CITY OF BURLINGTON PUBLIC SCHOOL DISTRICT CURRICULUM

Algebra 1 Honors

> Revision Date: $\quad-\underline{7 / 14 / 17}$ Submitted by: \quad Matthew Cann

Table of Contents:

Course Overview 3
Pacing Chart 4
Unit 1: Modeling with Linear Equations and Inequalities Overview At-a-Glance 5Unit 1: Modeling with Linear Equations and Inequalities
Unit 2: Modeling with Linear Functions, Linear Systems, \& Exponential FunctionsUnit 2: Modeling with Linear Functions, Linear Systems, \& Exponential Functions
Unit 3: Quadratic Equations, Functions, \& PolynomialsUnit 3: Quadratic Equations, Functions, \& Polynomials
Unit 4: Modeling with Statistics
Unit 4: Modeling with Statistics
Unit 5: Introduction to Trigonometry
Unit 5: Introduction to Trigonometry
Targeted Instructional Planning to Address Central Unit Standards: 9
Overview At-a-Glance 14
Targeted Instructional Planning to Address Central Unit Standards: 18
Overview At-a-Glance 25
Targeted Instructional Planning to Address Central Unit Standards: 29
Overview At-a-Glance 36
Targeted Instructional Planning to Address Central Unit Standards: 39
Overview At-a-Glance 44
Targeted Instructional Planning to Address Central Unit Standards:47

Course Overview

In this course, students will formalize and extend the mathematics that they learned in the middle grades. The units deepen and extend understanding of linear and exponential relationships by contrasting them with each other and by applying linear models to data that exhibit a linear trend. Students engage in methods for analyzing, solving, and using quadratic functions. The Mathematical Practice Standards apply throughout the course and, together with the New Jersey Student Learning Standards (NJSLS), students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations.

The New Jersey Student Learning Standards provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. The standards are designed to be robust and relevant to the real world, reflecting the knowledge and skills that our young people need for success in college and careers. With American students fully prepared for the future, our communities will be best positioned to compete successfully in the global economy.

The curriculum guide has been generated to not only help students achieve the New Jersey Student Learning Standards, but to ensure that students will be prepared for college and career opportunities following high school graduation.

Primary Resource(s)

Textbook

- Title: Algebra 1 Common Core

Publisher: Pearson Education Inc.
Copyright: 2012

Supplemental Materials (including various level of texts at each grade level)

- Title: NJ Center for Teaching and Learning: Worksheets, Activities, and Assessments
www.njctl.org
- Title: Math Worksheets Land
www.mathworksheetsland.com
- Title: Inside Mathematics - Common Core Resources
http://www.insidemathematics.org/performance-assessment-tasks
- Title: Mathematics Assessment Project - Mathematics Assessment Resource Services
http://map.mathshell.org/tasks.php?unit=HN03\&collection=9
- Title: Illustrative Mathematics - Content Specific Mathematics Tasks
https://www.illustrativemathematics.org/content-standards/HSS/ID/A/1/tasks/102

Pacing Chart

Unit \# \& Title	Pacing (must equal 165 days for full-year or 83 days for half-year course)
Unit 1 - Modeling with Linear Equations and Inequalities	20 days
Unit 2 - Modeling with Linear Functions, Linear Systems, \& Exponential Functions	25 days
Unit 3 - Quadratic Equations, Functions, \& Polynomials	60 days
Unit 4 - Modeling with Statistics	15 days
Unit 5 - Introduction to Trigonometry	45 days

Unit 1: Modeling with Linear Equations and Inequalities

Overview At-a-Glance

Unit \#1 - Modeling with Linear Equations and Inequalities

Unit Description:

In this unit, students will focus on conceptual understanding of linear equations and inequalities, graphing linear equations and inequalities, applying linear equations and inequalities to real life situations, and interpreting linear graphical results.

Essential Skills:

- Reason quantitatively and use units to solve problems
- Solve [linear] equations and inequalities in one variable
- Understand solving equations as a process of reasoning and explain the reasoning
- Create equations that describe numbers or relationships
- Interpret the structure of expressions
- Represent and solve equations graphically
- Summarize, represent, and interpret data on quantitative variables
- Interpret linear models

Standards Addressed within this Unit

Central Unit Standards- This unit will focus primarily on learning goals aligned with the following standards:

```
- N.Q.A. }
- N.Q.A. }
- N.Q.A. }
- A.REI.B. }
- A.REI.A. }
- A.CED.A. }
- A.SSE.A. }
- A.CED.A. }
```

- A.REI.A. 11
- A.CED.A. 2
- A.REI.D. 10
- S.ID.B. 6
- S.ID.C. 7
- S.ID.C. 8
- S.ID.C. 9

```
- A.CED.A. 1
```

Supporting Unit Standards- This unit will also include activities aligned with the following standards:

Math Standards 8.EE.B. 5 8.EE.B. 6 8.EE.C.7a 8.EE.C.7b 8.EE.C.8a 8.EE.C.8b 8.EE.C.8c 8.SP.A. 3 8.F.B. 4	NGSS Standards - HS.PS2.A - HS.PS2.B - HS.ETS1.A - HS.ETS1.C	ELA Standards - RST.11-12.1 - SL.11-12.5 - WHST.11-12.7 - WHST.11-12.8 - WHST.11-12.9

NGSS Standards

- HS.PS2.A
- HS.ETS1.A
- WHST.11-12.7
- WHST.11-12.8
- WHST.11-12.9

Modifications for Special Education Students, English Language Learners, Students at Risk of Failure, and Gifted Students- Modify instructional approach and/or assignments and evaluations as needed based for students with IEPs, 504s, ELLs and gifted and talented students including but not limited to:

