapid application development and integration testing.

Developer Guide 31

Developer Guide

' This is not a supported stack, so it should only be used for development purposes.
» Support for (remote) Junit and integration testing and Rapid Application Development. This
uses spring-loaded. Project can easily be launched for this scenario using r un. sh.
« Easy to integrate with an IDE environment such as Eclipse and IntelliJ IDEA.

Share AMP archetype

The Alfresco Share AMP Archetype generates a sample project for managing Alfresco Share
extensions/customizations. These extensions are packaged as Alfresco Module Packages
(AMP).

This archetype should be used to extend the Alfresco Share web application (shar e. war).
The following are typical use-cases for when this archetype should be used:
* You work in a bigger team and want to develop, tag, and release a Share Ul module

separately from the main Alfresco Extension project (All-in-One) that it is included in.

¢ You want to add, and contain, an extra Share Ul module in an All-In-One Project (useful
when you don't have a Nexus artifacts repo to which you can release individual Share Ul
modules).

¢ You intend to build an Add-On, Component, Module etc that should be distributed
independently.

If you intend to build an extension for the Alfresco Repository web application, use the Repaository
AMP archetype instead.

The main features of this archetype are:

« AMP packaging - the supported packing type for Alfresco extensions.
* AMP dependency management in Maven.
¢ Installation of AMPs into an Share WAR.

« Sample Aikau page and widget to demonstrate how to develop new pages for the Alfresco
Share Ul.

¢ AMP Unit Testing support. Just run the standard nvn t est and see your src/test/java
Alfresco unit tests run. An sample Unit Test is provided in this archetype.

¢ Run embedded in Tomcat for demo purposes (-Pamp-to-war), rapid application
development and integration testing.

' Requires a running Alfresco Repository on localhost:8080.

Easy to integrate with an IDE environment such as Eclipse and IntelliJ IDEA.

All-in-One archetype

The Alfresco All-in-One (AlO) Archetype is a multi-module project, leveraging Alfresco SDK's
powerful capabilities to customize and run the full Alfresco platform embedded with all its
components. The archetype does not require additional downloads, such as an Alfresco installer,
and provides a perfect starting point for full-blown Alfresco projects where the final artifacts
should be the customized al f resco. war and share. war .

The following are typical use-cases for when this archetype should be used:

* You are going to start on a project for a client and need an Alfresco extension project that
can produce the final customized Alfresco WAR and Share WAR atrtifacts.

» Your project needs access to the full regression testing suite for the Alfresco Share Ul.

Developer Guide 32

Developer Guide

Your project needs access to the functional testing based on the Alfresco Share Page
Object (PO) library.

When testing with the RAD features you need Solr to be running.

Note that if you are going to develop an addOn, reusable component, module, and so on, that
should be distributed independently, then have a look at the AMP projects instead. For Alfresco
repository extensions see Repository AMP and for Alfresco Share extensions see Share AMP.

The main features of the AlIO archetype are:

AMP packaging for repository and share extensions - the supported packing type for
Alfresco extensions.

AMP dependency management in Maven.
Automatic installation of AMPs into Alfresco WAR and Share WAR.
Easy to include extra AMPs and have them included in the WARSs.

Out-of-the-box Alfresco extensions such Records Management (RM), SharePoint Protocol
(SPP), Media Management etc easily included in the same way as custom AMPs for
consistency.

AMP Unit Testing support. Just run the standard nvn test and see yoursrc/test/java
Alfresco unit tests run. An sample Unit Test is provided in this archetype.

Alfresco Share Regression Testing - you don't have to write tests to protect against
regression in out-of-the-box Share Ul functionality, just use the -Prun,regression-testing
profiles

Custom Functional Testing - Utilize the Alfresco Share Page Objects (PO) to write your
own custom web page testing (example test included), use the -Prun,functional-testing
profiles

Run a full Alfresco stack (that is, al f r esco. war, shar e. war, sol r 4. war) embedded in
Tomcat using the H2 database for demo purposes (-Prun), rapid application development
and integration testing.

' This is not a supported stack, so it should only be used for development purposes.

Support for (remote) Junit and integration testing and Rapid Application Development. This
uses spring-loaded. Projects can easily be launched for this scenario using r un. sh.

Seamless IDE integration with Eclipse and IntelliJ IDEA.

Compatibility matrix

Alfresco SDK has several versions and compatibility with Alfresco versions varies.

It is recommended you use the latest version of the Alfresco SDK where possible.

The following table shows compatibility between Alfresco SDK and versions of Alfresco.

Alfresc¢ Maven Maven Maven SDK 1.1.x Alfresco Alfresco Alfresco
version| Alfresco SDK 1.0.x SDK 2.0.x SDK 2.1.x SDK 2.2.x
Lifecycle | (deprecated
(deprecated
3.2.2 - | Compatible | Not Not available Not Not Not available
4.1.1.x | (but not available available available
supported)

Developer Guide 33

Developer Guide

Alfresc¢ Maven Maven Maven SDK 1.1.x Alfresco Alfresco Alfresco
version| Alfresco SDK 1.0.x SDK 2.0.x SDK 2.1.x SDK 2.2.x
Lifecycle | (deprecatec
(deprecated
4.1.x Not Compatible | Not available Not Not Not available
x>= available (but not (SDK 1.1.0 does available available
2) supported) | not work with
Alfresco 4.1.2-4.1.5
using Solr Search
Subsystem. Itis
possible to use
Alfresco 4.1.6 and
greater, or use
Lucene Search
Subsystem)
4.2.x Not Not Compatible and Not Not Not available
available available supported available available
5.0 Not Not Not available Compatible Not Not available
and available available and available
5.0.c supported
5.0.1+ | Not Not Not available Compatible Compatible | Not available
and available available and and
5.0.d+ supported supported
5.1+ Not Not Not available Not Not Compatible
and available available available available and
5.1.d+ supported

£ Note that Alfresco 4.1.x requires Java 6, Alfresco 4.2.x and Alfresco 5.0 require Java 7.
Alfresco 5.0.1 and 5.0.d requires Java 7 or 8. Alfresco One 5.2 and 5.1.d requires Java 7
or 8. Note also that Alfresco SDK works only on Linux, Windows or Mac.

Community resources

Use the community resources that are available to help you master the Alfresco SDK.

Some community resources that are worth trying out:

Link

Description

Alfresco SDK on GitHub

Where you can clone the code, submit issues and
read community documentation.

Order of the Bee

Quoting from the site: We are an independent
organization of the Alfresco community. We are

here to promote Alfresco Community Edition and
aggregate the best from the community for you.

Mind the Gab

News, thoughts and tutorials from one of the main
developers behind the Alfresco SDK.

Getting Started with Alfresco SDK 2

Great article by Jeff Potts about how to get going
with SDK 2.

Alfresco SDK 2.0 Deep Dive

Article that takes a look at the "behind the scenes"
stuff used by the Alfresco SDK 2.0.

Developer Guide 34

https://github.com/Alfresco/alfresco-sdk/issues/180
https://github.com/Alfresco/alfresco-sdk/issues/180
https://github.com/Alfresco/alfresco-sdk/
http://orderofthebee.org/
http://mindthegab.com/
http://ecmarchitect.com/alfresco-developer-series-tutorials/maven-sdk/tutorial/tutorial.html
https://docs.google.com/document/d/1IT_cB6uw1io6I2ZQBtLzi4uGGGrHtoMuwUfX3GsIudg/pub

Developer Guide

Link Description

Ole Hejlskov's Alfresco SDK 2.0 Beta screencast Screencast showing use of the three main
archetypes of the SDK in Eclipse. Also
demonstrates some important features of the SDK
such as hot reloading of code.

Getting Started with the Alfresco SDK

This information gets you started with the Alfresco SDK. The Alfresco SDK itself does not need to
be installed (as it is based around Maven), but there are some prerequisites that will need to be
made available.

This information is split into three areas:
< Installing software that is a prerequisite for running the SDK successfully
» Getting the SDK working from the command line
» Getting the SDK working from IDEs

Before you begin
There are some points you need to be aware of before you start using the Alfresco SDK.
Some things to do and note before you start:

1. Check the What's New page to orientate yourself to the latest features of the SDK.

2. Check the compatibility matrix to make sure that you have the right version of the SDK for
your version of Alfresco.

3. Make sure that you understand the different types of Maven archetypes that are available.
Check the Maven Archetypes summary to make sure that you use the right one for your
extension.

Installing and configuring software

Use this information to install and configure the software on which the SDK depends.

You'll need to download and install the following tools and libraries, if you don't already have
them:

1. The Oracle Java Software Development Kit (JDK) version 8
2. Apache Maven 3.2.5+
3. Spring Loaded (Note. only works with the Share AMP archetype at the moment).

Install Spring Loaded
The Alfresco SDK's Rapid Application Development (RAD) features uses Spring Loaded.

There are no pre-requisites for this installation. (Note. ONLY works with the Share AMP
archetype at the moment).

Spring Loaded is a Java agent (represented by a JAR file) that enables class reloading in a
running JVM. It will enable you to update a Java file in your Alfresco extension project and then
see the effect of the change directly in a running Alfresco-Tomcat-JVM instance without having to
re-build JARs, AMPs, and WARs and re-deploying them, saving you loads of time.

1. Download the Spring Loaded JAR from here.
2. Copy JAR to some directory.

There is no specific installation needed, just copy the JAR to a permanent place where you
can refer to it.

Developer Guide 35

http://ohej.dk/2014/09/alfresco-sdk-2-0-beta4/
https://github.com/spring-projects/spring-loaded
https://github.com/spring-projects/spring-loaded

Developer Guide

You now have the Spring Loaded JAR readily available in a directory.

Install IDK

The Alfresco SDK is based on Maven, which requires the JDK to be installed. This topic steps
you through installing the JDK and verifying its installation.

There are no pre-requisites for this installation.

To use the Alfresco SDK most effectively, and to align with what JDK is used by the default
Alfresco versions in the SDK, you need to have Oracle JDK 1.8 installed. Maven requires that the
JDK be installed - the Java run-time alone is not sufficient.

Checking for the availability of the JDK.

1. Check if you have the JDK already installed. Go to your command line and type the
following command:

j avac -version

You will see a message such as the following, if you have the JDK installed:

javac 1.8.0_ 45

' Make sure you use j avac when you test if JDK is installed and not j ava, which tests
if JRE is installed.

If you get "command not found" you need to install the JDK. Also if you have a version

of the JDK prior to 1.8 you will need to install 1.8 or above. It is possible to have multiple
versions of the JDK installed (and multiple Java run-times). You will later see how you can
configure your JAVA_ HOME variable so that Maven uses the correct version of the JDK.

Downloading the JDK.
2. Download the JDK from the Oracle JDK site.
Installing the JDK.
3. Carefully review the Oracle JDK 8 installation guide as appropriate for your system.
4. Install the JDK, following the Oracle instructions.
Verifying the JDK is successfully installed.
5. Go to your command line and type the following command:

j avac -version
This will display information such as the following:

javac 1.8.0_45

To be extra sure you should also check your Java run-time by entering the following
command:

j ava -version
This will display information such as the following:

j ava -version

java version "1.8.0_45"

Java(TM SE Runtime Environnent (build 1.8.0 45-b14)

Java Hot Spot (TM 64-Bit Server VM (build 25.45-b02, mi xed node)

Developer Guide 36

http://maven.apache.org/download.cgi#Maven_Documentation
http://maven.apache.org/download.cgi#Maven_Documentation
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Developer Guide

Double check that the version of Java installed is correct (1.8).

You now have JDK 1.8 installed and you have verified that you are running the correct version of
Java.

Setting JAVA_HOME

Before using the Alfresco SDK, you need to set your JAVA_HOVE environment variable to a
suitable value, using the correct mechanism for your operating system.

Setting the JAVA_HOME environment variable ensures that the correct JDK is accessed. This is
especially important where you have multiple JDKs installed on your system.

1. On Mac OS X you can edit your . bash_prof i | e file and add something similar to the
following (the exact version you are using may vary):

export JAVA HOVE=/Li brary/ Javal/ JavaVi rt ual Machi nes/j dkl1. 8. 0_45.) dk/
Cont ent s/ Hone

Restart the terminal session or run sour ce . bash_profi | e to activate the environment
variable.

' Note that the actual value you specify here will depend on which JDK you have
installed, and the resultant directory name.

2. On Linux you can edit your . bashr c file and add something similar to the following:

export JAVA HOVE=/usr/lib/jvm java-8-oracle

Restart the terminal session or run sour ce . bashr ¢ to activate the environment variable.

' Note that the actual value you specify here will depend on which JDK you have
installed, and the resultant directory name.

3. On Windows, the exact procedure for setting environment variables varies depending on
the version of Windows you are running. For example, the procedure for Windows XP can
be found in the Microsoft Knowledgebase.

' Note that the actual value you specify here will depend on which JDK you have
installed, and the resultant directory name.

4. Ensure that the JAVA_HOVE environment variable is set correctly, using a method suitable
for your system. For example, on Mac OS X and Linux you can enter the following
command:

$ env | grep JAVA HOVE
JAVA HOVE=/usr/lib/jvmjava-8-oracle

You will see the value that JAVA HOVE has been set to.

Ensure that the result matches the value you specified in your shell configuration file (such
as . bashrc).

If you are on Windows you can use a command such as SET J to display environment
variables starting with 'J'.

Your JAVA_HOVE environment variable is now set, and you have verified it is reflected in your
environment.

Install Maven

The Alfresco SDK is now based around Maven (formerly it used Ant). To use the Alfresco SDK
you need to have Maven installed.

Developer Guide 37

http://support.microsoft.com/kb/310519

Developer Guide

To be able to use Maven you need to have a suitable JDK installed. For this version of the SDK
you should have JDK 1.8 installed.

To use the Alfresco SDK you need to have Maven installed. The version required is 3.2.5 and
above.

Check for the availability of Maven.

1. First, check to see if you already have the correct version of Maven installed. On your
command line enter the following command:

mvn --version

If you get "command not found", or you have a version of Maven less than 3.2.5, you will
need to install Maven or upgrade to 3.2.5 or above. In this case it is recommended you
download the latest version of Maven (3.2.5+) from the official Maven website.

Downloading Maven.
2. Download Maven from the Apache Maven project web site.
Installing Maven.

3. Carefully review the platform-specific installation instructions in the Installing Maven
Sonatype documentation.

4. Install Maven using the platform-specific instructions provided in the Maven
documentation.

Verifying Maven is correctly installed.
5. Run the following command to verify Maven is correctly installed:

mvn --version

This will display information such as the following:

Apache Maven 3.3.3 (7994120775791599e205a5524ec3e0df e41d4a06;
2015- 04- 22T12: 57: 37+01: 00)

Maven home: /hone/ martin/ apps/ apache-maven-3. 3.3

Java version: 1.8.0_ 45, vendor: Oracle Corporation

Java hone: /usr/lib/jvnjava-8-oracle/jre

Default | ocale: en_GB, platformencoding: UTF-8

OS nane: "linux", version: "3.13.0-58-generic", arch: "anmd64", famly
"uni x"

Check that the correct versions of Maven and the JDK are being used. If Maven is not
using the correct version of the JDK, make sure you have set your JAVA_ HOVE environment
variable, as described in the previous tutorial.

You have now installed Maven and verified that it is the correct version and is using the correct
version of the JDK.

Setting MAVEN_OPTS & M2_HOME

Before using the Alfresco SDK, you need to set your MAVEN _OPTS and M2_HOVE environment
variables to suitable values using the correct mechanism for your operating system.

Setting M2_HOVE specifies the home of Maven and is used by the script nvn (or nvn. bat on
Windows). MAVEN_OPTS is used to configure a bit of extra memory for Maven as it will run

an embedded Apache Tomcat application server with Alfresco Repo, Share, and Solr web
applications deployed. It also sets the Spring Loaded Java Agent so it is available during Rapid
Application Development (RAD).

Setting Variables.

Developer Guide 38

http://maven.apache.org/download.cgi
http://books.sonatype.com/mvnref-book/reference/installation-sect-maven-install.html

1.

Developer Guide

On Mac OS X you can edit your . bash_profi | e file and add the following:

export M2_HOVE=/ home/ marti n/ apps/ apache- maven- 3. 3. 3
export MAVEN OPTS="- Xns1024m - Xnx1G - XX: Per nSi ze=1024m - noveri fy"

-

=

+

Spring Loaded ONLY works with the Share AMP archetype at the moment. If
you are configuring MAVEN_OPTS to run a Share AMP project set MAVEN_OPTS=" -
Xns1024m - Xmx1G - XX: Per nSi ze=1024m - j avaagent:/ home/ martin/li bs/
springl oaded-1. 2. 5. RELEASE. j ar - noveri fy"

Remove - XX: Per nSi ze=1024mif you are using JDK 8, it is only needed for JDK 7.

Refer to previous installation sections for in what directory Maven was installed and
in what directory Spring Loaded was installed.

Restart the terminal session or run sour ce . bash_profil e to activate the environment
variables.

On Linux you can edit your . bashr ¢ file and add the following:

See step 1 for Mac OS, do the same thing for Linux.

Restart the terminal session or run sour ce . bashr c to activate the environment variable.

On Windows, the exact procedure for setting environment variables varies depending on
the version of Windows you are running. For example, the procedure for Windows XP can
be found in the Microsoft Knowledgebase.

set M2_HOVE=C: \ Tool s\ apache- maven-3. 3. 1
set MAVEN OPTS=- Xms256m - Xnx1G - XX: Per nfSi ze=1024m - noverify

-

=

-

Spring Loaded ONLY works with the Share AMP archetype at the moment. If

you are configuring MAVEN_OPTS to run a Share AMP project set MAVEN_OPTS=-
Xnme256m - Xnk1G - XX: Per nSi ze=1024m - j avaagent : C:\ Tool s\ spri ng-| oaded
\'springl oaded- 1. 2. 5. RELEASE. j ar -noverify

Remove - XX: Per nSi ze=1024m

If the path to the Spring Loaded JAR contains spaces, then you might

need to double quote it like - j avaagent: " C:\ My Tool s\ spri ng-1 oaded
\'springl oaded- 1. 2. 5. RELEASE. j ar " . Refer to previous installation sections for
in what directory Maven was installed and in what directory Spring Loaded was
installed.

Restart the Windows terminal/console session.

Verifying Variables.

4.

Ensure that the MAVEN_OPTS and M2_HOME environment variables are set correctly, using a
method suitable for your system. For example, on Mac OS X and Linux you can enter the
following command:

$ env|egrep " M| VAV"
MAVEN OPTS=- Xn8256m - Xnx1G - XX: Per nSi ze=1024m - noverify
M2_HOVE=/ hone/ mar t i n/ apps/ apache- maven-3. 3. 3

Ensure that the result matches the value you specified in your shell configuration file (such
as . bashrc).

If you are on Windows you can use a command such as set Mto display environment
variables starting with 'M'.

C.\ User s\ nbergl jung>set M

Developer Guide 39

http://support.microsoft.com/kb/310519

Developer Guide

M2_HOVE=C: \ Tool s\ apache- maven-3. 3. 1
MAVEN OPTS=- Xn8256m - Xmx1G - XX: Per n5i ze=1024m - noverify

Your MAVEN_OPTS and M2_HOVE environment variables are now set. Feel free to increase the
specified memory settings if required, for example, if you get "out of memory" errors when
running your projects.

Using Alfresco One (Enterprise) (Optional)

By default the Alfresco SDK will use Alfresco Community Edition artifacts but it can be configured
to use Alfresco One (Enterprise) artifacts. This requires access credentials for the Alfresco
Private Repository, and modification of several Maven configuration files.

' To obtain access to the Alfresco One repository located here, refer to this knowledge
base article. If you do not have access to this portal then contact your Alfresco technical
representative within your company, or Alfresco directly.

Accessing the Alfresco Private Repository

The first matter to consider is to ensure that you have credentials for the Alfresco Private
Repository, where the Alfresco One artifacts are stored. In fact the private repository also
includes all public artifacts too. Once you have suitable credentials you need to add support for
Alfresco private repository to your configuration. This would typically be done by adding your
access credentials to the set ti ngs. xm contained in your ~/ . n2 directory (for Linux and OS X).
On Windows 7 and Vista this resolves to <r oot >\ User s\ <user name> and on XP it is <r oot >

\ Docunents and Settings\<usernane>\.ng.

This procedure is explained in detail in the tutorial Configuring access to the Alfresco Private
Repository.

Configuring access to Alfresco Private Repository

In order to be able to utilize Enterprise artifacts, it is necessary to allow Maven access to the
Alfresco Private Artifacts Repository, where the Enterprise artifacts are maintained.

You need to have permission to access the Alfresco private repository. Enterprise customers can
obtain access credentials from Alfresco.

In order to allow Maven access to the Alfresco Private Repository, you must add your credentials
to the Maven configuration. This is usually done by adding an entry to the set ti ngs. xni file,
located in your . n2 directory.

1. Obtain access credentials for the Alfresco Private Repository from Alfresco. This is only
available for Enterprise-level customers.

2. Change into your Maven configuration directory. For Linux and Mac OS X that will most
likely be ~/ . n2 for a configuration on a per-user basis, or for global configuration in
<maven_i nstal | >/ conf/. On Windows this would be located in %JSER _HOVEY . n2/ for a
per-user configuration, and %v2_HOVEY conf for a global configuration.

3. Loadsettings.xnl into your editor. Add the following new server configuration in the
<server s> section:

<server>
<i d>al fresco-pri vat e-reposi tory</id>
<user name>user nane</ user nane>
<passwor d>passwor d</ passwor d>

</ server >

' You will need to replace the placeholder text with your real username and password

as allocated by Alfresco. The i d value should not be changed as it is used in the
Alfresco SDK project build files to specify the Enterprise artifacts Maven repository.

Developer Guide 40

https://artifacts.alfresco.com
https://myalfresco.force.com/support/articles/en_US/Technical_Article/Where-can-I-find-the-repository-for-Enterprise-Maven-artifacts
https://myalfresco.force.com/support/articles/en_US/Technical_Article/Where-can-I-find-the-repository-for-Enterprise-Maven-artifacts
http://www.alfresco.com/company/contact

Developer Guide

' It is possible to use encrypted passwords here. See the official Maven
documentation for details on how to do this.

At this point you have configured Maven to have access to the Alfresco Private Repository.

Verify install

Before proceeding to use the Alfresco SDK, you should do one final check of your system to
ensure you have the prerequisites correctly installed.

Check you have the JDK and Maven correctly installed, and the correct versions of both, and that
Maven is configured to use the correct version of the JDK.

Check your configuration by running the command nvn - - ver si on and listing Maven
environment. This will display information similar to the following:

$ nvn --version

Apache Maven 3.3.3 (7994120775791599e205a5524ec3e0df e41d4a06;
2015- 04-22T12: 57: 37+01: 00)

Maven hone: /hone/ martin/ apps/ apache- maven-3. 3. 3

Java version: 1.8.0_45, vendor: Oracle Corporation

Java hone: /usr/lib/jvnjava-8-oracle/jre

Default |ocale: en_GB, platformencoding: UTF-8

CS nane: "linux", version: "3.13.0-58-generic", arch: "and64", famly:
"uni x"

$ env| egrep "M| MAV"

MAVEN_OPTS=- Xnms256m - Xnx1G - noverify
M2_HOVE=/ honme/ mar ti n/ apps/ apache- maven- 3. 3. 3

Make sure that the correct version of Maven is installed (3.2.5+) and that the correct
version of the JDK is installed (1.8+). If you have multiple JDKs installed double check
that Maven is using the correct version of the JDK. If you do not see this kind of output,
and your operating system cannot find the mvn command, make sure that your PATH
environment variable and M2_HOVE environment variable have been properly set.

You are now ready to start using the Alfresco SDK.

Creating a project

The following tutorials take you step by step through how to create and run projects using the
standard archetypes provided by the Alfresco SDK.

The tutorials show creation of projects using:
1. Alfresco Repository AMP archetype - is this artifact for your project, read more here.
2. Alfresco Share AMP archetype - is this artifact for your project, read more here.
3. All-in-One archetype - is this artifact for your project, read more here.

Creating a Repository extension project (AMP)

The Alfresco Repository AMP maven archetype can be used to create a new Alfresco Module
extension project for the al f r esco. war .For more information about this project type see
Repository AMP Archetype

This task assumes that you have completed all instructions in Installing and configuring software.

This task shows how you can use the Repo AMP archetype of the Alfresco SDK to generate a
repository extension module containing a simple example web script.

1. Create a suitable directory in which to store all your Maven projects (if you have not
already done so), such as al f r esco- ext ensi ons.

2. Change into your al f r esco- ext ensi ons directory.

Developer Guide 41

http://maven.apache.org/guides/mini/guide-encryption.html
http://maven.apache.org/guides/mini/guide-encryption.html

Developer Guide
3. Run the following command:

nm/n ar chetype: generate -Dfilter=org.al fresco:

t) As the archetypes are available via Maven Central you do not need to specify a
catalog.

You will be prompted to choose an archetype:

Choose ar chetype

1. renote -> org.alfresco. maven. archetype: al fresco-al | i none- ar chet ype
(Sanmple multi-nmodul e project for All-in-One devel opnent on the
Al fresco plaftorm Includes nodul es for: Repository WAR overl ay,
Repository AMP, Share WAR overlay, Solr configuration, and enbedded
Tontat runner)

2: renpote -> org.al fresco. maven. archet ype: al f resco- anp- ar chet ype
(Sanpl e project with full support for Iifecycle and rapid devel opnment
of Repository AMPs (Al fresco Mdul e Packages))

3: renote -> org. al fresco. maven. ar chet ype: shar e- anp- archet ype (Share
project with full support for lifecycle and rapi d devel opnent of AMPs
(Al fresco Modul e Packages))

Choose a nunber or apply filter (format: [groupld:]Jartifactld, case
sensitive contains):

4. Enter 2 to have Maven generate an Alfresco Repository Module Package (AMP) project.
5. You will be prompted to choose an archetype version:

o
n

org. al fresco. maven. ar chet ype: al fresco- anp- archet ype versi on
0-beta-1
0- beta-2

OSNNNNNNNNO
ODNRROOO000D

=

O

0]

~+

®

D

O~NOOOPDWN -
QONOANRWNEQ
(2}

o

nunber: 8:

Press Enter to select the default (the most recent version).
6. You will then be prompted to enter a value for the property gr oupl d:

Define value for property 'groupld : : com acne

Here we have specified com acne representing the domain for a fictional company
acre. com Specify a gr oupl d matching your company domain.

7. You will then be prompted to enter a value for the property arti fact | d:

Define value for property "artifactld : : conponent X-repo

Here we have specified conponent X- r epo representing an X component with a specific
extension for the Alfresco Repository. Try and name the Repository extensions in a way
S0 it is easy to see what kind of extension it is for the al f r esco. war application. Here
are some example names for repo extensions so you get the idea: zi p- and- downl oad-
action-repo, di gi tal -signature-repo, busi ness-reporting-repo, these repository
extensions would typically have corresponding Share extensions if they also include

user interface functionality. It is good practice to use the following naming convention

Developer Guide 42

10.

Developer Guide

for repository extensions: { nane} - r epo, where - r epo indicates that this is an Alfresco
Repository extension. Note, hyphens are typically used in artifact IDs.

You will then be prompted to enter a value for the property package:

Define value for property 'package': comacne: : com acne. conponent X

Here we have specified com acne. conponent X representing an X component Java
package. This package will be used for any example Java code generated by the
archetype. It is good practice to keep all Java code you write under this package so it
does not clash with other components/extensions. Any Spring beans generated by this
archetype will use this package in the ID.

4, Java packages cannot have hyphens in them.

You will then be prompted to enter Y to accept the values you have entered, or n to reject
and change. Press Enter to accept the values.

A new project directory containing a number of sub-directories and support files for the
AMP will be created in the directory conponent X- r epo.

Change into the freshly created conponent X- r epo directory and browse the various files
and directories to see what has been created.

The following directory structure has been created for you:

component X-r epo/

pom xm (Maven project file)

run.sh (Mac/Linux script to have this AMP applied to the Alfresco
WAR and run in Tontat)

run. bat (Wndows script to have this AMP applied to the Al fresco
WAR and run in Tontat)

Src

mai n

anp (For nore information about the AMP structure see:
http://docs. al fresco. conl communi ty/ concept s/ dev- ext ensi ons- nbdul es-
intro. htm)

config

al fresco

extension

tenpl ates

webscripts (Your Web Scripts should go
under this directory)

webscri pt. get. desc. xm (Sanpl e
Web Script that you can try out)

webscript.get.htm . ftl

webscript.get.js

nodul e

conponent X-repo (AMP Mdul e | D)

al fresco-gl obal . properties (Put default
val ues for properties specific to this extension here)

cont ext

boot strap-context. xmn

(Boot strappi ng of content nodels, content, i18n files etc)

service-context.xm (Your service
beans go here)

webscript-context.xm (Your Wb
Script Java control |l er beans)

| 0g4j . properties

nodel

content - nodel . xm (Content nbde
for your files)

wor kfl ow nodel . xml (Content node

for workfl ow i npl enent ati ons)

Developer Guide 43

11.

12.

Developer Guide

nodul e-context.xm (Spring context file
that is picked up by Al fresco)

nodul e. properties (AWMP nodule ID, Version etc)

web (If your AWMP has sonme U the files would go here,
unl i kely now when the Al fresco Explorer U is gone)

CsSS

denoanp. css

#Hit# | sp

denpanp. | sp

|i censes

#oo# # # ### README-|i censes. txt

scripts

denpanp.js

java (Your Java classes go here, this is where nost of the

nmodul e extension inpl enentati on code woul d go, you can renove the denp

conponent)

#H## com

acme

conponent X

denpanp (Denp nodul e conponent and deno
web script controller, can be renoved)

DenpConponent .| ava

o # ### Deno. | ava

Hel | oWor | dWebScri pt. j ava

test

| ava

com

acme

conponent X

denpanp

test (Exanple test of the denp
conmponent, can be renpved)

DenpConponent Test. j ava

properties

| oca

al fresco-gl obal . properties (environnment specific
configuration, the local env is active by default)

resour ces

al fresco

extension

di sabl e-webscri pt-cachi ng-context.xm (file to
di sabl e server side JavaScript conpilation to Java code)

| 0g4j . properties

toncat

context.xm (Virtual Wbapp context for RAD devel opnent)

At this point, before you have made any changes, you can build the project by typing:

mvn cl ean i nst al

¢ Maven will ensure that all requirements are downloaded. This may take some time.

The project will return with the message BUI LD SUCCESS. You should see the AMP artifact
installed in your local repository . n2/ r eposi t or y/ coml acne/ conponent X- r epo/ 1. 0-
SNAPSHOT/ conponent X- r epo- 1. 0- SNAPSHOT. anp

Run and Test the sample Web Script

To test the Web Script you will need to start an embedded Tomcat and deploy the Alfresco
WAR with the componentX-repo AMP applied. This can be done in two ways:

1. Withnvn clean install -Panp-to-war

2. Viathe run. sh script (or run.bat on Windows), which does the same thing, plus
making sure Spring Loaded library is available.

Developer Guide 44

Developer Guide

' This will only run the customized Alfresco Repository application (alfresco.war),
Alfresco Share Ul (share.war) and Search (solr4.war) is not available. If you need
those too then use the All-in-One project instead.

Let's start Tomcat via the script as follows (use run.bat on Windows):

./run. sh

I NFO WBSERVLET12: JAX-WS context listener initializing
Apr 30, 2015 10: 04: 39 AM
com sun. xm . ws. transport. http. servl et. WsSer vl et Del egate <init>
I NFO. WSSERVLET14: JAX-WS servlet initializing
2015-04- 30 10: 04: 39, 152 WARN [shared_inpl.util.Localeltils]
[l ocal host-startStop-1] Locale name in faces-config.xm null or empty,
setting locale to default |locale : en_GB
Apr 30, 2015 10: 04: 39 AM or g. apache. coyot e. Abstract Prot ocol start
INFO. Starting Protocol Handl er ["http-bi o-8080"]
2015- 04- 30 10: 05: 24,545 | NFO
[managenent . subsyst ens. Chi | dAppl i cati onCont ext Fact or y]
[SearchSchedul er _Worker-1] Starting ' Transfornmers' subsystem |D:
[Transforners, default]
2015- 04- 30 10: 05: 24, 741 | NFO
[managenent . subsyst ens. Chi | dAppl i cat i onCont ext Fact or y]
[SearchSchedul er _Worker-1] Startup of ' Transforners' subsystem |D:
[Transfornmers, default] conplete

' You may first need to make the shell script executable using the command chnod
+X run. sh.

Once the web application has started (it may take a little while), point your browser at
http:/ /1 ocal host: 8080/ al fresco/ servi ce/ sanpl e/ hel | owor | d to test the web
script. The web script should return the following text: Message: Hello World from JS!
HelloFromJava

If you are prompted to login, then use username adni n and a password adni n.
Configure Enterprise Edition (Optional)

So far we have used the project with its default configuration, which is using Alfresco
Community Edition 5.1.e. If you are going to work with the Enterprise edition then you
need to do the following:

1. Decide what Enterprise version you will be using, if you are going to use version
5.1.0 then you are set as that is the default Enterprise version. If you want to use
another version then open up the conponent X- r epo/ pom xni file and uncomment
the <al fresco. versi on>5. 1. e</ al fresco. ver si on> property and set the new
version number you want to use.

2. Update the run. sh and r un. bat scripts to use the Enterprise edition, this is done
by using the ent er pri se profile in the maven command line: nvn cl ean install
- Panmp-t o- war, ent er pri se. Note. this automatically sets the version to 5.1.0 if you
have not explicitly set it.

3. And as you might have guessed, if you are not using the run script, you will have
to remember to always activate the Enterprise profile when running: nvn cl ean
install -Pamp-to-war,enterprise

4. Install an enterprise license, otherwise the server will be in read-only mode, it goes
into the following directory:

conponent X- r epo/
src

Developer Guide 45

Developer Guide

mai n

##H anp

config

al fresco

extension

| i cense

acnme-5.1.0-enterprise.lic

16. Stopping the Embedded Tomcat Server

To stop the Alfresco Tomcat server that was started with the mvn cl ean install - Panp-
t o-war command (either directly or indirectly via the run script), do Ctrl+C in the terminal
that was used.

The Maven embedded tomcat process will terminate after a short wait.

In this tutorial you have learned how to generate, deploy, and run a project using the Repository
AMP archetype.

Creating a Share extension project (AMP)

The Alfresco Share AMP maven archetype can be used to create a new Alfresco Module
extension project for the shar e. war .For more information about this project type see Share AMP
Archetype

This task assumes you have completed all instructions in Installing and configuring software.

This task shows how you can use the Share AMP archetype of the Alfresco SDK to generate a
Share webapp extension module containing a simple Aikau Page and Widget (Aikau is the new
Alfresco Ul Framework used to build web pages and Dashlets).

1. Create a suitable directory in which to store all your Maven projects (if you have not
already done so), such as al f r esco- ext ensi ons.

2. Change into your al f r esco- ext ensi ons directory.
3. Run the following command:

mvn ar chetype: generate -Dfilter=org.alfresco:

*) Asthe archetypes are available via Maven Central you do not need to specify a
catalog.

You will be prompted to choose an archetype:

Choose ar chetype

1: renote -> org.al fresco. naven. archet ype: al fresco-al | i none- ar chet ype
(Sanple multi-nmodul e project for All-in-One devel opnent on the
Al fresco plaftorm |Includes nodul es for: Repository WAR overl ay,
Repository AMP, Share WAR overlay, Solr configuration, and enbedded
Tontat runner)

2: renote -> org. al fresco. maven. archet ype: al f resco- anp- ar chet ype
(Sanpl e project with full support for lifecycle and rapi d devel opnent
of Repository AMPs (Al fresco Mdul e Packages))

3. renpte -> org. al fresco. maven. ar chet ype: shar e- anp- ar chet ype (Share
project with full support for |ifecycle and rapid devel opnent of AMPs
(Al fresco Modul e Packages))

Choose a nunber or apply filter (format: [groupld:Jartifactld, case
sensitive contains):

Enter 3 to have Maven generate an Alfresco Share Module Package (AMP) project.
5. You will be prompted to choose an archetype version:

Choose org. al fresco. maven. archet ype: al fresco- anp- ar chet ype versi on

Developer Guide 46

10.

Developer Guide

1: 2.0.0-beta-1

2: 2.0.0-beta-2

3: 2.0.0-beta-3

4: 2.0.0-beta-4

5. 2.0.0

6: 2.1.0

7: 2.1.1

8. 2.2.0

Choose a nunber: 8:

Press Enter to select the default (which is the most recent version).
You will then be prompted to enter a value for the property gr oupl d:

Define value for property 'groupld : : com acne

Here we have specified com acne representing the domain for a fictional company
acre. com Specify a gr oupl d matching your company domain.

You will then be prompted to enter a value for the property arti f act | d:

Define value for property 'artifactld' : : conponent X-share

Here we have specified conponent X- shar e representing an X component with a specific
extension for the Alfersco Share Ul. Try and name the Share extensions in a way so it

is easy to see what kind of extension it is for the shar e. war application. Here are some
example names for share extensions so you get the idea: zip-and-download-action-share,
digital-signature-share, business-reporting-share, these share extensions would typically
have corresponding Repo extensions if they also include server side business logic as
part of the implementation. It is good practice to use the following naming convention for
share extensions: { nane} - shar e, where -share indicates that this is an Alfresco Share
extension. Note, hyphens are typically used in artifact IDs.

You will then be prompted to enter a value for the property package:

Define value for property 'package': comacne: : com acne. conmponent X

Here we have specified com acne. conponent X representing an X component Java
package. This package will be used for any example Java code generated by the
archetype. It is good practice to keep all Java code you write under this package so it
does not clash with other components/extensions. Any Spring beans generated by this
archetype will use this package in the ID.

' Java packages cannot have hyphens in them.
You will then be prompted to enter Y to accept the values you have entered, or n to reject

and change. Press Enter to accept the values.

A new project directory containing a number of sub-directories and support files for the
AMP will be created in the directory conponent X- shar e.

Change into the freshly created conponent X- shar e directory and browse the various files
and directories to see what has been created.

The following directory structure has been created for you:

conmponent X- shar e/

pom xm (Maven project file)

run.sh (Mac/Li nux script to have this AMP applied to the Share WAR
and run in Tontat)

Developer Guide 47

Developer Guide

run. bat (Wndows script to have this AVMP applied to the Share WAR
and run in Tontat)

Src

mai n

anp (For nore information about the AMP structure see:
https://w ki.al fresco.com wi ki/AMP_Fi | es)

config

al fresco

web- ext ensi on

conponent X- shar e-sl i ngshot - appli cati on-
context.xm (Loads conponent X-share. properties)

nessages

conponent X-share. properties (Custom
share Ul | abel s, nessages etc)

#H # ### site-data

#H # # ### extensions

conponent X- shar e- exanpl e-

wi dgets. xml (Doj o package definitions for the A kau framework, Share

confi g)

site-webscripts
com
exanpl e
pages
sinpl e- page. get . desc. xmi
(Sinmpl e Al kau page for denonstration purpose)
sinpl e- page. get. htm . ftl
sinpl e-page. get.js
#H## org
al fresco
README. nd

fil e-mappi ng. properties
nodul e. properties
web
#it# j s
exanpl e
w dgets (Sinple A kau w dget for
nstration purpose)
CSS
Tenpl at eW dget . css
#i## i 18n
Tenpl at eW dget . properties
tenpl at es
Tenpl at eW dget . ht i
Tenpl ateW dget. | s
| ava
com
acme
conponent X
resources
META- | NF
resources
test. htm
shar e-confi g-custom xnl . sanpl e (Renpbve .sanple to
use and keep extension specific stuff in this config)

################g HHFEHFHHFRFHHFH®
HHFHFHFRHRHFHRF T HFEHRFHERHFHFHHFHHF

t est
| ava
com
acnme
conponent X

properties
resources
al fresco
web- extension
share-confi g-custom xm (Confi gures where the
Repository is running)
| og4j . properties

Developer Guide 48

11.