- Alternate responses (drawings with captions, spoken responses, etc.)
- Advance/guided notes
- Extended time
- Teacher modeling (non-verbal teacher communication in addition to spoken instructions)
- Simplified written and verbal instructions
- ELL support materials (eDictionaries, native language prompts, etc.)
- Increased integration of higher order thinking processes, creative and critical thinking activities, problem-solving, and open-ended tasks
- Advanced pacing levels
- Greater opportunities for freedom of choice and independent study that encourage independent and intrinsic learning
- CSI projects to integrate higher-order thinking skills and creativity
- Create portfolios and peer lessons
- Reteaching worksheets
- Graphic organizers
- Visual Vocabulary
- Hands-on activity labs and modeling activities using tangrams
- Graph paper to produce visual representations of transformations
- Enrichment activities and worksheets

Unit Details

Integration of $21^{\text {st }}$ century skills through NJSLS 10 and Career

 Education:- Lessons, activities, and assessments require creativity and innovation on the part of the students. They are required to create projects and products as examples of mastery in each unit.
- Critical thinking and problem-solving skills are a core component of learning and assessment throughout this curriculum. Students are required, in each unit, to advance their learning through all levels of Bloom's Taxonomy to address the evaluation, synthesis, and creation of products using learning at the highest levels. Problem-solving is a recurring theme in the curriculum as students must seek ways to creatively apply the concepts to solve problems rather than simply remember the material.
- Learning advocates for health literacy as a critical component of a healthy lifestyle and the ability to make good health-related decisions.
- Students explore areas that support environmental literacy, including society's impact on the environment and what can be done to support environmental solutions.
- Lessons, where appropriate, incorporate multiple perspectives to infuse cultural and global awareness.
- Students must be information literate, i.e. they must be able to find and use information effectively, in order to succeed in class as learning activities require independent research of relevant information outside of the provided textbook and/or resources.

Assessments- including benchmarks, formative, summative,

 and alternative assessments
Formative

- Fluency Practice Activities
- Pearson Lesson Quizzes
- Topic Readiness Assessment
- Mid-Topic Assessment
- Mid-Topic Performance Task
- (ExamView®) Lesson and Checkpoint Quizzes
- PMI Quizzes

Summative

- STEM Project
- Topic Assessment
- Topic Performance Task

Suggested Interdisciplinary Activities for this Unit

Career Education - Create a budget; track and distribute assets and debits

Health/PE - Capture/recapture sampling method; BMI/Heart rate calculations; Compare and select a Health Club Membership

English Language Arts \& Literacy - According to one count, the letter e makes up $1 / 8$ of a typical document written in English. A document contains 2800 letters. About how many letters in the document are NOT e?

Art - Golden ratio and golden rectangle; Introduction of such and the major effect on artistic representation (Renaissance)

Science - Create a project on the algebra behind the original method of determining our distance away from the sun.

History/Social Studies - Calculate the distribution of House of Representatives based on population distributions

Technology - You format a document .t in three columns of equal width. The document is 8.5 in wide. You want left and right margins of 1 in each. Between the columns there is a "gutter" that is $1 / 8$ as wide as each column. What is the width of each column?

World Languages - Using the results of LAL, what is the fraction of letters in another language that are vowels? What is the most occurring letter in languages other than English?

Unit Resources

Teachers should utilize school resources available in our Media Center to infuse alternate sources, perspectives, and approaches. Resources should include textual support but also span multimedia options to engage multiple modalities. In addition, to support struggling readers and increase rigor for advanced readers, the coursework may also draw on additional developmentally appropriate resources to facilitate challenging levels of work for all students.

Leveled Supplemental Materials and Media/School Library

Resources

- Various leveled texts available via text, supplemental text, such as guided notes handouts, additional practice handouts, concept review handouts, sample/alternate tests
- Additional supplemental resources: Learnzillion, Khan Academy, Math TV, BetterLesson, Kuta Software, Math Worksheets Land,
- Informational Text resources from EdHelper, Scholastic Math
- Digital Resources: NJSLS Stations, CSI Math Projects, and NJSLS Mathematics Warm-ups.

Integration of the Technology Standard

- 8.1.12.A. 1
- 8.1.12.A. 2
- Microsoft Office: Word, Excel, PowerPoint
- Google Docs/Sheets/Slides- Student will create a slideshow or presentation that talks about fields that utilize algebra as per the technology standards.
- Graphing Calculators/Online graphing tools
- www.PowerAlgebra.com- Students will utilize this website to access their textbook or addition practice.
- http://parcc-assessment.org/ - Students will utilize this website to take sample PARCC exams

Unit 1: Modeling with Linear Equations and Inequalities
 Targeted Instructional Planning to Address Central Unit Standards:

$\begin{array}{c}\text { Central Unit } \\ \text { Standard and } \\ \text { Student Learning } \\ \text { Objective }\end{array}$	$\begin{array}{l}\text { Suggested Instructional Activities }\end{array}$	$\begin{array}{l}\text { Fuggested Student Output }\end{array}$	$\begin{array}{c}\text { Formative } \\ \text { Assessments } \\ \text { (Portfolios, }\end{array}$
Projects, Tasks,			
Rubrics)			

measurement when reporting quantities.	Brain Pop videos and activities as an alternative to standard instruction or for extra practice and remediation. PARCC Sample Questions found on the PARCC website.		PowerAlgebra self-check
	Informational Text and responses to comprehension questions based on real world data.		Summative

interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	Informational Text and responses to comprehension questions based on uses for literal equations		and age. Finally, students will design an exercise plan. Children's storybook:
A.SSE.A. 1 Interpret expressions that represent a quantity in terms of its context.	Illustrative Math Topics A.SSE.A. 1 Kitchen Floor Tiles Explain the reasoning of another person's answers by using algebra to expand upon a pattern.	Notebooks will have notes on one side of the page and visual representations of the material on the other.	Students will choose one of the major topics discussed in this unit and design a children's
A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear functions and quadratic functions, and simple rational and exponential functions.	Solve one variable equations by substituting in numeric values to an existing equation.	the usage of linear inequalities in the real world.	explaining this topic to young children. Topics
	$\frac{\text { A-CED.A. } 11 \text { Paying the rent }}{\text { Turn a }}$	Open-ended responses to	could include:
	Turn a real world problem about rent into an equation, a table and a graph.	questions involving the usage of linear inequalities for real world data.	how to graph linear functions, comparing
	Interactive Notebook for solving inequalities. The images created can be centered on the shading process, the different ways of shading, or the reason for shading.	Student-led discussion of key points of linear inequalities and shading.	functions, etc. In addition to teaching a mathematical
	Guided Instruction on solving linear inequalities. Pearson Video tutorials for extra help or re-teaching	Presentations using technology about fantasy football.	lesson, the book should teach a life lesson appropriate to the young age
	Brain Pop videos and activities as an alternative to standard instruction or for extra practice and remediation.	Collected Homework	level targeted.
	PARCC Sample Questions found on the PARCC website.	Notebook Checks	Fantasy Football: Students create their own fantasy

$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { Informational Text and responses to comprehension } \\ \text { questions based on linear inequalities }\end{array} & \begin{array}{l}\text { football system in } \\ \text { which they must } \\ \text { determine and }\end{array} \\ \text { evaluate } \\ \text { appropriate } \\ \text { expressions for } \\ \text { touchdowns, extra } \\ \text { points, yards } \\ \text { gained, lost, etc. }\end{array}\right\}$

Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. S.ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit. S.ID.C. 9 Distinguish between correlation and causation.	Guided Instruction on how to create a scatter plot and the different parts of a scatter plot. Pearson Video tutorials for extra help or re-teaching Brain Pop videos and activities as an alternative to standard instruction or for extra practice and remediation. PARCC Sample Questions found on the PARCC website. Informational Text and responses to comprehension questions involving the use of scatter plots.	Open-ended responses to questions involving scatter plots and how to compute them using technology. Student-led discussion of key points of scatter plots. Technology based presentation about the different fields that utilize algebra. The presentation should utilize google docs or slides. Collected Homework

Unit 2: Modeling with Linear Functions, Linear Systems, \& Exponential Functions Overview At-a-Glance

Unit \#2 - Modeling with Linear Functions, Linear Systems, \& Exponential Functions

Unit Description:

This unit focuses on expanding students' understanding of linear functions, solving linear systems, using linear systems to solve real work problems, graphing exponential functions, and recognizing the difference between different types of functions graphically and in table form.

Essential Skills:

- Solve linear systems of equations
- Create equations that describe numbers or relationships
- Interpret the structure of expressions
- Represent and solve equations and inequalities graphically
- Construct and compare linear \& exponential models
- Interpret expressions for functions in terms of the situation
- Build a function that models a relationship between two quantities
- Understand the concept of a function and use function notation
- Interpret functions that arise in applications in terms of the context
- Analyze functions using different representations

Standards Addressed within this Unit			
Central Unit Standards- This unit will focus primarily on learning goals aligned with the following standards:	Supporting Unit Standards- This unit will also include activities aligned with the following standards:		
- A.REI.C. 6 - F.BF.A. 1	Math Standards	NGSS Standards	ELA Standards
- A.CED.A. 3 - A.SSE.A. 1	- 8.EE.C.8a	- HS.LS4.A	- RST.11-12.1
- A.REI.C. 5 - A.SSE.B. 3	- 8.EE.C.8b	- HS.LS4.B	- RST.11-12.8
- A.REI.D. 12 •F.IF.B. 4	- 8.EE.C.8c	- HS.LS4.C	- SL.11-12.4
- F.IF.A. 1 -F.LE.B. 5	- 8.SP.A. 3		- WHST.11-12.9
- F.IF.A. 2 - F.IF.B. 5	- 8.F.B. 4		- WHST.9-12.2
- F.LE.A. 1 - F.IF.B. 6			
- F.LE.A. 2 - F.IF.C. 9			
- F.IF.A. 3 •F.IF.C. 7			

Unit Details

Modifications for Special Education Students, English Language Learners, Students at Risk of Failure, and Gifted Students-

Modify instructional approach and/or assignments and evaluations as needed based for students with IEPs, 504s, ELLs and gifted and talented students including but not limited to:

- Alternate responses (drawings with captions, spoken responses, etc.)
- Advance/guided notes
- Extended time
- Teacher modeling (non-verbal teacher communication in addition to spoken instructions)
- Simplified written and verbal instructions
- ELL support materials (eDictionaries, native prompts, etc.)
- Increased integration of higher order thinking processes, creative and critical thinking activities, problem-solving, and open-ended tasks
- Greater opportunities for freedom of choice and independent study that encourage independent and intrinsic learning
- CSI projects to integrate higher-order thinking skills and creativity
- Create portfolios and peer lessons
- Reteaching worksheets
- Graphic organizers
- Visual Vocabulary
- Hands-on activity labs and modeling activities using tangrams
- Graph paper to produce visual representations of transformations
- Enrichment activities and worksheets

Integration of $21^{\text {st }}$ century skills through NJSLS 10 and Career Education:

- Lessons, activities, and assessments require creativity and innovation on the part of the students. They are required to create projects and products as examples of mastery in each unit.
- Critical thinking and problem-solving skills are a core component of learning and assessment throughout this curriculum. Students are required, in each unit, to advance their learning through all levels of Bloom's Taxonomy to address the evaluation, synthesis, and creation of products using learning at the highest levels. Problem-solving is a recurring theme in the curriculum as students must seek ways to creatively apply the concepts to solve problems rather than simply remember the material.
- Lessons, where appropriate, incorporate multiple perspectives to infuse cultural and global awareness.
- Learning and assessment activities support the push to make students media literate, as they are often required to analyze, evaluate, and create messages in a wide variety of media modes, genres, and formats.
- In order to succeed in this course, students must be able to use technology as a tool in order to research, organize, evaluate, and communicate information.
- Activities in the curriculum help develop life and career skills in all students by promoting flexibility and adaptability, requiring initiative and self-direction in the learning process, supporting social and cross-cultural skills in both content and teamwork efforts, and

	measuring productivity and accountability through independent and group assignment completion.
Assessments- including benchmarks, formative, summative, and alternative assessments Formative - Fluency Practice Activities - Envision Lesson Quizzes - Topic Readiness Assessment - Mid-Topic Assessment - Mid-Topic Performance Task - (ExamView®) Lesson and Checkpoint Quizzes - PMI Quizzes - PowerAlgebra quizzes Summative - STEM Project - Topic Assessment - Topic Performance Task - Unit 1-2 Cumulative/Benchmark Assessment	Suggested Interdisciplinary Activities for this Unit Career Education - Cost of building a house within a budget. Balance out needs and wants. Health/PE - At a local fitness center, members pay a $\$ 20$ membership fee and $\$ 3$ for each aerobics class. Nonmembers pay $\$ 5$ for each aerobics class. For what number of aerobic classes will the cost for members and nonmembers be the same? English Language Arts \& Literacy - Are row operations more like the substitution method or the elimination method? Explain. $\underline{\mathbf{A r t}}-$ Create a project using systems of inequalities. The shaded regions of the graphs should be able to be put together to create a picture. Science - A farmer grows corn, tomatoes, and sunflowers on a 320 -acre farm. This year, the farmer wants to plant twice as many acres of tomatoes as acres of sunflowers. The farmer also wants to plant 40 more acres of corn than of tomatoes. How many acres of each crop should the farmer plant? History/Social Studies _ Compare capitalism and communism by using a system of equations that represent the gross national products of each country. Technology - A bike store costs $\$ 2400$ per month to rent. The store pays $\$ 60$ per bike and sells for $\$ 120$. How many bikes must be sold to breakeven? Express as a spreadsheet. What other fixed costs and variable costs should also be included?

World Language - How can the substitution method be utilized when changing an English sentence to [insert language here]? What limitations does this method have? Explain.

Unit Resources

Teachers should utilize school resources available in our Media Center to infuse alternate sources, perspectives, and approaches. Resources should include textual support but also span multimedia options to engage multiple modalities. In addition, to support struggling readers and increase rigor for advanced readers, the coursework may also draw on additional developmentally appropriate resources to facilitate challenging levels of work for all students.

Leveled Supplemental Materials and Media/School Library Resources

- Various leveled texts available via text, supplemental text, such as guided notes handouts, additional practice handouts, concept review handouts, sample/alternate tests
- Additional supplemental resources: Learnzillion, Khan Academy, Math TV, BetterLesson, Kuta Software, Math Worksheets Land,
- Informational Text resources from EdHelper, Scholastic Math
- Digital Resources: NJSLS/CC Stations, CSI Math Projects, and NJSLS/CCSS Mathematics Warm-ups.

Integration of the Technology Standard

- 8.1.12.A. 4
- 8.1.12.B. 2
- Microsoft Office: Word, Excel, PowerPoint
- Google Docs/Sheets/Slides- Student will create a game utilizing google sheets. The students should use Sheets are a data gathering tool, score calculator, or other resource for their game.
- Graphing Calculators/Online graphing tools
- www.PowerAlgebra.com- Students will utilize this website to access their textbook or addition practice.
http://parcc-assessment.org/ - Students will utilize this website to take sample PARCC exams

Unit 2: Modeling with Linear Functions, Linear Systems, \& Exponential Functions Targeted Instructional Planning to Address Central Unit Standards:

Central Unit Standard and Student Learning Objective	Suggested Instructional Activities	Suggested Student Output	Formative Assessments (Portfolios, Projects, Tasks, Evaluations, \& Rubrics)
A.REI.C. 5	Illustrative Math Topics	Journal entries written about the usage of systems of linear equations in the real world.	Formative Fluency Practice Activities
Prove that, given a	A.REI.C. 6 Cash Box		
system of two equations in two	Determine whether an amount of cash is possible given price of tickets by using a		
variables, replacing one equation by the sum of	linear inequality.	Open-ended responses to real world problems involving systems of linear equations.	Pearson Lesson Quizzes
that equation and a	A.CED.A. 3 Dimes and Quarters		
multiple of the other	Determine the amount of quarters and dimes		Topic Readiness
produces a system with the same solutions.	by graphing a system of linear equations. A.REI.C. 5 Solving Two Equations in Two	Student-led discussion of the different methods of solving systems of linear equations.	Assessment Mid-Topic Assessment
A.REI.C. 6	Unknowns		Mid-Topic Assessment
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	Think about the solutions to a system of linear equations and determine why all methods will give you the same result.	Presentations using technology for a student council dinner. Students will	Mid-Topic Performance Task
	give you the same result. A.REI.D. 12 Fishing Adventures 3	council dinner. Students will be given different variables to consider and they will solve a	(ExamView®) Lesson and Checkpoint
	Use linear inequalities to find the feasible values of people and weight that can get into a boat safely.	system of linear equations to determine the course of action that should be followed.	Quizzes PMI Quizzes
A.REI.D. 12			
Graph the solutions to a linear inequality in two	Diagnostic assessment focusing on the standards from eighth grade and the previous unit to check	Collected Homework	PowerAlgebra selfcheck
variables as a halfplane (excluding the	for readiness of the entire unit.	Notebook Checks	Summative