12.

13.

14,
15.

Developer Guide
context.xm (Virtual Webapp context for RAD devel opnent)

At this point, before you have made any changes, you can build the project by typing:

mvn cl ean install

' Maven will ensure that all requirements are downloaded. This make take some time.

The project will return with the message BUI LD SUCCESS. You should see the AMP artifact
installed in your local repository . n2/ r eposi t ory/ conl acre/ conponent X- shar e/ 1. 0-
SNAPSHOT/ conponent X- shar e- 1. 0- SNAPSHOT. anp

Run and Test the sample Aikau Page

' For this to work you will need to have the Alfresco WAR running in another Tomcat
(8080). You can quite easily achieve this by generating a repo-amp project and
running it, see Repository AMP Project.

To test the custom Share page you will need to start an embedded Tomcat (8081) and
deploy the Share WAR with the componentX-share AMP applied. This can be done in two
ways:

1. Withnvn clean install -Panp-to-war

2. Viathe run. sh script (or run.bat on Windows), which does the same thing, plus
making sure Spring Loaded library is available.

Let's start Tomcat via the script as follows (use run.bat on Windows):

./run. sh

Apr 30, 2015 11:40: 42 AM org. apache. cat al i na. core. Appl i cat i onCont ext
| og

INFO org.tuckey.web.filters.urlrewite. Ul RewiteFilter |INFG | oaded
(conf ok)

Apr 30, 2015 11:40:42 AM org. apache. catal i na. core. Appl i cati onCont ext
| og

INFO Initializing Spring FrameworkServlet 'Spring Surf D spatcher
Servl et

Apr 30, 2015 11:40: 42 AM org. apache. coyot e. Abstract Prot ocol start

INFO Starting Protocol Handl er ["htt p-bi o-8081"]

' You may first need to make the shell script executable using the command chnod
+X run. sh.

Once the web application has started (it may take a little while), point your browser at
http://1 ocal host: 8081/ shar e/ page/ hdp/ ws/ si npl e- page to test the sample Page.
The page should return the following Title: This is a simple page and a Hello World widget
with the text: Hello from i18n!

If you are prompted to login, then use username adni n and a password adni n.
Configure Enterprise Edition (Optional)

So far we have used the project with its default configuration, which is using Alfresco
Community Edition 5.1.e. If you are going to work with the Enterprise edition then you
need to do the following:

» Decide what Enterprise version you will be using, if you are going to use version
5.1.0 then you are set as that is the default Enterprise version. If you want to use
another version then open up the conponent X- shar e/ pom xni file and uncomment
the <al fresco. versi on>5. 1. e</ al fresco. ver si on> property and set the new
version number you want to use.

Developer Guide 49

Developer Guide

» Update the run. sh and run. bat scripts to use the Enterprise edition, this is done
by using the ent er pri se profile in the maven command line: nvn cl ean install
- Pamp-t o- war, ent er pri se. Note. this automatically sets the version to 5.1.0 if you
have not explicitly set it.

» And as you might have guessed, if you are not using the run script, you will have

to remember to always activate the Enterprise profile when running: nvn cl ean
install -Panp-to-war,enterprise

16. Stopping the Embedded Tomcat Server

To stop the Alfresco Tomcat server that was started with the nvn cl ean install - Panp-
t o-war command (either directly or indirectly via the run script), do Ctrl+C in the terminal
that was used.

The Maven embedded tomcat process will terminate after a short wait.

In this tutorial you have learned how to generate, deploy, and run a project using the Share AMP
archetype.

Creating an All-in-One (AIO) project (WARS)

The All-in-One maven archetype can be used to create a new multi-module project that will
produce customized al f resco. war and shar e. war artifacts. For more information about this
project type see All-in-One Archetype

This task assumes that you have completed all instructions in Installing and configuring.

This task shows how you can use the All-in-One archetype of the Alfresco SDK to generate a
multi module extension project containing repo-amp, share-amp, and WAR projects.

1. Create a suitable directory in which to store all your Maven projects (if you have not
already done so), such as al f r esco- ext ensi ons.

2. Change into your al f r esco- ext ensi ons directory.
Run the following command:

mvn archetype: generate -Dfilter=org.al fresco:

£, Asthe archetypes are available via Maven Central you do not need to specify a
catalog.

You will be prompted to choose an archetype:

Choose archetype

1: renote -> org.alfresco. maven. archetype: al fresco-al | i none- ar chet ype
(Sanmpl e multi-nmodul e project for All-in-One devel opnent on the
Al fresco plaftorm Includes nodul es for: Repository WAR overl ay,
Repository AMP, Share WAR overlay, Solr configuration, and enbedded
Tontat runner)

2: renote -> org.al fresco. maven. archet ype: al fresco- anp- ar chet ype
(Sanpl e project with full support for Iifecycle and rapid devel opnment
of Repository AMPs (Al fresco Mdul e Packages))

3: renote -> org. al fresco. maven. ar chet ype: shar e- anp- archet ype (Share
project with full support for lifecycle and rapid devel opnent of AMPS
(Al fresco Modul e Packages))

Choose a nunber or apply filter (format: [groupld:]artifactld, case
sensitive contains): :

4. Enter 1 to have Maven generate an Alfresco All-in-One project.
5. You will be prompted to choose an archetype version:

Developer Guide 50

10.

Developer Guide

(@)
)

org. al fresco. maven. ar chet ype: al fresco- anp- archet ype versi on
0-beta-1
. 0-beta- 2
. 0-beta-3
0- bet a- 4

ONNNNNNNNO
DNPPOOOOOD

O~NOOITDWN -
QONONRWNEQ
(2}

o

0
0
1
0
a nunber: 8:

Press Enter to select the default (which is the most recent version).
You will then be prompted to enter a value for the property gr oupl d:

Define value for property 'groupld : : com acne

Here we have specified com acne representing the domain for a fictional company
acne. com Specify a gr oupl d matching your company domain.

You will then be prompted to enter a value for the property arti f act | d:

Define value for property 'artifactld : : acne-cns-poc

Here we have specified ace- cns- poc representing a Proof-of-Concept (PoC) Content
Management System (CMS) project to validate Alfresco as a perfect fit. Try and name the
All-in-One projects so it is easy to know what they contain/represent. The naming should
represent complete projects in contrast to specific AMP extensions that just implements a
specific functionality in a larger solution. Note, hyphens are typically used in artifact IDs.

You will then be prompted to enter a value for the property package:

Define value for property 'package': comacne: : com acne. cnspoc

Here we have specified com acne. cnspoc representing the top Java package for this
project. This package will be used for any example Java code generated by the archetype.
It is good practice to keep all Java code you write under this package so it does not clash
with other projects. Any Spring beans generated by this archetype will use this package in
the ID.

' Java packages cannot have hyphens in them.

You will then be prompted to enter Y to accept the values you have entered, or n to reject
and change. Press Enter to accept the values.

A new project directory containing a number of sub-directories and support files for the
project will be created in the directory acme- cns- poc.

Change into the freshly created acne- cns- poc directory and browse the various files and
directories to see what has been created.

The following directory structure has been created for you:

acne- cns- poc/

pom xm (Maven project file)

run.sh (Mac/Li nux script to run custom zed Al fresc WAR and Share
WAR together with Solr 4 in Tontat)

run. bat (Wndows script to run customi zed Al fresc WAR and Share WAR
together with Solr 4 in Tontat)

acne-cns-poc-repo-anp (This is a standard Repository AMP extions
proj ect - produces a Repository AMP)

Developer Guide 51

Developer Guide

pom xm (Maven project file for AMP, put dependenci es here that
are only needed by this AW)
Src
mai n
anp (For nore infornmation about the AMP structure see:
https://w ki.al fresco.com wi ki/AMP_Fi | es)
config
alfresco
extensi on
tenpl ates
webscripts (Your Web Scripts
shoul d go under this directory)
webscript.get.desc.xm (Sanpl e

hat you can try out)

HQ HF H H HH

Wb Scri pt
webscript.get.htm .ftl
webscript.get.js
nmodul e
acne-cns- poc-repo-anp (AVP Modul e | D)
al fresco- gl obal . properties (Put
or properties specific to this extension here)
cont ext
boot strap-cont ext. xn

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
(Boot strappi ng of content nodels, content, i18n files etc)
o#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

HHRFEHEFETHESHFEHFR

HHHHHFT

#
#
#
#
#
f

defaul t val ues

H* FH
H* FH
H* FH

H*

service-context.xm (Your
servi ce beans go here)

#ooOo#H # # ### webscript-context.xm (Wb
Script Java control |l er beans)

nodel

content-nodel . xm (Cont ent
nmodel for your files)

wor kfl ow nodel . xml (Cont ent
nodel for workflow i npl enent ati ons)

nodul e-context.xm (Spring context
file that is picked up by Al fresco)

nodul e. properties (AMP nodule ID, Version etc)

web (If your AVP has sone U the files would go
here, unlikely now when the Al fresco Explorer U is gone)
CSS
denoanp. css
] sp
denpanp. | sp
|i censes
README-|i censes. txt
scripts

denpanp.js

java (Your Java classes go here, this is where nost of
t he nodul e extension inplenentati on code would go, you can renobve the
denpo conponent)

HHHFHHFHHFHF
HHFHFHHFH

com

acne

cnspoc

denpanp (Denp nodul e conponent and Wb
Script Java controller, can be renobved)

DenpConponent.java

Deno. | ava

Hel | oWor | dWebScri pt. j ava

test

| ava

#H## com

acme

cnspoc

denpanp

test (Exanple test of the denp
conponent, can be renpved)

DenpConponent Test. j ava

properties

| oca

Developer Guide 52

Developer Guide

al fresco-gl obal . properties (environnent
specific configuration, the local env is active by default)

resour ces

al fresco

extension

di sabl e-webscri pt - cachi ng- cont ext . xmi
(file to disable server side JavaScript conpilation to Java code)

test-1o0g4j.properties

acnme-cns- poc-share-anp (This is a standard Share AMP extions
project - produces a Share AWP)

pom xm (Maven project file for AMP, put dependenci es here that
are only needed by this AWP)

src

mai n

anp (For nore information about the AMP structure see:
https://w ki.al fresco.com wi ki/AMP_Fi | es)

config

alfresco

web- ext ensi on

acne- cns- poc- shar e- anp- sli ngshot -
application-context.xm (Loads the acne-cns-poc-share-anp. properties
file)

nessages

acme-cns-poc-share-anp. properties

(Custom share U | abel s, nessages etc)

site-data

extensions

acne- cns- poc- shar e- anp- exanpl e-
wi dgets. xml (Doj o package definitions for the A kau franmework, Share

config)

META- | NF
share-confi g-custom xm . sanpl e

site-webscripts
com
exanpl e
¥ # # # ### pages
#oOO#H # # ### si mpl e-
page. get.desc.xm (Sinple A kau page for denobnstration purpose)
OO#H # # ### si nmpl e-
page.get. htm . ftl
sinpl e-page.get.js
#H## org
#oOO#H # ### al fresco
#OO#H # ### README. nd
fil e-mappi ng. properties
nodul e. properties
web
Hi# | s
exanpl e
W dget s (Si npl e Al kau wi dget for
denmonstrati on purpose)
CSS
Tenpl at eW dget . css
#i## i 18n
Tenpl at eW dget . properties
tenpl at es
Tenpl at eW dget . ht i
Tenpl ateW dget. | s
| ava
com
acme
cnspoc
resources
#
#
test

| ava

com

acnme

cnspoc

Developer Guide 53

Developer Guide

denpanp (Exanple of how to use
Al fresco Share Page hjects (PO to create functional tests for your
U custoni zati ons)

DenpPageTest|T. | ava
po

DenopPage. | ava

resources

testng. xni

repo (This is the Alfresco WAR proj ect - produces a custoni zed
Al fresco. WAR by applyi ng the AMP produced by the /acme-cns-poc-repo-

anp project)

pom xm (Maven project file for Repository WAR (al fresco. war),
add AMP and JAR dependenci es and overlay config here)

Src

mai n

properties

| oca

al fresco- gl obal . properties

resources

al fresco

extension

dev-1 o0g4j . properties

runner (Tontat Runner that depl oys the WARs produced by the /repo
and /share projects, the Solr 4 webapp is deployed directly from nmaven
repo)

pom xn

sSrc

mai n

webapp

#o# ### 1 ndex. ht ni

toncat (Virtual Webapp contexts for RAD devel opnent)

cont ext - repo. xn

cont ext - shar e. xni

cont ext-sol r. xm

share (This is the Share WAR project - produces a custoni zed
Shar e. WAR by appl yi ng the AMP produced by the /acne-cns- poc-share-anp
pr oj ect)

resources

al fresco

web- ext ensi on

share-confi g- cust om xni

| og4j . properties
solr-config (Loads the configuration files necessary for running
Apache Solr 4)

pom xn

pom xml (Maven project file for Share WAR (share.war), add AW
and JAR dependenci es and overlay config here)

Src

mai n

resources

al fresco

web- extension

cust om slingshot -application-
cont ext . xnl . sanpl e

share-confi g-custom xnl . sanpl e

| og4j . properties

test

#

#

#

#

#

11. At this point, before you have made any changes, you can build the project by typing:

mvn cl ean i nst al

< Maven will ensure that all requirements are downloaded. This make take some time.

Developer Guide 54

12.

13.

14,

15.

Developer Guide

As the build continues you will see the following artifacts built and installed in your local
repository:
e .nR/repository/ com acne/ acne-cis- poc-r epo- anp/ 1. 0- SNAPSHOT/ acrne- cns-
poc-repo- anp- 1. 0- SNAPSHOT. anp
e . nmR/repository/ com acne/ acne-cns- poc-shar e-anp/ 1. 0- SNAPSHOT/ acne-
cns- poc- shar e- anp- 1. 0- SNAPSHOT. anp

e .nmR/repository/ com acne/ repo/ 1. 0- SNAPSHOT/ r epo- 1. 0- SNAPSHOT. war ,
contains the acme-cms-poc-repo-amp-1.0-SNAPSHOT.amp

e .nmR/repository/com acmne/ share/ 1. 0- SNAPSHOT/ shar e- 1. 0- SNAPSHOT. war ,
contains the acme-cms-poc-share-amp-1.0-SNAPSHOT.amp

The project will return with the message BUI LD SUCCESS.
You can build, load RAD requirements, and run your project by typing:

./run. sh

' You may first need to make the shell script executable using the command chnod
+X run. sh.

Direct your web browser to:

http://| ocal host: 8080/ shar e

You can log in using a user name of adnmi n and a password of admi n.
Using Alfresco Community version > 5.1.e (Optional)

It is likely that the latest Alfresco Community version is newer than what is default in the
SDK (i.e. 5.1.e). See this article for what do when setting newer version than 5.1.e. It
requires a few more steps than just setting the version number.

Configure Enterprise Edition (Optional)

So far we have used the project with its default configuration, which is using Alfresco
Community Edition 5.1.e. If you are going to work with the Enterprise edition, then you
need to do the following:

1. Decide what Enterprise version you will be using, if you are going to use version
5.1.0 then you are set as that is the default Enterprise version. If you want to use
another version then open up the acne- cns- poc/ pom xni file and uncomment
the <al fresco. versi on>5. 1. e</ al fresco. ver si on> property and set the
new version number you want to use. See this article for what do when setting
newer version than 5.1.0. It requires a few more steps than just setting the version
number.

2. Update the run. sh and run. bat scripts to use the Enterprise edition, this is done
by using the ent er pri se profile in the maven command line: nvn cl ean install
- Prun, ent er pri se. Note. this automatically sets the version to 5.1.0 if you have
not explicitly set it.

3. And as you might have guessed, if you are not using the run script, you will have
to remember to always activate the Enterprise profile when running: nvn cl ean
install -Prun,enterprise

4. Install an enterprise license, otherwise the server will be in read-only mode. It goes
into the following directory:

acne- cirs- poc/

Developer Guide 55

Developer Guide

repo

pom xni

#H## Src

mai n

properties

resources

al fresco

extension

| i cense

acme-5. 1. 0-enterprise.lic

If the license is properly installed you should see logs as follows when the server starts:

2015- 05-08 09: 52: 21,359 | NFO
[enterprise.license. AlfrescoLi censeManager] [l ocal host-start Stop-1]
Successfully installed license fromfile [/honme/martin/src/alfresco-

ext ensi ons/ acne- cns- poc/ runner/target/toncat/webapps/repo/ VEB- | NF/

cl asses/ al fresco/ extensi on/|icense/ Enterprise-5.0.1ic]

2015- 05-08 09:52: 23,614 |INFO [service.descriptor.DescriptorService]
[l ocal host-startStop-1] Alfresco started (Enterprise). Current
version: 5.0.1 (r100823-b68) schema 8,022. Oiginally installed
version: 5.0.0 (d r99759-b2) schena 8, 022

16. Stopping the Embedded Tomcat Server

To stop the Alfresco Tomcat server that was started with the mvn cl ean install -Prun
command (either directly or indirectly via the run script), do Ctrl+C in the terminal that was
used.

The Maven embedded tomcat process will terminate after a short wait.
In this tutorial you have learned how to generate, deploy, and run a project using the All-in-One
(AlO) archetype.
Maven Archetypes - Command Reference

There are three Maven archetypes on which the Alfresco SDK can base the generation of
projects. This information provides the Maven command reference for these projects.

For more information about the archetypes see:

+ Repository AMP archetype
¢ All-In-One (AIO) archetype
¢ Share AMP archetype
Repository AMP archetype command reference

This describes the scripts and Maven commands that can be used on an Alfresco Repository
extension project based on the Repository AMP archetype.

Scripts and commands:

Developer Guide 56

Developer Guide

Command

Description

./run.sh and run. bat

Linux/Mac and Windows scripts for running

an embedded Tomcat with the customized

al fresco. war (that is, with the Repo AMP
applied) and the flat file database H2. Access to
Alfresco Ulisviahttp://1 ocal host : 8080/

al f resco. The username/password is admin/
admin. This script will also configure JVM memory
(it basically sets up MAVEN_OPTS for you). See
inside the script for further details. Note. Spring
loaded is no longer used.

£ This script assumes that you are developing
for Alfresco Community Edition. If you
use Alfresco One you need to update the
maven command in this script so it uses the
ent er pri se profile: mvn i ntegrati on-
test -Panp-to-war, enterprise.

mvn conpil e alfresco: refresh-repo

Compiles the source code and puts the class
files and resources under / t ar get . Then makes
a POST call to the Alfresco Repository web
application (al fr esco. war) to refresh the web
script container. So any changes that were made
to web scripts should be visible after a page
refresh.

& This command is typically used together
with the run. sh/bat scri pt for Rapid
Application Development (RAD). The RAD
process can be described like this:

1. Start Tomcat with current
al fresco. war customization
(run. sh/bat) in console window one.

2. From an editor, change some files
(classes, web scripts, and so on).

3. Execute this cmd (mvn conpil e
al fresco: refresh-repo) from
console window two.

4. Refresh the page/web script that you
are working on.

5. Done? No -> Go back to step 2 and
start over.

6. Finished with implementation.

mvn package

Runs unit tests and packages AMP in
${project.build. directory}/
${ proj ect. buil d. fi nal Nane}. anp.

mvn install Like mvn package but also installs AMP in local
Maven repository to be depended upon.
mvn test Runs unit tests.

mvn install -DskipTests=true

Like mvn i nstal | but skips unit tests.

Developer Guide 57

Developer Guide

Command

Description

mvn install -Pamp-to-war

Like run. sh orrun. bat but does not configure
JVM memory if you have not configured it in
MAVEN COPTS. See set up MAVEN_OPTS. If you
use Alfresco One see the next command.

mvn install -Pamp-to-war,enterprise

Like mvn install -Panp-to-war butuses
Alfresco One (Enterprise) artifacts. Note you need
to have set up access to the private repository
containing the Alfresco One artifacts.

mvn clean -Ppurge

Removes H2 database (with metadata), alf_data
(with content files and index files), and log files.
Useful to purge the development repo (by default
self contained in ${ pr oj ect . basedir}/

al f _data_dev).

& This is an important command to use if you
change significant settings in your project. For
example, if you change Alfresco Community
Edition to Alfresco One. It is important to purge
databases and other data that might otherwise
be persisted.

The pur ge profile cannot be used together
with the anp- t o- war profile.

[

Share AMP archetype command reference

This describes the scripts and Maven commands that can be used on an Alfresco Share
extension project based on the Share AMP archetype.

Scripts and commands:

Command

Description

./run.sh and run. bat

Linux/Mac and Windows scripts for running

an embedded Tomcat with the customized

shar e. war (thatis, with the Share AMP applied).
Access to Alfresco Share Ul is via htt p: //

| ocal host : 8081/ shar e. The username/
password is admin/admin. This script will also
configure JVM memory and automatically set

up Spring Loaded for hot reloading of classes (it
basically sets up MAVEN_OPTS for you). See inside
script for further details.

£ This script assumes that you are developing
for the Alfresco Community Edition. If you
use Alfresco One you need to update the
maven command in this script so it uses the
ent er pri se profile: mvn i ntegrati on-
test -Panp-to-war, enterprise.

This script also assumes that another Tomcat
is running locally on port 8080 with the
Alfresco Repository (al fresco. war) web
application deployed.

[

Developer Guide 58

Developer Guide

Command

Description

nvn conpile alfresco:refresh-share

Compiles the source code and puts the class

files and resources under / t ar get . Then makes
POST calls to the Alfresco Share web application
(shar e. war) to refresh the Spring Surf web
script container and clear dependency caches.
So any changes that was made to web scripts,
Aikau pages, Aikau Widgets, Dashlets, and so on,
should be visible after a page refresh.

¢ This command is typically used together with
the run.sh/bat script for Rapid Application
Development (RAD). The RAD process can be
described like this:

1. Start Tomcat with current shar e. war
customization (r un. sh/bat) in console
window one.

2. From an editor change some files
(classes, pages, widgets, and so on)

3. Execute this cmd (mvn conpil e
al fresco: refresh-share) from
console window two.

4. Refresh the page/web script you are
working on.

5. Done? No -> Go back to step 2 and
start over.

6. Finished with implementation.

mvn package

Runs unit tests and packages AMP in
${project.build.directory}/
${proj ect. bui l d. final Nare}. anp.

mvn install Like mvn package but also installs AMP in local
Maven repository to be depended upon.
mvn test Runs unit tests.

mvn install -DskipTests=true

Like mvn install but skips unit tests.

mvn install -Pamp-to-war

Like run. sh orrun. bat but does not configure
JVM memory and Spring Loaded if you have

not configured it in MAVEN_OPTS. See set up
MAVEN_OPTS. If you use the Alfresco One see
next command.

mvn install -Pamp-to-war,enterprise

Like mvn install -Panp-to-war butuses
Alfresco One artifacts. Note you need to have set
up access to the private repository containing the
Alfresco One artifacts.

All-in-One (AIO) archetype command reference

This describes the scripts and Maven commands that can be used on an Alfresco All-in-One
(AIO) extension project based on the AIO archetype.

Developer Guide 59

Developer Guide

The All-in-One Alfresco project contains the following modules:

r epo- anp: A Repository AMP project, demonstrating sample project structure and demo
component loading.

r epo: An alfresco.war aggregator project, overlaying the standard Alfresco WAR with the
repo-amp and any other AMPs and JARs that have been included as dependencies and
configured in the overlay

shar e- anp: A Share AMP project, demonstrating sample project structure and demo Aikau
page
shar e: A shar e. war aggregator project, overlaying the standard Share WAR with the

share-amp and any other AMPs and JARs that have been included as dependencies and
configured in the overlay

sol r-confi g: Brings in the Apache Solr 4 configuration files

runner: A Tomcat + H2 runner, capable of running the custom al fresco. war, custom
share. war, and sol r 4. war in embedded mode for demol/integration-testing purposes

Scripts and commands:

Command Description

./run.sh and run. bat Linux/Mac and Windows scripts for running

an embedded Tomcat with the customized

al fresco. war (repo-amp applied), custom
share.war (share-amp applied), and solr4.war.
Access to Alfresco Share Ul is via htt p: //

| ocal host : 8080/ shar e. Username/pwd is
admin/admin. This script will also configure JVM
memory (it basically sets up MAVEN_OPTS for you).
See inside script for further details. Note. Spring
loaded is no longer used.

£ This script assumes that you are developing
for the Alfresco Community Edition. If you
use Alfresco One, you need to update the
maven command in this script so it uses
the 'enterprise' profile: mvn i nstall -
Prun, enterprise.

Developer Guide 60

Developer Guide

Command

Description

repo- anp/ mvn conpil e
al fresco: refresh-repo

Compiles the source code for the Repository
AMP and puts the class files and resources
under repo-amp/target. Then makes a POST
call to the Alfresco Repository web application
(alfresco.war) to refresh the web script container.
So any changes that was made to Web scripts
should be visible after a page refresh.

¢ This command is typically used together with
the run.sh/bat script for Rapid Application
Development (RAD). The RAD process can be
described like this:

1. Start Tomcat with current
al fresco. war customization (that is,
run. sh/bat) in console window one.

2. From an editor change some files
(classes, web scripts, and so on) for the
Repository AMP.

3. Execute this cmd (that is, m/n r epo-
anp/ conpi l e al fresco: refresh-
r epo) from console window two.

4. Refresh the page / web script you are
working on.

5. Done? No -> Go back to step 2 and
start over.

6. Finished with implementation.

Developer Guide 61

Developer Guide

Command

Description

shar e-anp/ nvn compil e
al fresco: refresh-share

Compiles the source code for the Share AMP and
puts the class files and resources under shar e-
anp/ t ar get . Then makes POST calls to the
Alfresco Share web application (shar e. war) to
refresh the Spring Surf web script container and
clear dependency caches. So any changes that
was made to web scripts, Aikau pages, Aikau
widgets, dashlets, and so on, should be visible
after a page refresh.

¢ This command is typically used together with
the run. sh/bat script for Rapid Application
Development (RAD). The RAD process can be
described like this:

1. Start Tomcat with current shar e. war
customization (that is, r un. sh/bat) in
console window one.

2. From an editor change some files
(classes, pages, widgets, and so on) for
the Share AMP.

3. Execute this cmd (that is, shar e- anp/
mv/n conpil e al fresco: refresh-
shar e) from console window two.

4. Refresh the page / web script you are
working on.

5. Done? No -> Go back to step 2 and
start over.

6. Finished with implementation.

mvn package

Runs unit tests and packages modules in their
respective target directories, for example:

e all-in-one/repo-anp/target/1.0-
SNAPSHOT/ r epo- anp- 1. O-
SNAPSHOT. anmp

e all-in-one/share-anp/target/1.0-
SNAPSHOT/ shar e- anp- 1. 0-
SNAPSHOT. anp

e all-in-one/repo/target/1.0-
SNAPSHOT/ r epo- 1. 0- SNAPSHOT. war ,
contains repo-amp-1.0-SNAPSHOT.amp
from local maven repo (not the just packed
version)

e all-in-one/share/target/1.0-
SNAPSHOT/ shar e- 1. 0- SNAPSHOT. war ,
contains share-amp-1.0-SNAPSHOT.amp
from local maven repo (not the just packed
version)

& This does not apply these newly packaged
AMPs to their respective WARS, use mvn
i nstall forthat.

Developer Guide 62

Developer Guide

Command

Description

mvn install

Like mvn package but also installs artifacts in
local Maven repository, for example:

e .nR/repository/ com acne/repo-
anp/ 1. 0- SNAPSHOT/ r epo- anp- 1. O-
SNAPSHOT. anp

e .n2/repository/ com acne/ share-
anp/ 1. 0- SNAPSHOT/ shar e- anp- 1. 0-
SNAPSHOT. anp

e . nR/repository/com acne/
repo/ 1. 0- SNAPSHOT/ r epo- 1. O-
SNAPSHOT. war , contains the repo-
amp-1.0-SNAPSHOT.amp

e . n2/repository/ con acne/
shar e/ 1. 0- SNAPSHOT/ shar e- 1. 0-
SNAPSHOT. war , contains the share-
amp-1.0-SNAPSHOT.amp

Where these artifacts can be accessed by other
local projects that depend on them.

mvn install -DskipTests=true

Like mvn i nstal | but skips unit tests.

mvn install -Prun

Like run. sh or run. bat but does not configure
JVM memory and Spring Loaded if you have

not configured it in MAVEN_COPTS, see set up
MAVEN_OPTS. If you use Alfresco One, see the
next command.

mvn install -Prun,enterprise

Like nvn install -Prun butuses Alfresco One
(Enterprise) artifacts. Note you need to have set
up access to the private repository containing the
Alfresco One artifacts.

Developer Guide 63

Developer Guide

Command

Description

mvn clean install -Prun,regression-testing

Runs regression testing of the Alfresco Share
Ul (shar e. war). Uses the Alfresco internal
Selenium Page Object (PO) based tests. This
is very useful when you have developed a lot of
customizations for the Share Ul and you want
to make sure you have not broken any standard
Share Ul functionality. Typically run this from a
Cl server (or better a Selenium-Grid) to test for
regression of the standard Alfresco Share Ul.

£ The Selenium WebDriver is configured to use
FireFox (FF) by default, so you need to have
FF installed for the regression tests to be able
to run. Use version 35 or newer.

v ltis also highly recommended that the
workstation that is running the regression tests
is not being worked on at the same time as
the tests are running, as that can affect the
outcome of the tests.

£ This command assumes that you are
developing for the Alfresco Community
Edition. If you use Alfresco One, you need
to update the maven command so it uses
the 'enterprise' profile and the Alfresco One
shar e- po library: nvn cl ean install -
Prun, enterprise, regression-testing.
Also, make sure that you have installed
an enterprise license in the r epo project,
otherwise the system will be in read-only mode
and loads of tests will not pass.

Developer Guide 64

Developer Guide

Command

Description

mvn clean install -Prun,functional-testing

Runs functional testing of the Alfresco Share Ul
customizations that you have developed, such as
pages and Dashlets. For information about how
to write these tests, see the example test called
share-anp/ src/test/javal{package-

pat h} / denpanp/ DenpPageTest | T and its
Page Object class called shar e- anp/ src/
test/j aval { package- pat h}/ denpanp/ po/
DenoPage. j ava.

£ The Selenium WebDriver is configured to use
FireFox (FF) by default, so you need to have
FF installed for the functional tests to be able
to run. Use version 35 or newer.

v ltis also highly recommended that the
workstation that is running the functional tests
is not being worked on at the same time as
the tests are running, as that can affect the
outcome of the tests.

£ This command assumes that you are
developing for Alfresco Community Edition.
If you use Alfresco One, you need to
update the maven command so it uses the
‘enterprise’ profile and the Alfresco One
shar e- po library: nvn cl ean install -
Prun, enterprise, functional -testing.

mvn clean -Ppurge

Removes H2 database (with metadata), alf_data
(with content files and index files), and log files.
Useful to purge the development repo (by default
self contained in ${ pr oj ect . basedir}/

al f _data_dev.

& This is an important command to use if you
change significant settings in your project.
For example, if you change Alfresco from
Community Edition to Alfresco One. Itis
important to purge databases and other data
that might otherwise be persisted.

£ The pur ge profile cannot be used together
with the r un profile.

Rapid Application Development (RAD)

These tutorials cover how to employ the RAD features of the Alfresco SDK.

Rapid Application Development (RAD) and Test Driven Development (TDD) are big goals for

the Alfresco SDK. The SDK is designed to support the hot reloading of code (via Spring Loaded)
so that you can modify JavaScript, FreeMarker and Java code, and have the changes take
effect without having to click the Refresh Web Scripts button, restart Alfresco Tomcat, or restart

anything else.

For example, in your SDK project, you can change test code, re-run your test, and the results will
be displayed immediately. This allows for Test Driven Development (TDD).

The hot reloading above all saves you time as a developer. No more waiting around for Alfresco
Tomcat restarts to see your code changes take effect.

Developer Guide 65

]

Developer Guide

It is assumed that you will work through the tutorials in the order in which they are
presented.

Importing SDK projects into Eclipse

The Alfresco SDK is designed to work well with Eclipse. This support includes the ability to import
existing SDK projects (created via the command line) into Eclipse.

You should have completed Installing and Configuring software and generated a project.

You will learn how to import an existing Maven project into Eclipse.

1.

In Eclipse, from the main menu select File > Import... > Maven > Existing Maven
Projects.

Click Next >

Click Browse...>

Navigate to the directory where your Maven project is located. For example al f r esco-
ext ensi ons/al | -i n-one.

You should see a dialog looking something like this when importing an All-in-One (AlIO)
project:

e Import Maven Projecks X

Maven Projects

Select Maven projects

Root Directory: | fhome/martin/src/alfresco-extensions/all-in-one Browse...
Projects:
¥ & /pom.xml com.mycompany:all-in-one:1.0-SNAPSHOT:pom Select All
& repo-amp/pom.xml com.mycompany:repo-amp:1.0-SNAPSHOT:amp Deselect All
eselec
& share-amp/pom.xml com.mycompany:share-amp:1.0-SNAPSHOT:amp| - —
& repo/pom.xml com.mycompany:repo:1.0-SNAPSHOT:war
& solr-config/pom.xml com.mycompany:solr-config:1.0-SNAPSHOT:pom
& share/pom.xml com.mycompany:share:1.0-SNAPSHOT:war
& runner/pom.xml com.mycompany:runner:1.0-SNAPSHOT:pom Refresh
F
& Add project(s) to working set
all-in-one v
» Advanced
@' <Back Cancel | Finish
Click Finish

The project, and any sub-projects, will now be imported.
Enable Alfresco Enterprise edition (Optional)

If your project is using the Enterprise edition of Alfresco you also want Eclipse to load the
enterprise versions of the Alfresco WARs and related libraries. You can do this by enable
the ent er pri se profile. In the Package Explorer view to the left, right click on the all-
in-one project, then select Maven from the popup menu. Now in the next popup menu

Developer Guide 66

Developer Guide

choose Select Maven Profiles.... In the dialog that appears select the ent er pri se profile,
you should see a dialog looking something like this now:

[# Package Explorer 2 = 0 helloworld.get.html.Fel &2

g & - 1Message: ${from]S} ${fromlava} ExtraTemplateText X2222
= 2 %{msg("hello.word.extras")}

¥ = all-in-one n =
e Select Maven profiles
» (= alf_data_d¢

> G repo Maven Profile selection

> =repo-amp | Select the active Maven profiles for project all-in-one. Right-click to (de)activate a profile.
* (= runner

» &= share Active profiles for all-in-one :

» = share-amp| |enterprise

» e solr-config| Available profiles :
alfresco.log

Profile id Source Select All
v pom.xml run alkin-one Deselect all
? run.bat purge alfresco-sdk-parent —
[# run.sh & enterprise alfresco-sdk-parent Activate
solr.log amp-to-war alfresco-sdk-parent .
» ¥ repo Deactivate
- enable-amp alfresco-sdk-parent —
> ; repo-amp enable-alfresco-testing alfresco-sdk-parent
> - runner enable-properties-filtering alfresco-sdk-parent
e share enable-test-properties-filtering alfresco-sdk-parent
» ! share-amp — - . :
» = solr-config [offline
[] Force update
@ Cancel oK

Configure external Maven

Use the external Maven installation. In the Window top menu to the right in Eclipse, click
on the Preferences sub-menu item at the bottom, then select Maven from the pop-up
dialog menu. Now in the Maven sub-menu choose Installations. In the dialog that appears
to the right select the external Maven installation (or add it if it is not in the list), you should
see a dialog looking something like this now:

® Preferences x

@| Installations G v -
> General Select the installation used to launch Maven:
» Ackiviki .
o . Name Details Add...
Activiti cloud editor
EMBEDDED ;: 3.2.1/1.5.2.20150413-2214 .
* ANt i Edit...

» Code Recommendel WORKSPACE & NOT AVAILABLE [3.0,)
> Help v Maven3.2.5 fusrflocal/apache-maven-3.2.5 3.2.5 Remove

* Install/Update
> Java

Kickstart settings
¥ Maven
Archetypes
Discovery
Errors/Warnings
Installations
Lifecycle Mapping

Templates Note: Embedded runtime is always used for dependency
User Interface resolution
User settings T Restore Defaults Apply
13
® Cancel OK J

Developer Guide 67

Developer Guide

Now close this Preferences dialog and open the Run Configurations dialog. Make sure
the external Maven configuration is used:

Create, manage, and run configurations £
\ V)

2 X B B~ Name: |Make Repo Amp
5] main =k JRE| & Refresh| %> Source | B Environment| [Common

Browse Workspace... | | Browse File System... | | Variables... | [*
E Java Applet

[T Java Application
Ju Junit
¥ m2 Maven Build Profiles:
m2 Make Repo Amp
mz Make Share Amp
mz New_configuration
m2 Test Repo AMP | Debug Output Skip Tests Non-recursive

Goals: [kompile alfresco:refresh-repo | Select...

User settings: File...

| Offline] Update Snapshots

Jiy Task Context Test] Resolve Workspace artifacts
1 % | Threads

Parameter Nam¢ Value Add...

Filter matched 9 of 9items

‘/?3 Close Run

' If the EMBEDDED Maven installation is used then you might encounter the
EXCEPTION_ACCESS_VIOLATION JRE error when running.

You have seen how to import your SDK project(s) into Eclipse. You can now build, run and debug
them in the usual way, using RAD and TDD techniques.

Rapid Application Development in Eclipse (Hot reloading)

Hot reloading is the ability to modify your application's code, and view the changes without having
to restart Alfresco Tomcat. This allows for significant savings in development time that would
otherwise be wasted restarting Tomcat. Hot reloading is the key to enabling Rapid Application
Development (RAD) and Test Driven Development (TDD).

You should have an extension project imported, see importing a project into Eclipse.

In this tutorial you will see how changes to your code can be carried out without having to

restart Alfresco Tomcat. This tutorial demonstrates hot reloading of JavaScript, FreeMarker
template, and Java code. There are three components that work together to enable the best RAD
experience:

1. Spring Loaded: takes care of hot-reloading any Java class files that we have changed.

2. Refresh Repository Script: This is a script that will POST a request to the Alfresco
Repository Web Application (i.e. alfresco.war) telling it to refresh the Repo Web Script
container, so any changes to files related to Web Scripts will be picked up.

3. Refresh Share Script: This is a script that will POST a request to the Alfresco Share
Web Application (i.e. share.war) telling it to refresh the Surf Web Script container, so any
changes to files related to Surf Web Scripts will be picked up. This script will also clear the
resource dependency caches, so JS changes etc are picked up.

Start an instance of Alfresco Tomcat that will be used for hot-reloading.

1. Use the run script to start the Application server with the Alfresco extension project
deployed, for example:

Developer Guide 68

Developer Guide

al fresco-extensions/all-in-one$./run.sh

' This is usually done outside the IDE.

2. Test the custom Repository Web Script

The All-in-One project (and the Repository AMP project) have a sample Web Script
included. You can invoke it by pointing your web browser at htt p: / /1 ocal host : 8080/
al fresco/ servi ce/ sanpl e/ hel | owor | d. If you need to login then use adni n with
password adni n. Running this Web Script produces the output "Message: Hello World
from JS! HelloFromJava".

3. Test the custom Share Aikau Page

The All-in-One project (and the Share AMP project) have a sample Aikau page included.
You can display it by pointing your web browser at htt p: / /| ocal host : 8080/ shar e/
page/ hdp/ ws/ si npl e- page. If you need to login then use adni n with password adni n.
The page should display as follows:

(_- localhost v C wB ¥ 4 d@=-

Home My Files Shared Files Sites Tasks People Repository Admin Tools Administrator v o8

L4 Il

a’ Hello from i18n!
>

Enabling Rapid Application Development (RAD) in Eclipse.

4. This is enabled by default and there is no specific configuration needed. If you want to
have more control over when web applications are refreshed, then see the last tutorial
about Run Configurations.

Testing RAD when doing Repository customizations (alfresco.war).

5. Inthe Package Explorer, navigate to and expand the al | -i n- one/ r epo- anp/ sr ¢/ mai n/
anp/ confi g/ al fresco/ ext ensi on/ t enpl at es/ webscri pt s folder

6. Locate the hel | owor| d. get . j s file and load it into the editor by double-clicking it.

This is the controller for the Web Script that we tried after starting the server. Update the
controller code by adding an 'UPDATED' string as follows:

nodel ["from)S'] = "Hello World fromJS! UPDATED';

7. Now build(Make) the project by saving, i.e. click Ctrl+S
The application server log should display messages about the web scripts being refreshed:

2015- 05-12 11:13: 40,652 |NFO

[ext ensi ons. webscri pts. Decl arati veRegi stry] [htt p-bi o-8080-exec-9]
Regi stered 407 Web Scripts (+0 failed), 549 URLs

2015-05-12 11:13: 40,653 | NFO

[ext ensi ons. webscri pts. Decl arati veRegi stry] [htt p-bi o-8080-exec-9]
Regi stered 1 Package Description Docunments (+0 fail ed)

2015- 05-12 11:183: 40,653 |NFO

[ext ensi ons. webscri pts. Decl arati veRegi stry] [htt p-bi o-8080-exec-9]
Regi stered 0 Scherma Description Docunents (+0 fail ed)

Developer Guide 69

10.

11.

12.

13.

Developer Guide

2015- 05-12 11:13: 40,656 | NFO

[ext ensi ons. webscri pts. Abst ract Runti neCont ai ner] [htt p-bi o- 8080-
exec-9] Initialised Repository Web Script Container (in 2215.1865ns)

2015-05-12 11:13:42,414 | NFO

[ext ensi ons. webscri pts. Decl arati veRegi stry]

[asynchr onousl| yRef reshedCacheThr eadPool 1] Regi stered 407 Wb Scripts

(+0 failed), 549 URLs

2015- 05-12 11:13:42,414 |NFO

[ext ensi ons. webscri pts. Decl arati veRegi stry]

[asynchronousl yRef r eshedCacheThr eadPool 1] Regi stered 1 Package

Descri ption Docunents (+0 fail ed)

2015- 05-12 11:13:42,414 |NFO

[ext ensi ons. webscri pts. Decl arati veRegi stry]

[asynchronousl yRef r eshedCacheThr eadPool 1] Regi stered 0 Schena

Descri ption Docunents (+0 fail ed)

Note that there is no output in the Eclipse console, or other window. Also, it is only the
Repository Application (i.e. alfresco.war) that is being refreshed, the Share application is
not touched.

Refresh the htt p: / /1 ocal host : 8080/ al fresco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script page from the Browser

The output from the Web Script should change to "Message: Hello World from JS!
UPDATED HelloFromJava". Note that there is no need to restart the application server,
just a Make of the project, and a refresh of the Web Script page from the browser (you are
basically invoking the Web Script again and the update should be immediately visible).

Now locate the hel | owor | d. get. htnl . ft1 file and load it into the editor by double-
clicking it.

This is the FreeMarker template for the Web Script. Update the template by adding an
'ExtraTemplateText' string as follows:

Message: ${fromlS} ${fromlava} ExtraTenpl at eText

Now build(Make) the project by clicking Ctrl+S
The application server log should display messages about the web scripts being refreshed.

Refresh the htt p: / /1 ocal host : 8080/ al fresco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script page from the Browser

The output from the Web Script should change to "Message: Hello World from JS!
UPDATED HelloFromJava ExtraTemplateText ". Again, note that there is no need to
restart the application server, only a Make of the project and a refresh of the Web Script
page are necessary.

In the next demo we will add a properties file for the Web Script, create a
hel | owor | d. get. properti es file next to the other files we have been working with.

The properties file should have one property as follows:

hel | 0. wor d. extras=Extra Stuff From Props

Add this property to the template, open up hel | owor | d. get. htmi . ftl.
The FreeMarker template should now look like this:

Message: ${fromlS} ${fromlava} ExtraTenpl ateText

Developer Guide 70

14,

15.

16.
17.

18.

19.

Developer Guide

${nmsg("hell 0. word. extras")}

Now build(Make) the project by clicking Ctrl+S
The application server log should display messages about the web scripts being refreshed.

Refresh the htt p: / /1 ocal host : 8080/ al fresco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script page from the Browser

The output of the Web Script should change to "Message: Hello World from JS! UPDATED
HelloFromJava ExtraTemplateText Extra Stuff From Props". No restart of application
server should be needed, just a Make of the project and a refresh of the Web Script page
from the browser.

In the last Web Script demo we will change the Java controller

Openup al | -i n-one/ repo-anp/ src/ mai n/ j aval/ {your package path}/ denpanp/
Hel | oWbr | dWebScri pt . j ava.

Change the property text as follows:

public class Hell owrl dWebScri pt extends Decl arativeWebScript {
protected Map<String, Object> executel npl (
WebScri pt Request req, Status status, Cache cache) {
Map<String, Object> nodel = new HashMap<String, Object>();
nmodel . put ("fromlava”, "Hell oFromlavaUPDATED") ;
return nodel;

Now build(Make) the project by clicking Ctrl+S
The application server log should display messages about the web scripts being refreshed.

Refresh the htt p: / /1 ocal host : 8080/ al fresco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script page from the Browser

The output of the Web Script should change to "Message: Hello World from JS! UPDATED
HelloFromJavaUPDATED ExtraTemplateText Extra Stuff From Props". No restart of
application server should be needed, just a Make of the project and a refresh of the Web
Script page from the browser.

Test Driven Development (TDD) and RAD when doing Repository customizations (alfresco.war).

20.

21.
22.

23.

24.
25.
26.
27.
28.
29.

In the Package Explorer expand al | -i n- one/ r epo- anp/ src/test/javal/ {your package
pat h}/ denoanp/ t est and then locate the DenmoConponent Test . j ava source file.

Load it into the editor by double-clicking it.

Now set up a Run Configuration to run r epo- anp tests. From the main menu select Run >
Run Configurations....

In the Run Configurations dialog, select Maven Build in the left list. Then right click on it
and select New.

Set the Name field of the configuration to "Test Repo AMP".

Set the Base Directory field of the configuration to "${workspace_loc:/repo-amp}".
Set the Goals field "test".

In the JRE tab set JDK 8.

Click Apply.

Now run the test by selecting Run.

Developer Guide 71

Developer Guide

The test will run, and three tests will pass, the Console will have logs as follows:

[INFQ Scanning for projects...
[1 NFO

[I NFO

[INFO --- alfresco-maven-plugin:2.1. 0- SNAPSHOT: set -versi on (default-
set-version) @repo-anp ---

[INFO Renoved - SNAPSHOT suffix fromversion - 1.0

[INFOQ Added tinestanp to version - 1.0.1505121136

[I NFO

[INFQ --- build-hel per-maven-plugin:1.9.1: add-test-resource (add-env-

test-properties) @repo-anp ---

[1 NFO

[IINFO --- nmaven-resources-plugin:?2.7:resources (default-resources) @
repo-anp ---

[INFQ Using 'UTF-8'" encoding to copy filtered resources.
[INFQ skip non existing resourceDirectory /hone/martin/src/alfresco-

ext ensi ons/ al | -i n-one/ r epo- anp/ src/ mai n/ r esour ces

[NFO Copying 16 resources to ../repo-anp

[1 NFO

[INFQ --- yuiconpressor-nmaven-plugin:1l.5.1: conpress (conpress-js) @
repo-anp ---

[INFQ nothing to do, /hone/nmartin/src/alfresco-extensions/all-in-

one/ repo- anp/target/cl asses/../repo-anp/ web/scripts/demanp-nmin.js is
younger than original, use 'force' option or clean your target

[INFO nb warnings: 0, nb errors: 0

[I NFO

[INFQ --- al fresco-maven-plugin:2.1.0- SNAPSHOT: refresh (refresh-

webscri pt s-repo- and-share) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[1 NFQ

[INFQ --- maven-conpiler-plugin:3.2:conpile (default-conpile) @repo-

a ---

[INFQ Nothing to conpile - all classes are up to date

[I NFO

[INFQ --- maven-resources-plugin:2.7:test Resources (default-

t est Resources) @repo-anp ---

[INFQ Using 'UTF-8' encoding to copy filtered resources.

[NFQ Copying 2 resources

[INFQ Copying 1 resource

[I NFO

[INFQ --- maven-resources-plugin:2.7: copy-resources (add-nodul e-

properties-to-test-classpath) @repo-anp ---

[INFQ Using 'UTF-8'" encoding to copy filtered resources.

[INFQ Copying 1 resource to alfresco/ nodul e/ repo-anp

[I NFO

[

co

[

[

[

[

NFQ --- maven-resources-plugin: 2. 7: copy-resources (add-nodul e-
nfig-to-test-classpath) @repo-anp ---

NFQ Using 'UTF-8' encoding to copy filtered resources.

NFQ Copying 11 resources

NFQ|
INFQ --- maven-conpil er-plugin:3.2:testConpile (default-testConpile)
@repo-anp ---
[INFO Nothing to conpile - all classes are up to date
[1 NFQ
[INFQ --- maven-surefire-plugin:2.18:test (default-test) @repo-anp

[INFQ Surefire report directory: /honme/nmartin/src/alfresco-extensions/
all -in-one/repo-anp/target/surefire-reports

Developer Guide 72

30.

31.

32.

Developer Guide

Runni ng org. al fresco. al | i none. denpanp. t est . DenbConponent Test
Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Tine el apsed: 0.088
sec - in org.alfresco. allinone. denbanp.test. DenoConponent Test

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: O

INFOQ Total time: 7.232 s

I NFO Finished at: 2015-05-12T11: 36: 13+01: 00
I NFO Final Menory: 27M 338M

I

Now, in DenoConponent Test . j ava, modify one of the tests so that it will fail. For example,
you could change the line assert Equal s(7, chil dNodeCount); to assert Equal s(8,
chi | dNodeCount) ;

Now run the test again by selecting Run from main menu and then from Run History
select Run 'Test Repo AMP".

Note the test will run again and this time fail. But you did not need to restart Alfresco. This
demonstrates hot reloading of Java code.

Change the code back and re-run the test.

Now you will see that all tests pass. The code has re-run without any reloading of Alfresco!
This allows for Test Driven Development with very low overhead.

Testing RAD when doing Share customizations (share.war).

33.

34.

In the Package Explorer, navigate to and expand the al | - i n- one/ shar e- anp/ sr ¢/ mai n/
anp/ confi g/ al fresco/ web- ext ensi on/ si t e-webscri pt s/ coml exanpl e/ pages folder

Locate the si npl e- page. get . j s file and load it into the editor by double-clicking it.

This is the controller for the Aikau Page Web Script that we tried after starting the server.
Update the controller code by adding an 'UPDATED' string as follows to the page title, also
change the layout from HorizontalWidgets to VerticalWidgets:

nodel . j sonMbdel = {
wi dgets: [{
id: "SET_PAGE TITLE",
nane: "alfresco/ header/SetTitle",
config: {
title: "This is a sinple page UPDATED
}

}

id: "MY_HORI ZONTAL_W DGET_LAYOQOUT",
nane: "alfresco/layout/Vertical Wdgets",

config: {
wi dget W dt h: 50,
wi dgets: [

id: "DEMO SI MPLE_LOGO',

Developer Guide 73

35.

36.

37.

38.

Developer Guide

name: "al fresco/l ogo/ Logo",
config: {

| ogoCl asses: "al fresco-Iogo-only"
}

id: "DEMO S| MPLE_MSG',
nane: "exanpl e/ w dgets/ Tenpl at eW dget "

}H
it
Now build(Make) the project by clicking Ctrl+S

The Share web application will now have the web script container refreshed and the
resouce cache cleared.

Refresh the http: //1 ocal host : 8080/ shar e/ page/ hdp/ ws/ si npl e- page Aikau Page
from the Browser

The page should now display as follows:

& localhost v C

Home My Files Shared Files Sites ¥ Tasks People Repository Admin

é" This is a simple page UPDATED

Hello from i18n!

Now, let's update some HTML, CSS, and Properties for the sample widget that is used
by the Aikau page, navigate to and expand the al | -i n- one/ shar e- anp/ src/ mai n/ anp/
web/ j s/ exanpl e/ wi dget s folder

Locate the css/ Tenpl at eW dget . css file and load it into the editor by double-clicking it.
This is the Stylesheet for the Aikau Widget. Update the widget style as follows:

. ny-tenpl at e- wi dget
border: 2px #000000 soli d;
paddi ng: lem
wi dt h: 100px;
color: white;
backgr ound-col or: bl ue;

}

39. Then locate the i 18n/ Tenpl at eW dget . properti es file and load it into the editor by

double-clicking it.
This is the resource file for the Aikau Widget. Update the properties as follows:

hel | o-1 abel =Hel | o from i 18n UPDATED!
hel | o-test=CGoing to use this |abel too now

Developer Guide 74

Developer Guide

40. Then locate the t enpl at es/ Tenpl at eW dget . ht m file and load it into the editor by
double-clicking it.

This is the HTML template file for the Aikau Widget. Update so it looks as follows:

<div class="ny-tenpl at e-wi dget " >${greeti ng} and ${greeting2}</div>

41. And finally, locate the Tenpl at eW dget . j s file and load it into the editor by double-clicking
it.

This is the main JavaScript implementation for the Aikau Widget. Update so it also sets the
new property used in template:

define(["doj o/ _base/decl are"
"dijit/_Wdget Base"
"al fresco/ core/ Core"
"dijit/_Tenpl at edM xi n",
"dojo/text!./tenpl ates/ Tenpl at eW dget. ht m "

]
function(decl are, _Wdget, Core, _Tenplated, tenplate) {
return declare([_Wdget, Core, Tenplated], {
tenpl ateString: tenplate,
i 18nRequi renents: [{i18nFile: "./i18n/
Tenpl at eW dget . properties"} |,
cssRequi rements: [{cssFile:"./css/ Tenpl at eW dget . css"}],

bui | dRendering: function
exanpl e_wi dgets_Tenpl at eW dget __ bui | dRenderi ng() {
this.greeting = this.nessage(' hello-Iabel');
this.greeting2 = this.nmessage(' hello-test');

this.inherited(argunents);

}
1)
DK

42. Now build(Make) the project by clicking Ctrl+S.

43. Refreshthe http://1 ocal host: 8080/ shar e/ page/ hdp/ ws/ si npl e- page Aikau Page
from the Browser.

The page should now display as follows:

|
|(€ localhost v C

| Home My Files Shared Files Sites v Tasks ¥ People Repository Admin T

Hello from i18n
UPDATED! and
New label!

Enabling RAD in Eclipse with Run Configurations.
44. Introduction

Developer Guide 75

45,

46.

47.

48.
49.
50.
51.
52.
53.

Developer Guide

In this article we have seen how we can achieve Rapid Application Development within
Eclipse by having the alfresco maven plugin refresh goals executed automatically
(magically) after a Make, which is triggered by saving the file. This auto-refresh feature is
enabled by default when you use Eclipse. If you don't want that, and instead want to have
more control over when web application refreshs happens etc, then you can use a Run
Configuration instead and disable auto-refresh. In the following tutorial you will see how
run configurations can be used for better control of when the refresh call is being made.

Start by disabling auto-refresh, set the following property in the top project POM (i.e. in
al fresco- ext ensi ons/al | -i n-one/ pom xm):

<share.client.url >htt p: / /1 ocal host : 8080/ shar e</
share.client.url >

<l-- Turn off auto-refresh of web applications -->
<maven. al fresco. refresh. nnde>none</ maven. al fresco. r ef resh. node>
</ properties>

Besides none, the other values for this property are:
* auto - (default) Checks packaging and app.amp.client.war.artifactld to determine if
it should refresh Respository (alfresco.war) or Share (share.war)
* bot h - Will refresh both Respository and Share
e share - Refresh only Share
* repo - Refresh only Respository
* none - Disables refreshing all together

Then set up a Run Configuration to run r epo- anp builds and Repaository webapp refresh
(alfresco.war). From the main menu select Run > Run Configurations....

In the Run Configurations dialog, select Maven Build in the left list. Then right click on it
and select New.

Set the Name field of the configuration to "Make Repo AMP".

Set the Base Directory field of the configuration to "${workspace_loc:/repo-amp}".
Set the Goals field "compile alfresco:refresh-repo”.

In the JRE tab set JDK 8.

Click Apply.

Now run the repo-amp build by selecting Run.

The build will run with the following result, the Eclipse Console will output:

[INFOQ Scanning for projects...
[I NFO

[I NFQ

[INFQ --- alfresco-nmaven-plugin: 2. 1. 0- SNAPSHOT: set - ver si on (defaul t-
set-version) @repo-anp ---

Developer Guide 76

Developer Guide

NFQ Renpved - SNAPSHOT suffix fromversion - 1.0
NFQ Added tinestanp to version - 1.0.1505121201

Q- ———

[

[

[INFQ

[INFO --- build-hel per-maven-pl ugin:1.9.1: add-test-resource (add-env-

test-properties) @repo-anp ---

[I NFQ

[INFQ --- maven-resources-plugin:2.7:resources (default-resources) @
repo-anp ---

[INFQ Using 'UTF-8' encoding to copy filtered resources.
[INFO skip non existing resourcebDirectory /hone/martin/src/alfresco-

ext ensi ons/ al | -i n-one/ r epo- anp/ src/ mai n/ r esour ces

[NFO Copying 16 resources to ../repo-anp

[I NFO

[INFQ --- yuiconpressor-maven-plugin:1.5.1: conpress (conpress-js) @
repo-anp ---

[INFQ nothing to do, /hone/martin/src/alfresco-extensions/all-in-

one/ repo-anp/target/cl asses/../repo-anp/ web/scripts/denmpanp-nmin.js is
younger than original, use 'force' option or clean your target

[INFQ nb warnings: 0, nb errors: O

[I NFO

[INFO --- alfresco-maven-plugin:2.1. 0- SNAPSHOT: refresh (refresh-

webscri pt s-repo- and-share) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[I NFO

[INFQ --- maven-conpiler-plugin:3.2:conpile (default-conpile) @repo-
a ---

[INFO Nothing to conpile - all classes are up to date

[1 NFQ

[INFQ --- al fresco-nmaven-plugin:2.1.0- SNAPSHOT: refresh-repo (defaul t-
cli) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[I NFO

[INFO BU LD SUCCESS

[I NFO

INFO Total time: 8.440 s

I NFO Finished at: 2015-05-12T12:01: 13+01: 00
I NFQ Final Menory: 29M 342M

I

<7 Note that only the r epo- anp is built and only the Repository webapp is refreshed
(alfresco.war), the Share application is not touched. This demonstrates how you can
have better control of the build and refresh when you have a many different AMPs.
You can create a similar run configuration for the shar e- anp project, and for any
other AMP project.

In this tutorial you have seen how to add and modify code within Eclipse and and then see
how these changes take effect immediately, without the need to manually restart or refresh any
Alfresco Web Applications.

Importing SDK projects into IntelliJ IDEA

The Alfresco SDK is designed to work well with IntelliJ IDEA. This support includes the ability to
import existing SDK projects (created via the command line) into IDEA.

You should have completed Installing and configuring software and generated a project.
You will learn how to import an existing Maven project into IDEA.

1. First, make sure IDEA is using the correct Maven installation (3.2.5 or newer). In the main
menu, select File > Settings....

In the IDEA Settings dialog you should see something like this:

Developer Guide 77

Developer Guide

Q. \ Build, Execution, Deployment » Build Tools » Maven = For current project Reset
Appearance & Behavior 1 work offline
Appearance
Menus and Toolbars [use plugin registry
System Settings Execute goals recursively
File Colors B
Scopes B [Print exception stack traces
Notifications] always update snapshots
Quick Lists

Keymap Output |evel: Infa n
Editc_lr Checksum palicy: No Global Policy n
Plugins
Version Control Multiproject build fail pelicy: | Default n
Build, Execution, Deployment i : i

Build Tools Elugin update policy: Default n ignored by Maven 3+

= Wil

Gradle =

Gant = Maven home directory: Ifusrflocalfapache-maven-3.2‘5| nD
Compiler B (Version: 3.2.5)
Application Servers User settings file: ‘ Jhome/martin/.m2/settings.xml H:‘ [Override
Deployment (=
Clouds Local repository: ‘_.‘h(-me_.‘martln_.‘.nwz_"reposltory ‘D [override
Coverage B
Debugger

Path Variables

m | Cancel ‘ ‘ Apply | | Help |

2. Then check that you are using JDK 8, In the main menu, select File > Project
Structure....

In the IDEA Project Structure dialog you should see something like this:

& ProjectStructure -

PO S Project name:
| all-in-one |

Project Settin

This SDK is default for all project modules.

Modules A module specific SDK can be configured for each of the modules as required.
Libraries | [2 1.8 (java version "1.8.0_40") n Meaw... | Edit |
Facets ' '

Project language level:
Artifacts This language level is default for all project modules.
A module specific language level can be configured for each of the modules as required.

3. Now, in the main menu, select File > Open...
4. Navigate to where the project's parent pom is located, in this case the AlIO parent pom.

You should see a dialog looking something like this when you have located an All-in-One
(AIO) project:

Developer Guide 78

Developer Guide

e Open File or Project ”

AOCING GBX O & Hide path

| fhomefmartin/srcfalfresco-extensions/all-in-onefpom.=mil ‘&

[alfresco-extensions
I all-in-one
Il repo
I repo-amp
I runner
J| share
Il share-amp
I solr-config
Il all-in-one.iml

[Zl run.sh

Drag and drop a file into the space above to quickly locate it inthe tree.

m | Cancel I | Help I

Select the pom xn file for the All-in-One parent project.

Click OK. The project is now imported and should appear in the Project tool view to the
left.

Enable Alfresco Enterprise edition (Optional)

If your project is using the Enterprise edition of Alfresco you also want IDEA to load the
enterprise versions of the Alfresco WARs and related libraries. You can do this by enable
the ent er pri se profile. In the Maven Projects tool view to the right expand the Profiles
folder, then check the enterprise profile. You should see a dialog looking something like
this:

Developer Guide 79

Developer Guide

Dl & + P RS = B 1
Profiles E

alfresco-nexus =
[] amp-to-war m
[] atv =
[] config-h2-support E
[] enable-alfresco-testing o
[] enable-amp Tz
enable-properties-filtering @
[| enable-test-propertiesfiltering
[] enforce-sdk-rules I'g.'n
enterprise =
[] functional-testing E
[]jrebel “
[l purge 2
[| regression-testing T_nn
[]run
[] sdk-release
[] setup

[Alfresco Repository AMP Module

[Alfresco Repository and Share Quickstart with database and ar
[Alfresco Repository WAR Aggregator

T Alfresco Share AMP Module

[Alfresco Share WAR Aggregator

[Alfresco Solr 4 Configuration

[Alfresco, Share and Solrd Tomcat Runner

Now use Maven to build the All-in-One (AIO) project. Do this by executing the i nst al |
command on the parent AlO project. In the Maven Projects tool view to the right expand
the parent pom, then expand the Lifecycle folder.

You should see a dialog looking something like this:

Developer Guide 80

Developer Guide

[
Sk + PR*GAZ B g
C& Profiles z
[Alfresco Repository AMP Module ;;,?
[Alfresco Repository and Share Quickstart with database and ar E
Fa Lifecycle .
& clean 5
£k validate =
& compile %
& test g
i package ®
& verify 2
& install [
£ site
& deploy ¥
Ca Plugins i
[Alfresco Repository WAR Aggregator o
[Alfresco Share AMP Module &
7 Alfresco Share WAR Aggregator
[Alfresco Solr 4 Configuration
[Alfresco, Share and Solrd Tomcat Runner

9. Double-click the i nstal I plugin goal.

The project will build, and information will be displayed in the Console. You will see a
message similar to the following, indicating that the project was successfully built.

[usr/lib/jvm java-8-oracl e/ bin/java - Xnms256m - Xnx1G - XX: Per n5i ze=500m -
j avaagent:/ home/ martin/libs/springl oaded-1. 2. 3. RELEASE. j ar -noverify -
Dmaven. hone=/ usr/ | ocal / apache-nmaven-3.2.5 i nstall

[INFQ Reactor Summary:

[I NFQO

[INFO Alfresco Repository and Share Quickstart with database and an
enbedded Tontat runner. SUCCESS [0.387 s]

[INFQ Alfresco Repository AVP Module SUCCESS
[38.368 s]

[INFQ Alfresco Share AVP Module SUCCESS [
0. 734 s]

[INFO Alfresco Repository WAR Aggregator SUCCESS
[11.000 s]

[INFQ Alfresco Solr 4 Configuration SUCCESS [
0. 028 s]

[INFQ Alfresco Share WAR Aggregator SUCCESS [
9. 903 s]

[INFO Alfresco, Share and Solr4 Tontat Runner SUCCESS [
0. 007 s]

[I NFO

[INFQ BU LD SUCCESS

[I NFQO

[INFQ Total tine: 01:01 mn
[INFQ Finished at: 2015-05-06T11: 28: 02+01: 00

Developer Guide 81

Developer Guide

Process finished with exit code 0

' You should see that the MAVEN_OPTS setting has been picked up by IDEA, look at
the first line of the log.

You have seen how to import your SDK project into IntelliJ and how to build it.

Rapid Application Development in IntelliJ IDEA (Hot reloading)

Hot reloading is the ability to modify your application's code, and view the changes without having
to restart Alfresco Tomcat. This allows for significant savings in development time that would
otherwise be wasted restarting Tomcat. Hot reloading is the key to enabling Rapid Application
Development (RAD) and Test Driven Development (TDD).

You should have an extension project imported, see importing a project into IDEA.

In this tutorial you will see how changes to your code can be carried out without having to
restart Alfresco Tomcat. This tutorial demonstrates hot reloading of JavaScript, FreeMarker
template, and Java code. There are three components that work together to enable the best RAD

experience:

1. Spring Loaded: takes care of hot-reloading any Java class files that we have changed.

2. Refresh Repository Script: This is a script that will POST a request to the Alfresco
repository web application (that is, al f r esco. war) telling it to refresh the Repo web script
container, so any changes to files related to web scripts will be picked up.

3. Refresh Share Script: This is a script that will POST a request to the Alfresco Share web

application (that is, shar e. war) telling it to refresh the Surf web script container, so any
changes to files related to Surf web scripts will be picked up. This script will also clear the
resource dependency caches, so JS changes etc are picked up.

Start an instance of Alfresco Tomcat that will be used for hot-reloading.

1.

Use the run script to start the Application server with the Alfresco extension project
deployed, for example:

al fresco-extensions/all-in-one$./run.sh

' This is usually done outside the IDE.

Test the custom repository web script

The All-in-One project (and the repository AMP project) have a sample web script
included. You can invoke it by pointing your web browser at htt p: / /| ocal host : 8080/

al fresco/ servi ce/ sanpl e/ hel | owor | d. If you need to login then use adni n with
password adni n. Running this web script produces the output "Message: Hello World from
JS! HelloFromJava".

Test the custom Share Aikau Page

The All-in-One project (and the Share AMP project) have a sample Aikau page included.
You can display it by pointing your web browser at ht t p: / /| ocal host : 8080/ shar e/
page/ hdp/ ws/ si npl e- page. If you need to login then use admni n with password adni n.
The page should display as follows:

Developer Guide 82

Developer Guide

3+ fi A @ =

e

Admin Tools Administrator v

Q, search files, people, sites

€
w

’ : Hello from i18n!
&

Enabling Rapid Application Development (RAD) in IDEA.
4. Configure repository AMP projects to Refresh Webapp (al fresco. war)

The All-in-One project has one Repository AMP project by default (all-in-one/repo-amp),
we need to set up IDEA so that when we build via IDEA (that is, not via Maven) a script
runs that will refresh the Repo Web Script container. In the Maven Projects tool view to
the right expand the Alfresco Repository AMP Module folder, then expand the Plugins
folder. Now expand the alfresco plugin folder. Right click on the alfresco:refresh-repo
goal of the plugin. In the drop down menu select Execute After Make. You should now
see a dialog looking something like this:

B~
Ghed + PRI @® 3= B
C& Profiles
) Alfresco Repository AMP Module
Fa Lifecycle
Fa Plugins
alfresco (org.alfresco.maven. plugin: alfresco-maven-plugin: 2.1.0-5N

% alfresco:amp
% alfresco:help
% alfrescoinstall

& alfresco:refresh-repo (After Make)
% alfrescoirefresh-share

% alfresco:set-version

% alfrescoivalidate

& build-helper (org.codehaus. mojo:build-helper-maven-plugin:1.9.1)
& clean (org.apache.maven.plugins:maven-clean-plugin:2.6.1)

& compiler (org.apache.maven.plugins:maven-compiler-plugin: 3.2)

#h deploy (org.apache.maven.plugins:maven-deploy-plugin: <unknown:
&% install (org.apache.maven.plugins:maven-install-plugin:2.5.2)

resources (org.apache.maven.plugins:maven-resources-plugin:2.7)
site (org.apache.maven.plugins:maven-site-plugin: 3.0)

i% surefire (org.apache.maven.plugins:maven-surefire-plugin: 2.18)

& yuicompressor (net.alchim31.maven:yuicompressor-maven-plugin:1.

Fil Dependencies
[y Alfresco Repository and Share Quickstart with database and an embedde
[y Alfresco Repository WAR Aggregator
T Alfresco Share AMP Module
[y Alfresco Share WAR Aggregator

If you are working with multiple Repo AMPs, then you need to do this configuration for
each one of them.

Developer Guide 83

Developer Guide

¥ Youonly need to do this if you are doing customizations for the Alfresco repository
webapp (that is, customizing al f r esco. war). If you are just customizing the Share
Ul, see the next configuration.

5. Configure Share AMP projects to Refresh Webapp (shar e. war)

The All-in-One project has one Share AMP project by default (all-in-one/share-amp),

we need to set up IDEA so that when we build via IDEA (that is, not via Maven) a script
runs that will refresh the Surf Web Script container and clear dependency caches. In the
Maven Projects tool view to the right expand the Alfresco Share AMP Module folder,
then expand the Plugins folder. Now expand the alfresco plugin folder. Right click on the
alfresco:refresh-share goal of the plugin. In the drop down menu select Execute After
Make. You should now see a dialog looking something like this:

8-

Ghedh + PRSI B
[& Profiles
T Alfresco Repository AMP Module
[y Alfresco Repository and Share Quickstart with database and an embedde
[Alfresco Repository WAR Aggregator
i Alfresco Share AMP Module
[a Lifecycle
L Plugins
#% alfresco (org.alfresco.maven.plugin: alfresco-maven-plugin: 2.1, 0-5M:
% alfresco:amp
" alfresco:help
alfrescoinstall
alfrescoirefresh-repo
"% alfresco:set-version
"% alfresco:validate

2
b

clean (org.apache.maven.plugins:maven-clean-plugin:2.6.1)

% compiler {org.apache.maven.plugins:maven-compiler-plugin: 3. 2)

#% deploy (org.apache.maven.plugins:maven-deploy-plugin: <unknown:
& install (org.apache.maven.plugins:maven-install-plugin: 2.5.2)

& resources (org.apache.maven.plugins:maven-resources-plugin:2.7)
#h site (org.apache.maven.plugins:maven-site-plugin: 3.0)

&% surefire (org.apache maven.plugins:maven-surefire-plugin:2.18)

& yuicompressor (net. alchim31.maven:yuicomprassor-maven-plugin:1.

[Dependencies
[Alfresco Share WAR Aggregator
[y Alfresco Solr 4 Configuration

If you are working with multiple Share AMPs, then you need to do this configuration for
each one of them.

¥ You only need to do this if you are doing customizations for the Alfresco Share
webapp (that is, customizing shar e. war). If you are just customizing the repository,
see the previous configuration.

Testing RAD when doing repository customizations (al f r esco. war).

6. Inthe Project Explorer, navigate to and expand the al | - i n- one/ r epo- anp/ src/ mai n/
anp/ confi g/ al fresco/ ext ensi on/ t enpl at es/ webscri pt s folder

7. Locate the hel | owor | d. get . j s file and load it into the editor by double-clicking it.

Developer Guide 84

Developer Guide

This is the controller for the web script that we tried after starting the server. Update the
controller code by adding an 'UPDATED' string as follows:

nmodel ["from)S"'] = "Hello World fromJS! UPDATED';

Now build(Make) the project by clicking Ctrl+F9

The message console in IDEA should display BUILD SUCCESS for both the r epo- anp
and shar e- anp modules as follows:

[INFQ Scanning for projects...
[I NFO

[I NFQ

[1

[INFO --- alfresco-maven-plugin:2.1.0- SNAPSHOT: r ef resh-repo (default-
cli) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[N

[INFQ Total tine: 3.854 s

[INFQ Finished at: 2015-05-11T10: 20: 17+01: 00

[INFO Final Menory: 15M 315M

[I NFQ

[INFQ Scanning for projects...

[1 NFO

[1 NFQ

[INFO Building Alfresco Share AVP Mdul e 1. 0- SNAPSHOT
[1 NFO

[1

[INFO --- alfresco-maven-plugin:2.1. 0- SNAPSHOT: r ef resh-share (default-
cli) @share-anp ---

[INFO Successfull Refresh Wb Scripts for Alfresco Share

[NFQ Successfull C ear Dependency Caches for Al fresco Share

[1

[INFQ Total tine: 4.173 s

[INFQ Finished at: 2015-05-11T10: 20: 24+01: 00
[INFQ Final Menory: 18M 309M

[l

[INFO Maven execution finished

Note the refresh calls to the web applications. If you would prefer to only refresh the
repository webapp (that is, al f r esco. war) have a look later on in this article for a different
approach to refreshing the webapp via run configurations.

Developer Guide 85

10.

11.

12.

13.

14.

15.

16.

17.
18.

Developer Guide

Refresh the http://1 ocal host : 8080/ al fr esco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script page from the Browser

The output from the web script should change to "Message: Hello World from JS!
UPDATED HelloFromJava". Note that there is no need to restart the application server,
just a Make of the project, and a refresh of the web script page from the browser (you are
basically invoking the web script again and the update should be immediately visible).

Now locate the hel | owor | d. get. ht i . ft | file and double-click it to load it into the editor.

This is the FreeMarker template for the web script. Update the template by adding an
'‘ExtraTemplateText' string as follows:

Message: ${fromlS} ${fromlava} ExtraTenpl at eText

Now build(Make) the project by clicking Ctrl+F9
The message console in IDEA should display BUILD SUCCESS

Refresh the htt p: //1 ocal host : 8080/ al fr esco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script page from the Browser

The output from the web script should change to "Message: Hello World from JS!
UPDATED HelloFromJava ExtraTemplateText ". Again, note that there is no need to
restart the application server, only a Make of the project and a refresh of the web script
page are necessary.

In the next demo we will add a properties file for the web script, create a
hel | owor | d. get. properti es file next to the other files we have been working with.

The properties file should have one property as follows:

hel | 0. word. extras=Extra Stuff From Props

Add this property to the template, open up hel | owor | d. get. htm . ftl.
The FreeMarker template should now look like this:

Message: ${fromJS} ${fromlava} ExtraTenpl ateText
${nmsg("hell 0. word. extras")}

Now build(Make) the project by clicking Ctrl+F9
The message console in IDEA should display BUILD SUCCESS.

Refresh the htt p: / /1 ocal host : 8080/ al fresco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script page from the Browser

The output of the web script should change to "Message: Hello World from JS! UPDATED
HelloFromJava ExtraTemplateText Extra Stuff From Props". No restart of application
server should be needed, just a Make of the project and a refresh of the web script page
from the browser.

In the last web script demo we will change the Java controller

Openup al | -i n-one/ repo-anp/ src/ mai n/ j aval/ {your package path}/ denpanp/
Hel | oWbr | dWebScri pt . j ava.

Change the property text as follows:

public class Hell owrl| dWebScri pt extends Decl arativeWebScri pt {

Developer Guide 86

Developer Guide

protected Map<String, Object> executel npl (

WebScri pt Request req, Status status, Cache cache) {
Map<String, Object> nodel = new HashMap<String, Object>();
nodel . put ("fromlava", "Hell oFromlavaUPDATED");
return nodel;

19. Now build(Make) the project by clicking Ctrl+F9
The message console in IDEA should display BUILD SUCCESS.

20. Refreshthe http://1 ocal host: 8080/ al fresco/ servi ce/ sanpl e/ hel | oworl d
Repository Web Script page from the Browser

The output of the web script should change to "Message: Hello World from JS! UPDATED
HelloFromJavaUPDATED ExtraTemplateText Extra Stuff From Props". No restart of
application server should be needed, just a Make of the project and a refresh of the web
script page from the browser.

Test Driven Development (TDD) and RAD when doing Repository customizations
(al fresco. war).

21. Inthe Intellid Project Explorer expand al | -i n- one/ r epo- anp/ src/test/javal {your
package pat h}/denoanp/test and then locate the DenoConponent Test . j ava source
file.

22. Load it into the editor by double-clicking it.

23. Now set up a Run Configuration to run repo-amp tests. From the main menu select Run >
Edit Configurations.

24. Inthe Run/Debug Configurations dialog, click '+' to create a new configuration. Select
Maven from the list of available configuration types.

25. Set the Name field of the configuration to "Test Repo AMP".
26. Setthe Working Directory field of the configuration to "alfresco-extensions/all-in-one/

repo-amp".
27. Setthe Command line field "test".
28. Click OK.

29. Now run the test by selecting Run > Run 'Test Repo AMP' from the main menu.
The test will run, and three tests will pass:

[usr/lib/jvmjava-8-oracle/bin/java - Xms256m - Xnx1G -j avaagent : / hone/
martin/libs/springloaded-1.2.3. RELEASE. jar -noverify -Dmaven. home=/usr/
| ocal / apache-maven-3.2.5

[INFQ Scanning for projects...

[1 NFO

[| NFO

[INFQ --- alfresco-nmaven-plugin: 2. 1. 0- SNAPSHOT: set - ver si on (defaul t-
set-version) @repo-anp ---

[INFQ Renoved - SNAPSHOT suffix fromversion - 1.0

[INFQ Added timestanp to version - 1.0.1505120757

[I NFQ

[INFQ --- build-hel per-maven-pl ugin: 1.9. 1: add-test-resource (add-env-
test-properties) @repo-anp ---

Developer Guide 87

Developer Guide

[1 NFO

[INFO --- nmaven-resources-plugin:2.7:resources (default-resources) @
repo-anp ---

[INFQ Using 'UTF-8'" encoding to copy filtered resources.

[INFQ skip non existing resourceDirectory /hone/martin/src/alfresco-

ext ensi ons/ al | -i n-one/ r epo- anp/ src/ mai n/ r esour ces

[INFQ Copying 14 resources to ../ repo-anp

[I NFO

[INFQ --- yuiconpressor-nmaven-plugin:1.5.1: conpress (conpress-js) @
repo-anp ---

[INFQ nothing to do, /hone/nmartin/src/alfresco-extensions/all-in-

one/ repo-anp/target/cl asses/../repo-anp/ web/scripts/denmpanp-nmn.js is
younger than original, use 'force' option or clean your target

[INFO nb warnings: 0, nb errors: 0

[1 NFO

[INFO --- alfresco-maven-plugin:2.1.0- SNAPSHOT: refresh (refresh-

webscri pt s-repo- and-share) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[INFQ

[INFO --- nmaven-conpiler-plugin:3.2:conpile (default-conpile) @repo-
INFO Nothing to conpile - all classes are up to date
I NFO
INFQ --- maven-resources-plugin:2.7:test Resources (default-

est Resources) @repo-anp ---
I NFO| Using 'UTF-8' encoding to copy filtered resources.
I NFO Copying 2 resources
I NFQl Copying 1 resource
I NFQ
INFQ --- maven-resources-pl ugin: 2. 7: copy-resources (add-nodul e-
operties-to-test-classpath) @repo-anmp ---
NFQ Using 'UTF-8' encoding to copy filtered resources.
NFQ] Copying 1 resource to al fresco/ nodul e/ repo-anp
F

r
I
|
I'N
INFO --- maven-resources-plugin: 2. 7: copy-resources (add-nodul e-
onfig-to-test-classpath) @repo-anp ---
I NFQ Using 'UTF-8' encoding to copy filtered resources.