boundary in the case of a strict inequality), and graph the solution set to	Guided Instruction on creating formulas from written information.		STEM Project Topic Assessment
a system of linear	Pearson Active Math Exploration		
inequalities in two variables as the	interactive computer models to give a hands on experience with inequalities		Topic Performance Task
intersection of the			Unit 1-2
corresponding halfplanes.	Pearson Video tutorials for extra help or reteaching		Cumulative/Benchmark Assessment
A.CED.A. 3	Brain Pop videos and activities as an alternative		
Represent constraints by equations or	to standard instruction or for extra practice and remediation.		Project Suppose you are the student council member that is responsible for planning a student dinner dance. Plans include hiring a band and buying and serving dinner. You want to keep the ticket price as low as possible to encourage student attendance. As you work through the following activities, you will use systems of equations to analyze costs and make decisions. You will write a report detailing
inequalities, and by			
systems of equations and/or inequalities, and	PARCC Sample Questions found on the PARCC website.		
interpret solutions as			
viable or nonviable	Informational Text and responses to		
options in a modeling context. For example,	comprehension questions based on real world problems involving inequalities.		
represent inequalities			
describing nutritional and cost constraints on			
combinations of different foods.			
F.IF.A. 1	Illustrative Math Topics		
Understand that a	F.IF.A. 1 The Parking Lot	one side of the page and	
function from one set (called the domain) to	Complete a table and use a compound inequality to explain the pricing of a parking lot.	visual representations of the material on the other.	
another set (called the			
range) assigns to each	F.IF.A. 2 Yam in the Oven	Journal entries written about	
element of the domain exactly one element of	Use functions notation to describe real life situations, such as, the temperature of yams in	how to set up functions and what purpose they have in the	

sequences - given a graph, a description of a relationship, or two input-output pairs	differences between linear and exponential functions, the graphs of exponential functions, or the procedure for solving exponential functions.	exponential functions and how to enter them into technology.	Formative Fluency Practice Activities
(include reading these	Guided Instruction on how to set up an	Student-led discussion of key points of exponential	
from a table). * [Algebra 1 limitation: exponential expressions with integer exponents]	exponential function means.	functions.	Quizzes
	Pearson Video tutorials for extra help or reteaching	Technology based presentation about the	Topic Readiness Assessment
Recognize that sequences are	Brain Pop videos and activities as an alternative to standard instruction or for extra practice and	comparison of compound interest. The students will determine the reason that	Mid-Topic Assessment
functions, sometimes defined recursively,	remediation.	compound interest is superior to simple interest.	Mid-Topic Performance Task
whose domain is a subset of the integers. For example, the Fibonacci sequence is defined	PARCC Sample Questions found on the PARCC website.	Collected Homework	(ExamView®) Lesson and Checkpoint
$\begin{aligned} & \text { recursively yy } f(0)=f(1)= \\ & 1, f(n+1)=f(n)+f(n-1) \text { for } \\ & n \geq 1 \text {. } \end{aligned}$	Informational Text and responses to comprehension questions involving the use of exponential functions.	Notebook Checks	Quizzes PMI Quizzes
F.BF	Illustrative Math Topics	Notebooks will have notes on	
Write a function that describes a relationship	F.BF.A.1a Skeleton Tower Find the number of cubes needed to create a	one side of the page and	PowerAlgebra self-
describes a relationship between two quantities.	Find the number of cubes needed to create a given structure, then extrapolate the amount of squares for larger structures.	visual representations of the material on the other.	Summative
A.SSE.A. 1		Journal entries written about	STEM Project
Interpret expressions that represent a quantity in terms of its context	A.SSE.A. 1 Mixing Candies Determine the value of candies in a given box by creating and solving a system of linear	how to set up functions and what purpose they have in the real world.	Topic Assessment
			Topic Performance
A.SSE.B. 3		Open-ended responses to questions involving functions	Task Unit 1-2

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	Interactive Notebook for functions. The images should focus on function notation, the usage of functions, and/or how to create functions. Guided Instruction on how to set up a function from a model. Pearson Video tutorials for extra help or reteaching Brain Pop videos and activities as an alternative to standard instruction or for extra practice and remediation. PARCC Sample Questions found on the PARCC website. Informational Text and responses to comprehension questions involving the setup of functions from models.	and how to enter them into technology. Student-led discussion of key points of setting up functions. Technology based presentation based around a game they created. The students will need to use google sheets as part of their game creation. Collected Homework Notebook Checks	Cumulative/Benchmark Assessment Project Suppose you are the student council member that is responsible for planning a student dinner dance. Plans include hiring a band and buying and serving dinner. You want to keep the ticket price as low as possible to encourage student attendance. As you work through the
F.IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is	Illustrative Math Topics F.IF.B. 4 Warming and Cooling Use a graph of heat over time to determine the solution to several different equations. F.IF.B.4, F.IF.B. 5 Average Cost Use an equation, table, and graph to determine the amount of money that should be paid for different numbers of DVDs.	Notebooks will have notes on one side of the page and visual representations of the material on the other. Journal entries written about how to solve for the domain and range of an exponential function. Open-ended responses to questions involving the limitations of the domain and	following activities, you will use systems of equations to analyze costs and make decisions. You will write a report detailing your choice of band, the cost of a catering service, and your ticket price recommendation. Multimedia Presentations: Upon

Unit 3: Quadratic Equations, Functions, \& Polynomials

Overview At-a-Glance

Unit \#3 - Quadratic Equations, Functions, \& Polynomials

Unit Description:

This unit explains the operations, functions, and graphs of quadratic equations. It also extends this information to polynomials of higher degree.