I NFO Copying 9 resources
I NFO
I'N

FO --- maven-conpil er-plugin: 3. 2:test Conpil e (default-testConpile)
@repo-anp ---
[INFQ Nothing to conpile - all classes are up to date
[1 NFO
[INFO --- maven-surefire-plugin:2.18:test (default-test) @repo-anp
[INFO Surefire report directory: /home/martin/src/alfresco-extensions/
all -in-one/repo-anp/target/surefire-reports

Runni ng org. al fresco. al |l i none. denpanp. t est . DenbConponent Test

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Tine el apsed: 0.085
sec - in org.alfresco. allinone. denpanp.test. DenbConponent Test

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: O

[INFQ Total tine: 6.946 s
[INFQ Finished at: 2015-05-12T07:57: 24+01: 00
[INFQ Final Menory: 25M 443M

Developer Guide 88

Developer Guide

30. Now, in DenpConponent Test . j ava, modify one of the tests so that it will fail. For example,
you could change the line assert Equal s(7, chil dNodeCount); to assert Equal s(8,
chi | dNodeCount) ;

31. Now run the test again by right-clicking the file in Project Explorer and selecting Run 'Test
Repo AMP'.

Note the test will run again and this time fail. But you did not need to restart Alfresco. This
demonstrates hot reloading of Java code.

32. Change the code back and re-run the test.

Now you will see that all tests pass. The code has re-run without any reloading of Alfresco!
This allows for Test Driven Development with very low overhead.

Testing RAD when doing Share customizations (shar e. war).

33. Inthe Project Explorer, navigate to and expand the al | - i n- one/ shar e- anp/ sr c/ mai n/
anp/ confi g/ al fresco/ web- ext ensi on/ si t e-webscri pt s/ conl exanpl e/ pages folder

34. Locate the si npl e- page. get . j s file and load it into the editor by double-clicking it.

This is the controller for the Aikau Page web script that we tried after starting the server.
Update the controller code by adding an 'UPDATED' string as follows to the page title, also
change the layout from HorizontalWidgets to VerticalWidgets:

nmodel . j sonMbdel = {
wi dgets: [{
id: "SET_PAGE TI TLE",
nane: "alfresco/ header/SetTitle",
config: {
title: "This is a sinple page UPDATED'

}
}1
id: "MY_HORI ZONTAL_W DGET_LAYOUT",
name: "alfresco/layout/ Verti cal Wdgets",
confi g:
wi dget W dt h: 50,
wi dgets: [
id: "DEMO SI MPLE LOGO',
name: "al fresco/l ogo/ Logo",
config: {
| ogoCl asses: "al fresco-I|ogo-only"
}
{!
id: "DEMO SI MPLE_MSG',
nane: "exanpl e/ w dget s/ Tenpl at eW dget "
}
]
}
}H

it
35. Now build(Make) the project by clicking Ctrl+F9

Developer Guide 89

Developer Guide

The message console in IDEA should display BUILD SUCCESS for both the r epo- anp
and shar e- anp modules as follows:

[INFO Scanning for projects...
[I NFO

[I NFO

[

[INFQ --- al fresco-nmaven-plugin:2.1.0- SNAPSHOT: refresh-repo (default-
cli) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[

[INFO Total tine: 3.854 s

[INFO Finished at: 2015-05-11T10: 20: 17+01: 00
[INFQ Final Menory: 15M 315M
[1

[l

[INFQ --- al fresco-nmaven-plugin:2.1. 0- SNAPSHOT: refresh-share (default-
cli) @share-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Share

[INFO Successfull C ear Dependency Caches for Alfresco Share

[l

[INFO Total tine: 4.173 s

[INFO Finished at: 2015-05-11T10: 20: 24+01: 00
[INFO Final Menory: 18M 309M

[1

[INFQ Maven execution finished

Also, note the refresh calls to the Web Applications to refresh. If you would prefer to only
refresh the Share webapp (that is, shar e. war) have a look later on in this article for a
different approach to refreshing the webapp via run configurations.

Refresh the http: //1 ocal host : 8080/ shar e/ page/ hdp/ ws/ si npl e- page Aikau Page
from the Browser

The page should now display as follows:

Developer Guide 90

37.

38.

39.

40.

41.

Developer Guide

& localhost -

Home My Files Shared Files Sites ¥ Tasks People Repository Admin

aﬂ‘ This is a simple page UPDATED

Hello from i12n!

Now, let's update some HTML, CSS, and Properties for the sample widget that is used
by the Aikau page, navigate to and expand the al | -i n- one/ shar e- anp/ sr c/ mai n/ anp/
web/ j s/ exanpl e/ wi dget s folder

Locate the css/ Tenpl at eW dget . css file and load it into the editor by double-clicking it.
This is the Stylesheet for the Aikau Widget. Update the widget style as follows:

.my-tenpl at e-wi dget {
border: 2px #000000 soli d;
paddi ng: lem
wi dt h: 100px;
color: white;
background-col or: bl ue;

}
Then locate the i 18n/ Tenpl at eW dget . properti es file and load it into the editor by
double-clicking it.
This is the resource file for the Aikau Widget. Update the properties as follows:

hel | o-1 abel =Hel | o from i 18n UPDATED!
hel | o-test=CGoing to use this | abel too now

Then locate the t enpl at es/ Tenpl at eW dget . ht m file and load it into the editor by
double-clicking it.

This is the HTML template file for the Aikau Widget. Update so it looks as follows:

<di v class="ny-tenpl at e-wi dget ">${greeti ng} and ${greeting2}</di v>

And finally, locate the Tenpl at eW dget . j s file and load it into the editor by double-clicking
it.

This is the main JavaScript implementation for the Aikau Widget. Update so it also sets the
new property used in template:

define(["doj o/ base/decl are",
"dijit/_Wdget Base",
"al frescol/ core/ Core",
"dijit/_Tenpl at edM xi n",
"dojo/text!./tenpl ates/ Tenpl at eW dget. ht m "

[
function(declare, Wdget, Core, Tenplated, tenplate) {

return declare([_Wdget, Core, Tenplated], {
tenpl ateString: tenplate,

Developer Guide 91

42.
43.

Developer Guide

i 18nRequi renments: [{i18nFile: "./i18n/
Tenpl at eW dget . properties"}],
cssRequi rements: [{cssFile:"./css/ Tenpl at eW dget . css"}],

bui | dRenderi ng: function
exanpl e_wi dgets_Tenpl at eW dget __bui | dRenderi ng() {
this.greeting = this.nessage(' hello-1abel");
this.greeting2 = this.nmessage(' hello-test');

this.inherited(argunents);

}
1)
1)

Now build(Make) the project by clicking Ctrl+F9.

Refresh the htt p: //1 ocal host : 8080/ shar e/ page/ hdp/ ws/ si npl e- page Aikau Page
from the Browser.

The page should now display as follows:

IR 3 localhost v

| Home My Files Shared Files Sites ¥ Tasks ¥ People Repository Admin T

Hello from i18n
UPDATED! and
MNew labell

Enabling RAD in IDEA with run configurations.

44,

45.

46.

47.
48.

49.
50.

Introduction

In this article we have seen how we can achieve Rapid Application Development within
IDEA by executing alfresco maven plugin refresh goals after a Make. This is an easy

way to configure RAD in IDEA when you are only working with 1 or 2 AMPs. However,
when you start to get a number of AMPs that you are working on simultaneously, then
there will be a lot of refresh calls going on as every AMP's alfresco plugin goal config will
be executed. This could be seen in the tutorials above where the r ef r esh- shar e and

ref resh-repo goals were always executed even if we were just working with one of the
associated AMPs. In the following tutorial you will see how run configurations can be used
for better control of when the refresh call is being made.

Set up a Run Configuration to run r epo- anp builds and Repository webapp refresh
(alfresco.war). From the main menu select Run > Edit Configurations.

In the Run/Debug Configurations dialog, click '+' to create a new configuration. Select
Maven from the list of available configuration types.

Set the Name field of the configuration to "Make Repo AMP".

Set the Working Directory field of the configuration to "alfresco-extensions/all-in-one/
repo-amp".

Set the Command line field "compile alfresco:refresh-repo”.

Click OK.

Developer Guide 92

Developer Guide

51. Now do a Make(build) by selecting Run > Run '‘Make Repo AMP' from the main menu.
The build will run with the following result:

[usr/lib/jvnjava-8-oracl e/bin/java - Xms256m - Xnx1G - j avaagent : / hone/
martin/libs/springl oaded-1.2.3. RELEASE. j ar -noverify -Dnmaven. hone=/usr/
| ocal / apache-maven-3.2.5

[INFO Scanning for projects...

[I NFO

[I NFO

[INFQ --- al fresco-nmaven-plugin:2.1.0- SNAPSHOT: set - ver si on (default-
set-version) @repo-anp ---

[INFO Renoved - SNAPSHOT suffix fromversion - 1.0

[IINFO Added tinestanp to version - 1.0.1505120823

[I NFQ

[INFQ --- build-hel per-nmaven-plugin:1.9.1: add-test-resource (add-env-

test-properties) @repo-anp ---

[I NFO

[INFO --- maven-resources-plugin:2.7:resources (default-resources) @
repo-anp ---

[INFQ Using 'UTF-8'" encoding to copy filtered resources.
[INFQ skip non existing resourceDirectory /honme/martin/src/alfresco-

ext ensi ons/ al | -i n-one/ repo- anp/ src/ mai n/ r esour ces

[INFQ Copying 14 resources to ../ repo-anp

[1 NFO

[INFQ --- yuiconpressor-nmaven-plugin:1l.5.1: conpress (conpress-js) @
repo-anp ---

[INFQ nothing to do, /hone/martin/src/alfresco-extensions/all-in-

one/ repo- anp/target/cl asses/../repo-anp/ web/scripts/demanp-mn.js is
younger than original, use 'force' option or clean your target

[INFO nb warnings: 0, nb errors: 0

[1 NFO

[INFQ --- al fresco-nmaven-plugin:2.1.0- SNAPSHOT: refresh (refresh-

webscri pt s-repo-and-share) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[I NFO

[INFQ --- maven-conpiler-plugin:3.2:conpile (default-conpile) @repo-
a ---

[INFQ Nothing to conpile - all classes are up to date

[I NFO

[INFQ --- al fresco-nmaven-plugin:2.1.0- SNAPSHOT: refresh-repo (default-
cli) @repo-anp ---

[INFQ Successfull Refresh Wb Scripts for Alfresco Repository

[I NFQ

[INFO BU LD SUCCESS

[I NFO

[INFO Total tine: 6.389 s

[INFO Finished at: 2015-05-12T08: 23: 57+01: 00
[INFQ Final Menory: 30M 490M
[1

27 Note that only the r epo- anp is built and only the repository webapp is refreshed
(al fresco. war), the Share application is not touched. This demonstrates how you
can have better control of the build and refresh when you have a many different

Developer Guide 93

Developer Guide

AMPs. You can create a similar run configuration for the shar e- anp project, and for
any other AMP project.

In this tutorial you have seen how to add and modify code within IntelliJ IDEA and then see
how these changes take effect immediately, without the need to manually restart or refresh any
Alfresco web applications.

Remote debugging with an IDE

It is possible to start an application ready for remote debugging by using the Maven mvnDebug
command.Eclipse or another development environment such as IDEA can then connect to the
running application for remote debugging.

You should have an extension project imported, see importing a project into Eclipse.

It is quite common that you would need to debug Java code associated with an Alfresco
extension you are developing. For example, if you are developing a Java backed Web Script. The
command nvnDebug can be used to start the application in remote debugging mode, where it will
listen on port 8000, ready for a remote debugger to attach.

1. Inthis tutorial we assume that we are working with an All-in-One (AIO) project, change into
the top directory (al f r esco- ext ensi ons/ al | -i n- one).
Start the AlO project in debug mode.
2. Run nvnDebug rather than the mvn command:

$ nmvnDebug cl ean install -Prun
Preparing to Execute Maven in Debug Mde
Li stening for transport dt_socket at address: 8000

The Maven project will start and listen for a remote debugger on port 8000.
' This is usually done outside the IDE.

Connect to the running application process from Eclipse

3. In Eclipse, select Run > Debug Configurations from the main menu.

4. Select Remote Java Application and click the New icon on the top left of the dialog.
5. Give the Debug Confi gur ati on a suitable name, such as "Debug Alfresco Extension".
6

Click Browse and select the r epo- anp project, the rest of the fields for host and port have
suitable default values.

Click Apply.
Click Debug to run the Debug Configuration and connect to the remote Alfresco server.

~N

9. In Eclipse, enable the Debug perspective by selecting Window > Open Perspective >
Debug from the main menu.

10. Set a breakpoint in the al | -i n-one/ r epo-anp/ src/ mai n/ j aval org/ al fresco/
al I'i none/ denpanp/ Hel | oWor | dWebScri pt . j ava) file.

11. Invoke the http://1 ocal host: 8080/ al fresco/ servi ce/ sanpl e/ hel | owor | d
Repository Web Script from the Browser

You should now see the process stopping in the debugger as follows:

Developer Guide 94

Developer Guide

* Debug-repo-amp/src/main/javaforg/alfresco/allinone/demoamp/HelloworldwebsScript.java - Eclipse

File Edit Source Refactor Navigate Search Project Run Window Help

My ®E v HE w | I N3 el 5 HE -S> B NI =S o G ow
(B & Java |-
1% Debug ¥ = 0O ®-Variables =
¥ 1 Daemon Thread [http-bio-8080-exec-6] (Suspended (breakpoint at line 37 in Helloworldw © Name Value
& owns: SocketWrapper<E> (id=228) » @ this Helloworldwebscript (id=229)
= HelloworldwebScript.executelmpl(WebsScriptRequest, Status, Cache) line: 37 > O req | BufferedRequest (id=231)
= HelloworldwebScript(DeclarativewebScript).execute(WebScriptRequest, WebScriptRe » @ status Status (id=235)
= RepositoryContainer$3.execute() line: 489 » @ cache Cache (id=238)
= RetryingTransactionHelper.doinTransaction(RetryingTransactionCallback<R>, boolean, t -
= TenantRepositoryContainer(RepositoryContainer).transactionedExecute(WebScript, W org.alfresco.repo.ueb.scripts. BufferedRequest@s2bdall3
= TenantRepositoryContainer(RepositoryContainer).transactionedExecuteAs(WebScript,
[4] Helloworldwebscript.java = B g= outline &
2| - - - BB RS e
33 public class HelloWorldwebScript extends DeclarativeWebScript { g =
34= protected Map<String, Object> executeImpl(# org.alfresco.allinone.demoamp

WebScriptRequest req, Status status, Cache cache) { .
Map<String, Object> model = new HashMap<String, Object=(); ve HelloWorldu\febScnpt-
model.put("fromJava", "HelloFromJavaUPDATED"}; < . executelmpl{WebScriptRequest,
return model;

'}. -

& console 2 v

No consoles to display at this time.

Advanced Topics

This information provides more advanced topics that you might come in contact with when you
have been working with an SDK project for a while. We will have a look at how you can add more
custom modules to an All-in-One project, how to bring in standard Alfresco modules such as
Records Management (RM) and SharePoint Protocol (SPP) support, configuring SSL, and more.

Configure SSL between Repository and Solr in an AlO project

The SDK ships with SSL turned off between the Alfresco Repository and the Solr 4 search server.
This article explains how to set that up when running an All-in-One (AIO) project.

You should have completed Installing and Configuring software and generated an AlO project.
You will also need access to an Alfresco 5 installation as we need to copy the keystore and
Tomcat users file from it.

You will learn how to setup a secure connection (SSL) between the Alfresco Repository web
application (alfresco.war) and the Apache Solr 4 web application (alfresco-solr4.war). This is the
normal configuration after you have installed Alfresco with a package installer. In the following
instructions ALFRESCO | NSTALL_DI Ris the directory path to where you installed Alfresco 5 with
the package installer (for example /opt/alfresco5). And Al O_PARENT_DI R points to where the
parent project directory is for the All-in-One (AlO) project (for example /home/martin/src/all-in-
one).

1. Stop the embedded Tomcat instance, if it is running.
2. Copy the Repository keystore to the AlO project.
Execute the following command to copy the keystore into the runner project:

{ALFRESCO | NSTALL DI R}/ al f _data$ cp -R keystore/ {Al O PARENT DI R}/
runner/

We can now configure the embedded Tomcat instace to use this keystore.
3. Copy Tomcat users definition to the AlO project.
Execute the following command to copy the tomcat users file into the runner project:

{Al O_PARENT_DI R}/ runner/tontat$ nkdir conf

Developer Guide 95

Developer Guide

{ ALFRESCO | NSTALL_DI R}/ tontat/conf$ cp tontat-users. xni
{ Al O PARENT DI R}/ runner/tontat/ conf/

What we do here is first create a directory to hold the tomcat users file. And then we
copy the tomcat users file from the Alfresco installation to this new directory in the runner
project. This file contains identities for the Repository and Solr applications when setting
up SSL connections.

4. Turn on SSL for Repository.

Open up the al fresco- gl obal . properti es file located in the { Al O PARENT DI R}/ r epo/
src/ mai n/ properties/|ocal directory. Then update the section about Solr configuration:

i ndex. subsyst em nane=sol r 4

dir. keystore={ Al O PARENT DI R}/ runner/keyst ore
sol r. host =l ocal host

sol r. port=8080

sol r. port. ssl =8443

#sol r . secur eConms=none

Note. You have to change {AIO_PARENT_DIR} to whatever the parent directory is for your
AlO project.

5. Update the t ontat 7- maven- pl ugi n with keystore, port, and Tomcat users

Open up the pom xni file located in the { Al O_ PARENT_DI R}/ r unner directory. Then
update the plugin configuration as follows:

<pl ugi n>
<gr oupl d>or g. apache. t ontat . maven</ gr oupl d>
<artifactl|d>tontat 7- maven- pl ugi n</artifactl d>
<executi ons>
<execut i on>
<i d>run-war s</id>
<goal s>
<goal >r un</ goal >
</ goal s>
<phase>pre-integration-test</phase>
</ execut i on>
</ executi ons>
<confi guration>
<ht t psPort >8443</ htt psPort >
<keyst or eFi | e>${proj ect. basedi r}/ keyst or e/ ssl . keyst or e</
keystoreFi | e>
<keyst or ePass>kT9X60e68t </ keyst or ePass>
<keyst or eType>JCEKS</ keyst or eType>
<truststoreFil e>${project. basedir}/keystore/ssl.truststore</
truststoreFil e>
<trust st or ePass>kT9X60e68t </ t r ust st or ePass>
<truststoreType>JCEKS</truststoreType>
<t ontat User s>${ pr oj ect . basedi r}/tontat/conf/tontat - users. xm </
toncat User s>

6. Change Solr 4 configuration package to the one that has SSL enabled.

Open up the pom xni file located in the { Al O PARENT_DI R}/ sol r - confi g directory. Then
update the dependency and plugin configuration as follows:

<dependenci es>

<dependency>
<gr oupl d>or g. al f r esco</ gr oupl d>
<artifactld>al fresco-solr4</artifactld>
<ver si on>${al fresco. versi on} </ ver si on>
<cl assi fi er>confi g-ssl </cl assifier>
<type>zi p</type>

</ dependency>

Developer Guide 96

Developer Guide

</ dependenci es>

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactl|d>maven- dependency-pl ugi n</artifact!d>
<executi ons>
<execut i on>
<i d>unpack- al fresco-confi g</i d>
<goal s>
<goal >unpack</ goal >
</ goal s>
<phase>gener at e-r esour ces</ phase>
<confi guration>
<out put Di rect ory>%{al fresco. sol r. hone. di r} </
out put Di rect ory>
<artifactltens>
<artifactltenr
<gr oupl d>or g. al f r esco</ gr oupl d>
<artifactld>al fresco-solr4</artifactld>
<ver si on>%${al fresco. versi on} </ ver si on>
<cl assifi er>config-ssl</classifier>
<t ype>zi p</type>
</artifactltenr
</artifactltenms>

This Solr 4 configuration comes preconfigured with SSL enabled, keystore and truststore,
including the keystores themselves.

7. Delete previous "no-ssl" configuration directory.

{Al O PARENT DIR}/al f_data dev/solr4$ rm-rf config/

This is so the new SSL enabled configuration is downloaded and installed correctly under
al f _data_dev.

8. Make sure that the Alfresco Repository (alfresco.war) web application is using SSL.

Open up the pom xmi file located in the { Al O_ PARENT_DI R}/ r epo directory. Then update
the maven- war - pl ugi n configuration as follows:

<pl ugi n>
<artifactl|d>maven-war - pl ugi n</artifactld>
<executi ons>
<executi on>
<i d>pr epar e- expl oded- war </ i d>
<goal s>
<goal >expl oded</ goal >
</ goal s>
<phase>pr epar e- package</ phase>
</ executi on>
<executi on>
<i d>def aul t -war </ i d>
<!-- <configuration>
<webXm >${ proj ect. bui | d. di rect ory}/
${proj ect. build.final Nane}-nossl/WEB- | NF/ web. xm </ webXm >
</ configuration>-->
</ executi on>
</ executi ons>

What we do here is just commenting out the web. xmi file that we normally use when we
don't want to use SSL.

9. Start it up and make sure it works.

Developer Guide 97

Developer Guide

You should see something like this in the logs:

{Al O PARENT_DIR}$ nmvn clean install -Prun

Jun 05, 2015 10:56: 33 AM or g. apache. coyot e. Abstract Prot ocol start
I NFO Starting Protocol Handl er ["htt p-bi o-8080"]
Jun 05, 2015 10:56: 33 AM or g. apache. coyot e. Abstract Prot ocol start
INFO. Starting Protocol Handl er ["http-bio-8443"]

Try accessing Share securely: htt ps: / /1 ocal host : 8443/ shar e. Make sure search
works by adding a text file with a unique word, then search for it. Then access Solr 4
securely: https://1 ocal host: 8443/ sol r 4.

You have now setup SSL between the Alfresco Repository and the Solr 4 server.

Adding internal and external JARs to a Repository AMP project

This article explains how to add an external JAR to a Repository AMP project via a dependency.
It also looks at how to extract some AMP code into its own JAR project, what we call an internal
JAR, and then have the AMP project include it.

This tutorial assumes that you have completed Installing and Configuring software and generated
a Repo AMP project. To try out the examples in this article you will need to install a local SMTP
server such as Fake SMTP.

Sometimes when you are developing a Repository AMP you need to include external libraries
(JARSs) that are not part/are not available in the t ontat / webapps/ al fresco/ VEBI NF/ | i b
directory. Being able to do this is one of the benefits of AMPs compared to other extension
models. The Repository AMP might also start to grow to a size where it would make sense to
move some of the functionality over to separate JAR projects, and have the AMP depend on
them. This article goes through how to do these things.

Adding an external JAR to a Repository AMP project.

£ Anexternal JAR is needed when you want to use some library that is not part of the
Alfresco Repository (alfresco.war) web application. Meaning it is not present in the
t oncat / webapps/ al fresco/ VEB- | NF/ | i b directory. So you should always first scan this
directory in an Alfresco Community Edition or Enterprise installation to see if the library is
available. If it is available, then you can include it in the conponent X-repo/ pom xm as a
provi ded dependency.

In the following example we will update the Hello World Web Script code (it is part of the
Repository AMP source code) so that it can send emails. However, when we select a Mail
library to use for this, we forget to check if the library is already available as part of the
Alfresco Repository WAR. We will see what happens then and how to fix it:

Stop the embedded Tomcat instance, if it is running (i.e. via -Pamp-to-war).

Find a library that can be used to send emails from Java and add a dependency for it to
the Repo AMP project.

We know that the Java Mail library can be used for this, so we look up the maven
dependency for it and add it to the conponent X- r epo/ pom xni :

<dependenci es>
<dependency>
<gr oupl d>%${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-repository</artifactld>
</ dependency>
<!-- Added a new dependency for Java Mail -->
<dependency>
<gr oupl d>com sun. mai | </ gr oupl d>

Developer Guide 98

https://nilhcem.github.io/FakeSMTP/

Developer Guide

<artifactld> avax. mail </artifactld>
<versi on>1. 5. 3</ver si on>
</ dependency>

</ dependenci es>

We can now start implementing some code that uses the Java Malil library.

Update the Hello World Web Script to send an email.

The implementation can be done as follows in the Java controller (conponent X-r epo/
src/ mai n/j ava/ conl acne/ conponent X/ denoanp/ Hel | oWor | dWebScri pt . j ava):

i mport javax.mail.*;

i mport javax.mail.internet.|nternetAddress;
i mport javax.mail.internet.M neBodyPart;

i mport javax.mail.internet.M neMessage;

i mport javax.mail.internet.M meMultipart;

i mport java.util.HashMap;
i mport java.util.Mp;
i mport java.util.Properties;

/**

*
*
*
*

*/

A denonstration Java controller for the Hello World Wb Scri pt.

@ut hor martin. bergljung@l fresco.com
@ince 2.1.0

public class Hell owrl| dWebScri pt extends Decl arativeWebScript {

protected Map<String, Object> executel npl (

WebScri pt Request req, Status status, Cache cache) {
Map<String, Object> nodel = new HashMap<String, Object>();
nodel . put ("fromlava", "Hell oFromlava");
sendEnmai | () ;
return nodel ;

}

private void sendEmail () {
String to = "sonebody@xanpl e. cont';
String subject = "Test enmail from Wb Script";
String body = "Hello World!'";

try {
/Il Create mail session

Properties props = new Properties();
props. put ("nail.sntp. host", "<yourhost>"); [/ |ocal host

wi |l not work

props. put ("mail.sntp.port”, "2525"); /'l non-

privileged port

Sessi on session = Session. get Def aul t 1 nstance(props, null);
sessi on. set Debug(f al se);

/| Define nmessage

Message nessage = new M neMessage(session);

String fromAddress = "no-reply@l fresco. cont;
nmessage. set From(new | nt er net Addr ess(f r omAddr ess)) ;
message. addReci pi ent (Message. Reci pi ent Type. TO, new

I nt er net Addr ess(to));

nmessage. set Subj ect (subj ect) ;

/'l Create the nmessage part with body text
BodyPart nessageBodyPart = new M neBodyPart ();
nmessageBodyPart . set Text (body) ;

Multipart nultipart = new M nmeMil tipart();

mul ti part.addBodyPart (nessageBodyPart) ;

[l Put parts in nessage

Developer Guide 99

Developer Guide

message. set Content (nul ti part);

/1l Send the nmessage
Transport . send(nmessage) ;

} catch (Messagi ngException ne) {
me. pri nt St ackTrace();
}

}
}

For the code to work you will need to update <your host > to whatever hostname your
machine has. The code uses standard Java Mail classes to send a simple email without
attachments.

Build the Repository AMP.
Standing in the Repo AMP project directory, type the following Maven command:

conmponent X-repo$ nvn clean install -DskipTests=true

What we end up with now is a Repository AMP with the following JARS:

B componentX-repo.amp lib

Mame

it h: config
vﬁ lib

‘op

nents g activation-1.1.jar

loads - componentX-repo.jar
[javax.mail-1.5.3.jar

‘es !)

15 Fa META-INF

ish Bin > ; Web

module.properties
iuter

This might seem okay at first, but it is actually not a good idea. When we apply this AMP
to an Alfresco5.WAR file, the JAR files will be added to the t ontat / webapps/ al fresco/
VEEB- | NF/ | i b directory, and we end up with duplicate Java Malil libraries as it already
contains one version of the library:

ppt alfresco501 tomcat webapps alfresco WEB-INF lib
Name
t N java-properkty-utils-1.6.jar

— javax.inject-1.jar

o
- —_ javax.mail-1.5.2.jar

nents

loads % javax.mail-1.5.3 jar

- jaxb-api-2.1.jar

es
' jaxb-impl-2.2.6.jar

Developer Guide 100

Developer Guide

So the correct approach is to always check what JARs that are available in the Alfresco
5 WAR, and then for any JAR that is available use <scope>pr ovi ded</ scope> when
specifying the dependency for it.

Update the Java Mail dependency to have scope provided.

Open up the conponent X-repo/ pom xm and update the Java Mail dependency as
follows:

<dependenci es>
<dependency>
<gr oupl d>%${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-repository</artifactld>
</ dependency>

<dependency>
<gr oupl d>com sun. mai | </ gr oupl d>
<artifactld>j avax. mail </artifactld>
<ver si on>1. 5. 3</ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

Q)dependencies>

This will mean that the Java Mail JAR is not included in the AMP but we can still compile
and build against it, which is what we want.

So to summarize, if the JAR is not in t oncat / webapps/ al fresco/ VEB- | NF/ | i b, then do
not use provi ded scope as you want it included with the AMP. On the other hand, if the
JAR is available, then use provi ded scope to exclude it from the AMP deliverable.

Adding an internal JAR to a Repository AMP project.

&

Another requirement that might come up when you are working with a Repository AMP
project is that it is growing big, so big that it would make sense to move some AMP project
code into its own JAR projects, but still have those part of the same AMP build. Basically
turning the Repository AMP project into a multi-module project. So let's demonstrate how
to do this by moving the Hello World Web Script code into its own JAR module and have
the AMP dependent on it.

Create a Repository AMP parent project directory.

To achieve what we want, we will have to turn the Repository AMP project into a multi-
module project, and for this we need a parent project. Create a new directory called
conponent X- par ent and then copy the Repository AMP directory into it:

conmponent X-repo$ cd .
~/ src/ $ nkdi r conmponent X- par ent
~/src/$ nmv conponent X-repo/ conponent X- parent/

Create a Repository AMP parent project POM file.
Add the following pom xnl to the conponent X- par ent directory:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schene- i nst ance"
Xxsi : schemalLocati on="htt p: // maven. apache. org/ POM 4. 0.0 http://

maven. apache. or g/ maven-v4_0_ 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com acne</ gr oupl d>

<artifactl d>conponent X- parent</artifactld>

<ver si on>1. 0- SNAPSHOT</ ver si on>

<nanme>conponent X-repo Repository AMP parent </ nanme>

Developer Guide 101

Developer Guide

<description>This is the parent project for the nulti-nodul e
component X-repo Repository AMP proj ect</description>
<packagi ng>ponx/ packagi ng>

<par ent >
<gr oupl d>or g. al fresco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 2. 0</ ver si on>

</ par ent >

<nmodul es>
<nodul e>conponent X- r epo</ nodul e>
</ modul es>
</ pr oj ect >

Note how this parent project now has the SDK Project as a parent. And it includes the
Repository AMP project as a sub-module. The parent project packaging is pom which
means it is not producing an artefact like a JAR, AMP, or WAR, it just acts as a parent for
other sub-modules.

Update parent definition in the Repository AMP project POM file.

Open up the conponent X- par ent / conponent X-r epo/ pom xni file. Then update the
par ent definition as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schene- i nst ance"
Xxsi : schermalLocati on="htt p: // maven. apache. org/ POM 4. 0.0 http://

maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<artifactl|d>conponent X-repo</artifactld>

<name>conponent X-repo Repository AMP proj ect </ name>

<packagi ng>anp</ packagi ng>

<descri pti on>Manages the |ifecycle of the conponentX-repo Repository
AVP (Al fresco Modul e Package) </ descri pti on>

<par ent >
<gr oupl d>com acne</ gr oupl d>
<artifactl d>conponent X- parent</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ par ent >

Note the par ent section and how it now points to our new parent. Also, we have removed
the ver si on and gr oupl d properties from the AMP project as they are inherited from the
parent project.

Build the Repository AMP parent project.
You should see something like this in the logs:

conponent X-parent$ nmvn clean install -DskipTests=true

tINFd React or Summary:

[I NFO

[NFO conponent X-repo Repository AWP parent SUCCESS [
0. 607 s]

[INFQ conponent X-repo Repository AMP project SUCCESS [
6. 850 s]

[I NFO

[INFO BU LD SUCCESS

Developer Guide 102

Developer Guide

So we now got a parent project that can contain more sub-projects then just the Repository
AMP project.

10. Add a JAR project and move the Hello World Web Script code.

We are going to create a new JAR sub-project and then move the Hello World Web Script
code over to it from the AMP. Let’s start by adding a new JAR project. Stand in the parent
directory and issue the following command, which will generate a starting point for a JAR
module:

conponent X- parent$ nmvn ar chetype: generate -Dgroupl d=com acne -
Dartifact| d=conmponent X-web-scri pt -DarchetypeArtifactl d=maven-
ar chet ype- qui ckstart -Di nteractiveMde=fal se

We are using the Maven Quickstart archetype to generate the JAR module. Our parent
directory now looks like this:

conponent X-parent$ |s -1

total 16

drwxrwxr-x 6 martin martin 4096 Jun 5 15:27 conponent X-repo
drwxrwxr-x 3 martin martin 4096 Jun 5 15:35 conponent X-web-scri pt
-rWrwr-- 1 martin martin 881 Jun 5 15:35 pom xmi

When we generate a new module from the parent directory it is automatically added to the
nmodul es section of the parent POM as follows:

<nmodul es>
<nmodul e>conponent X- r epo</ nodul e>
<nodul e>conponent X- web- scri pt </ nodul e>
</ modul es>
</ pr oj ect >

And the par ent section is setup correctly also in the new JAR module, open up
conponent X- par ent / conponent X- web- scri pt/ pom xnm and have a look:

<?xm version="1.0"?>
<proj ect xsi:schemalLocati on="http://nmaven. apache. org/POM 4. 0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd"
xm ns="http:// maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<par ent >
<gr oupl d>com acne</ gr oupl d>
<artifactld>conponent X-parent</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ par ent >

<artifact!| d>conponent X- web-script</artifactld>
<nanme>conponent X- web-scri pt JAR proj ect </ nane>
<ur | >htt p:// maven. apache. or g</ url >

You might notice that | have removed the ver si on and gr oupl d properties from the JAR
project as they are inherited from our parent project. | also updated the name so it is easy
to see what type of artefact that is produced.

11. Build the Repository AMP parent project.
You should see something like this in the logs:

conponent X-parent$ nmvn clean install -DskipTests=true

Developer Guide 103

tl NFq React or Sunmmary:
[
[

NFQ
NFC] conponent X-repo Repository AWVP parent .
0. 685 s]

[NFQ conponent X-repo Repository AMP project .
7.131 s]

[NFO conponent X-web-script JAR project
0.539 s]

[1 NFQ

[I'NFQ BU LD SUCCESS

Here we are doing this via command line:

conmponent X- parent$ cd conponent X- web- scri pt/

Developer Guide

12. Move the Hello World Web Script files over to the new JAR project.

conponent X- par ent / conponent X- web-scri pt$ cd src/ main/javal conf acne/

conponent X- par ent / conponent X- web- scri pt/ src/ nai
conponent X

conponent X- par ent / conponent X- web-scri pt/src/ ma
conponent X/

component X- par ent / conponent X- web- scri pt/src/ ma
conponent X$ nkdi r denpanp

conponent X- par ent / conponent X- web- scri pt/src/ nmai
component X$ cd dempanp/

conponent X- par ent / conponent X- web-scri pt/src/ ma

n/j aval/ conl acne$ nkdi r
n/ j ava/ com acne$ cd

n/ j aval/ com acne/

n/ j aval/ com acne/

n/ j ava/ com acne/

conmponent X/ denbanp$ nmv ~/ src/ conponent X- par ent / conponent X- r epo/ src/

mai n/ j ava/ com acne/ conponent X/ denoanp/ Hel | oWor |

conmponent X- par ent / conponent X- web- scri pt/ src/ mai

conponent X/ demoanp$ cd ../../..[..[..]

conponent X- par ent / conponent X- web- scri pt/ src/ nai

conponent X- par ent / conponent X- web-scri pt/src/ ma

component X- par ent / conponent X- web- scri pt/ src/ mai
al fresco

conmponent X- par ent / conponent X- web- scri pt/ src/ mai
al fresco/

conponent X- par ent / conponent X- web- scri pt/ src/ nai
nkdi r extension

component X- par ent / conponent X- web- scri pt/ src/ mai
ext ensi on/

conmponent X- par ent / conponent X- web- scri pt/ src/ mai

extensi on$ nkdir tenplates

conponent X- par ent / conponent X- web- scri pt/ src/ nai

ext ensi on$ cd tenpl at es/

component X- par ent / conponent X- web- scri pt/ src/ mai

ext ensi on/ t enpl at es$ nkdi r webscri pts

conmponent X- par ent / conponent X- web- scri pt/ src/ mai

extension/tenpl ates$ cd webscri pts/

conponent X- par ent / conponent X- web- scri pt/ src/ nai

dWebScri pt. j ava
n/ j aval/ com acne/

n$ nkdir resources

n$ cd resources/

n/ resources$ nkdir

n/ resources$ cd

n/ resources/ al fresco$

n/ resources/ al fresco$ cd
n/ resources/ al fresco/

n/ resources/ al fresco/

n/ resources/ al fresco/

n/ resour ces/ al fresco/

n/ resour ces/ al fresco/

ext ensi on/ t enpl at es/ webscri pts$ nmv ~/ src/ conponent X- par ent / conponent X-
repo/ src/ mai n/ anp/ confi g/ al fresco/ ext ensi on/ t enpl at es/ webscri pt s/ *

If you have followed along, then you should see something like this in your IDE now:

Developer Guide 104

Developer Guide

[2 componentX-parent
[1.idea
[componentX-repo
[.idea
Bsrc
3 main
[damp
(1 config.alfresco
[£] extension.templates.webscripts
EJ module.componentX-epo
7 context
EJ model
4 alfresco-global.properties
4l logdj.properties
75 module-context.xml
EJ1web
[si module, properties
Bljava
E1 com.acme. componentX.demoamp
£ b Demo
£ 5 DemoComponent
[test
[target
[tomeat
Il componentX-repo.iml
m pom.xmil
= run.bat
EH run.sh
[sre
3 main
O java
1 com.acme
[componentX.demoamp
£ 't HelloworldwebScript
& App
[resources
[alfresco
[extension
[templates
[webscripts
=0 helloworld, get.desc,xml
[} hellowarld, get. html, ft|
F helloworld. get.js

We are not moving the spring context file with the Java controller bean definition over to
the JAR project as we want there only to be one module bringing in the spring context
(i.e. the Repository AMP Module). We are just keeping the Web Script files in a separate
JAR to be able to work with them in an easier way. It will also give us the opportunity to
completely lift out this JAR as a stand-alone project in the future, and release it separately
to Nexus, if we should want to do that.

13. Move the Java Mail dependency from the AMP project to the JAR project.

Open up the conponent X- par ent / conponent X- web- scri pt/ pom xni file and update it
so it looks like this:

<?xm version="1.0"?>
<proj ect xsi:schemalLocati on="http://nmaven. apache. org/POM 4. 0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd"

xm ns="http:// maven. apache. or g/ POM 4. 0. 0"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance" >

Developer Guide 105

14,

Developer Guide

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<par ent >
<gr oupl d>com acne</ gr oupl d>
<artifactl|d>conponent X-parent</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ par ent >

<artifactl d>conponent X- web-script</artifactld>
<nanme>conponent X- web-scri pt JAR proj ect </ nane>

<url >http:// maven. apache. or g</ ur| >

<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>

<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-repository</artifactld>
</ dependency>

<dependency>
<gr oupl d>com sun. mai | </ gr oupl d>
<artifactld> avax. mail </artifactld>
<ver si on>1. 5. 3</ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

</ dependenci es>
</ pr oj ect >

We also needed to add the al fresco- r eposi t ory dependency as the Java Web Script
controller uses Declarative Web Script classes. It does not have ver si on specified as part
of dependency definition, so we need to make sure it works anyway.

Move the Dependency Management section from the AMP project to the Parent project.
Open up the conponent X- par ent / pom xmi file and update it so it looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="htt p://nmaven. apache. org/ POM 4. 0.0 http://

maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com acne</ gr oupl d>

<artifactl d>conponent X- parent</artifactld>

<ver si on>1. 0- SNAPSHOT</ ver si on>

<nane>conponent X-repo Repository AMP parent </ nane>

<description>This is the parent project for the nulti-nodule
component X-repo Repository AMP proj ect</description>

<packagi ng>ponx/ packagi ng>

<par ent >
<gr oupl d>or g. al f resco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 2. 0</ ver si on>

</ par ent >

<nmodul es>
<nmodul e>conponent X- r epo</ nodul e>
<nmodul e>conponent X- web- scri pt </ nodul e>
</ modul es>

Developer Guide 106

Developer Guide

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-platformdistribution</artifactld>
<ver si on>${al fresco. versi on} </ ver si on>
<t ype>ponx/ type>
<scope>i mport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >
</ pr oj ect >

It's a good idea to move the Dependency Management section to the parent POM as you
might have more JAR extensions added that needs Alfresco libraries, and then you want to
be consitent with what version of these libraries you are using. The Repository AMP POM
now looks like this (i.e. conmponent X- par ent / conponent X- r epo/ pom xmn) after removing
the Java Mail dependency, moving Dependency Management, and putting in the Web
Script JAR dependency:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemalLocati on="htt p://naven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>com acne</ gr oupl d>
<artifactl d>conponent X- parent</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<nane>conponent X-repo Repository AMP parent </ nane>
<description>This is the parent project for the nulti-nodule
component X-repo Repository AMP proj ect</description>
<packagi ng>ponx/ packagi ng>

<par ent >
<gr oupl d>or g. al f resco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 2. 0</ ver si on>

</ par ent >

<nmodul es>
<nmodul e>conponent X- r epo</ nodul e>
<nodul e>conponent X- web- scri pt </ nodul e>
</ nodul es>

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-platformdistribution</artifactld>
<ver si on>${al fresco. versi on} </ ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >
</ pr oj ect >

We are now ready to build the project again.
15. Build the Repository AMP parent project.
You should see something like this in the logs:

conmponent X-parent$ nmvn clean install -DskipTests=true

Developer Guide 107

Developer Guide

[INFO Reactor Summary:

[1 NFQ

[NFO conponent X-repo Repository AWVP parent SUCCESS [
0. 556 s]

[NFQ conponent X-web-script JAR project SUCCESS |
2.662 s]

[NFO conponent X-repo Repository AWMP project SUCCESS [
4.688 s]

The Repository AMP now contains the following libraries:

McomponentX-repo.amp

Name

It yq . config

i v g lib

[-

ments — componentX-repo.jar

loads &5 componentx-web-scriptjar
» META-INF

- el

- * ol web

ish Bin

module.properties

Now it looks a bit better, we have split up the AMP code into two JARs and the Java Mail
dependency is set to provi ded so no extra libraries are contained in the produced AMP.

16. Run and try out the Hello World Web Script.

To make sure this really works we need to try out the Web Script. Step into the AMP
directory and do r un. sh:

conponent X- parent$ cd conponent X- r epo/
conponent X- par ent / conponent X-repo$ chnod +x run. sh
conponent X- par ent / conponent X-repo$./run. sh

You can test the Web Script as follows from a web browser:

Y = et

C [localhost:8080/alfresco/service/sample/helloworld

Remember, if you got the send email code in there, then it will try to send an email. And
if you don't have an email server (SMTP) running locally, then the Web Script call will
eventually time-out as in the following example:

2015- 06- 05 16:43: 00, 105 | NFO
[al fresco.util.OpenOfficeConnectionTester] [DefaultSchedul er Worker- 1]
The OpenOifice connection was re-established.
com sun. rmai | . util.Mail Connect Excepti on: Coul dn't connect to host,
port: brutor, 2525; tinmeout -1;
nested exception is:
j ava. net . Connect Excepti on: Connection tinmed out

We have now seen how external libraries can be used in a Repository AMP project. We have
also looked at how to turn the AMP project into a multi-module project to be able to split up the
AMP code into multiple JAR extensions.

Developer Guide 108

Developer Guide

Linking Standard Alfresco AMPs to an AlO project

Some functionality of the Alfresco content management system is delivered as extra modules,
such as Records Management (RM), Google Docs Integration, and Alfresco Office Services,
which provides SharePoint Protocol support. You can link such modules to an All-in-One (AIO)
project.

You should have completed Installing and Configuring software and generated an AlO project.

You will learn how to link standard Alfresco AMPs to the AlO project so you can use the extra
Alfresco functionality that they provide. Most of these modules are implemented with two AMPs.
One for server side (Repository) customizations that should be added to the al fresco. war, and
one with the custom Ul functionality that should be added to the shar e. war. As an example
we will add/link the Records Management (RM) module to the AIO project. It comes
implemented in two AMPs. Note that there are different AMPs for Community and Enterprise.

1. Update to latest RM version.

In the IDE, open up the al | -i n-one/ pom xm parent project file. Scroll down so you see
the properti es section. Uncomment the al f resco. r m ver si on property and set to latest
Community release:

<properties>
<!-- The follow ng are default values for data | ocation, Alfresco
Communi ty version, and Records Managenent Mdul e version
Uncoment if you need to change (Note. current default version

for Enterprise edition is 5.1)

<al fresco. versi on>5. 1. e</ al fresco. ver si on>

<al fresco. data. | ocati on>/ absol ute/ path/to/al f _data_dev</
al fresco. data. | ocati on> -->

<al fresco.rm versi on>2. 4. b</al fresco. rm versi on>

If you are using the Enterprise edition set the version to 2. 4.
Linking the RM repository AMP to the al fresco. war .
2. Add the RM repository AMP dependency.

In the IDE, open up the al | -i n-one/ r epo/ pom xml project file. Scroll down so you
see the dependenci es section. Then uncomment the RM dependency and update the
artifactld to match the Community RM release:

<l-- Unconment if you are using the RM (Records Managenent) nodule. -->
<I-- Set alfresco.rmversion in parent pomto appropriate version
for 5.1 -->
<dependency>

<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-rm commnity-repo</artifactld>
<versi on>${al fresco. rm ver si on} </ ver si on>
<t ype>anp</type>

</ dependency>

If you are using the Enterprise edition then you need to define two AMP dependencies,
first the al fresco-rm cor e-repo artifact and then the al fresco-rm ent erpri se-repo
artifact, group and version are the same as for Community.

3. Overlay the RM repository AMP on the al fresco. war .

The RM repository AMP will not be automatically added to the al fr esco. war by just
adding the AMP dependency (JARs will though). We need to add some configuration to
the war plugin. Scroll further down in the al | - i n- one/ r epo/ pom xm project file until you

Developer Guide 109

Developer Guide

see the maven- war - pl ugi n section. Uncomment the RM overlay specification and update
artifactld:

<l-- Uncomment if you are using RM-->
<over| ay>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-rm community-repo</artifactld>
<t ype>anp</type>
</ over| ay>

If you are using the Enterprise edition then you need to define two AMP overlays, first the
al fresco-rm core-repo artifact and then the al fresco-rm ent er pri se-r epo artifact.

Linking the RM Share AMP to the shar e. war .
4. Addthe RM Share AMP dependency.

In the IDE, open up the al | -i n- one/ shar e/ pom xni . Scroll down so you see the
dependenci es section. Then uncomment the RM dependency and update the
artifactld to match the Community RM release:

<l-- Unconment if you are using RM (Records Managenent) nodule -->
<I-- Make sure to set the correct version for 5.1 with
al fresco.rmversion property in parent POM -->
<dependency>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-rm conmunity-share</artifactld>
<versi on>${al fresco. rm ver si on} </ ver si on>
<t ype>anp</type>
</ dependency>

If you are using the Enterprise edition then you need to define two AMP dependencies,
first the al fresco-rm cor e- shar e artifact and then the al fresco-rm enterpri se-
shar e artifact, group and version are the same as for Community.

5. Overlay the RM Share AMP on the shar e. war .

The RM Share AMP will not be automatically added to the shar e. war by just adding
the AMP dependency (JARs will though). We need to add some configuration to the
war plugin. Scroll further down in the al | - i n- one/ shar e/ pom xni file until you see the
maven- war - pl ugi n section:

<!-- Unconmment if you are using RM -->
<overl ay>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-rm conmunity-share</artifactld>
<t ype>anp</type>
</ overl| ay>

If you are using the Enterprise edition then you need to define two AMP overlays, first
the al fresco-rm cor e- shar e artifact and then the al fresco-rm enterpri se-share
artifact.

Verify that the AlO project has been configured with the RM module.
6. Build and Run the AIO project.

Use the al | -i n- one/ r un. sh script to run Alfresco Tomcat with the customized WARSs.
7. Check the logs for installation of RM module.

... Repository Side:
2016-05-04 07:49: 31,752 |INFO [repo.nodul e. Modul eServi cel npl]
[l ocal host-startStop-1] Found 3 nodul e package(s).

Developer Guide 110

Developer Guide

2016-05-04 07:49:31,777 |INFO [repo.nodul e. Modul eServi cel npl]
[l ocal host-startStop-1] Installing nodule 'org _alfresco_nodul e rmi
version 2. 4.

2016-05-04 07:49:32,328 |INFO [repo.nodul e. Modul eSer vi cel npl]
[l ocal host-startStop-1] Installing nodule 'alfresco-share-services'
version 5.1.0.

2016- 05-04 07:49: 32,363 INFO [repo.nodul e. Modul eSer vi cel npl]
[l ocal host-startStop-1] Installing nodul e 'aio-220-rmrepo-anp'
version 1. 0- SNAPSHOT.

... Share Side:

2016-05-04 07:50: 01,595 |INFO [config.packagi ng. Modul ePackageManager]
[l ocal host-start Stop-1] Found 2 nodul e package(s)

2016- 05-04 07:50: 01,597 INFO [config.packagi ng. Modul ePackageManager]
[l ocal host-startStop-1] Alfresco Share AMP Modul e, 1. 0- SNAPSHOT

Al fresco Record Managenent Share Extension, 2.4, Alfresco Record
Managenent Share Extension

i NFO Starting Protocol Handl er ["http-bi o-8080"]

<7 We can see here that version 2.4 of the RM module has been installed.

8. Check that the Site Type Recor ds Managenent is available.

Login to Share via http://localhost:8080/share and then create a new site. When you create
the site select Records Managenent Site from the Type drop down. If this type is not
available then something is not configured correctly, go back and verify that you have
followed all the steps correctly.

You have now seen how a standard Alfresco extension module, such as RM, can be brought
into the All-in-One project. Other standard modules, such as SPP, can be added in a similar way.
Note that some extension modules are implemented in only one AMP. For example, the SPP
AMP is implementing the SharePoint Protocol, which only touches the repository functionality,
and so there is only an SPP dependency and overlay in the al | -i n- one/ r epo/ pom xm project.

Adding more custom AMPs to an AlO project

When you generate an All-in-One project you get one Repository extension AMP (repo-amp)
and one Share extension AMP (share-amp). These AMPs are just starting point AMPs, showing
you how to create extension AMPs for the Alfresco WAR and Share WAR applications. When
the project grows you are likely to want to add more extension modules for different types of
functionality.

The are many benefits to this:
» It will be easier for multiple developers to work in parallel with different modules/
functionality as it is not all baked into one big AMP.

* You can release and tag modules separately, which is really handy as you are not
constantly working with SNAPSHOTS in your main AlO project. Meaning you can decide
when you want to bring in new functionality.

* You can very easily do a maintenance release for a specific bit of functionality.
* It encourages re-use by not having all the extension functionality in one big AMP.

There are two ways to go about this though:

1. Create new custom AMPs as separate projects outside the AlO project, this is the
recommended approach as you get all the benefits listed above.

2. Create new custom AMPs as part of the AlO project, this does not give all of the above
benefits. However, it is useful if you want to split up your extension code and structure it a
bit, and you have only a very small team. It is also easier to implement as you don't need
access to your own Maven Repository such as Nexus. It does however mean that you will

Developer Guide 111

Developer Guide

be working with SNAPSHOT dependencies for all AMPs, so it will be difficult to decide
when functionality should be included or not in the build. Basically, if the functionality exist
in an AMP in the AlO project, it will be included in the build, whether it is complete or not.

Creating new stand-alone custom AMPs and linking them to the AIO project

Use this information to create a new custom Repository AMP project and a new custom Share
AMP project and then link those as dependencies in the AlO project.

You should have completed Installing and Configuring software and generated an AlO project.

You will learn how to create separate AMPs, that are not part of the AlO project, and then how to
link those AMPs as dependencies in the AlO project.

&

If you only need to add a Repository AMP, then skip the steps related to the Share AMP,
and vice versa.

Generating a hew custom Repository AMP and linking it to the Alfresco.war.

1.

Generate the custom Repository AMP.

Follow instructions in the create Respository extension project (AMP) section. Give the
new Repo AMP a unique artifact id that does not clash with any other ids or the one that is
part of the AlIO project (i.e. repo-amp). For this example | have used the id conponent - a-
r epo. Use the same group id as for the rest of your project artifacts, I'm using com acne.
The AMP is stored in the al fr esco- ext ensi ons/ conponent - a- r epo folder and is not
part of the AIO build.

Build and release version 1.0.0 of the Repository AMP. (Optional)

It is best to avoid SNAPSHOTS when this AMP is included in the All-in-One project. So,
use the maven-r el ease- pl ugi n and release and tag the AMP so it is ready to be include
in the main AIO project.

27 Going through how to configure and set up the maven-r el ease- pl ugi n is out of
scope for this article.
Add the custom Repository AMP Dependency

In the IDE, open up the al fr esco- ext ensi ons/ acne- cns- poc/ repo/ pom xm project
file. Scroll down so you see the dependenci es section. Then add a dependency to
conponent - a- r epo:

Developer Guide 112

Developer Guide

Mrepo X
<description=Alfresco Repository aggregator., installs your repository

it <parent=
<groupId=com.acme=/qroupld=
<artifactId=acme-cms-poc</artifactId=
<version>1.0-SNAPSHOT=/version=
</parent =

<dependencies>
<dependency=
<groupId=${alfresco.groupld}=/groupId=
<artifactId=${alfresco.repo.artifactId}</artifactId=
<version=${alfresco.version}</version=
<type=war</type=
</dependency=
!-- Demonstrating the dependency / installation of the repo AMP d
<dependency>
<groupId=${project. groupIdi</groupId=
<artifactId=repo-amp=</artifactId-
<version>}{project . versionj</version>
<type=amp=/type=
</dependency>
<i-- Adding a new Repository AMP, built and released separately --
<dependency=
<groupId=${project.groupId}</groupId=-
<artifactId>component-a-repo</artifactId-
<version=1.0. O</version=
<type=amp</type>
</dependency>
!-- Uncomment If you are using SPP (SharePoint Protocol

=dependency =

upport)

Note that dependency for the AMP uses the pr oj ect . gr oupl d, which is the same as what
we used for the custom AMP, com acne. If you skipped the build and release step (2), then
use version 1.0-SNAPSHOT instead.

Overlaying the custom Repository AMP on the alfresco.war

The Repository AMP will not be automatically added to the alfresco.war by just adding the
dependency. We need to add some configuration to the war plugin. Scroll further down in
the al f r esco- ext ensi ons/ acrme- cns- poc/ r epo/ pom xni file until you see the maven-
war - pl ugi n section. Then add a overlay for the conponent - a- r epo:

Developer Guide 113

Developer Guide

T repo % @ Mav
~pruyina- Imp¢
<plugin=
<artifactId=maven-war-plugin</artifactId=

<conflgurat10n>

<{-- Here 15 can control the order of oxe*Lay of yog (WAR, HWD etc.)
NOTE: At least one WAR “EJE‘“E"j must be uncompressed first
n order to have a EJE‘“E"j effectlfely added to the WAR y
y mentien It In the overlay sect;oh
First-win resource strategy 1s wsed by the WAR plugin

<nverlays>
<!-- Current project customizations. This is normelly empty, since c
<nverlayj>
</-- The Alfresco WAR --=
<nverlay>

<groupId-t{alfresco.groupIdi</groupId~>
<artifactId=${alfresco.repo.artifactId}</artifactId>

dtypehwardftype>
<!-- To allow inclusion of META-INF -->
<exc1udesf>
<fnverlay>
i-- Add / sort your AMPs here --»
<overlay=

<groupId=${project.groupId}</groupId=
<artifactId=repo-amp=/artifactId=
<type=amp</type=

</overlay>

<!-- Adding a new Repository AMP, built and released separately --:
<overlay>
<groupId=${project.groupId}</groupld>
<artifactId-component-a-repo</artifactId>
<type=amp=</type=
</overlay=

Uncomment 1f you are using SPP --=

5. Run the AIO project and verify that the new repo module is recognized

2015-05-07 14:18:44,770 |INFO [repo.nodul e. Modul eSer vi cel npl]
[l ocal host-start Stop-1] Found 2 nodul e(s).

2015-05-07 14:18:44,791 |INFO [repo.nodul e. Modul eServi cel npl]
[l ocal host-startStop-1] Installing nodul e ' conponent -a-repo' version
1.0.0.

2015-05-07 14:18:44,808 |INFO [repo.nodul e. Modul eServi cel npl]
[l ocal host-startStop-1] Installing nodul e 'repo-anp' version
1.0.1505071417.

Generating a new custom Share AMP and adding it to the Share.war.
6. Generate the custom Share AMP.

Follow instructions in the create Share extension project (AMP) section. Give the new
Share AMP a unique artifact id that does not clash with any other ids or the one that is part
of the AIO project (i.e. share-amp). For this example | have used the id conponent - a-
shar e. Use the same group id as for the rest of your project artifacts, I'm using com acne.
The AMP is stored in the al fr esco- ext ensi ons/ conponent - a- shar e folder and is not
part of the AIO build.

7. Build and release version 1.0.0 of the Share AMP. (Optional)

It is best to avoid SNAPSHOTS when this AMP is included in the All-in-One project. So,
use the maven-r el ease- pl ugi n and release and tag the AMP so it is ready to be include
in the main AlO project.

&7 Going through how to configure and set up the naven-r el ease- pl ugi n is out of
scope for this article.

8. Add the custom Share AMP Dependency.

Developer Guide 114

Developer Guide

In the IDE, open up the al f r esco- ext ensi ons/ acne- cns- poc/ shar e/ pom xni project
file. Scroll down so you see the dependenci es section. Then add a dependency to
component - a- shar e:

Mrepo ¥ | M share x |

<yersion=1.0-SNAPSHOT=</version>
</parent=

<dependencies>
=dependency>
=groupId=${alfresco.groupIdi=/groupld=
<artifactId=${alfresco.share.artifactId}</artifactId=
<yersion=${alfresco.version}</version=
<type=war</type=
</dependency=
<!-- Demonstrating the dependency / installation of the share AMP develo
=dependency>
=groupId=${project.groupIdi</groupId=
<artifactId=share-amp<s/artifactId-
<version=}{project.version}=/version=

<type=amp</type=
</dependency=
<!-- Adding a new Share AMP, built and released separatel)

<dependency>
<groupId=§{project.groupIdi</groupId=
<artifactId=component-a-share</artifactId>
<version=1.0.0</version>
<type=amp</type>

</dependency=

- Uncomment if you are using RM (Records Management) module -->

=dependency=
<groupIld=s{alfresco. groupId}</groupId=
<artifactId=alfresco-rm-share</artifactId>
<version=5{alfresco. rm. version}t</version=

Note that dependency for the AMP uses the pr oj ect . gr oupl d, which is the same as what
we used for the custom AMP, com acne. If you skipped the build and release step (2), then
use version 1.0-SNAPSHOT instead.

Overlaying the custom Share AMP on the share.war

The Share AMP will not be automatically added to the share.war by just adding the
dependency. We need to add some configuration to the war plugin. Scroll further down in
the al fr esco- ext ensi ons/ acme- cns- poc/ shar e/ pom xm file until you see the maven-
war - pl ugi n section. Then add a overlay for the conponent - a- shar e:

Developer Guide 115

Developer Guide

repo ¥ | IMshare x

<plugins=>
<plugin=
<artifactId=maven-war-plugin</artifactId>
<configuration=

- Here 15 can control

<overlays=>
<i-- The current project customizations --=
<overlay/=

=groupId=${alfresco.groupIdi</groupId=
<artifactId=¢{alfresco.share.artifactId}</artifactId-
<type=war</type=
<!-- To allow inclusion of META-INF -->
<excludes/=

</overlay>

/ sort your AMPs here --=

=overlay=
=groupId=${project.groupId}</groupId=
<artifactId-share-amp</artifactId-
<type=amp=</type=

</overlay=

<i-- Adding a new Share AMP, built and released separately --=

<overlay=>
<groupId=${project.groupId}</groupId=
<artifactId>component-a-share</artifactId~
<type>amp</type>

</overlay=

lincammant 1 f wan ars nsina BM madnla - =

10. There is no logs indicating the AMPs that have been installed on the Alfresco Share
web application, so the only way to test is to use whatever custom functionality it is
implementing, and see if it works.

You have seen how to build AMP projects separately from the main AlO project, and then how
you can incorporate those AMP projects in the main AlO project.

Create new custom AMPs as part of the AlO project

Use this information to create a new custom Repository AMP project and a new custom Share
AMP project and have them added as sub-projects of a multi module AlO project.

This tutorial assumes that you completed Installing and Configuring software and generated an
AlO project.

You will learn how to create new custom AMPs and have them be part of a multi module AIO
project. These AMPs will not be built separately but as part of the AlIO project build. And they
will be SNAPSHOT references in the AlO project. They will be very similar to the r epo- anp and
shar e- anp demo extension projects that comes with the AlO archetype.

& If you only need to add a Repository AMP, then skip the steps related to the Share AMP,
and vice versa.

Generating a new custom Repository AMP and linking it to the Alfresco.war.
1. Generate the custom Repository AMP as a sub-module to the AIO parent.

Follow instructions in the create Respository extension project (AMP) section. Give

the new Repo AMP a unique artifact id that does not clash with any other ids or the

one that is part of the AlO project (i.e. repo-amp). For this example | have used the id
conponent - a- r epo. Use the same group id as for the rest of your project artifacts, I'm
using com acne. The AMP is generated and stored in the al f r esco- ext ensi ons/ acne-
cns- poc/ conponent - a- r epo folder and is going to be part of the AIO multi module
project.

Developer Guide 116

Developer Guide

Update parent definition in the Repository AMP pom.xml and remove group and version
definition

By default the Repository AMP will be generated with the SDK Parent set. We need to
change it to be the AlO project parent instead. You can grab a parent definition from one of
the other sub-projects, such as the r epo- anp project. The al f r esco- ext ensi ons/ acne-
cns- poc/ conponent - a- repo/ pom xni file should now start like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schene- i nst ance”
Xsi : schemalLocati on="htt p: // maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<artifactld>conponent-a-repo</artifactld>
<name>conponent - a-repo Repository AMP proj ect </ nane>
<packagi ng>anp</ packagi ng>
<descri pti on>Manages the |ifecycle of the conponent-a-repo
Repository AMP (Al fresco Mddul e Package) </ descri pti on>

<par ent >
<gr oupl d>com acne</ gr oupl d>
<artifactl d>acme-cns-poc</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ par ent >

You should also remove <groupld> and <version> as these values will be picked up from
the AIO parent.

Make sure the new Repository AMP is included as a module in the AIO parent pom.xml

This should happen automatically when you generate the new project in a sub-directory
to the parent AlO project directory. Open up the al f r esco- ext ensi ons/ acne- cns- poc/
pom xnl file and verify that the conponent - a- r epo module is there:

<nmodul es>
<nmodul e>r epo- anp</ nodul e>
<nmodul e>shar e- anp</ nodul e>
<nmodul e>r epo</ nodul e>
<nmodul e>sol r - confi g</ nodul e>
<modul e>shar e</ nodul e>
<nmodul e>r unner </ nodul e>
<nmodul e>conponent - a- r epo</ nodul e>
</ nodul es>
</ proj ect >

Add the custom Repository AMP Dependency to Alfresco.war project

In the IDE, open up the al fr esco- ext ensi ons/ acre- cns- poc/ r epo/ pom xm project
file. Scroll down so you see the dependenci es section. Then add a dependency to
conponent - a- r epo:

Developer Guide 117

s s
Mrepo ® | Mshare % | M acme-cms-poc ¥ | @ testng-alfresco-sharexml % | @ testn

ﬂErti?actId>acme-cmg-poi<iartifact1d>
<version=1.0-SNAPSHOT=/version=
</paremt=

<dependencies=
<dependency=
=groupId=${alfresco.groupId}=/groupId=
<artifactId=${alfresco.repo.artifactIdi=/artifactId=
<yersion>${alfresco.versionk</version=
<type>war</type>
</dependency>
<i-- Demonstrating the dependency / 1nstallation of the repo AMP develo
<dependency=
=groupId=-${project. groupIdi=/groupId=
<artifactId-repo-amp</artifactId=
<version=${project.versioni</version=
<type-amp</type>
=/dependency=
<!-- Adding a new custom Repository AMP as part of this AI0 project --=
<gdependency=
<groupId-${project.groupId}</groupId-
<artifactId-component-a-repo</artifactId=
<version>${project.versiony</version-
<type=amp</type=>
</dependency=>
o <!-- Uncomment 1 1-);O‘_

are using SPP (SharePoint Protocol Support) for 0

Developer Guide

Note that the dependency for the AMP uses the pr oj ect . gr oupl d, which is what we used
for the custom AMP, com acne. It will also use whatever pr oj ect . ver si on is currently

used.
Overlaying the custom Repository AMP on the alfresco.war

The Repository AMP will not be automatically added to the alfresco.war by just adding the
dependency. We need to add some configuration to the war plugin. Scroll further down in
the al f r esco- ext ensi ons/ acme- cns- poc/ r epo/ pom xm file until you see the maven-

war - pl ugi n section. Then add a overlay for the conponent - a- r epo:

= =
Mmrepo x | m share x | M acme-cms-poc X | © testng-alfresco-share.xml x | @ testng-alfresco-share-ent

;artlfactId>maven-war-plugin<fartifact1d>
<cnnf1gurat10n>

Here 15 can control the order of oxe*Lay of your (WAR, AMP, etc.) depen
| MO At least one WAR ﬂeJeWﬂeW’y must be uncompressed first
| NO order to have a ﬂeJeWﬂeW’y effectively added to the WAR you ne
| ex y mention it in the overlay sectLo_
I

NOTE: First-win resource strategy 1s wsed by the WAR plugin

<nverlays>
<!-- Current project customizations. This is normally empty, since custom
cnverlayf>
< The Alfresco WAR -->
:nuerlay>

=groupId-¢{alfresco. groupIdl</groupId=
<artifactId=${alfresco.repo.artifactId}</artifactId>
<type>war<ftype>
<!-- To allow inclusion of META-INF -->
cexcludesf>
cfnverlay>
<!-- Add / sort your AMPs here -->
<overlay=
<groupId=§{project. groupId}</groupId>
<artifactId~repo-amp</artifactId~
<type=amp</type=
cfnverlay>
<!-- Adding a new custom Repository AMF as part of this AI0 project -->
=overlay=
=groupId=-¢{project. groupIdi</groupId=
<artifactId-component-a- repo</artifactId=
<type=amp</type~
</overlay=

Enable the new custom Repository AMP for Rapid Application Development

To be able to have hot-reloading work for the code that is going to be part of the
new conponent - a- r epo AMP, we need to update the virtual webapp context for the

Developer Guide 118

7.

Developer Guide

Repository webapp (i.e. for the alfresco.war webapp). In the IDE, open up the al fr esco-
ext ensi ons/ acre- cns- poc/ runner/t ontat/ cont ext - repo. xnl file. Update the
Resour ce section configuration with the new AMP's resource path:

<I'-- | MPORTANT! The extraResourcePaths string need to be on one
continues line -->
<Resour ces
cl assName="or g. apache. nam ng. resour ces. Vi rt ual Di r Cont ext "
extraResour cePat hs="/=${ proj ect . parent . basedi r}/repo-
anp/ tar get/repo-anp/ web, / =${ pr oj ect . par ent . basedi r}/ conponent - a- r epo/
t ar get/ conponent - a- r epo/ web" />

And update the Loader section configuration with the new AMP's classpaths:

<Loader cl assNane="org. apache. catal i na. | oader. Vi rt ual WebappLoader "
searchVirtual First="true"
vi rtual C asspat h="${pr oj ect . parent . basedi r}/repo- anp/
target/cl asses
${ proj ect. parent. basedir}/repo-anp/target/repo-anp/confi g;
${proj ect.parent. basedir}/repo-anp/target/test-classes;
${proj ect. parent. basedi r}/conponent - a-repo/ t ar get/ cl asses;
${proj ect. parent.basedi r}/conponent-a-repo/target/
component - a- r epo/ confi g;
${proj ect. parent.basedir}/conponent-a-repo/target/test-
cl asses" />

47 The Tomcat context file located in the al f r esco- ext ensi ons/ acne- crs- poc/
conponent - a-repo/ t ontat directory is obsolete when the AMP is contained within
an AlO project, it is only used when the AMP is run stand-alone, and it can be
deleted.

Start it up and verify that the new AMP is installed

2015- 05-08 13:40:37,688 |NFO [repo.nodul e. Modul eServi cel npl]

[l ocal host-startStop-1] Found 2 nodul e(s).

2015- 05-08 13:40:37,713 |INFO [repo. nmodul e. Modul eServi cel npl]

[l ocal host -startStop-1] Upgradi ng nodul e ' conponent - a-repo’ version
1.0. 1505081338 (was 1.0.1505071304).

2015- 05-08 13:40: 37,746 |INFO [repo.nodul e. Modul eServi cel npl]

[l ocal host-start Stop-1] Upgradi ng nodul e 'repo-anp' version

1.0. 1505081338 (was 1.0.1505081106) .

Generating a new custom Share AMP and and linking it to the Share.war.

8.

Generate the custom Share AMP as a sub-module to the AIO parent.

Follow instructions in the create Share extension project (AMP) section. Give the new
Share AMP a unique artifact id that does not clash with any other ids or the one that is part
of the AIO project (i.e. share-amp). For this example | have used the id conponent - a-
shar e. Use the same group id as for the rest of your project artifacts, I'm using com acne.
The AMP is generated and stored in the al f r esco- ext ensi ons/ acne- cns- poc/
conponent - a- shar e folder and is going to be part of the AIO multi module project.

Update parent definition in the Share AMP pom.xml and remove group and version
definition

By default the Share AMP will be generated with the SDK Parent set. We need to change
it to be the AIO project parent instead. You can grab a parent defintion from one of the

Developer Guide 119

10.

11.

Developer Guide

other sub-projects, such as the shar e- anp project. The al f r esco- ext ensi ons/ acne-
cns- poc/ conponent - a- shar e/ pom xn file should now start like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_.Schena- i nst ance"
xsi : schemalLocati on="htt p://maven. apache. org/ POM 4. 0.0 http://

maven. apache. or g/ maven-v4_0_ 0. xsd" >

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<artifactl| d>conponent - a-share</artifactld>

<nane>conponent - a- share AMP pr oj ect </ nane>

<packagi ng>anp</ packagi ng>

<descri pti on>Manages the |ifecycle of the conponent-a-share AW

(Al fresco Mbdul e Package) </ descri ption>

<par ent >
<gr oupl d>com acne</ gr oupl d>
<artifactld>acne-cns-poc</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ par ent >

You should also remove <groupld> and <version> as these values will be picked up from
the AlO parent.

Make sure the new Share AMP is included as a module in the AlO parent pom.xml

This should happen automatically when you generate the new project in a sub-directory
to the parent AIO project directory. Open up the al f r esco- ext ensi ons/ acnme- cns- poc/
pom xnl file and verify that the conponent - a- shar e module is there:

<nmodul es>
<nmodul e>r epo- anp</ nodul e>
<nodul e>shar e- anp</ nodul e>
<nmodul e>r epo</ nodul e>
<nmodul e>sol r - conf i g</ nodul e>
<nmodul e>shar e</ nodul e>
<nmodul e>r unner </ nodul e>
<nmodul e>conponent - a- r epo</ nodul e>
<nodul e>conponent - a- shar e</ nodul e>

</ modul es>

</ pr oj ect >

Add the custom Share AMP Dependency.

In the IDE, open up the al f r esco- ext ensi ons/ acne- cns- poc/ shar e/ pom xni project
file. Scroll down so you see the dependenci es section. Then add a dependency to
component - a- shar e:

Developer Guide 120

12.

m share =

<version=1.0-SNAPSHOT</version=
</parent>

<dependencies>

<dependency=
<groupId=${alfresco.groupId}=/groupId-
<artifactId=%{alfresco.share.artifactId}</artifactId=
<version=}{alfresco.versionl</version>
<type=war</type=

=/dependency=

<i-- Demonstrating the dependency / installation of the share AMP de

<dependency=
<groupId=3{project.groupld}</groupld=
<artifactId=share-amp=/artifactId-
<version>f${project.versionk</version=

<type=amp</type=
<idependencyh
<!-- Adding a new custom Share AMP as part of this AIO project --=

<dependency>
<groupId=${project.groupld}</groupIld=
<artifactId=component-a-share</artifactId=

<version-${project.version}</version=
<type=amp=/type=
cfde:endenc >
-- Uncomment if you are using RM

{Records Management) module --»

Developer Guide

Note that the dependency for the AMP uses the pr oj ect . gr oupl d, which is what we used
for the custom AMP, com acne. It will also use whatever pr oj ect . ver si on is currently

used.
Overlaying the custom Share AMP on the share.war

The Share AMP will not be automatically added to the share.war by just adding the
dependency. We need to add some configuration to the war plugin. Scroll further down in
the al f r esco- ext ensi ons/ acnme- cns- poc/ shar e/ pom xm file until you see the maven-

war - pl ugi n section. Then add a overlay for the conponent - a- shar e:

share =

<plugins=
<plugin=
<artifactId=maven-war-plugin</artifactId~
=configuration=
I-- Here is can control the order of overlay of your (WAR, AMP, etc.)

| nO At least one WAR dependency must be uncompressed first
| N n arder to have a dependency effectively added to the WAR
| explic tly mention It in the overlay section
|

NOTE: First-win resource strategy is used by the WAR plugin
-
doverlays>
<!-- The current project customizations --=
<nverlayf>
<i-- The Share WAR --=
tnverlay)

<groupId=3{alfresco. groupldi</groupId=
<artifactId=${alfresco.share.artifactId}</artifactId>

ctype:warcjtype;
<!-- To allow inclusion of META-INF --=
<excludes/>
dfoverlayb
<{-- Add / sort your AMPs here --»
<overlay=

=groupId=${project.groupIld}</groupId=
<artifactId=share-amp</artifactId>
<type=amp=</type-
<f0verlay>
<!-- Adding a new custom Share AMP as part of this AI0 project -

cnverlay-
<qgroupId=3{project.g d}</groupId=
<artifactId=component-a-share</artifactId=
: >amp</type=

-

Uncomment 1f you are using AM module -->

Developer Guide 121

Developer Guide

13. Enable the new custom Share AMP for Rapid Application Development

To be able to have hot-reloading work for the code that is going to be part of the new
conponent - a- shar e AMP, we need to update the virtual webapp context for the Share
webapp (i.e. for the share.war webapp). Also, if we don't do this any web resources such
as CSS, Images, JS etc located under / web in the AMP will not be available when we use
the r un profile (this is because during hot reloading we only want them in one place, our
project). In the IDE, open up the al f r esco- ext ensi ons/ acne- cns- poc/ runner/t ontat /
cont ext - share. xn file. Update the Resour ce section configuration with the new AMP's

resource path:

<!-- | MPORTANT! The extraResourcePaths string need to be on one

continues line -->
<Resour ces

cl assNanme="or g. apache. nam ng. resour ces. Vi rt ual Di r Cont ext "
extraResour cePat hs="/=${ pr oj ect . parent . basedi r}/share-
anp/ t ar get / shar e- anp/ web, / =${ pr oj ect . par ent . basedi r}/ conponent - a- shar e/

t ar get / conponent - a- shar e/ web"

/>

And update the Loader section configuration with the new AMP's classpaths:

<Loader classNane="org. apache. catal i na.| oader. Vi rtual WebappLoader "
searchVirtual First="true"

vi rtual C asspat h=

target/cl asses;

${ proj ect . parent.

confi g;

${ proj ect . parent.
${ proj ect . parent.
${ proj ect . parent.

conponent - a- shar e/ confi g;

${ proj ect . parent.

cl asses;

${ proj ect . parent.

"${project.parent.basedir}/share-anp/
basedi r}/share-anp/target/share-anp/
basedi r}/share-anp/target/test-classes;
basedi r}/ conponent - a- shar e/ t ar get/ cl asses;
basedi r}/ conponent - a- share/ t arget /

basedi r}/ conponent - a- share/target/test-

basedir}/share/target/test-classes" />

47 The Tomcat context file located in the al f r esco- ext ensi ons/ acne- cns- poc/
conponent - a- shar e/ t ontat directory is obsolete when the AMP is contained
within an AIO project, it is only used when the AMP is run stand-alone, and it can be

deleted.

14. There is no logs indicating the AMPs that have been installed on the Alfresco Share
web application, so the only way to test is to use whatever custom functionality it is

implementing, and see if it works.

You have seen how to create new custom AMP projects that should be part of an All-in-One

(AIO) project.

Deploying All-in-One (AIO) WARs to external environments

Use this information to deploy the WARSs that are produced by the All-In-One (AIO) project to an
external environment, such as QA, UAT, and PRODUCTION.

You should have completed Installing and Configuring software and generated an AlO project.

Building an AlO project generates the customized al fresco. war and shar e. war for use in
an Alfresco installation. However, by default the al fresco. war will be configured with an

al fresco- gl obal . properti es file that assumes it will be deployed in a local environment,
with the al f _dat a directory in the build project and the use of the flat file H2 database. It is in
fact assuming that we will run the environment from Maven (i.e. nvn cl ean install -Prun).

Developer Guide 122

Developer Guide

Therefore, if we take the WAR files that are produced during a nvn cl ean i nstal | build and
deploy them to an external Alfresco installation, it will not work.

This 'local’ configuration is managed by a so called environment configuration. The SDK supports
multiple environment configurations and this gives us the opportunity to manage configurations
for multiple Alfresco environments. This also means that the produced WAR files will contain
environment specific configuration, which might not be wanted in all situations. We can prevent
this with the use of a specific property during build.

Excluding the environment configuration from the produced Alfresco Repository WAR file.

1. Build with the app. properti es. i ncl ude property set to "none".

The app. properti es. i ncl ude is normally set to **, which will include all the files under
src/ mai n/ properties/${env} (e.g.al fresco-gl obal . properti es). If we set this
property to none it will not match any files. Note that it does not work to set this property
to an empty string, and the Maven plug-in that is used does not have a ski p configuration
option:

all-in-one$ nvn clean install -Dapp.properties.include=none

2. Copy the produced WAR files to the Alfresco installation

When the AIO project has been built without environment specific configuration we can
copy the WAR files to an Alfresco installation:

all-in-one$ cd repo/target/

all-in-one/repo/target$ nmv repo.war alfresco.war
all-in-one/repo/target$ cp alfresco.war /opt/alfresco50d/toncat/
webapps/

all-in-one/repo/target$ cd ../../share/target/

all -in-one/share/target$ cp share.war /opt/alfresco50d/tontat/webapps/
all -in-one/share/target$ cd /opt/al fresco50dTest/

al fresco50d$ cd tontat/webapps
al fresco50d/ t ontat / webapps$ rm -rf al fresco/ share/

Note that we need to remove the exploded WAR directories for the new WARs to be
picked up and deployed. Also, the Alfresco Repository WAR is generated with the
repo. war name so we need to change it to al fresco. war before copying it over to the
Alfresco installation.