Essential Skills:

- Perform arithmetic operations on polynomials
- Understand the relationship between zeros and factors
- Interpret the structure of expressions
- Solve equations and inequalities in one variable
- Create equations that describe numbers or relationships
- Interpret functions that arise in applications in terms of the context
- Represent and solve equations and inequalities graphically
- Build a function that models a relationship between two quantities
- Construct \& compare linear, quadratic, \& exponential models
- Build new functions from existing functions
- Analyze functions using different representations
- Use properties of rational and irrational numbers

Standards Addressed within this Unit

Central Unit Standards- This unit will focus primarily on learning goals aligned with the following standards:

- A.APR.A. 1
- F.IF.C. 7
- A.SSE.A. 2
- F.IF.C. 8
- A.REI.B. 4
- A.CED.A. 1
- F.IF.C. 9
- F.IF.B. 6
- F.LE.A. 3

Supporting Unit Standards- This unit will also include activities aligned with the following standards:

Math Standards	NGSS Standards	ELA Standards
- 8.F.A. 1	- HS.PS1.A	- RST.11-12.1
- 8.F.A. 2	- HS.PS1.B	- SL.11-12.5
- 8.F.A. 3	- HS.ETS1.C	- WHST.11-12.7
- 8.F.B. 4		- WHST.9-12.2

\bullet F.IF.B.5	\bullet F.BF.B.3	\bullet 8.F.B.5		WHST.9-12.2
\bullet A.SSE.B.3	•A.REI.D.11			
\bullet F.BF.A.	\bullet A.APR.B.3			
	N.RN.B.3			

Modifications for Special Education Students, English Language Learners, Students at Risk of Failure, and Gifted Students- Modify instructional approach and/or assignments and evaluations as needed based for students with IEPs, 504s, ELLs and gifted and talented students including but not limited to:

- Alternate responses (drawings with captions, spoken responses, etc.)
- Advance/guided notes
- Extended time
- Teacher modeling (non-verbal teacher communication in addition to spoken instructions)
- Simplified written and verbal instructions
- ELL support materials (eDictionaries, native language prompts, etc.)
- Increased integration of higher order thinking processes, creative and critical thinking activities, problem-solving, and open-ended tasks
- Advanced pacing levels
- Greater opportunities for freedom of choice and independent study that encourage independent and intrinsic learning
- CSI projects to integrate higher-order thinking skills and creativity

Unit Details

Integration of $\mathbf{2 1}^{\text {st }}$ century skills through NJSLS 9 and Career Education:

- Lessons, activities, and assessments require creativity and innovation on the part of the students. They are required to create projects and products as examples of mastery in each unit.
- Critical thinking and problem-solving skills are a core component of learning and assessment throughout this curriculum. Students are required, in each unit, to advance their learning through all levels of Bloom's Taxonomy to address the evaluation, synthesis, and creation of products using learning at the highest levels. Problem-solving is a recurring theme in the curriculum as students must seek ways to creatively apply the concepts to solve problems rather than simply remember the material.
- Students explore areas that support environmental literacy, including society's impact on the environment and what can be done to support environmental solutions.
- Lessons integrate a focus on civic literacy so that student can better understand the rights and obligations of citizenship.
- Learning advocates for health literacy as a critical component of a healthy lifestyle and the ability to make good health-related decisions.
- Communication and collaboration is crucial for student success as learners. Throughout this curriculum, students must be able to communicate deep understanding through open ended responses (both orally and in writing). In addition, students are often required
- Create portfolios and peer lessons
- Reteaching worksheets
- Graphic organizers
- Visual Vocabulary
- Hands-on activity labs and modeling activities using tangrams
- Graph paper to produce visual representations of transformations

Assessments- including benchmarks, formative,

summative, and alternative assessments

Formative

- Fluency Practice Activities
- Pearson Lesson Quizzes
- Topic Readiness Assessment
- Mid-Topic Assessment
- Mid-Topic Performance Task
- (ExamView®) Lesson and Checkpoint Quizzes
- PMI Quizzes
- PowerAlgebra

Summative

- STEM Project
- Topic Assessment
- Topic Performance Task
to work collaboratively with their peers, which promotes the ability to succeed in the area of social cooperative work, increases communication skills, and promotes leadership and responsibility.

Suggested Interdisciplinary Activities for this Unit

Career Education - A cell phone company sells about 500 phones each week when it charges $\$ 75$ per phone. It sells 20 more phones per week for each $\$ 1$ decrease in price. The company's revenue is the product of the number of phones sold and the price of each phone. What price should the company charge to maximize its revenue?

Health/PE - What function can be used to track a ball in flight?
English Language Arts \& Literacy - How can you use the discriminant to write a quadratic equation and to determine the number of solutions? Write an instruction set that could be used by a non-mathematician.

Art - Either create a bowl or bring a bowl in. Measure three coplanar points on the inside of the bowl. Then create an equation for the parabola on the inside of the bowl by using those three points.

Science - Parabolic relationships between horizontal distance and vertical distance of propelled objects. From Unit 4 (the aquarium), if the volume of an aquarium with height 3 feet is 420 feet cubed and the length is twice the width, what is the length? What is the ratio of the length, width and height?

	History/Social Studies - What wartime inventions require a parabola to represent the data? Ex. Trebuchet, cannon, etc. Punkin Chunkin video from the History Channel could be used as an introduction.
Technology - Using the data from Unit 5, use Excel to generate quadratic lines of best fit. Discuss the correlation coefficients. Using the phone data from Unit 5, use a spreadsheet to find a line of best fit. Compare this to the line of best fit from a graphing utility.	
World Language - Translate key words: parabola, vertex, point, curve, quadratic, \& polynomial. Then write a brief explanation in target language.	

Unit Resources

Teachers should utilize school resources available in our Media Center to infuse alternate sources, perspectives, and approaches. Resources should include textual support but also span multimedia options to engage multiple modalities. In addition, to support struggling readers and increase rigor for advanced readers, the coursework may also draw on additional developmentally appropriate resources to facilitate challenging levels of work for all students.

Leveled Supplemental Materials and Media/School Library Resources

- Various leveled texts available via text, supplemental text, such as guided notes handouts, additional practice handouts, concept review handouts, sample/alternate tests
- Additional supplemental resources: Learnzillion, Khan Academy, Math TV, BetterLesson, Kuta Software, Math Worksheets Land,
- Informational Text resources from EdHelper, Scholastic Math
- Digital Resources: NJSLS/CC Stations, CSI Math Projects, and NJSLS/CCSS Mathematics Warm-ups.

Integration of the Technology Standard

- 8.1.12.C. 1
- 8.1.12.A. 1
- Microsoft Office: Word, Excel, PowerPoint
- Google Docs/Sheets/Slides- Use google docs to create a fake Facebook page about polynomials. The fake Facebook page should show knowledge of the content and the progression of knowledge gained throughout the unit.
- Graphing Calculators/Online graphing tools
- www.PowerAlgebra.com- Students will utilize this website to access their textbook or addition practice.
http://parcc-assessment.org/ - Students will utilize this website to take sample PARCC exams

Unit 3: Quadratic Equations, Functions, \& Polynomials
 Targeted Instructional Planning to Address Central Unit Standards:

$\begin{array}{c}\text { Central Unit Standard } \\ \text { and Student Learning } \\ \text { Objective }\end{array}$	$\begin{array}{l}\text { Suggested Instructional Activities }\end{array}$	$\begin{array}{c}\text { Suggested Student } \\ \text { Output }\end{array}$	$\begin{array}{c}\text { Formative } \\ \text { Assessments } \\ \text { (Portfolios, }\end{array}$
Projects, Tasks,			
Rubrics)			

	Brain Pop videos and activities as an alternative to standard instruction or for extra practice and remediation. PARCC Sample Questions found on the PARCC site. Informational Text and responses to comprehension questions based on real world problems involving polynomials.		Summative STEM Project Topic Assessment Topic Performance Task
A.REI.B.4. Solve quadratic equations in one variable. A.CED.A.1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear functions and quadratic functions, and simple rational and exponential functions.	Illustrative Math Topics A.REI.B. 4 Visualizing Completing the Square Students will use a visual representation of completing the square to solve a set of problems involving quadratics.	Notebooks will have notes on one side of the page and visual representations of the material on the other.	Project A chain letter (or email) tells its recipient to make copies and send them to others.
	A.REI.B. 4 Braking Distance Solve a quadratic equation given values to plug into the equation.	Journal entries written about how to solve polynomials.	The other people who receive it then need to make copies and send
	A.REI.B. 4 Two Squares are Equal Set up and solve a quadratic equation that is not presented in standard form.	Open-ended responses to questions involving solving quadratic functions.	them out. The number of letters continues to grow. How fast will a
	should focus on the ways to factor quadratics. Guided Instruction on how to factor a quadratic and solve quadratics.	Student-led discussion on the different ways to solve quadratic functions.	chain letter grow? One student will receive a chain letter. That student will make copies and give them to
	Pearson Video tutorials for extra help or re-teaching	Technology based presentation about chain letters and how they get multiplied. Students	classmates at the beginning of the next class period.

Include cases where $\mathrm{f}(\mathrm{x})$ and/or $\mathrm{g}(\mathrm{x})$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.* A.APR.B.3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. *[Algebra 1: limit to quadratic and cubic functions in which linear and quadratic factors are available] N.RN.B.3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Interactive Notebook for zeros of a polynomials. The images should focus on the different ways to name a zero, the usage of a zero, and/or how to find a zero. Guided Instruction on how to solve for a zero of a polynomial function. Pearson Video tutorials for extra help or re-teaching Brain Pop videos and activities as an alternative to standard instruction or for extra practice and remediation. PARCC Sample Questions found on the PARCC website. Informational Text and responses to comprehension questions involving solving for zeros.	Student-led discussion of key points of zeros. Technology based presentation about polynomials by creating a fake Facebook page. Students will be allowed to work in groups but material from the entire unit must be incorporated. Collected Homework Notebook Checks

Unit 4: Modeling with Statistics

Overview At-a-Glance

Unit \#4 - Modeling with Statistics

Unit Description:

This unit focuses on representing and interpreting data of one or two variables. Also, this unit focuses on interpreting functions related to statistics.

Essential Skills:

- Summarize, represent, and interpret data on a single count or measurement variable
- Summarize, represent, and interpret data on two categorical and quantitative variables
- Interpret functions that arise in applications in terms of the context

Standards Addressed within this Unit

Central Unit Standards- This unit will focus primarily on learning goals aligned with the following standards:

- S.ID.A. 1
- S.ID.A. 2
- S.ID.A. 3
- S.ID.B. 5
- S.ID.B. 6
- F.IF.B. 4
- F.IF.B. 5

Supporting Unit Standards- This unit will also include activities aligned with the following standards:
Math Standards
NGSS Standards