3. Restart Alfresco Tomcat
The new WARSs are now in place so restart Tomcat to have them deployed:

al fresco50d$./alfresco.sh restart tontat

Including environment specific configuration in the produced Alfresco Repository WAR file.
4. Create a new environment directory

This should be done in the al | -i n- one/ repo/ src/ mai n/ properti es directory, which

already contains the | ocal directory representing the local environment. Name the new
directory after the environment you are deploying to, such as for example uat (i.e. User
Acceptance Testing):

al |l -in-one/repo/src/ main/properties$ nkdir uat

5. Copythe al fresco-gl obal . properti es file from the external UAT environment to the
environment directory.

Developer Guide 123

Developer Guide

You will find the environment specific file located in the al f r esco/ t ontat / shar ed/
cl asses directory from where it can be copied to the build project. At this point you should
see something like this under the r epo project:

al |l -in-one/repo/src/main$ tree

properties
| oca
al fresco-gl obal . properties
uat
al fresco- gl obal . properties
resources
al fresco
extension
dev-| og4j . properties

So we got the | ocal environment configuration that will point to a development al f _dat a
directory and the H2 database. We then have a new environment configuration called

uat that contains an al f r esco- gl obal . properti es file that has been copied from

that environment's al fresco/ t ontat / shar ed/ cl asses directory. Looking in the uat
environment's properties file we will see something like this (or whatever configuration we
have done for the UAT environment):

S L
Common Al fresco Properties
HHHHHHH

dir.root=/opt/alfresco/alf _data

al fresco. cont ext =al fresco
al fresco. host=127.0.0. 1
al fresco. port =8080

al fresco. prot ocol =http

shar e. cont ext =shar e
share. host =127.0.0. 1
shar e. port =8080

shar e. prot ocol =http

dat abase connecti on properties

db. dri ver =or g. postgresql . Dri ver

db. user nanme=al fresco

db. passwor d=adm n

db. nane=al fresco

db. url =j dbc: postgresql : / /1 ocal host : 5432/ ${ db. name}

Note: your database nust also be able to accept at |east this many
connections. Please see your database docunentation for instructions
on how to configure this.

db. pool . max=275

db. pool . val i dat e. quer y=SELECT 1

Build WARs to include the UAT environment specific configuration.

We can now activate the UAT environment configuration by specifying the name on the
command line (it defaults to | ocal):

all-in-one$ nvn clean install -DskipTests=true -Denv=uat

The al fresco- gl obal . properti es configuration file for the uat environment will
end up in the t ontat / webapps/ al f resco/ VEB- | NF/ cl asses directory of the final

Developer Guide 124

Developer Guide

al fresco. war . It will take precedence over the t ontat / shar ed/ cl asses/ al f resco-

gl obal . properti es file. Note here also that we need to skip Unit tests while doing this
build as they require a local context to be running, which is not possible when we change
environment configuration.

7. Copy the produced WAR files to the Alfresco installation

When the AlO project has been built with the UAT environment specific configuration we
can copy the WAR files to this Alfresco installation:

all-in-one$ cd repo/target/

all-in-one/repo/target$ mv repo.war alfresco.war
all-in-one/repo/target$ cp alfresco.war /opt/alfresco50d/toncat/
webapps/

all-in-one/repo/target$ cd ../../sharel/target/
all-in-one/share/target$ cp share.war /opt/alfresco50d/tontat/webapps/
all -in-one/share/target$ cd /opt/al fresco50dTest/

al fresco50d$ cd tontat/webapps
al frescob50d/t ontat / webapps$ rm -rf alfresco/ share/

Note that we need to remove the exploded WAR directories for the new WARS to be
picked up and deployed. Also, the Alfresco Repository WAR is generated with the
repo. war name so we need to change it to al f r esco. war before copying it over to the
Alfresco installation.

8. Restart Alfresco Tomcat
The new WARSs are now in place so restart Tomcat to have them deployed:

al fresco50d$./alfresco.sh restart tontat

This article has shown how it is possible to generate WAR files without any environment specific
configuration, making them deployable to any environment. We have also covered how to set up
a new custom environment configuration, and how to have it included in the final WAR, making it
deployable only to a specific Alfresco server.

Upgrading

This information walks through how to upgrade your project to use a newer version of Alfresco. It
also takes you through the process of upgrading your project to use a newer version of the SDK.

There are two areas:

¢ Upgrading the Alfresco Product version
« Upgrading the Alfresco SDK version

Upgrading Alfresco version for an extension project

When you have been working with your extension project for a while it is highly likely that

there have been some new releases of the Alfresco software. These releases will have new
functionality that you might want to take advantage of in your project. It might also be that you
are starting to work with this SDK version a while after it has been released, and latest Alfresco
version is now newer than what is default in the SDK. This section will walk through how you can
upgrade your SDK project to use the newest Alfresco version.

These instructions include information about how to upgrade projects generated from each one of
the artifacts. Make sure you are following upgrade instructions for the correct "From version -> To
version".

' Make sure you have made a complete backup of your project before you start the upgrade
process!

Developer Guide 125

Developer Guide

Upgrading SDK 2.1.1 projects from Enterprise 5.0.1 to 5.0.2

These instructions will walk through what is needed when upgrading an SDK 2.1.1 project from
using Alfresco Enterprise version 5.0.1 to using Enterprise version 5.0.2.

This task assumes that you have an SDK 2.1.1 project to work with, see creating a project.

You will learn how to set a new version in all the different kinds of SDK project types.

Upgrading Alfresco version for a Repository AMP project.

1.

Set new version.

In the IDE, open up the Repository AMP project that you are working on. Then open the
project file for it, for example al f r esco- ext ensi ons/ conmrponent - a- r epo/ pom xmn . Scroll
down so you see the properti es section:

<properties>
<I-- The followi ng are default values for data |ocation and
Al fresco Community version.
Uncomment if you need to change (Note. current default version

for Enterprise editionis 5.0.1) -->

<al fresco. versi on>5. 0. 2</ al fresco. ver si on>

<l--<alfresco.data.l ocation>al f _data_dev</al fresco. data. | ocati on>
=

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.0.2). In this case we are upgrading to a
newer Enterprise Edition (default is 5.0.1).

Clean metadata and content.

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ conponent - a-r epo/ nvn cl ean
- Ppur ge

Upgrading Alfresco version for a Share AMP project.

3.

Set new version.

In the IDE, open up the Share AMP project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ conponent - a- shar e/ pom xni . Scroll down
S0 you see the properti es section:

<properties>
<!-- The followi ng are default values for data | ocation and
Al fresco version.
Uncoment if you need to change-->
<al fresco. versi on>5. 0. 2</ al fresco. ver si on>

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.0.2). In this case we are upgrading to a
newer Enterprise Edition (default is 5.0.1).

Clean metadata and content

When upgrading the Alfresco Share AMP it is not necessary to clean out a database
or clean content because these are related to the Alfresco Repository application
(alfresco.war) and not the Share Application (share.war).

Upgrading Alfresco version for an All-in-One (AIO) project.

Developer Guide 126

Developer Guide

5. Set new version.

In the IDE, open up the All-in-One project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ al | -i n-one/ pom xm . Scroll down so you
see the properti es section:

<properties>
<!-- The followi ng are default values for data |ocation, Alfresco
Conmuni ty version, and Records Managenent Modul e versi on.
Uncomment if you need to change (Note. current default version
for Enterprise editionis 5.0.1) -->
<al fresco. versi on>5. 0. 2</ al fresco. ver si on>
<al fresco. rm version>2. 3. c</al fresco. rm versi on>

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.0.2). In this case we are upgrading
to a newer Enterprise Edition (default is 5.0.1). Note also that in this case I'm using the
Records Management module and | am updating the version for it at the same time by
uncommenting the al fresco. rm ver si on property and setting new version (note that
for RM to be installed you need to also uncomment the dependencies in the al fr esco-
ext ensi ons/ al | -i n-one/ repo/ pom xm and al fresco- ext ensi ons/al | -i n-one/
shar e/ pom xm WAR projects).

6. Clean metadata and content

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/al | -i n-one/ nvn cl ean -
Ppur ge

You have now seen how to upgrade the Alfresco Enterprise version to 5.0.2 for the different types
of SDK projects and how to clean the database, index, and content before starting with the new
version.

Upgrading SDK 2.1.1 projects from Enterprise 5.0.1 (or 5.0.2) to 5.0.3

These instructions will walk through what is needed when upgrading an SDK 2.1.1 project
from using Alfresco Enterprise version 5.0.1 (or 5.0.2) to using Enterprise version 5.0.3. There
are a couple of changes in the 5.0.3 code base, such as new database scripts, that are not
automatically handled by SDK 2.1.1. There is also a problem running with Spring Loaded
because of some new security checks in the repository layer.

This task assumes that you have an SDK 2.1.1 project to work with, see creating a project.
You will learn how to set a new version in all the different kinds of SDK project types.
Upgrading Alfresco version for a Repository AMP project.

1. Set new version.

In the IDE, open up the Repository AMP project that you are working on. Then open the
project file for it, for example al f r esco- ext ensi ons/ conponent - a- r epo/ pom xn . Scroll
down so you see the properti es section:

<properties>
<I-- The followi ng are default values for data |ocation and
Al fresco Community version.
Uncomment if you need to change (Note. current default version
for Enterprise editionis 5.0.1) -->

Developer Guide 127

Developer Guide

<al fresco. versi on>5. 0. 3</ al fresco. ver si on>

<l--<alfresco.data.l ocation>al f_data_dev</al fresco. data. | ocati on>
o

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.0.3). In this case we are upgrading to a
newer Enterprise Edition (default is 5.0.1).

Add H2 scripts dependency and plug-in repository.
In the same POM file add the following:

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. t ontat . maven</ gr oupl d>

<artifactld>tontat 7- maven- pl ugi n</artifactld>

<ver si on>${ maven. t onctat . ver si on} </ ver si on>

<dependenci es>

<dependency>
<groupl d>or g. al f resco</ gr oupl d>
<artifactld>al fresco-repository</artifactld>
<ver si on>%${al fresco. versi on} </ ver si on>
<cl assi fi er>h2scri pts</classifier>
<excl usi ons>
<excl usi on>
<gr oupl d>*</ gr oupl d>
<artifactld>*</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>al fresco-pri vat e-reposi tory</id>
<url >https://artifacts. al fresco. conl nexus/cont ent/ groups/
private</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

When we run (via mvn clean install -Panp-to-war, enterprise)the Tomcat plug-

in is going to need the H2 scripts the first time we start and create the database and the
repository. These scripts are usually available in the special SDK dependency al f r esco-
r ad, but this file is only updated during new SDK releases. So when a new patch release
of Alfresco contains a new script, it is not available in the SDK. Instead we now keep

the scripts in this alfresco-repository h2scri pt s dependency. As this dependency is
released with each Alfresco version. The h2scri pt s dependency is a plug-in dependency
so we need to also set up the private Alfresco Enterprise maven repository as a plug-in
repository.

Make sure Spring Loaded is not enabled.

The new security check on the repository side in version 5.0.3 will not work with Spring
Loaded (used for hot reloading). Make sure the run.sh or run.bat scripts are not enabling
Spring Loaded. Also check the environment variable MAVEN _OPTS so it is not specifying
Spring Loaded as Java agent.

Clean metadata and content.

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental

Developer Guide 128

Developer Guide

upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ conponent - a- r epo/ nvn cl ean
- Ppur ge

Upgrading Alfresco version for a Share AMP project.
5. Set new version.

In the IDE, open up the Share AMP project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ conponent - a- shar e/ pom xmi . Scroll down
SO you see the properti es section:

<properties>
<!-- The follow ng are default values for data | ocation and
Al fresco version.

Uncomment if you need to change-->
<al fresco. versi on>5. 0. 3</ al fresco. ver si on>

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.0.3). In this case we are upgrading to a
newer Enterprise Edition (default is 5.0.1).

6. Clean metadata and content

When upgrading the Alfresco Share AMP it is not necessary to clean out a database
or clean content because these are related to the Alfresco Repository application
(alfresco.war) and not the Share Application (share.war).

Upgrading Alfresco version for an All-in-One (AlO) project.
7. Set new version.

In the IDE, open up the All-in-One project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ al | -i n- one/ pom xmnl . Scroll down so you
see the properti es section:

<properties>
<!-- The followi ng are default values for data |ocation, Alfresco
Conmuni ty version, and Records Managenent Modul e versi on.
Uncomment if you need to change (Note. current default version
for Enterprise editionis 5.0.1) -->

<al fresco. versi on>5. 0. 3</ al fresco. ver si on>
<al fresco.rm versi on>2. 3. b</al fresco. rm ver si on>

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.0.3). In this case we are upgrading
to a newer Enterprise Edition (default is 5.0.1). Note also that in this case I'm using the
Records Management module and | am updating the version for it at the same time by
uncommenting the al f resco. r m ver si on property and setting new version.

8. Add H2 scripts dependency and plug-in repository.

In the Runner project POM file (al f r esco- ext ensi ons/ al | -i n-one/ runner/ pom xni .),
add the following:

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>al fresco-private-repository</id>
<url>https://artifacts. al fresco. conf nexus/ cont ent/ groups/
private</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

Developer Guide 129

Developer Guide

<profil es>
<profile>
<i d>run</id>
<bui | d>
<pl ugi ns>
<!-- Run Tontat 7 enbedded with Alfresco.war and
Shar e. war cont ext s.
The solrd4.war is fetched directly fromthe Maven
repo, it is not built |like the other WARs.
Plugin version is picked up from al fresco-sdk-
par ent . pom pl ugi nManagenent definition
whi ch also brings in the H2 database lib -->
<pl ugi n>
<gr oupl d>or g. apache. t ontat . maven</ gr oupl d>
<artifactld>tontat 7- maven- pl ugi n</artifactld>
<dependenci es>
<dependency>
<gr oupl d>or g. al f r esco</ gr oupl d>
<artifactld>al fresco-repository</
artifactld>
<ver si on>%${al fresco. versi on} </ ver si on>
<cl assi fi er>h2scri pts</classifier>
<excl usi ons>
<excl usi on>
<gr oupl d>*</ gr oupl d>
<artifactld>*</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>
<executions>

When we run (viamvn cl ean install -Prun,enterprise)the Tomcat plug-in is going
to need the H2 scripts the first time we start and create the database and the repository.
These scripts are usually available in the special SDK dependency al f r esco-r ad, but this
file is only updated during new SDK releases. So when a new patch release of Alfresco
contains a new script, it is not available in the SDK. Instead we now keep the scripts in

this alfresco-repository h2scri pt s dependency. As this dependency is released with each
Alfresco version. The h2scri pt s dependency is a plug-in dependency so we need to also
set up the private Alfresco Enterprise maven repository as a plug-in repository.

9. Make sure Spring Loaded is not enabled.

The new security check on the repository side in version 5.0.3 will not work with Spring
Loaded (used for hot reloading). Make sure the run.sh or run.bat scripts are not enabling
Spring Loaded. Also check the environment variable MAVEN_OPTS so it is not specifying
Spring Loaded as Java agent.

10. Clean metadata and content

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ al | -i n-one/ nvn cl ean -
Ppur ge

You have now seen how to upgrade the Alfresco Enterprise version to 5.0.3 for the different types

of SDK projects, and how to clean the database, index, and content before starting with the new
version.

Developer Guide 130

Developer Guide

Upgrading SDK 2.2.0 projects from Community 5.1.e to 5.1.[f|g]

These instructions will walk through what is needed when upgrading an SDK 2.2.0 project from
using Alfresco Community version 5.1.e to using Community version 5.1.f. These instructions
also apply when upgrading to version 5.1.9.

This task assumes that you have an SDK 2.2.0 project to work with, see creating a project.

You will learn how to set a new version in all the different kinds of SDK project types.

Upgrading Alfresco version for a Repository AMP project.

1.

Set new version.

In the IDE, open up the Repository AMP project that you are working on. Then open the
project file for it, for example al f r esco- ext ensi ons/ conponent - a- r epo/ pom xm . Scroll
down so you see the properti es section:

<properties>
<I-- The followi ng are default values for data | ocation and
Al fresco Conmmunity version.
Uncoment if you need to change (Note. current default version
for Enterprise editionis 5.1) -->
<al fresco. version>5. 1. f</al fresco. versi on>
<l--<alfresco.data.l ocati on>/ absol ute/ path/to/alf_data dev</
al fresco. data. | ocati on> -->

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.1.f or 5.1.9). In this case we are
upgrading to a newer Community Edition (default is 5.1.e).

Clean metadata and content.

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ conponent - a- r epo/ nvn cl ean
- Ppur ge

Upgrading Alfresco version for a Share AMP project.

3.

Set new version.

In the IDE, open up the Share AMP project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ conponent - a- shar e/ pom xmi . Scroll down
SO you see the properti es section:

<properties>
<l-- The followi ng are default values for data | ocation and
Al fresco version.
Uncoment if you need to change -->
<al fresco. versi on>5. 1. f </ al fresco. ver si on>

What you need to do here is uncomment the al f r esco. ver si on property, and then
update the version to desired latest version (e.g. 5.1.f or 5.1.9). In this case we are
upgrading to a newer Community Edition (default is 5.1.e).

Update spring surf APl dependency
In the same POM file update the Surf dependency so it looks like:

<dependency>
<gr oupl d>or g. al f resco. surf </ groupl d>
<artifactld>spring-surf-api</artifactld>
<ver si on>${ dependency. surf. versi on} </ versi on>
<scope>pr ovi ded</ scope>

Developer Guide 131

Developer Guide

</ dependency>

Surf is no longer a Spring Framework project but instead an Alfresco managed project.
Clean metadata and content

When upgrading the Alfresco Share AMP it is not necessary to clean out a database
or clean content because these are related to the Alfresco Repository application
(alfresco.war) and not the Share Application (share.war).

Run

When running we need to specify what Surf version that should be used: mvn cl ean
install -Ddependency. surf.version=6.3 -Panp-to-war Alfresco Surfis now
released independently from Alfresco Share.

Upgrading Alfresco version for an All-in-One (AlO) project.

7.

10.

Set new version.

In the IDE, open up the All-in-One project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ al | -i n-one/ pom xni . Scroll down so you
see the properti es section:

<properties>
<I-- The follow ng are default values for data | ocation, Alfresco
Communi ty version, and Records Managenent Modul e version
Uncomment if you need to change (Note. current default version
for Enterprise editionis 5.1) -->
<al fresco. versi on>5. 1. f</al fresco. ver si on>
<al fresco.rm versi on>2. 4. b</al fresco. rm ver si on>
<I-- <alfresco. data.l ocati on>/absol ute/path/to/alf_data_ dev</
al fresco. data. | ocati on> -->

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.1.f or 5.1.9). In this case we are
upgrading to a newer Community edition (default is 5.1.e). Note also that in this case I'm
using the Records Management module and | am updating the version for it at the same
time by uncommenting the al fresco. rm ver si on property and setting new version (for
information about how to enable RM in an All-In-One project see this article).

Update spring surf APl dependency in Share AMP

In the al fr esco- ext ensi ons/ al | -i n-one/ shar e- anp/ pom xnl update the dependency
it looks like:

<dependency>
<gr oupl d>or g. al f resco. surf </ groupl d>
<artifactld>spring-surf-api</artifactld>
<ver si on>${ dependency. sur f. ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

Surf is no longer a Spring Framework project but instead an Alfresco managed project.
Clean metadata and content

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ al | -i n-one/ nvn cl ean -
Ppur ge

Run

Developer Guide 132

Developer Guide

When running we need to specify what Surf version that should be used: mvn cl ean
i nstall -Ddependency. surf.version=6.3 -Prun Alfresco Surf is now released
independently from Alfresco Share.

You have now seen how to upgrade the Alfresco Community version to 5.1.f (or for example
5.1.g) for the different types of SDK projects and how to clean the database, index, and content
before starting with the new version.

Upgrading SDK 2.2.0 projects from Community 5.1.e to 5.2.a

These instructions will walk through what is needed when upgrading an SDK 2.2.0 project

from using Alfresco Community version 5.1.e to using Community version 5.2.a. In fact, we are
upgrading to Alfresco Platform version 5.2.a and Alfresco Share version 5.1.g. Note that from
now on the al f resco. war is no longer available using the al fr esco artifactld. Now we have to
use al fresco-platform

This task assumes that you have an SDK 2.2.0 project to work with, see creating a project.
You will learn how to set a new version in all the different kinds of SDK project types.
Upgrading Alfresco version for a Repository AMP project.

1. Set new version and artifactld.

In the IDE, open up the Repository AMP project that you are working on. Then open the
project file for it, for example al f r esco- ext ensi ons/ conponent - a- r epo/ pom xm . Scroll
down so you see the properti es section:

<properties>
<!-- The followi ng are default values for data | ocation and
Al fresco Conmmunity version.
Uncoment if you need to change (Note. current default version
for Enterprise editionis 5.1) -->
<al fresco. versi on>5. 2. a- EA</ al fresco. ver si on>
<al fresco.repo. artifactld>al fresco-pl atf or n/
al fresco.repo. artifactld> <!-- new nane for platfornirepository war -->
<!--<alfresco.data.l ocation>/absol ute/ path/to/alf_data_ dev</
al fresco. data. | ocati on> -->

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.2.a-EA). In this case we are upgrading
to a newer Platform Community Edition (default is 5.1.e). We also need to tell the project
about the new artifactld for the alfresco.war using the al fresco. repo. artifact!d

property.
2. Clean metadata and content.

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ conponent - a- r epo/ nvn cl ean
- Ppur ge

Upgrading Alfresco version for a Share AMP project.
3. Set new version.

In the IDE, open up the Share AMP project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ conponent - a- shar e/ pom xmi . Scroll down
SO you see the properti es section:

<properties>
<!-- The followi ng are default values for data |ocation and
Al fresco versi on.
Uncomment if you need to change -->

Developer Guide 133

Developer Guide

<al fresco. versi on>5. 1. g</ al fresco. versi on>

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.1.9). In this case we are upgrading
to a newer Community Edition (default is 5.1.e). Note that the Platform and Share have
different version numbers.

Update spring surf APl dependency
In the same POM file update the Surf dependency so it looks like:

<dependency>
<gr oupl d>or g. al f resco. surf </ groupl d>
<artifactld>spring-surf-api</artifactld>
<ver si on>%${ dependency. surf. versi on} </ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

Surf is no longer a Spring Framework project but instead an Alfresco managed project.
Clean metadata and content

When upgrading the Alfresco Share AMP it is not necessary to clean out a database
or clean content because these are related to the Alfresco Repository application
(alfresco.war) and not the Share Application (share.war).

Run

When running we need to specify what Surf version that should be used: mvn cl ean
i nstall -Ddependency. surf.version=6.3 - Panp-to-war Alfresco Surfis now
released independently from Alfresco Share.

Upgrading Alfresco version for an All-in-One (AlO) project.

7.

Set new version and artifactld

In the IDE, open up the All-in-One project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ al | -i n- one/ pom xni . Scroll down so you
see the properti es section:

<properties>
<l-- The followi ng are default values for data |ocation, Alfresco
Conmuni ty version, and Records Managenent Modul e versi on.
Uncomment if you need to change (Note. current default version
for Enterprise editionis 5.1) -->
<al fresco. versi on>5. 2. a- EA</ al fresco. ver si on>
<al fresco.repo. artifactld>al fresco-pl atfornx/
al fresco.repo. artifactld> <!-- new nane for platfornrepository war -->
<share. versi on>5. 1. g</share. versi on> <! -- new property for
separate share version -->
<surf.version>6. 3</surf.version>
<I-- <alfresco.data.l ocati on>/ absol ute/path/to/alf_data dev</
al fresco. data. | ocati on> -->

What you need to do here is uncomment the al f r esco. ver si on property, and then
update the version to desired latest version (e.g. 5.2.a-EA). In this case we are upgrading
to a newer Platform Community Edition (default is 5.1.e). We also need to tell the project
about the new artifactld for the alfresco.war using the al fresco. repo. artifactld
property. Share now has its own version so setting that with a new property called

shar e. ver si on. We also specifically add the surf version here via the surf . ver si on
property, it will be used when re-defining some of the dependencies and there will be no
need to pass surf version on the mvn command line.

Developer Guide 134

Developer Guide

Note also that in this case I'm using the Records Management module and | am updating
the version for it at the same time by uncommenting the al f r esco. r m ver si on property
and setting new version (for information about how to enable RM in an All-In-One project
see this article).

Replace the dependencyManagement section

In the same AIO parent pom file replace the dependencyManagenent section so it looks
like:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>%${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-platformdistribution</artifactld>
<ver si on>${ al fresco. ver si on} </ ver si on>
<t ype>ponx/type>
<scope>i mport </ scope>
</ dependency>

<!-- Redefine the foll owi ng Share dependenci es as they have
di fferent version nunbers than platform
They are defined in alfresco-platformdistribution..
-

<dependency>
<gr oupl d>%${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share</artifactld>
<ver si on>${ shar e. ver si on} </ ver si on>
<t ype>war </t ype>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share</artifactld>
<ver si on>${ share. ver si on} </ ver si on>
<cl assi fi er>cl asses</cl assifier>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-web-franework-comons</artifactld>
<ver si on>${ shar e. ver si on} </ ver si on>
<cl assi fi er>cl asses</cl assifier>
<scope>pr ovi ded</ scope>

</ dependency>

<!-- Redefine the follow ng surf dependencies as they have
no resol vable version in the

al fresco-platformdistribution artifact -->

<dependency>
<gr oupl d>or g. al fresco. surf </ groupl d>
<artifactld>spring-surf</artifactld>
<ver si on>${sur f . versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. al fresco. surf </ groupl d>
<artifactld>spring-surf-api</artifactld>
<ver si on>${sur f . versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

</ dependenci es>
</ dependencyManagenent >

Developer Guide 135

Developer Guide

We need to re-define some of the dependencies as the Platform and Surf applications now
have different version numbers. Also, Surf is no longer a Spring Framework project but
instead an Alfresco managed project.

Update the dependencies section in Share AMP

In the al fr esco- ext ensi ons/ al | -i n-one/ shar e- anp/ pom xm update the
dependencies to look like:

<dependenci es>

<dependency>
<gr oupl d>%${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share</artifactld>
<ver si on>${share. versi on} </ ver si on> <l-- use new share
version -->
<cl assi fi er>cl asses</cl assifier>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<groupl d>org. al fresco. surf</groupld> <!-- Surf now
mai nt ai ned by Al fresco -->
<artifactld>spring-surf-api</artifactld>
</ dependency>
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<ver si on>${ share. ver si on} </ ver si on> <l-- use new share
version -->
<scope>t est </ scope>
</ dependency>
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<versi on>${share. versi on}</version> <!-- use new share
version -->
<cl assifier>tests</classifier>
<scope>t est </ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. sel eni unmhg. sel eni unx/ gr oupl d>
<artifactld>sel eniumjava</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. sel eni unmhq. sel eni unx/ gr oupl d>
<artifactld>sel enium server</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

<I-- Test NGis defined with test scope in share-po, so need it
here too -->

<I-- Alfresco code creates a wapper around Test NG -->

<dependency>

<groupl d>or g. al fresco. t est </ gr oupl d>
<artifactld>al fresco-testng</artifactld>
<ver si on>1. 1</ ver si on>
<scope>t est </ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. hantr est </ gr oupl d>
<artifactl|d>hancrest-core</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Developer Guide 136

Developer Guide

Here we now use the new shar e. ver si on. Also, Surf is no longer a Spring Framework
project but instead an Alfresco managed project.

10. Add alfresco-share-services AMP to Platform WAR

In the al fr esco- ext ensi ons/ al | -i n-one/ repo/ pom xm add the following AMP
dependency and overlay:

<dependenci es>

<!-- W need Share Services on the platformfor Share U to
wor k properly -->
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-share-services</artifactld>
<ver si on>${ shar e. ver si on} </ ver si on>
<t ype>anp</type>
</ dependency>

</ dependenci es>
<over| ays>

<I-- We need Share Services on the platformfor Share U to
wor k properly -->

<over| ay>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-share-services</artifactld>
<t ype>anp</type>

</ overl ay>

</ over| ays>

Here we now use the new shar e. ver si on.
11. Change version property for Share WAR

In the al f resco- ext ensi ons/ al | -i n-one/ shar e/ pom xm change the version property
used for the Share WAR artifact as it now has separate versioning from the Platform:

<dependenci es>
<dependency>
<gr oupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>${al fresco.share.artifactld}</artifactld>
<versi on>${share. versi on}</version> <!-- New separate
share version prop -->
<t ype>war </t ype>
</ dependency>

</ dependenci es>

Here we now use the new shar e. ver si on.
12. Clean metadata and content

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by

running the following command: al f r esco- ext ensi ons/ al | -i n-one/ nvn cl ean -
Ppur ge

13. Run
Run with the usual command: mvn cl ean install -Prun

Developer Guide 137

Developer Guide

You have now seen how to upgrade the Alfresco Platform Community version to 5.2.a and
Alfresco Share version to 5.1.g for the different types of SDK projects, and also seen how to
clean the database, index, and content before starting with the new version.

Upgrading SDK 2.2.0 projects from Enterprise 5.1.0 to greater than 5.1.0

These instructions will walk through what is needed when upgrading an SDK 2.2.0 project from
using Alfresco Enterprise version 5.1.0 to using Enterprise version 5.1.1. These instructions also
apply when upgrading to other versions greater than 5.1.0, such as 5.1.0.5.

This task assumes that you have an SDK 2.2.0 project to work with, see creating a project.

You will learn how to set a nhew version in all the different kinds of SDK project types.

Upgrading Alfresco version for a Repository AMP project.

1.

Set new version.

In the IDE, open up the Repository AMP project that you are working on. Then open the
project file for it, for example al f r esco- ext ensi ons/ conponent - a- r epo/ pom xm . Scroll
down so you see the properti es section:

<properties>
<!-- The followi ng are default values for data | ocation and
Al fresco Enterprise version.
Uncoment if you need to change (Note. current default version
for Enterprise editionis 5.1) -->
<al fresco. versi on>5. 1. 1</ al fresco. ver si on>
<!--<alfresco.data.l ocation>/absol ute/ path/to/alf_data_dev</
al fresco. data. | ocati on> -->

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.1.0.5, 5.1.1). In this case we are
upgrading to a newer Enterprise Edition (default is 5.1.0).

Clean metadata and content.

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ conponent - a- r epo/ nvn cl ean
- Ppur ge

Upgrading Alfresco version for a Share AMP project.

3.

Set new version.

In the IDE, open up the Share AMP project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ conponent - a- shar e/ pom xni . Scroll down
S0 you see the properti es section:

<properties>
<!-- The followi ng are default values for data |ocation and
Al fresco version.
Uncoment if you need to change -->
<al fresco. versi on>5. 1. 1</ al fresco. ver si on>

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.1.0.5, 5.1.1). In this case we are
upgrading to a newer Enterprise Edition (default is 5.1.0).

Update spring surf APl dependency

Developer Guide 138

Developer Guide
In the same POM file update the Surf dependency so it looks like:

<dependency>
<groupl d>org. al fresco. surf </ groupl d>
<artifactld>spring-surf-api</artifactld>
<ver si on>${dependency. surf. versi on}</versi on>
<scope>pr ovi ded</ scope>

</ dependency>

Surf is no longer a Spring Framework project but instead an Alfresco managed project.
Clean metadata and content

When upgrading the Alfresco Share AMP it is not necessary to clean out a database
or clean content because these are related to the Alfresco Repository application
(alfresco.war) and not the Share Application (share.war).

Run

When running we need to specify what Surf version that should be used: mnvn cl ean
install -Ddependency.surf.version=6.3 -Panp-to-war, enterprise Alfresco Surf
is now released independently from Alfresco Share.

Upgrading Alfresco version for an All-in-One (AIO) project.

7.

Set new version.

In the IDE, open up the All-in-One project that you are working on. Then open the project
file for it, for example al f r esco- ext ensi ons/ al | -i n-one/ pom xn . Scroll down so you
see the properti es section:

<properties>
<I-- The followi ng are default values for data |ocation, Alfresco
Enterprise version, and Records Managenent Modul e versi on.
Uncomment if you need to change (Note. current default version
for Enterprise editionis 5.1) -->
<al fresco. versi on>5. 1. 1</ al fresco. ver si on>
<al fresco.rm versi on>2. 4</ al fresco. rm ver si on>
<l-- <alfresco. data.l ocati on>/absol ute/ path/to/alf_data_dev</
al fresco. data. | ocati on> -->

What you need to do here is uncomment the al fr esco. ver si on property, and then
update the version to desired latest version (e.g. 5.1.0.5, 5.1.1). In this case we are
upgrading to a newer Enterprise edition (default is 5.1.0). Note also that in this case I'm
using the Records Management module and | am updating the version for it at the same
time by uncommenting the al fr esco. rm ver si on property and setting new version (for
information about how to enable RM in an All-In-One project see this article).

Update spring surf APl dependency in Share AMP

In the al fr esco- ext ensi ons/ al | -i n-one/ shar e- anp/ pom xm update the dependency
it looks like:

<dependency>
<gr oupl d>or g. al f resco. surf </ groupl d>
<artifactld>spring-surf-api</artifactld>
<ver si on>%${ dependency. surf. versi on} </ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

Surf is no longer a Spring Framework project but instead an Alfresco managed project.
Clean metadata and content

Developer Guide 139

Developer Guide

After setting a newer Alfresco version you will need to clean out current database (with
metadata), content files, and indexes. It currently does not work to do an incremental
upgrade with the SDK and the H2 database. You can clean the DB and content files by
running the following command: al f r esco- ext ensi ons/ al | -i n-one/ nvn cl ean -
Ppur ge

10. Run

When running we need to specify what Surf version that should be used: nvn cl ean
install -Ddependency. surf.version=6.3 -Prun, enterprise Alfresco Surfis now
released independently from Alfresco Share.

You have now seen how to upgrade the Alfresco Enterprise version to 5.1.1 (or for example
5.1.0.5) for the different types of SDK projects and how to clean the database, index, and content
before starting with the new version.

Upgrading SDK version for an extension project

This section describes how to upgrade the SDK version that is used by your extension project.

These instructions include information about how to upgrade projects generated from each one
of the artifacts. Make sure you are following upgrade instructions for the correct project type and
"From version -> To version".

1 Make sure you have made a complete backup of your project before you start the upgrade
process!

What changes are allowed in an SDK release?

The following describes the kind of changes you can expect (are allowed) in major, minor, and
patch releases.

A 3 digit versioning scheme is used, major.minor.patch (e.g. 2.1.0). The following is a list of
changes that can go into each one of these releases:

1. major

a. Backward incompatible changes (e.g. changes in the archetype project structure,
functional changes in archetypes POMs, functional changes in existing profiles)

b. Changes in the artifact naming

2. minor Cannot change existing behaviors (e.g. existing profiles semantics, build lifecycle,
archetype structure).

a. New features (e.g. new alfresco-sdk-parent, new archetype profiles, new properties)
b. New artifacts
3. patch Ideally no changes to the code of the archetypes.
a. Bug Fixes
b. Limited changes to SDK parent and Alfresco Plugin

Note that in addition to this there can be beta releases to give early access to features.

Upgrading SDK version from 2.0.0 to 2.1.0

This section contains instructions for how to upgrade an extension project from using SDK
version 2.0.0 to using SDK version 2.1.0.

These instructions include information about how to upgrade projects generated from each one of
the Maven artifacts. Make sure you are following upgrade instructions for the correct project type.
Default Alfresco versions for SDK 2.0.0 is Community 5.0.c and Enterprise 5.0. After upgrading to
SDK 2.1.0 the default Alfresco versions will be Community 5.0.d and Enterprise 5.0.1.

Developer Guide 140

Developer Guide

' Make sure you have made a complete backup of your project before you start the upgrade
process!

Upgrading a Repository AMP project from SDK 2.0.0 to 2.1.0

These instructions will walk through what is needed when upgrading a Repository AMP project
from using SDK version 2.0.0 to using SDK version 2.1.0.

There are multiple ways to go about an SDK upgrade. These instructions assume that you

have a Repository AMP project where the source code is managed by a Software Configuration
Management (SCM) system such as Git or Subversion. And you cannot just through away the
history of this project, you need to upgrade "in-place". On the other hand, if your project is small,
and you don't mind starting with a new project in the SCM, it might be easier to just generate

a new project from the Repository AMP 2.1.0 SDK archetype and move the code and other
changes over to it from the SDK 2.0.0 project, but this method is not covered in this article.

& In the following instructions the REPO_AMP_PRQJECT_PATH variable denotes the path to
where you have your Repository AMP project folder. So, for example, if your Repository
AMP project was generated in the C: \ al f r esco- ext ensi ons\ acne- r epo- anp directory,
then this directory path is the value of this variable.

' Make sure you have made a complete backup of your project before you start the upgrade
process!

1. Setting the SDK Version to 2.1.0.

In the IDE, open up the { REPO_AMP_PRQJECT_PATH}/ pom xml project file. Scroll down so
you see the par ent section. Then update it to look as follows:

<par ent >
<gr oupl d>or g. al fresco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 1. 0</ ver si on>

</ par ent >

2. Remove the property used to specify the webapp path for Alfresco Repository web
application.

In the project file { REPO_AMP_PRQIECT_PATH}/ pom xn scroll down to the properti es
section. Then remove the property called al f resco. cl i ent. cont ext Pat h. This property
is already setto/ al fresco in the SDK parent POM so no need to set it here.

3. Add the anp-t o-war profile with rad dependency.

In the IDE, open up the { REPO_AMP_PRQOJECT_PATH}/ pom xml project file. Scroll down so
you see the profi | es section. Then add the following profile to it:

<I--
If the "anp-to-war' profile is enabl ed then nake sure to bring
in the alfresco-rad nodul e,
whi ch has the H2 scripts and ot her RAD feat ures.
o
<profile>
<i d>anp-to-war</i d>
<dependenci es>
<dependency>
<gr oupl d>or g. al f resco. maven</ gr oupl d>
<artifactld>al fresco-rad</artifactld>
<ver si on>${ maven. al fr esco. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</[profil e>

Developer Guide 141

Developer Guide

4. Update the Tomcat virtual webapp context file.

Open the { REPO_AMP_PRQIECT_PATH}/ t ontat / cont ext . xmi file. Change it to look like
this for best RAD experience:

<?xm version="1.0" encodi ng="UTF-8"?>
<l ==

This context file is used only in a devel opnent | DE for rapid
devel opnent,
it is never released with the Al fresco. war

<!-- Setup docBase to sonething |ike repo-anp/target/repo-anp-war
and path to /al fresco
The Alfresco.war 5.0 does not have a webapp (it used to have

Al fresco Expl orer but not anynore)
that we will access, so this docBase nmi ght not be needed

o

<Cont ext docBase="${app. anp.client.war.folder}"

pat h="${al fresco. cl i ent. cont ext Pat h}">

<Resour ces cl assNane="or g. apache. nam ng. resour ces. Vi rt ual Di r Cont ext "
extraResour cePat hs="/=${proj ect. bui |l d. di rectory}/
${proj ect. buil d. final Nane}/web" />

<I-- Setup the virtual class path like this:
1) target/cl asses
2) target/${project.build.final Nane}/config
3) target/test-classes

This way nvn conpil e can be invoked and all changes will be
pi cked up
—= >
<Loader searchVirtual First="true"
cl assNanme="or g. apache. cat al i na. | oader. Vi rt ual WebappLoader "
virtual C asspat h="${proj ect. bui | d. out put Di r ect ory};
${project.build. directory}/${project.build.final Nane}/confi g;
${project.build. testQutputDirectory}" />

<!-- This enables hot rel oading of web resources from unconpressed
jars (while in prod they would be | caded from WEB-INF/Iib/{*.jar}/
META- | NF/ r esour ces -->

<Jar Scanner scanAl |l Directories="true" />
</ Cont ext >

5. Replace run scripts.

Version 2.1.0 of the SDK have changes to the Linux run scripts and have new run
scripts for Windows. So it make sense to take the new scripts from a newly generated
2.1.0 Repository AMP project and replace the 2.0.0 scripts with them. So follow these
instructions to generate a Repository AMP project based on the 2.1.0 archetype.
Then just copy over the {newl y generated 2.1.0 Repo AMP}/run.* scripts to the
{ REPO_AMP_PRQIECT_PATH} directory, overwriting the r un. sh script.

Your Repository AMP project should now be fully updated to use the 2.1.0 version of the SDK.

Upgrading a Share AMP project from SDK 2.0.0to 2.1.0

These instructions will walk through what is needed when upgrading a Share AMP project from
using SDK version 2.0.0 to using SDK version 2.1.0.

Developer Guide 142

Developer Guide

There are multiple ways to go about an SDK upgrade. These instructions assume that you have a
Share AMP project where the source code is managed by a Software Configuration Management
(SCM) system such as Git or Subversion. And you cannot just through away the history of this
project, you need to upgrade "in-place"”. On the other hand, if your project is small, and you don't
mind starting with a new project in the SCM, it might be easier to just generate a new project from
the Share AMP 2.1.0 SDK archetype and move the code and other changes over to it from the
SDK 2.0.0 project, but this method is not covered in this article.

& In the following instructions the SHARE_AMP_PRQIECT _PATH variable denotes the path to
where you have your Share AMP project folder. So, for example, if your Share AMP project
was generated in the C: \ al f r esco- ext ensi ons\ acne- shar e- anp directory, then this
directory path is the value of this variable.

1 Make sure you have made a complete backup of your project before you start the upgrade
process!

1. Setting the SDK Version to 2.1.0.

In the IDE, open up the { SHARE_AMP_PRQIECT_PATH} / pom xm project file. Scroll down so
you see the par ent section. Then update it to look as follows:

<par ent >
<gr oupl d>or g. al f r esco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 1. 0</ ver si on>

</ par ent >

2. Remove the property used to specify the webapp path for the Alfresco Share web
application.

In the project file { SHARE_AMP_PRQIECT_PATH}/ pom xnl scroll down to the properti es
section. Then remove the property called al fresco. cl i ent. cont ext Pat h. This property
is now called share. cl i ent. cont ext Pat h, and it is already set to / shar e in the SDK
parent POM, so no need to set it here.

3. Update the name of the property specifying Share Webapp aritifact ID.

In the project file { SHARE_AMP_PRQIJECT_PATH}/ pom xnl scroll down to the properti es
section. Then change the name of the property called al fresco. cli ent. war to
app. anp.client.war.artifactld.

4. Add abui | d section to enable the JS Compression plugin.

In the same project file { SHARE_AMP_PRQIECT _PATH} / pom xnl scroll down to
the dependenci es end tag. Then add the following bui | d section after it with the
yui conpr essor - naven- pl ugi n to enable JS compression:

Q/debendencies>

<bui | d>
<pl ugi ns>
<I-- Conpress JavaScript files and store as *-mn.js -->
<pl ugi n>
<groupl d>net . al chi n81. maven</ gr oupl d>
<artifact! d>yui conpressor-nmaven-pl ugi n</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

5. Update shar e- confi g- cust om xm to enable better RAD.

Developer Guide 143

Developer Guide

Open the { SHARE_AMP_PRQIECT_PATH} / src/test/resources/ al fresco/ web-
ext ensi on/ shar e- confi g- cust om xni file and update the web- f r amewor k configuration
so it looks like this:

<web- f r amewor k>
<aut ow r e>
<I-- Changing this to 'devel opnent' currently breaks the Adm n
Consol e.
I nstead we make a POST to cl ear Share dependency caches,
see 'cl ear-caches-refresh-ws' profile. -->
<nmode>pr oduct i on</ node> <!-- not really need in the long run
used for YU - deprecate -->
</ aut owi r e>

<I--
W don't need to do this when we have the new refresh nmojos in
the Al fresco plug-in.

If resource caching has been disabled then all the dependency
caches will be cleared
bef ore processing the A kau jsonMddel request..
(i.e. this.dojobDependencyHandl er. cl ear Caches())

For nore informati on see the Ai kau source code: https://
gi t hub. coml Al fresco/ Ai kau
g

<di sabl e-r esour ce- cachi ng>f al se</ di sabl e-r esour ce- cachi ng>
</ web- f r amewor k>

Update the Tomcat virtual webapp context file.

Open the { SHARE_AMP_PRQIECT_PATH}/ t ontat / cont ext . xmi file. Change it to look like
this for best RAD experience:

<?xm version="1.0" encodi ng="UTF-8"?>
==

This context file is used only in a devel opnent |IDE for rapid
devel opnent ,
it is never released with the Al fresco.war

>

<I-- Setup docBase to sonething |ike share-anp/target/share-anp-war
and path to /share -->

<Cont ext docBase="${app. anp. client.war.fol der}"

pat h="${share. cl i ent. cont ext Pat h} " >

<Resour ces cl assNane="or g. apache. nam ng. resour ces. Vi rt ual Di r Cont ext "
extraResour cePat hs="/=${proj ect. buil d. di rectory}/
${proj ect. buil d.final Nane}/web" />

<I-- Configure where the Share (share.war) web application can | oad
cl asses, test classes, and config -->
<I-- Setup the virtual class path like this:

1) target/cl asses
2) target/${project.build.final Nane}/config
3) target/test-classes

This way nmvn conpile can be invoked and all changes will be
pi cked up
e
<Loader searchVirtual First="true"

Developer Guide 144

Developer Guide

cl assNanme="or g. apache. cat al i na. | oader . Vi rt ual WebappLoader "

vi rtual C asspat h="${proj ect . bui | d. out put Di rect ory};
${project.build. directory}/${project.build.final Nane}/confi g;
${project.build. testQutputDirectory}" />

<l-- This enabl es hot rel oadi ng of web resources from unconpressed
jars (while in prod they would be | oaded from WEB-INF/lib/{*.jar}/
META- | NF/ resour ces -->

<Jar Scanner scanAllDirectories="true" />

</ Cont ext >

7. Replace run scripts.

Version 2.1.0 of the SDK have changes to the Linux run scripts and have new run
scripts for Windows. So it make sense to take the new scripts from a newly generated
2.1.0 Share AMP project and replace the 2.0.0 scripts with them. So follow these
instructions to generate a Share AMP project based on the 2.1.0 archetype. Then
just copy over the {newly generated 2.1.0 Share AMP}/run.* scripts to the

{ SHARE_AMP_PRQIECT_PATH} directory, overwriting the r un. sh script.

Your Share AMP project should now be fully updated to use the 2.1.0 version of the SDK.
Upgrading an All-in-One (AIO) project from SDK 2.0.0 to 2.1.0

These instructions will walk through what is needed when upgrading an AlIO project from using
SDK version 2.0.0 to using SDK version 2.1.0.

There are multiple ways to go about an SDK upgrade. These instructions assume that you

have an All-in-One project where the source code is managed by a Software Configuration
Management (SCM) system such as Git or Subversion. And you cannot just through away the
history of this project, you need to upgrade "in-place". On the other hand, if your project is small,
and you don't mind starting with a new project in the SCM, it might be easier to just generate a
new project from the AIO 2.1.0 SDK archetype and move the code and other changes over to it
from the SDK 2.0.0 project, but this method is not covered in this article.

& In the following instructions the Al O_PRQIECT_PATH variable denotes the path to where
you have your All-in-One top project folder. So, for example, if your All-in-One project was
generated in the C: \ al f r esco- ext ensi ons\ acne- poc directory, then this directory path is
the value of this variable.

] Make sure you have made a complete backup of your project before you start the upgrade
process!

Update the top AlO project file.
1. Setting the SDK Version to 2.1.0.

In the IDE, open up the { Al O PRQJECT_PATH} / pom xm project file. Scroll down so you
see the par ent section. Then update it to look as follows:

<par ent >
<groupl d>org. al f r esco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 1. 0</ ver si on>

</ par ent >

2. Add a new property for the Alfresco Share Webapp location.

In the same project file { Al O PROJECT_PATH} / pom xnl scroll down to the properti es
section. Then update it with this extra property:

<properties>

Developer Guide 145

Developer Guide

<I-- The Alfresco Share web application is accessible via this URL
-->

<share.client.url>http://| ocal host: 8080/ share</share.client.url>

Add a new property for the Alfresco RM Module version (OPTIONAL).

If the Records Management (RM) module is used then add a property specifying the RM
version that should be used. In the properti es section add this extra property:

<properties>

<al fresco.rm versi on>2. 3</al fresco.rm ver si on>

Add a bui | d section to enable some plugins.

In the same project file { Al O_ PROIECT_PATH} / pom xnl scroll down to the
dependencyManagenent end tag. Then add the following bui | d section after it with the
yui conpr essor - maven- pl ugi n to enable JS compression and the al f r esco- maven-
pl ugi n to enable webapp RAD development:

Qldebendencywhnagenent>

<bui | d>
<pl ugi ns>
<!-- Conpress JavaScript files and store as *-mn.js -->
<pl ugi n>
<gr oupl d>net . al chi n81. maven</ gr oupl d>
<artifact!|d>yui conpressor-maven-pl ugi n</artifactld>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. al f resco. maven. pl ugi n</ gr oupl d>
<artifactld>al fresco-maven-pl ugi n</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Remove the Records Management (RM) profile.

In the same project file { Al O_ PROIECT_PATH}/ pom xnm scroll down to the profil es
section. Then remove the profile with the r mid (identifier). The RM module is added via
the { Al O PRQIECT_PATH}/ r epo/ pom xml and the { Al O PRQIECT_PATH} / shar e/ pom xni
project files. See further down in these instructions for more information.

Update the name of the Solr module.

SDK version 2.1.0 comes with support for Solr 4, which is deployed directly from the
maven artefact. The maven module just contains Solr 4 configuration information and
because of this has changed name from sol r to sol r- confi g, SO we need to update to
the new name. In the same project file { Al O PRQIECT_PATH}/ pom xni scroll down to the
modul es section. Update it so it looks like this:

<nmodul es>
<nmodul e>r epo- anp</ nodul e>
<nodul e>shar e- anp</ nodul e>
<nmodul e>r epo</ nodul e>
<nmodul e>sol r - conf i g</ nodul e>
<nmodul e>shar e</ nodul e>
<nmodul e>r unner </ nodul e>

Developer Guide 146

Developer Guide

</ modul es>

Note. You might have added extra modules that are not part of the AlO artefact, don't
remove these modules from the definition.

Update the Repository Webapp (alfresco.war) Project file

7.

10.

Remove the Records Management (RM) profile.

In the project file { Al O_PRQIECT_PATH} / r epo/ pom xm scroll down to the profil es
section. Then remove the profile with the r mid (identifier). The RM module is now instead
added permanently as a dependency and overlay.

Add a Records Management (RM) Module Dependency to Repository WAR (OPTIONAL)

If the RM module is used, then it is now added permanently to the project instead
of via profile activation. Add a dependency for it as follows. In the IDE, open up
the { Al O PRQIECT_PATH} / r epo/ pom xml project file. Scroll down so you see the
dependenci es section. Then add the following dependency:

<dependenci es>

<dependency>
<gr oupl d>%${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>alfresco-rnx/artifactld>
<versi on>%${al fresco.rm version}</versi on>
<t ype>anp</type>

</ dependency>

Add a Records Management (RM) Module Overlay Repository WAR (OPTIONAL)

If the RM module is used, then it is now added permanently to the project instead of via
profile activation. Add an overlay configuration as follows. In the { Al O PROQJECT_PATH} /
repo/ pom xni project file scroll down so you see the over | ays section. Then add the
following overlay at the end:

<over| ays>

<over | ay>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>al fresco-rnx/artifactld>
<t ype>anp</type>
</ over| ay>
</ overl ays>

Make sure the Repository is using the Solr 4 subsystem

When running all the web applictions during testing the repository webapp (alfresco.war)
is reading its configuration from the { Al O PRQIECT_PATH}/ r epo/ src/ mai n/ properti es/
| ocal / al fresco- gl obal . properti es file. We need to update it so it uses Solr 4, the
following properties should be changed:

i ndex. subsyst em nane=sol r 4
sol r. backup. al fresco. renpt eBackupLocati on=${di r. root}/sol r4Backup/

al fresco
sol r. backup. ar chi ve. r enot eBackupLocat i on=${di r. r oot }/ sol r 4Backup/
archi ve

Update the Repository AMP Project file

11.

Remove the property used to specify the artifact ID for the Alfresco WAR.

Developer Guide 147

Developer Guide

In the project file { Al O_PRQIECT_PATH} / r epo- anp/ pom xmi scroll down to the
properti es section. Then remove the property called al f resco. cl i ent. war. This
property is now called app. anp. cli ent.war. artifact|d and defaults to al f resco, so
no need to set it in the repo-amp project file. This property is used when you run with the -
Panp- t o- war profile.

12. Add a Records Management (RM) classes Dependency (OPTIONAL)

If the RM module is used, then it is now added permanently to the project instead of via
profile activation. So to get access to the RM classes add a dependency as follows. In
the { Al O_ PRQIECT_PATH}/ r epo- anp/ pom xmi project file scroll down so you see the
dependenci es section. Then add the following dependency:

<dependenci es>

<dependency>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-rnx/artifactld>
<versi on>${al fresco. rm ver si on} </ ver si on>
<cl assi fi er>cl asses</cl assi fier>

</ dependency>

13. Remove the Records Management (RM) profile.

In the project file { Al O_PRQIECT_PATH}/ r epo- anp/ pom xm scroll down to the profil es
section. Then remove the profile with the r mid (identifier). The RM classes are now

instead added permanently as a dependency.
Update the Share Webapp (share.war) Project file
14. Add a properties section with a new property for the Alfresco Repository location.

In the project file { Al O PRQIECT_PATH} / shar e/ pom xnml add the following pr operti es
section just after the par ent section:

</ par ent >

<properties>
<l-- Used in share-config-custom xnm when testing.
By default points to standard |ocation (local) of Alfresco
Repository -->
<al fresco. repo. url >http://1| ocal host: 8080/ al f resco</
al fresco. repo. url >
</ properties>

15. Move share-confi g- cust om xnml from shar e- anp to shar e

The share configuration file has moved from the share AMP sub project to the share WAR
project. This is because it contains generic configuration such as where the Repository

is running and RAD related configuration. Move the { Al O PRQIECT_PATH} / shar e- anp/
src/test/resources/ al fresco/ web- ext ensi on/ shar e- confi g- custom xmi file to the
{ Al O PRQIECT_PATH} / shar e/ src/ mai n/ r esour ces/ al fr esco/ web- ext ensi on location.
Then update the web- f r amewor k configuration so it looks like this:

<web- f r anewor k>
<aut owi r e>

<l-- Changing this to 'devel opnent' currently breaks the Adm n
Consol e.

Instead we make a POST to cl ear Share dependency caches, see
‘cl ear-caches-refresh-ws' profile. -->

Developer Guide 148

Developer Guide

<nmode>pr oduct i on</ node> <!-- not really need in the | ong run
used for YU - deprecate -->
</ aut owi r e>

S
We don't need to do this when we have the new refresh nojos in
the Alfresco plug-in.

I f resource caching has been disabled then all the dependency
caches will be cleared

bef ore processing the A kau jsonMdel request..

(i.e. this.dojobDependencyHandl er. cl ear Caches())

For nore information see the Ai kau source code: https://
gi t hub. com Al fresco/ Al kau
—->
<di sabl e-resour ce- cachi ng>f al se</ di sabl e-r esour ce- cachi ng>
</ web- f r anewor k>

16. Remove the Records Management (RM) profile.

In the project file { Al O PROIECT_PATH} / shar e/ pom xnl scroll down to the profil es
section. Then remove the profile with the r mid (identifier). The RM module is now instead
added permanently as a dependency and overlay.

17. Add a Records Management (RM) Module Dependency to Share WAR (OPTIONAL)

If the RM module is used, then it is now added permanently to the project instead
of via profile activation. Add a dependency for it as follows. In the IDE, open up
the { Al O_ PRQIECT_PATH} / shar e/ pom xnmi project file. Scroll down so you see the
dependenci es section. Then add the following dependency:

<dependenci es>

<dependency>
<groupl d>%${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-rmshare</artifactld>
<versi on>%${al fresco. rm version}</versi on>
<t ype>anp</type>

</ dependency>

18. Add a Records Management (RM) Module Overlay to Share WAR (OPTIONAL)

If the RM module is used, then it is now added permanently to the project instead of via
profile activation. Add an overlay configuration as follows. In the { Al O_ PROJECT_PATH} /
shar e/ pom xm project file scroll down so you see the over | ays section. Then add the
following overlay at the end:

<over| ays>

<overl ay>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-rmshare</artifactld>
<t ype>anp</type>
</ overl| ay>
</ over| ays>

Update the Share AMP Project file
19. Change the name of the property used to specify the artifact ID for the Share WAR.

In the project file { Al O PROIECT _PATH} / shar e- anp/ pom xm scroll down to the
properti es section. Then change the name of property called al fresco. cli ent.war to
its new name app. anp. client.war. artifactld. It defaults to al fresco so we need to

Developer Guide 149

20.

21.

22.

Developer Guide

override it here with the value shar e. This property is used when you run with the - Panp-
t o- war profile.

Remove the property used to specify the location of the Alfresco Repository Webapp.

In the project file { Al O PROIECT _PATH} / shar e- anp/ pom xm scroll down to the

properti es section. Then remove the property called al f resco. repo. url . This property
is only used by the { Al O PROIECT_PATH} / shar e/ pom xm project in an All-in-One
extension project.

Remove the property used to specify the port number for embedded Tomcat.

In the project file { Al O PRQJIECT_PATH} / shar e- anp/ pom xm scroll down to the

properti es section. Then remove the property called maven. t ontat . por t. This property
is only used by the { Al O_ PRQIECT_PATH}/ r unner / pom xm project when starting an
embeeded Tomcat instance. Default port number is configured to 8080 in the parent SDK
pom.

Add dependencies for TestNG and Share Page Object classes.

In version 2.1.0 of the SDK there are two new profiles called r egr essi on-t esti ng
and f uncti onal -t esti ng that uses Page Objects (PO) to do functional testing of the
Share Web application. We need to add all dependencies needed for these tests. In
the { Al O_ PRQIECT_PATH} / shar e- anp/ pom xm project file scroll down so you see the
dependenci es section. Then add the following dependencies:

<dependenci es>

The foll owi ng dependenci es are needed to be able to conpile the
custom functional tests that are based on Page hjects (PO

<l-- Bring in the Share Page (bjects (PO wused in our functiona

It contains page objects such as Logi nPage -->
<dependency>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<ver si on>${al fresco. versi on} </ ver si on>
<scope>t est </ scope>
</ dependency>
<I-- Bring in the Share Page hject (PO Tests that cones wth
Al fresco. It has
the org. al fresco. po. share. Abstract Test class that our custom
tests extend. -->
<dependency>
<groupl d>%${al fresco. groupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<ver si on>%${al fresco. versi on} </ ver si on>
<cl assifier>tests</classifier>
<scope>t est </ scope>

<l -- Exclude version 2.39.0 of seleniumthat does not work with
| at est FF browsers, we include
version 2.45 |l ater on here -->
<excl usi ons>
<excl usi on>
<gr oupl d>or g. sel eni unmhg. sel eni unx/ gr oupl d>
<artifactld>sel eniumjava</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. sel eni umhq. sel eni unx/ gr oupl d>

Developer Guide 150

Developer Guide

<artifactld>sel enium server</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<l-- Bring in newer seleniumversion -->
<dependency>
<gr oupl d>or g. sel eni unmhq. sel eni unx/ gr oupl d>
<artifactld>sel eniumjava</artifactld>
<ver si on>2. 45. 0- al fresco</ ver si on>
</ dependency>

<I-- Test NGis defined with test scope in share-po, so need it
here too -->

<I-- Alfresco code creates a wapper around Test NG -->

<dependency>

<groupl d>or g. al fresco. t est </ gr oupl d>
<artifactld>al fresco-testng</artifactld>
<ver si on>1. 1</ ver si on>
<scope>t est </ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. hantr est </ gr oupl d>
<artifactl|d>hancrest-core</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

</ dependenci es>

Replace Modules and Scripts

23.

24,

Replace the runner module.

The project configuration for the r unner module has changed quite a bit in version 2.1.0 of
the SDK. And there should not be much custom configuration done to it. So it make sense
to take the r unner module from a newly generated 2.1.0 AlO project and replace the 2.0.0
runner module with it. So follow these instructions to generate an AlO project based on
the 2.1.0 archetype. Then delete the { Al O PRQIECT_PATH} / r unner module/directory from
the All-in-One project. Now copy the {newl y generated 2.1.0 Al G/runner module
into the { Al O_PROQIECT_PATH} / r unner location.

The new runner module probably does not have the same parent configuration as your
{AIO_PROJECT_PATH} project. So open up the { Al O PRQIECT_PATH}/ r unner/ pom xmi
file and make sure the par ent section is correct.

If you have made changes to the virtual web application context because you have added
more AMPs to the AIO project, then see these instructions for how to update the 2.1.0
runner context.

Replace the sol r module.

The project configuration for the sol r module has changed completely from bringing in
the complete Solr 1.4 web application to just bringing in the Solr 4 configuration. So it
make sense to take the sol r- confi g module from a newly generated 2.1.0 AlO project
and replace the 2.0.0 sol r module with it. So follow these instructions to generate an AlO
project based on the 2.1.0 archetype (if you have not already done it). Then delete the

{ Al O PRQJECT_PATH} / sol r module/directory from the All-in-One project. Now copy the
{newly generated 2.1.0 Al G/solr-config module intothe { Al O PROIECT _PATH}/
sol r-confi g location.

The new sol r - confi g module probably does not have the same parent configuration
as your {AIO_PROJECT_PATH} project. So open up the { Al O PROJECT_PATH}/ sol r -
confi g/ pom xni file and make sure the par ent section is correct.

Developer Guide 151

Developer Guide

If you have made changes to the Solr configuration, such as adding a synonyms list, then
you will have to update the sol r - conf i g project with these changes.

25. Replace run scripts.

Version 2.1.0 of the SDK have changes to the Linux run scripts and have new run scripts
for Windows. So it make sense to take the new scripts from a newly generated 2.1.0 AlO
project and replace the 2.0.0 scripts with them. So follow these instructions to generate an
AlO project based on the 2.1.0 archetype (if you have not already done it). Then just copy
overthe {newly generated 2.1.0 Al G/run.* scripts to the { Al O PRQJIECT_PATH}
directory, overwriting the r un. sh script.

26. Remove the al f _dat a_dev directory.

It is not possible to do an incremental H2 database schema update. The complete
al f _dat a_dev directory needs to be deleted before you run the application again.

Your All-in-One project should now be fully updated to use the 2.1.0 version of the SDK.

Upgrading SDK version from 2.1.0to0 2.1.1

This section contains instructions for how to upgrade an extension project from using SDK
version 2.1.0 to using SDK version 2.1.1.

These instructions include information about how to upgrade projects generated from each one of
the Maven artifacts. Make sure you are following upgrade instructions for the correct project type.
Default Alfresco versions for SDK 2.1.0 is Community 5.0.d and Enterprise 5.0.1. After upgrading
to SDK 2.1.1 the default Alfresco versions will stay the same.

' Make sure you have made a complete backup of your project before you start the upgrade
process!

Upgrading a Repository AMP project from SDK 2.1.0to 2.1.1

These instructions will walk through what is needed when upgrading a Repository AMP project
from using SDK version 2.1.0 to using SDK version 2.1.1.

There are multiple ways to go about an SDK upgrade. These instructions assume that you

have a Repository AMP project where the source code is managed by a Software Configuration
Management (SCM) system such as Git or Subversion. And you cannot just through away the
history of this project, you need to upgrade "in-place". On the other hand, if your project is small,
and you don't mind starting with a new project in the SCM, it might be easier to just generate

a new project from the Repository AMP 2.1.1 SDK archetype and move the code and other
changes over to it from the SDK 2.1.0 project, but this method is not covered in this article.

& In the following instructions the REPO_AMP_PRQIECT _PATH variable denotes the path to
where you have your Repository AMP project folder. So, for example, if your Repository
AMP project was generated in the C: \ al fr esco- ext ensi ons\ acre- r epo- anp directory,
then this directory path is the value of this variable.

-

Make sure you have made a complete backup of your project before you start the upgrade
process!

1. Setting the SDK Versionto 2.1.1.

In the IDE, open up the { REPO_AMP_PRQIECT_PATH}/ pom xml project file. Scroll down so
you see the par ent section. Then update it to look as follows:

<par ent >
<gr oupl d>or g. al fresco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<version>2. 1. 1</ ver si on>

</ par ent >

Developer Guide 152

Developer Guide

2. Update the commented out Alf Data location value.
In the same project file update the property al f r esco. dat a. | ocat i on as follows:

<properties>
<!-- The follow ng are default values for data | ocation, Alfresco
Conmuni ty version
Uncoment if you need to change (Note. current default version

for Enterprise edition is 5.0.1)

<al fresco. versi on>5. 0. d</ al fresco. ver si on>

<al fresco. data. | ocati on>/ absol ut e/ path/to/al f _data_dev</
al fresco. data. | ocati on> -->

3. Update version numbers and add a comment to the demo component bean definition.

In the { REPO_AMP_PRQJECT_PATH} / sr ¢/ mai n/ anp/ confi g/ al fresco/ nodul e/ r epo-
anp/ cont ext / servi ce- cont ext . xm project file update as follows:

<I-- A sinple nodul e conponent that will be executed once.
Note. this nodul e conponent will only be executed once, and
then there will be an entry for it in the Repo.
So doing for exanple $ nvn clean install -Prun twice will only

execute this conponent the first tine.

You need to renove /alf _data dev for it to be executed again.
-->

<bean ...
<property nane="si nceVersion" value="1.0" />
<property name="appl i esFronmversion" val ue="1.0" />

</ bean>
Your Repository AMP project should now be fully updated to use the 2.1.1 version of the SDK.
Upgrading a Share AMP project from SDK 2.1.0t0 2.1.1

These instructions will walk through what is needed when upgrading a Share AMP project from
using SDK version 2.1.0 to using SDK version 2.1.1.

There are multiple ways to go about an SDK upgrade. These instructions assume that you have a
Share AMP project where the source code is managed by a Software Configuration Management
(SCM) system such as Git or Subversion. And you cannot just through away the history of this
project, you need to upgrade "in-place”. On the other hand, if your project is small, and you don't
mind starting with a new project in the SCM, it might be easier to just generate a new project from
the Share AMP 2.1.1 SDK archetype and move the code and other changes over to it from the
SDK 2.1.0 project, but this method is not covered in this article.

& In the following instructions the SHARE_AMP_PRQIECT _PATH variable denotes the path to
where you have your Share AMP project folder. So, for example, if your Share AMP project
was generated in the C: \ al f r esco- ext ensi ons\ acne- shar e- anp directory, then this
directory path is the value of this variable.

' Make sure you have made a complete backup of your project before you start the upgrade
process!

Setting the SDK Version to 2.1.1.

In the IDE, open up the { SHARE_AMP_PRQIECT_PATH}/ pom xm project file. Scroll down so
you see the par ent section. Then update it to look as follows:

<par ent >
<gr oupl d>or g. al f resco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 1. 1</ versi on>

</ par ent >

Developer Guide 153

Developer Guide
Your Share AMP project should now be fully updated to use the 2.1.1 version of the SDK.

Upgrading an All-in-One (AIO) project from SDK 2.1.0t0 2.1.1

These instructions will walk through what is needed when upgrading an AlIO project from using
SDK version 2.1.0 to using SDK version 2.1.1.

There are multiple ways to go about an SDK upgrade. These instructions assume that you

have an All-in-One project where the source code is managed by a Software Configuration
Management (SCM) system such as Git or Subversion. And you cannot just through away the
history of this project, you need to upgrade "in-place". On the other hand, if your project is small,
and you don't mind starting with a new project in the SCM, it might be easier to just generate a
new project from the AlO 2.1.1 SDK archetype and move the code and other changes over to it
from the SDK 2.1.0 project, but this method is not covered in this article.

& In the following instructions the Al O_PRQIECT_PATH variable denotes the path to where
you have your All-in-One top project folder. So, for example, if your All-in-One project was
generated in the C: \ al f r esco- ext ensi ons\ acne- poc directory, then this directory path is
the value of this variable.

-

Make sure you have made a complete backup of your project before you start the upgrade
process!

1. Setting the SDK Version to 2.1.1.

In the IDE, open up the { Al O PRQJECT_PATH} / pom xm project file. Scroll down so you
see the par ent section. Then update it to look as follows:

<par ent >
<gr oupl d>or g. al f r esco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 1. 1</ ver si on>

</ par ent >

2. Update the commented out Alf Data location value.
In the same parent project file update the property al fresco. dat a. | ocat i on as follows:

<properties>
<l-- The followi ng are default values for data |ocation, Alfresco
Conmuni ty version, and Records Managenent Modul e version
Uncomment if you need to change (Note. current default version

for Enterprise edition is 5.0.1)

<al fresco. versi on>5. 0. d</ al fresco. versi on>

<al fresco.rm versi on>2. 3</al fresco. rm versi on>

<al fresco. data. | ocati on>/ absol ut e/ path/to/al f_data_ dev</
al fresco. data. | ocation> -->

3. Add test scope for Selenium dependency in Share AMP.

In the { Al O_ PRQJIECT_PATH} / shar e- anp/ pom xm project file scroll down to the following
dependency. Then add <scope>t est </ scope>:

<dependency>
<gr oupl d>or g. sel eni unmhq. sel eni unx/ gr oupl d>
<artifactld>sel eniumjava</artifactld>
<ver si on>2. 45. 0- al fresco</ ver si on>
<scope>t est </ scope>

</ dependency>

4. Update version numbers and add a comment to the demo component bean definition in
the Repo AMP.

Developer Guide 154

Developer Guide

In the { Al O PRQIECT_PATH}/ r epo- anp/ sr ¢/ mai n/ anp/ confi g/ al f resco/ nodul e/
r epo- anp/ cont ext / servi ce- cont ext. xml project file update as follows:

<I-- A sinple nodul e conponent that will be executed once.
Note. this nodul e conponent will only be executed once, and
then there will be an entry for it in the Repo.
So doing for exanple $ nvn clean install -Prun twice will only
execute this conponent the first tine.
You need to renove /alf _data dev for it to be executed again.

e
<bean ...
<property nane="si nceVersion" value="1.0" />
<property nanme="appl i esFronVersi on" val ue="1.0" />
</ bean>

Add property for module log level to repo project.

In the { Al O_ PRQIECT_PATH} / r epo/ pom xml project file add the following pr operti es
section:

<properties>
<!-- During devel opnent we set |og root |evel to Debug,
this will be applicable to the log configuration in
repo/ src/ mai n/ resour ces/ al fresco/ ext ensi on/ dev-
| og4j . properti es,
such as DenmpConponent | ogging. -->
<app. | og. root . | evel >DEBUG</ app. | og. root . | evel >
</ properties>

Configure module logging in repo project.

In the { Al O PROIECT_PATH}/ r epo/ src/ mai n/ r esour ces/ al fresco/ ext ensi on/ dev-
| og4j . properti es log configuration file add the following line:

| og4j . | ogger.org. al fresco. denbanp. DenoConponent =${ app. | og. root . | evel }

In the runner project update the properties section.

Update and add properties as follows in the { Al O PRQIECT_PATH}/ r unner/ pom xm
project file :

<properties>

<al fresco.solr.dir>%{al fresco. data. | ocation}/sol r4</
al fresco.solr.dir>

<al fresco. sol r. honme. di r>${al fresco. sol r.dir}/config</
al fresco. sol r. hone. di r >

<al fresco. sol r. data. di r>${al fresco. sol r. di r}/ dat a</
al fresco. solr.data.dir>
</ properties>

In the Repo tomcat context file add a comment about resource loading

In the { Al O PRQIECT_PATH}/ runner/t ontat/ cont ext - r epo. xm file add comments as
follows:

<Resour ces cl assNane="or g. apache. nam ng. resour ces. Vi rt ual Di r Cont ext "
extraResour cePat hs="/=${ proj ect . parent . basedir}/repo-

anp/ t arget/repo-anp/ web" />

<! -- | MPORTANT! The extraResourcePaths string need to be on one
continues line, so if we add anot her Repo AWP

it would | ook sonething like this:

<Resour ces

cl assNanme="or g. apache. nani ng. resour ces. Vi rt ual Di r Cont ext "

Developer Guide 155

Developer Guide

extraResour cePat hs="/=${ proj ect . parent . basedi r}/repo-
anp/ target/repo-anp/ web, / =${ pr oj ect . par ent . basedi r}/ conponent - a- r epo/
t ar get/ conponent - a- r epo/ web" />
—->

9. Inthe Share tomcat context file add a comment about resource loading

In the { Al O PROIECT_PATH}/ runner/t ontat/ cont ext - share. xm file add comments as
follows:

<Resour ces cl assNane="or g. apache. nam ng. resour ces. Vi rtual Di r Cont ext "

extraResour cePat hs="/=${ pr oj ect . parent . basedi r}/ shar e-

anp/ t ar get / shar e- anp/ web" />

<!'-- | MPORTANT! The extraResourcePaths string need to be on one
continues line, so if we add another Share AW
it would | ook something Iike this:
<Resour ces
cl assNanme="or g. apache. nam ng. resour ces. Vi rt ual Di r Cont ext "

extraResour cePat hs="/=${ pr oj ect . parent . basedi r}/share-

anp/ t ar get/ shar e- anp/ web, / =${ pr oj ect . par ent . basedi r }/ conponent - a- shar e/

t arget/ conponent - a- shar e/ web" />
—->

10. Inthe Solr tomcat context file update all paths

In the { Al O PRQJIECT_PATH}/ runner/t ontat/ cont ext - sol r. xni file update the
environment property values as follows:

<Cont ext >
<Envi ronnment nane="sol r/ hone" type="j ava. | ang. Stri ng"
val ue="%{al fresco.solr.hone.dir}/" override="true"/>
<Envi r onment nane="sol r/ nodel / dir" type="java.l ang. Stri ng"

val ue="%${al fresco. solr. hone.dir}/al frescoModel s/" override="true"/>
<Envi ronment nane="solr/content/dir" type="java.lang. String"
val ue="%${al fresco.solr.data.dir}/content/" override="true"/>

11. Inthe Solr Configuration project update the properties section

Open up the { Al O PRQJECT_PATH}/ sol r- confi g/ pom xnl project file. Update the
properties sections as follows:

<properties>

<al fresco.solr.dir>%{al fresco. data. | ocation}/sol r4</
al fresco.solr.dir>

<al fresco. sol r. hone. di r>${al fresco. sol r.dir}/config</
al fresco. sol r. hone. di r >

<al fresco. sol r. data. di r>${al fresco. sol r. di r}/ dat a</
al fresco. solr.data. dir>

</ properties>

Your All-in-One project should now be fully updated to use the 2.1.1 version of the SDK.

Upgrading SDK version from 2.1.1 to 2.2.0

This section contains instructions for how to upgrade an extension project from using SDK
version 2.1.1 to using SDK version 2.2.0.

These instructions include information about how to upgrade projects generated from each one of
the Maven artifacts. Make sure you are following upgrade instructions for the correct project type.
Default Alfresco versions for SDK 2.1.1 is Community 5.0.d and Enterprise 5.0.1. After upgrading
to SDK 2.2.0 the default Alfresco versions will be Community 5.1.d and Enterprise 5.1.0.

(3] Make sure you have made a complete backup of your project before you start the upgrade
process!

Developer Guide 156

Developer Guide

Upgrading a Repository AMP project from SDK 2.1.1to 2.2.0

These instructions will walk through what is heeded when upgrading a Repository AMP project
from using SDK version 2.1.1 to using SDK version 2.2.0.

There are multiple ways to go about an SDK upgrade. These instructions assume that you

have a Repository AMP project where the source code is managed by a Software Configuration
Management (SCM) system such as Git or Subversion. And you cannot just through away the
history of this project, you need to upgrade "in-place". On the other hand, if your project is small,
and you don't mind starting with a new project in the SCM, it might be easier to just generate

a new project from the Repository AMP 2.2.0 SDK archetype and move the code and other
changes over to it from the SDK 2.1.1 project, but this method is not covered in this article.

& In the following instructions the REPO_AMP_PRQJECT_PATH variable denotes the path to
where you have your Repository AMP project folder. So, for example, if your Repository
AMP project was generated in the C:\ al f r esco- ext ensi ons\ acne- r epo- anp directory,
then this directory path is the value of this variable.

+

Make sure you have made a complete backup of your project before you start the upgrade
process!

1. Setting the SDK Version to 2.2.0.

In the IDE, open up the { REPO_AMP_PRQJECT_PATH}/ pom xml project file. Scroll down so
you see the par ent section. Then update it to look as follows:

<par ent >
<gr oupl d>or g. al fresco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 2. 0</ ver si on>

</ par ent >

2. Add dependency for H2 database scripts.
In the same project file add the following dependency:

<I-- If we are running tests then nake the H2 Scripts avail abl e
Note. tests are skipped when you are runni ng - Panp-to-war -->
<dependency>

<groupl d>%${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-repository</artifactld>
<ver si on>%${al fresco. versi on} </ ver si on>
<cl assifier>h2scripts</cl assifier>
<scope>t est </ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>*</ gr oupl d>
<artifactld>*</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

3. Remove al fresco-rad dependency.

This artifact previously contained the H2 database scripts but they are now available
separately. In the same project file remove the following profile and dependency:

S

If the "anp-to-war' profile is enabl ed then nake sure to bring
in the alfresco-rad nodul e,

whi ch has the H2 scripts and ot her RAD feat ures.

TODO TO | NVESTI GATE: Thi s dependency is already defined in the

parent SDK pomin the 'anp-to-war' profile
but this does not work, it is not include..

Developer Guide 157

Developer Guide

<profile>
<i d>anp-to-war</id>
<dependenci es>
<dependency>
<gr oupl d>or g. al f resco. maven</ gr oupl d>
<artifactld>al fresco-rad</artifactld>
<ver si on>${ maven. al fresco. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</profile> -->

Remove Spring Loaded configuration from run scripts.

Spring Loaded currently blocks the Repository (Platform) from starting. Update the
{ REPO_AMP_PRQIECT_PATH}/ run. sh and run. bat so they don't use Spring Loaded,
change the MAVEN_OPTS so it looks like this:

run. sh: MAVEN OPTS="- Xns256m - Xnx2G' nwn integration-test -Panp-to-war
run. bat: set MAVEN OPTS=- Xns256m - Xmx2G

Update the Virtual Webapp Context for Repository (alfresco.war).

Update the virtual webapp context to reflect new directory names and the change so
resources can be overridden (it is used when running with - Panp-t o- war). Open the
{ REPO_AMP_PRQJECT_PATH}/t ontat/ cont ext . xmd file and update it so it looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<l--

This context file is used only in a devel opnent |IDE for rapid
devel opnent ,
it is never released with the Al fresco.war

<I-- Setup a virtual context for the /alfresco webapp by specifying
this as path for Context.

The anp-to-war profile uses the tontat7- maven-plugin to kick off
t he webapp.

This profile is used for both the repo and share AWP archetypes,
and has no config for path or resources,

so we need to specify here both the context path and where the
webapp resources can be found.

The webapp resources are |located in the {repo-anp-dir}/target/anp-
war directory, However, we
cannot just set this up as the docBase attribute for the Context
as it would always be read
before any paths in the extraResourcePaths. So to allow for
custom zations to override
stuff in the alfresco.war webapp, such as the /inmages/| ogo/
| ogo. png, we add the webapp resource
path last in the extraResourcePat hs.

Note. Alfresco.war 5.0 does not have a webapp, just an index page,

the Al fresco Expl orer webapp is no | onger avail able.

e

<Cont ext path="${al fresco.client.contextPath}">

<Resour ces
cl assNanme="or g. apache. nam ng. resour ces. Vi rt ual Di r Cont ext "
extraResour cePat hs="/=${proj ect. bui |l d. di rectory}/anp/

web, ${app. anp.client.war.fol der}" />

<l-- Setup the virtual class path like this:
1) target/cl asses

Developer Guide 158

Developer Guide

2) target/anp/config
3) target/test-classes

This way nvn conpile can be invoked and all changes will be
pi cked up
—= >
<Loader searchVirtual First="true"
cl assNanme="or g. apache. cat al i na. | oader. Vi rt ual WebappLoader "
virtual C asspat h="${proj ect . bui | d. out put Di rect ory};
${project.build.directory}/anp/config;
${project.build. testQutputDirectory}" />

<I-- This enables hot rel oading of web resources from unconpressed
jars (while in prod they woul d be | oaded from WEB-INF/lib/{*.jar}/
META- | NF/ r esour ces -->

<Jar Scanner scanAl |l Directories="true" />
</ Cont ext >

6. Update the AMP module Spring context load order.

Open the { REPO_AMP_PRQIECT_PATH}/ src/ mai n/ anp/ confi g/ al f resco/ nodul e/
<nmodul e-i d>/ nodul e- cont ext . xnl file and update it so it looks like this:

<beans>

<I-- This is filtered by Maven at build time, so that nodule nane is
singl e sourced. -->

<I-- Note. The bootstrap-context.xnl file has to be | oaded first.

O herwi se your custom nodel s are not yet | oaded when your service
beans are instantiated and you
cannot for exanple register policies on them -->
<i mport resource="cl asspat h: al fresco/ nodul e/
${project.artifactld}/context/bootstrap-context.xm" />
<i mport resource="cl asspath: al fresco/ nodul e/
${project.artifactld}/context/service-context.xm" />
<i nport resource="cl asspat h: al fresco/ nodul e/
${project.artifactld}/context/webscript-context.xm" />
</ beans>

7. Update the AMP module version to align with Maven Artifact version.

Open the { REPO_AMP_PRQIECT_PATH} / sr ¢/ mai n/ anp/ nodul e. properti es file and
update the version property:

nodul e. ver si on=${ pr oj ect . ver si on}

8. Finally remove current al f _dat a_dev directory with previous database.

Remove the { REPO_AMP_PRQIECT_PATH}/ al f _dat a_dev directory. This is needed as the
H2 script artifact does not currently contain upgrade scripts.

Your Repository AMP project should now be fully updated to use the 2.2.0 version of the SDK.

Upgrading a Share AMP project from SDK 2.1.1 to 2.2.0

These instructions will walk through what is needed when upgrading a Share AMP project from
using SDK version 2.1.1 to using SDK version 2.2.0.

There are multiple ways to go about an SDK upgrade. These instructions assume that you have a
Share AMP project where the source code is managed by a Software Configuration Management
(SCM) system such as Git or Subversion. And you cannot just through away the history of this
project, you need to upgrade "in-place”. On the other hand, if your project is small, and you don't
mind starting with a new project in the SCM, it might be easier to just generate a new project from
the Share AMP 2.2.0 SDK archetype and move the code and other changes over to it from the
SDK 2.1.1 project, but this method is not covered in this article.

Developer Guide 159

Developer Guide

In the following instructions the SHARE_AMP_PRQIECT_PATH variable denotes the path to
where you have your Share AMP project folder. So, for example, if your Share AMP project
was generated in the C: \ al fr esco- ext ensi ons\ acre- shar e- anp directory, then this
directory path is the value of this variable.

Make sure you have made a complete backup of your project before you start the upgrade
process!

Setting the SDK Version to 2.2.0.

In the IDE, open up the { SHARE_AMP_PRQIECT_PATH} / pom xmi project file. Scroll down so
you see the par ent section. Then update it to look as follows:

<par ent >
<gr oupl d>or g. al fresco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 2. 0</ ver si on>

</ par ent >

Remove the Enterprise profile dependency.

This is not needed any more. In the same project file remove the following profile and
dependency:

<profil es>
S
Brings in the extra Enterprise specific share cl asses,
if the "enterprise' profile has been activated, needs to be
activated manual ly. -->
<profile>
<i d>enterprise</id>
<dependenci es>
<dependency>
<groupl d>%${al fresco. groupl d} </ gr oupl d>
<artifactld>share-enterprise</artifactld>
<ver si on>%${al fresco. versi on} </ ver si on>
<cl assi fi er>cl asses</cl assifier>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>
</profile>
</profil es>

Update the Virtual Webapp Context for Share (share.war).

Update the virtual webapp context to reflect new directory names and the change so
resources can be overridden (it is used when running with -Pamp-to-war). Open the
{ SHARE_AMP_PRQIECT_PATH}/ t ontat / cont ext . xmi file and update it so it looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<l--

This context file is used only in a devel opnent |DE for rapid
devel opnent,
it is never released with the Alfresco.war

<I-- Setup a virtual context for the /share webapp by specifying this
as path for Context.

The anp-to-war profile uses the tontat7-maven-plugin to kick off
t he webapp.

This profile is used for both the repo and share AWP archetypes,
and has no config for path or resources,

Developer Guide 160

Developer Guide

so we need to specify here both the context path and where the
webapp resources can be found.

The webapp resources are |located in the {share-anp-dir}/target/
anp-war directory, However, we

cannot just set this up as the docBase attribute for the Context
as it would al ways be read

before any paths in the extraResourcePaths. So to allow for
customi zations to override

stuff in the share.war webapp, such as the /favicon.ico, we add
t he webapp resource

path | ast in the extraResourcePat hs.

Note. most of the U custom zations for Share are done via custom
t henes.
—->
<Cont ext pat h="${share.client. contextPath}">
<Resour ces cl assNane="or g. apache. nam ng. r esour ces. Vi rt ual Di r Cont ext "
extraResour cePat hs="/=${ proj ect . bui | d. di rect ory}/ anp/ web,
${app. anp.client.war.folder}" />

<I-- Configure where the Share (share.war) web application can | oad
cl asses, test classes, and config -->
<l-- Setup the virtual class path |ike this:

1) target/cl asses
2) target/anp/config
3) target/test-classes

This way nmvn conpile can be invoked and all changes will be
pi cked up
—= >
<Loader searchVirtual First="true"
cl assNanme="or g. apache. cat al i na. | oader. Vi rt ual WebappLoader "
vi rtual O asspat h="${proj ect. bui | d. out put Di rect ory};
${project.build.directory}/anp/config;
${project.build. testQutputDirectory}" />

<!-- This enables hot rel oading of web resources from unconpressed
jars (while in prod they woul d be | oaded from WEB-INF/lib/{*.jar}/
META- | NF/ r esour ces -->

<Jar Scanner scanAl |l Directories="true" />

</ Cont ext >

4. Update the AMP module version to align with Maven Artifact version.

Open the { SHARE_AMP_PRQIECT_PATH} / st ¢/ mai n/ anp/ nodul e. properti es file and
update the version property:

nodul e. ver si on=${ pr oj ect . ver si on}

Your Share AMP project should now be fully updated to use the 2.2.0 version of the SDK.

Upgrading an All-in-One (AIO) project from SDK 2.1.1to 2.2.0

These instructions will walk through what is needed when upgrading an AlIO project from using
SDK version 2.1.1 to using SDK version 2.2.0.

There are multiple ways to go about an SDK upgrade. These instructions assume that you

have an All-in-One project where the source code is managed by a Software Configuration
Management (SCM) system such as Git or Subversion. And you cannot just through away the
history of this project, you need to upgrade "in-place". On the other hand, if your project is small,
and you don't mind starting with a new project in the SCM, it might be easier to just generate a
new project from the AIO 2.2.0 SDK archetype and move the code and other changes over to it
from the SDK 2.1.1 project, but this method is not covered in this article.

Developer Guide 161

o=

Developer Guide

In the following instructions the Al O_PRQIECT_PATH variable denotes the path to where

you have your All-in-One top project folder. So, for example, if your All-in-One project was
generated in the C: \ al f r esco- ext ensi ons\ acne- poc directory, then this directory path is
the value of this variable.

Make sure you have made a complete backup of your project before you start the upgrade
process!

1. Setting the SDK Version to 2.2.0.

In the IDE, open up the { Al O PRQIECT_PATH}/ pom xni project file. Scroll down so you
see the par ent section. Then update it to look as follows:

<par ent >
<groupl d>or g. al f r esco. maven</ gr oupl d>
<artifactld>al fresco-sdk-parent</artifactld>
<versi on>2. 2. 0</ ver si on>

</ par ent >

2. Add dependency for H2 database scripts.
In the same project file add a new dependenci es section with the following dependency:

<dependenci es>
<I-- If we are running tests then make the H2 Scripts
avai | abl e.
Note. tests are skipped when you are running -Prun -->
<dependency>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>al fresco-repository</artifactld>
<ver si on>${al fresco. ver si on} </ ver si on>
<cl assi fi er>h2scripts</cl assifier>
<scope>t est </ scope>
<excl usi ons>
<excl usi on>
<groupl d>*</ gr oupl d>
<artifactld>*</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

3. Remove Spring Loaded configuration from run scripts.

Spring Loaded currently blocks the Repository (Platform) from starting. Update the
{Al O PRQJIECT_PATH}/ run. sh and r un. bat so they don't use Spring Loaded, change the
MAVEN_OPTS so it looks like this:

run. sh: MAVEN OPTS="- Xns8256m - Xnx2G' nvn cl ean install -Prun
run. bat: set MAVEN OPTS=- Xns256m - Xmx2G

4. Update the Repo AMP module Spring context load order.

Open the { Al O PRQUECT_PATH} / <r epo- anp-i d>/ src/ mai n/ anp/ confi g/ al fresco/
modul e/ <nodul e-i d>/ nodul e-cont ext. xm file and update it so it looks like this:

<beans>

<I-- This is filtered by Maven at build tine, so that nodul e
nane is single sourced. -->
<I-- Note. The bootstrap-context.xm file has to be | oaded first.

O herwi se your custom nodel s are not yet |oaded when your service
beans are instantiated and you
cannot for exanple register policies on them -->
<i mport resource="cl asspat h: al fresco/ nodul e/
${project.artifactld}/context/bootstrap-context.xm" />

Developer Guide 162

Developer Guide

<i nport resource="cl asspat h: al fresco/ nodul e/
${project.artifactld}/context/service-context.xm" />

<i mport resource="cl asspat h: al fresco/ nodul e/
${project.artifactld}/context/webscript-context.xm" />
</ beans>

Update the Repo AMP module version to align with Maven Artifact version.

Open the { Al O_ PRQIECT_PATH} <r epo- anp- i d>/ sr ¢/ mai n/ anp/ nodul e. properti es file
and update the version property:

nmodul e. ver si on=${ pr oj ect . ver si on}

Remove sel eni um j ava dependency from the Share AMP project.

Open the { Al O PRQUECT_PATH} / <shar e- anp-i d>/ pom xri file and remove the following
dependency:

<l-- Bring in newer seleniumversion -->
<dependency>
<gr oupl d>or g. sel eni unmhg. sel eni unx/ gr oupl d>
<artifactld>sel eniumjava</artifactld>
<ver si on>2. 45. 0- al fresco</ ver si on>
<scope>t est </ scope>
</ dependency>

Update the Share AMP module version to align with Maven Artifact version.

Open the { Al O PRQUECT_PATH} / <shar e- anp-i d>/ src/ mai n/ anp/ modul e. properti es
file and update the version property:

nodul e. ver si on=${ pr oj ect . ver si on}

Update the Share AMP Page Object (PO)

The Share page object project has been updated a bit so the { Al O PROJECT_PATH} /
<shar e- anp-i d>/src/test/javal <package>/ dempanp/ po/ DenoPage. j ava class need
to be updated a bit:

i mport org.al fresco. po. share. Shar ePage;

i mport org.al fresco. po. Render Ti ne;

i mport org.openga. sel eni um NoSuchEl enent Excepti on
i nport org.openga. sel eni um WebEl enent ;

i mport org.openga. sel eni um support . Fi ndBy;

public class DenpbPage extends SharePage {
@i ndBy(i d="DEMO S| MPLE LOGO")
WebEl enent | ogo;

@i ndBy(i d="DEMO_SI MPLE_MSG")
WebEl enent nsg;

@uppr essWar ni ngs("unchecked")

@verride
publ i ¢ DenpPage render(RenderTinme tiner) {

/1 Wait for |ogo and nessage to display, then consider page
render ed
while (true) {
tinmer.start();
try {
if (isSinplelLogoDi splayed() && isMessageDi splayed()) {
br eak;

}
} catch (NoSuchEl enent Exception nse) {
} finally {

Developer Guide 163

Developer Guide

timer.end();

}

return this;

}

publ i c bool ean i sSi npl eLogoDi spl ayed() {
return isDisplayed(l ogo);
}

publ i c bool ean i sMessageDi spl ayed() {
return isbDisplayed(nsg);
}

public String get Message() {
return nsg. get Text ();
}

}

And update the Share AMP Page Object (PO) Test

The Share page object project has been updated a bit so the { Al O PROJECT_PATH} /
<share-anp-i d>/src/test/javal <package>/ denpanp/ DenoPageTest | T. j ava class
need to be updated a bit:

i mport org.al fresco. tut.denmoanp. po. DenoPage;

i mport org.al fresco. po. share. Logi nPage;

i mport org.al fresco. po. Abstract Test ;

i mport org.al fresco. po. shar e. Peopl eFi nder Page;
i nport org.testng. Assert;

i mport org.testng. annot ati ons. Bef or eCl ass;

i nport org.testng.annot ati ons. Bef or eMet hod;

i mport org.testng.annotations. Test;

public class DenpbPageTest| T extends Abstract Test {
DenpbPage page

@ef ored ass(groups = {"al fresco-one"})

public void prepare() throws Exception {
/1 Navigate to share, which will redirect to Login page
driver.navigate().to(shareUrl + "/page");

/'l Resol ve/Bind current page to Logi nPage obj ect
Logi nPage | ogi nPage = resol vePage(driver).render();
| ogi nPage. | ogi nAs(user name, password);

}

@Bef or eMet hod
public void | oadPage() ({
/] Goto denmp page
driver.navigate().to(shareUrl + "/page/ hdp/ ws/sinpl e-page");

/[l W need to instantiate the page like this as it is not yet

in
/1l the factory known |ist of pages
page = factoryPage.instanti atePage(driver, DenoPage.cl ass);
}
@rest

public void findLogo() {
Assert.assert True(page. i sSi npl eLogoDi spl ayed());
}

@rest
public void nessagel sDi spl ayed() {
page. r ender () ;

Developer Guide 164

Developer Guide

String nsg = page. get Message();
Assert.assert Not Nul | (nsg);

Assert.assert Equal s("Hello fromi18n!", nsQ);
}
/**
* Exanpl e of test reusing nethods in abstract share page objects.
*/
@rest

public void titleDisplayed() {
/'l I nvoke render when ready to use page object.
page. r ender () ;
Assert . assert Not Nul | (page);
Assert.assert True(page.getTitle().contains("This is a sinple
pagf"));

/**

* Test that show how we are able to reuse share page objects
* objects in particular the navigation object.
*/
@est
public void navigate() {
Assert.assert Not Nul | (page. get Nav());
Peopl eFi nder Page peopl eFi nder Page =
page. get Nav() . sel ect Peopl e() . render ();
Assert . assert Not Nul | (peopl eFi nder Page) ;
}

}

10. Add a Spring version property to the Runner project

We will need a newer Spring version than 3 to use annotations in the Share PO test
classes. Add the following properties section in the { Al O PRQIECT_PATH}/ r unner/
pom xm file:

<properties>

<l-- Bring in newer Spring with support for annotations, used
for Page bject tests -->

<spring. version>4. 1. 6. RELEASE</ spri ng. ver si on>
</ properties>

11. Add H2 db script dependency to the t ontat 7- maven- pl ugi n in the Runner project

These scripts come in a separate artifact now and not in the al f r esco-r ad artifact. In the
same project file add a new dependenci es section to the plug-in as follows (note. there
are actually 2 dependencies to add):

<pl ugi n>
<gr oupl d>or g. apache. t ontat . maven</ gr oupl d>
<artifactl|d>tontat 7- maven- pl ugi n</artifactld>
<dependenci es>
<I-- Bring in the H2 Database scripts needed when running
enbedded, they are now
avai l abl e fromthe standard generated artifacts, no |onger
needed to be picked
up fromthe alfresco-rad project -->
<dependency>
<gr oupl d>or g. al f r esco</ gr oupl d>
<artifactld>al fresco-repository</artifactld>
<ver si on>${ al fresco. ver si on} </ ver si on>
<cl assi fi er>h2scripts</classifier>
<excl usi ons>
<excl usi on>
<gr oupl d>*</ gr oupl d>
<artifactld>*</artifactld>
</ excl usi on>

Developer Guide 165

Developer Guide

</ excl usi ons>
</ dependency>
<I-- Explicitly bring in the Plexus Archiver so assenbly goes
qui cker -->
<dependency>
<gr oupl d>or g. codehaus. pl exus</ gr oupl d>
<artifactld>pl exus-archiver</artifactld>
<versi on>2. 3</ versi on>
</ dependency>
</ dependenci es>
<executions>

12. Update dependencies section for the r egr essi on-t est i ng profile in the Runner project

We need to bring in Spring 4 for example, in the same project file, update the profil e
dependenci es section so it looks like this:

... <dependenci es>
<I-- Bring in the Share Page bjects (PO wused in our
functional tests.
It contains page objects such as Logi nPage and it al so
brings
in seleniumgrid and sel enium -->
<dependency>
<groupl d>${al fresco. groupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<ver si on>%${al fresco. versi on} </ ver si on>
<scope>t est </ scope>
</ dependency>
<I-- Bring in the Share Page Ohject (PO Tests that cones wth
Al fresco. It has
the org. al fresco. po. share. Abstract Test class that our
customtests extend. -->
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<ver si on>${al fresco. versi on} </ ver si on>
<cl assifier>tests</classifier>
<scope>t est </ scope>

<!-- Exclude seleniumas it is already brought in by share-
po dependency above -->
<excl usi ons>
<excl usi on>
<gr oupl d>or g. sel eni unmhg. sel eni unx/ gr oupl d>
<artifactld>sel eniumjava</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. sel eni unmhg. sel eni unx/ gr oupl d>
<artifactld>sel eniumserver</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

<I-- Test NGis defined with test scope in share-po, so need it
here too -->

<!-- Alfresco code creates a wapper around Test NG -->

<dependency>

<groupl d>or g. al fresco. t est </ gr oupl d>
<artifactld>al fresco-testng</artifactld>
<versi on>1. 1</ ver si on>
<scope>t est </ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. hantr est </ gr oupl d>
<artifactld>hantrest-core</artifactld>
</ excl usi on>

Developer Guide 166

Developer Guide

</ excl usi ons>
</ dependency>
<I-- Bring in newer seleniumversion if required
<dependency>
<gr oupl d>or g. sel eni unmhq. sel eni unx/ gr oupl d>
<artifactld>sel eniumjava</artifactld>
<ver si on>2. 48. 0</ ver si on>
<scope>t est </ scope>
</ dependency>

e
<I-- Need to bring in a newer Spring that supports annotati ons,
Al fresco brings in ol der one -->
<dependency>

<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<ver si on>${ spri ng. ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-beans</artifactld>
<ver si on>${spri ng. ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<ver si on>${spri ng. ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactl|d>spring-aspects</artifactld>
<ver si on>${spri ng. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<ver si on>${spri ng. ver si on} </ ver si on>

</ dependency>

</ dependenci es>. .

13. Update dependencies section for the f uncti onal -t est i ng profile in the Runner project

Same thing as for the regression testing, we need to bring in Spring 4, in the same project
file, update the profi | e dependenci es section so it looks like this:

.. <dependenci es>
<I-- Bring in the Share Page hjects (PO used in our
functional tests.
It contains page objects such as Logi nPage and it al so
brings
in seleniumgrid and sel enium -->
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<ver si on>${ al fresco. versi on} </ ver si on>
<scope>t est </ scope>
</ dependency>
<I-- Bring in the Share Page hject (PO Tests that cones wth
Al fresco. It has
the org. al fresco. po. share. Abstract Test class that our
customtests extend. -->
<dependency>
<groupl d>${ al fresco. gr oupl d} </ gr oupl d>
<artifactld>share-po</artifactld>
<ver si on>${ al fresco. versi on} </ ver si on>

Developer Guide 167

Developer Guide

<cl assi fier>tests</cl assifier>
<scope>t est </ scope>

<l-- Exclude seleniumas it is already brought in by share-
po dependency above -->
<excl usi ons>
<excl usi on>
<gr oupl d>or g. sel eni unhq. sel eni un</ gr oupl d>
<artifactld>sel eniumjava</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. sel eni unhq. sel eni unx/ gr oupl d>
<artifactld>sel eniumserver</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

<I-- Test NGis defined with test scope in share-po, so need it
here too -->

<I-- Alfresco code creates a w apper around Test NG -->

<dependency>

<gr oupl d>or g. al fresco. t est </ gr oupl d>
<artifactld>al fresco-testng</artifactld>
<ver si on>1. 1</ ver si on>
<scope>t est </ scope>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. hantr est </ gr oupl d>
<artifactld>hancrest-core</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<I-- Bring in newer seleniumversion if required
<dependency>
<gr oupl d>or g. sel eni unhq. sel eni un</ gr oupl d>
<artifactld>sel eniumjava</artifactld>
<ver si on>2. 48. 0</ ver si on>
<scope>t est </ scope>
</ dependency>

e
<I-- Need to bring in a newer Spring that supports annotations,
Al fresco brings in ol der one -->
<dependency>

<gr oupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<versi on>${spri ng. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>spring-beans</artifactld>
<versi on>${spri ng. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<versi on>${spri ng. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
<versi on>${spri ng. versi on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<versi on>${spri ng. versi on} </ ver si on>

Developer Guide 168

14,

15.

16.

Developer Guide

</ dependency>
</ dependenci es>. .

Update Virtual Webapp context for Repository (alfresco.war) in the Runner project

Update directory paths for extra resource paths and AMP config, in the
{ Al O PRQIECT_PATH}/ runner/ t ontat / cont ext - r epo. xni file, update the
ext raResour cePat hs and vi rt ual d asspat h as follows:

ext raResour cePat hs="/=${ pr oj ect . parent . basedi r}/repo-anp/target/
anp/ web" />

vi rtual Cl asspat h="${proj ect. parent . basedi r}/repo-anp/target/
cl asses;
${proj ect. parent. basedir}/repo-anp/target/anp/confi g;
${proj ect.parent. basedir}/repo-anp/target/test-classes"

Note. if you got more Repo AMPs in your AlO project then you need to update the paths
for them too.

Update Virtual Webapp context for Share (share.war) in the Runner project

Update directory paths for extra resource paths and AMP config, in the
{ Al O_ PRQIECT_PATH}/ runner/ t ontat / cont ext - shar e. xni file, update the
ext raResour cePat hs and vi rt ual d asspat h as follows:

ext raResour cePat hs="/ =${ pr oj ect . parent . basedi r}/ shar e- anp/
target/anp/ web" />

vi rtual C asspat h="${proj ect. parent . basedi r}/share-anp/target/
cl asses;
${ proj ect. parent. basedi r}/share-anp/target/anp/config;
${proj ect.parent. basedir}/share-anp/target/test-classes;
${proj ect.parent.basedir}/share/target/test-classes"

Note. if you got more Repo AMPs in your AlO project then you need to update the paths
for them too.

Add maven- dependency- pl ugi n to the Share project

We will need it to unpack the MANI FEST. MF file so we can save it and store it in the new
custom WAR. Open the { Al O PRQIECT_PATH} / shar e/ pom xni file and add the plug-in
just before the maven- war - pl ugi n:

<pl ugi n>
<I-- Bring in the Maven Dependency plugin so we can unpack and
store the MANI FEST. MF fil e.
It will be used in the custom Share WAR that is produced
by the WAR pl ugi n,
it otherwi se gets overwitten by the overlay process. -->
<artifactld>maven- dependency- pl ugi n</artifactl d>
<executi ons>
<executi on>
<i d>unpack</i d>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >unpack- dependenci es</ goal >
</ goal s>
<confi gurati on>
<i ncl udeTypes>war </ i ncl udeTypes>
<i ncl udeGr oupl ds>or g. al f resco</i ncl udeG oupl ds>
<includeArtifactlds>share</includeArtifactlds>

Developer Guide 169

Developer Guide

<i ncl udes>META- | NF/ MANI FEST. MF</ i ncl udes>
</ configuration>
</ executi on>
</ execut i ons>
</ pl ugi n>

17. Add ar chi ve section to the maven- war - pl ugi n in the Share project

Store the custom MANI FEST. MF file when we build the custom shar e. war . Open the
{Al O PRQJECT_PATH}/ shar e/ pom xni file and add the ar chi ve section to the maven-
war - pl ugi n:

<artifactld>maven-war - pl ugi n</artifactld>
<confi gurati on>
<l-- Bring in the MANI FEST. MF file fromthe original share.war, it
contai ns version information
that is needed for it to operate properly -->
<ar chi ve>
<addMavenDescr i pt or >f al se</ addMavenDescri pt or >
<mani f est Fi | e>${proj ect. bui | d. directory}/dependency/ META- | NF/
MANI FEST. MF</ mani f est Fi | e>
</ ar chi ve>

18. Finally remove current al f _dat a_dev directory with previous database.

Remove the { Al O PROJIECT_PATH}/ al f _dat a_dev directory. This is needed as the H2
script artifact does not currently contain upgrade scripts.

Your All-in-One project should now be fully updated to use the 2.2.0 version of the SDK.

Using the REST API Explorer

The Alfresco SDK comes with the Alfresco REST API Explorer web application built into the r un
profile for the All-In-One project.

The API Explorer is based on the OpenAPI Specification (Swagger) and provides an interactive
(live) way of exploring the . When the All-In-One project is run the API Explorer is available via
the http: / /1 ocal host : 8080/ api - expl or er URL to test the different APIs against the local
running AlO instance.

The following screenshot shows an example of how the APl Explorer home page looks like:

L] € [} localhost:8080/api-explorer/ bdll @]

':;,i‘ Alfr eSCOo Core APl v | [admin [eees

Alfresco Core REST API

Provides access to the core features of Alfresco

To explore a particular group of APIs, such as favorites, click on it:

Developer Guide 170

http://swagger.io/

Developer Guide
« C [localhost:8080/api-explorer/#/ 72 O

a"i‘ Ah(rCSCO Core API ¥ | |admin

Alfresco Core REST API

Provides access to the core features of Alfresco

favorites Show/Hide List Operations | Expand Operations

/people/{personld}/favorites Get favorites
m /people/{personld}/favorites Add a favorite
/people/{personld}/favorites/{favoriteld} Delete a favorite
/people/{personld}/favorites/{favoriteld} Get a favorite

From here you can click on each of the available operations and test them against the locally
running Alfresco instance.

To run with another user than admi n change the username and password in the upper right
corner.

By default the explorer will show the Core API, if you are working with workflows click on the drop
down box that says Core API and select the Workflow API, you should then see the following:

€« C | [localhost:8080/api-explorer/ ~ 0
':‘:‘ Alfresco (Workdiow A1 v | [admin — [sses

Alfresco Workflow REST API

Provides access to the workflow features of Alfresco

Using MySQL

The Alfresco SDK can be configured to use a MySQL database server rather than the default
option of the H2 database engine.

By default, the Alfresco SDK uses H2 as its database, but it can be configured to use other
databases such as MySQL, PostgreSQL, or DB2. MySQL is a commonly used open source
database. The following tutorials looks at how the Alfresco SDK can be configured to use MySQL
rather than H2 as the main database for Alfresco, for both Repository AMP projects and All-in-
One projects.

Using MySQL with a repository AMP project

The Alfresco SDK can be configured to use MySQL, rather than the default database which is H2.
The following shows how to configure a repository AMP project to use MySQL.

This tutorial assumes you have access to a suitable MySQL server, or a local installation of
MySQL. Instructions on how to do this can be found in the MySQL documentation. It is also
assumed that you have created a repository AMP project according to instructions found here.

Developer Guide 171

http://www.mysql.com
http://dev.mysql.com/doc/

Developer Guide

You will see how to configure Alfresco SDK to use MySQL, rather than H2. This involves running
a simple script in MySQL, to create the necessary database and user, and set privileges. You will
also need to add some configuration to the AMP project pom xni file.

1. Create afile db_set up. sql with the following contents:

creat e database alfresco default character set utf8

grant all on alfresco.* to 'alfresco' @Il ocal host' identified by
‘alfresco’ with grant option

grant all on alfresco.* to 'alfresco' @Il ocal host. | ocal donai n'
identified by "alfresco' with grant option

2. Log into your MySQL server as root using the MySQL client:

mysgl -u root -p

3. Run your script to set up the database for Alfresco:

source db_set up. sql

This will create the Alfresco database (alfresco) and user/pwd (alfresco/alfresco).

4. You now need to configure your project POM file. Change into your project directory and
load pom xm into your editor of choice.

5. Add a dependency for the MySQL JDBC driver at the <pr oj ect > level of your pom xni
file:

<dependenci es>

<dependency>
<gr oupl d>nysql </ gr oupl d>
<artifactld>nysql -connector-java</artifactld>
<versi on>5. 1. 32</ ver si on>
</ dependency>
</ dependenci es>

6. Now add the configuration required for connecting to your MySQL server in the properties
section of the POM:

<I-- MySQ configuration -->

<al fresco. db. nane>al f resco</ al fresco. db. nane>

<al fresco. db. user nane>al fresco</ al fresco. db. user nane>
<al fresco. db. passwor d>al fresco</ al f resco. db. passwor d>
<al f resco. db. host >l ocal host </ al fresco. db. host >

<al fresco. db. port >3306</ al fresco. db. port >

<al fresco. db. parans></ al f resco. db. par ans>

<al fresco. db. url >j dbc: nysql : // ${al fresco. db. host}: ${al fresco. db. port}/
${al fresco. db. nane} </ al fresco. db. url >

<al f resco. db. dat asource. cl ass>org. gjt. mm nysql . Dri ver </
al fresco. db. dat asour ce. cl ass>

7. Save your changes to the pom xn file.
Comment out the H2 Dialect configuration from al f r esco- gl obal . properti es

Openthesrc/test/properties/local/alfresco-global.properties configuration
file. Then comment out the following line:

#hi ber nat e. di al ect =or g. hi ber nat e. di al ect. H2Di al ect

Developer Guide 172

Developer Guide
9. Now in the project directory you can type:

mvn cl ean install

10. Clean up any previous runs with H2:

rm-rf alf _data_dev/

This step is also very important as it will remove any content and indexes created when
you started with the H2 database. When you switch over to run with MySQL the system
thinks that it is the first time that you are running Alfresco, so it will create a new database,
new content, and index again, which will clash with any previous starts with H2.

11. Once you have a successful build you can run up Alfresco using:

mvn clean install -Panp-to-war

Alfresco will start up and use the MySQL database server that you configured. Track
console messages to confirm such as:

2014-09-15 15:47:52,552 INFO [al fresco.repo.adnmin] [l ocal host-

start Stop-1] Usi ng database URL 'jdbc: nysql://I| ocal host: 3306/ al fresco'
with user 'alfresco'.

2014-09-15 15:47:52,987 INFO [alfresco.repo.admn] [l ocal host -

start Stop-1] Connected to database MySQL version 5.6.11

12. Check for the message | NFO Starting Protocol Handl er ["htt p-bio-8080"].

13. Point your web browser at ht t p: / /| ocal host : 8080/ al f r esco, and log in as adni n with
password admi n.

You have configured the Alfresco SDK to use MySQL rather than H2.

Using MySQL with an All-in-One project

The Alfresco SDK can be configured to use MySQL, rather than the default database which is H2.
The following shows how to configure an All-in-One project to use MySQL.

This tutorial assumes you have access to a suitable MySQL server, or a local installation of
MySQL. Instructions on how to do this can be found in the MySQL documentation.

You will see how to configure Alfresco SDK to use MySQL, rather than H2. This involves running
a simple script in MySQL, to create the necessary database and user, and set privileges. You will
also need to add some configuration to the project pom xni file.

1. Create a fresh All-in-One (AIO) project to work with. You can use the instructions
contained in this tutorial as your guide.

2. Create a file db_set up_ai 0. sql with the following contents:

create database al frescoai o default character set utf8;
grant all on alfrescoaio.* to "alfresco' @Il ocal host' identified by
"alfresco’ with grant option;
grant all on alfrescoaio.* to 'alfresco @Il ocal host .| ocal domai n'
identified by 'alfresco' with grant option;

/S Note a different database has been specified here to avoid conflict with the previous
tutorial.

Developer Guide 173

http://dev.mysql.com/doc/

Developer Guide
3. Log into your MySQL server as root using the MySQL client:

mysgl -u root -p

4. Run your script to set up the database for Alfresco:

source db_setup_ai o. sql

This will create the Alfresco database and user.
5. Add a dependency for the MySQL JDBC driver

Open the { Al O PROJECT_ROOT}/ runner/ pom xm project file. Then add the following
dependency at the end of the t ontat 7- maven- pl ugi n definition:

<pl ugi n>
<gr oupl d>or g. apache. t ontat . maven</ gr oupl d>
<artifactl|d>tontat 7- maven- pl ugi n</artifact! d>

</ configuration>
<dependenci es>
<dependency>
<gr oupl d>nysql </ gr oupl d>
<artifactld>nysql - connector-java</artifactld>
<versi on>5. 1. 32</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>

6. Now add the configuration required for connecting to your MySQL server

Open the { Al O PRQIECT_ROOT}/ pom xmi project file. Then add the MySQL database
connection properties as follows:

<properties>

<l-- MWySQ configuration -->

<al fresco. db. nane>al f r escoai o</ al fresco. db. name>

<al fresco. db. user nane>al fresco</ al fresco. db. user name>

<al fresco. db. passwor d>al fresco</ al fresco. db. passwor d>

<al f resco. db. host >l ocal host </ al fresco. db. host >

<al fresco. db. port >3306</ al f resco. db. port >

<al fresco. db. parans></ al f resco. db. par ans>

<al fresco. db. url >j dbc: nysql : // ${al fresco. db. host }:
${al fresco. db. port}/ ${al fresco. db. nane} </ al fresco. db. url >

<al fresco. db. dat asource. cl ass>org. gjt. nm nysql . Dri ver </
al fresco. db. dat asource. cl ass>
</ properties>

7. Comment out the H2 Dialect configuration from al f r esco- gl obal . properti es

Open the { Al O_ PRQIECT_ROOT}/ r epo/ src/ mai n/ properties/| ocal /al fresco-
gl obal . properti es configuration file. Then comment out the following line:

#hi ber nat e. di al ect =or g. hi ber nat e. di al ect. H2Di al ect

Open the { Al O_ PRQIECT_ROOT}/ r epo- anp/ src/ t est/ properties/|ocal/al fresco-
gl obal . properti es configuration file. Then comment out the following line:

#hi ber nat e. di al ect =or g. hi ber nat e. di al ect. H2Di al ect

8. Now in the project directory you can type:

mvn cl ean i nst al

Developer Guide 174

10.

11.

Developer Guide

This step is very important as it cleans up any previous configuration files from target/...
Clean up any previous runs with H2:

rm-rf alf _data dev/

This step is also very important as it will remove any content and indexes created when
you started with the H2 database. When you switch over to run with MySQL the system
thinks that it is the first time that you are running Alfresco, so it will create a new database,
new content, and index again, which will clash with any previous starts with H2.

Once you have a successful build the project you can start up Alfresco using:

mvn clean install -Prun

Alfresco will start up and use the MySQL database server that you configured. As before,
scan the console for messages that confirm that Alfresco has connected to MySQL.:

2014-09- 15 16:14:59,912 |INFO [domai n.schenma. SchenmaBoot st r ap]
[l ocal host-startStop-1] Connecting to database: jdbc:mysql://

| ocal host: 3306/ al frescoai o, User Nanme=al fresco@ ocal host, M/SQ.
Connector Java

2014-09-15 16:14:59,913 |INFO [donain.schema. SchemaBoot st rap]
[l ocal host-start Stop-1] Schema nanaged by dat abase di al ect
org. hi bernate. di al ect. MySQLI nnoDBDi al ect .

Point your web browser at ht t p: / /| ocal host : 8080/ shar e, and log in as admni n with
password adni n.

You have configured the Alfresco SDK to use MySQL rather than H2.

Developer Guide 175

	Contents
	Developer Guide
	Alfresco Content Services architecture
	Alfresco Content Services architecture overview
	Guiding design principles
	Web tier and Surf
	Alfresco Share client application
	Application server
	Repository
	Content services
	Programming models
	APIs
	Embedded APIs
	Remote APIs

	Content modeling
	Protocols
	Modularity
	Web application framework
	Deployment options

	Access protocols
	Repository concepts
	Mini glossary

	Alfresco SDK 2.2.0
	What's new?
	Introduction to the Alfresco SDK
	Introduction to Maven archetypes
	Repository AMP archetype
	Share AMP archetype
	All-in-One archetype

	Compatibility matrix
	Community resources

	Getting Started with the Alfresco SDK
	Before you begin
	Installing and configuring software
	Install Spring Loaded
	Install JDK
	Setting JAVA_HOME
	Install Maven
	Setting MAVEN_OPTS & M2_HOME
	Using Alfresco One (Enterprise) (Optional)
	Configuring access to Alfresco Private Repository

	Verify install

	Creating a project
	Creating a Repository extension project (AMP)
	Creating a Share extension project (AMP)
	Creating an All-in-One (AIO) project (WARs)

	Maven Archetypes - Command Reference
	Repository AMP archetype command reference
	Share AMP archetype command reference
	All-in-One (AIO) archetype command reference

	Rapid Application Development (RAD)
	Importing SDK projects into Eclipse
	Rapid Application Development in Eclipse (Hot reloading)
	Importing SDK projects into IntelliJ IDEA
	Rapid Application Development in IntelliJ IDEA (Hot reloading)
	Remote debugging with an IDE

	Advanced Topics
	Configure SSL between Repository and Solr in an AIO project
	Adding internal and external JARs to a Repository AMP project
	Linking Standard Alfresco AMPs to an AIO project
	Adding more custom AMPs to an AIO project
	Creating new stand-alone custom AMPs and linking them to the AIO project
	Create new custom AMPs as part of the AIO project

	Deploying All-in-One (AIO) WARs to external environments

	Upgrading
	Upgrading Alfresco version for an extension project
	Upgrading SDK 2.1.1 projects from Enterprise 5.0.1 to 5.0.2
	Upgrading SDK 2.1.1 projects from Enterprise 5.0.1 (or 5.0.2) to 5.0.3
	Upgrading SDK 2.2.0 projects from Community 5.1.e to 5.1.[f|g]
	Upgrading SDK 2.2.0 projects from Community 5.1.e to 5.2.a
	Upgrading SDK 2.2.0 projects from Enterprise 5.1.0 to greater than 5.1.0

	Upgrading SDK version for an extension project
	What changes are allowed in an SDK release?
	Upgrading SDK version from 2.0.0 to 2.1.0
	Upgrading a Repository AMP project from SDK 2.0.0 to 2.1.0
	Upgrading a Share AMP project from SDK 2.0.0 to 2.1.0
	Upgrading an All-in-One (AIO) project from SDK 2.0.0 to 2.1.0

	Upgrading SDK version from 2.1.0 to 2.1.1
	Upgrading a Repository AMP project from SDK 2.1.0 to 2.1.1
	Upgrading a Share AMP project from SDK 2.1.0 to 2.1.1
	Upgrading an All-in-One (AIO) project from SDK 2.1.0 to 2.1.1

	Upgrading SDK version from 2.1.1 to 2.2.0
	Upgrading a Repository AMP project from SDK 2.1.1 to 2.2.0
	Upgrading a Share AMP project from SDK 2.1.1 to 2.2.0
	Upgrading an All-in-One (AIO) project from SDK 2.1.1 to 2.2.0

	Using the REST API Explorer
	Using MySQL
	Using MySQL with a repository AMP project
	Using MySQL with an All-in-One project