- 8.SP.A. 1
- 8.SP.A. 2
- 8.SP.A. 3
- 8.SP.A. 4
- 8.F.A. 3
- 8.F.B. 4

ELA Standards

- RST.11-12.1
- RST.11-12.2
- RST.11-12.7
- SL.11-12.5

Unit Details		
Modifications for Special Education Students, English	Integration of 21 ${ }^{\text {st }}$ century skills through NJSLS 9 and Career	
Language Learners, Students at Risk of Failure, and Gifted	Education:	
Students- Modify instructional approach and/or assignments and	$\bullet \quad$ Lessons, activities, and assessments require creativity and	
evaluations as needed based for students with IEPs, 504s, ELLs	innovation on the part of the students. They are required to	

and gifted and talented students including but not limited to:

- Alternate responses (drawings with captions, spoken responses, etc.)
- Advance/guided notes
- Extended time
- Teacher modeling (non-verbal teacher communication in addition to spoken instructions)
- Simplified written and verbal instructions
- ELL support materials (eDictionaries, native language prompts, etc.)
- Increased integration of higher order thinking processes, creative and critical thinking activities, problem-solving, and open-ended tasks
- Advanced pacing levels
- Greater opportunities for freedom of choice and independent study that encourage independent and intrinsic learning
- CSI projects to integrate higher-order thinking skills and creativity
- Create portfolios and peer lessons
- Reteaching worksheets
- Graphic organizers
- Visual Vocabulary
- Hands-on activity labs and modeling activities using tangrams
- Graph paper to produce visual representations of transformations
- Enrichment activities and worksheets
create projects and products as examples of mastery in each unit.
- Critical thinking and problem-solving skills are a core component of learning and assessment throughout this curriculum. Students are required, in each unit, to advance their learning through all levels of Bloom's Taxonomy to address the evaluation, synthesis, and creation of products using learning at the highest levels. Problem-solving is a recurring theme in the curriculum as students must seek ways to creatively apply the concepts to solve problems rather than simply remember the material.
- Learning advocates for health literacy as a critical component of a healthy lifestyle and the ability to make good health-related decisions.
- In order to succeed in this course, students must be able to use technology as a tool in order to research, organize, evaluate, and communicate information.
- Learning incorporates skills focusing on financial, economic, business, and entrepreneurial literacy.
- Students must be information literate, i.e. they must be able to find and use information effectively, in order to succeed in class as learning activities require independent research of relevant information outside of the provided textbook and/or resources.
- Students explore areas that support environmental literacy, including society's impact on the environment and what can be done to support environmental solutions.

Assessments- including benchmarks, formative, summative, and alternative assessments

Formative

- Fluency Practice Activities
- Pearson Lesson Quizzes
- Topic Readiness Assessment
- Mid-Topic Assessment
- Mid-Topic Performance Task
- (ExamView®) Lesson and Checkpoint Quizzes
- PMI Quizzes
- PowerAlgebra quizzes

Summative

- STEM Project
- Topic Assessment
- Topic Performance Task
- Unit 1-4 Cumulative/Benchmark Assessment

Suggested Interdisciplinary Activities for this Unit

Career Education - A pollster selects 100 people from each town in a certain candidate's district to see if they support the candidate. Decide whether the sampling is random, systematic or stratified.

Health/PE - Using Mean, Median, Mode, what are the highest scores in a tournament? Who benefits from each measurement and are there sports that use one specifically? Ex. Track and swimming. Compare the salaries of different sports. Which sport has the most outliers?

English Language Arts \& Literacy - How can you use a frequency table of a data set to construct a cumulative frequency table? Explain.

Art - Take a piece of abstract art that has easily defined geometric shapes. If this piece of art was used as a dart board, determine the value of points for each given color. Solve by finding relative areas and probabilities of landing in each.

Science - Organize and analyze data on endangered species or weather patterns.
History/Social Studies - Using the data gathered in Ch 5, track the GDP and make predictions. Compare and contrast the predictions against reality. Is it possible to predict the GDP? Statistics are used in different ways for determining the results of elections and polls, population, world religion membership, and the casualties of various wars. How can the selection of method affect the outcome?

Technology - For some civil cases, at least 9 of 12 jurors must agree on a verdict. How many combinations of 9 jurors are possible on a 12 -person jury? Use a spreadsheet to define your answer.

World Languages - What is the distribution of languages throughout the world in terms of population and/or countries? How is it changing?

Unit Resources

Teachers should utilize school resources available in our Media Center to infuse alternate sources, perspectives, and approaches. Resources should include textual support but also span multimedia options to engage multiple modalities. In addition, to support struggling readers and increase rigor for advanced readers, the coursework may also draw on additional developmentally appropriate resources to facilitate challenging levels of work for all students.

Leveled Supplemental Materials and Media/School Library Resources

- Various leveled texts available via text, supplemental text, such as guided notes handouts, additional practice handouts, concept review handouts, sample/alternate tests
- Additional supplemental resources: Learnzillion, Khan Academy, Math TV, BetterLesson, Kuta Software, Math Worksheets Land,
- Informational Text resources from EdHelper, Scholastic Math
- Digital Resources: NJSLS/CC Stations, CSI Math Projects, and NJSLS/CCSS Mathematics Warm-ups.

Integration of the Technology Standard

- 8.1.8.A. 5
- 8.2.8.A. 2
- Microsoft Office: Word, Excel, PowerPoint
- Google Docs/Sheets/Slides- Create a google sheet of two sets of data and analyze them utilizing the formulas and tools in google sheets.
- Graphing Calculators/Online graphing tools
- www.PowerAlgebra.com- Students will utilize this website to access their textbook or addition practice.
http://parcc-assessment.org/ - Students will utilize this website to take sample PARCC exams

Unit 4: Modeling with Statistics

Targeted Instructional Planning to Address Central Unit Standards:

Central Unit Standard and Student Learning Objective	Suggested Instructional Activities	Suggested Student Output	Formative Assessments (Portfolios, Projects, Tasks, Evaluations, \& Rubrics)
S.ID.A.1. Represent data with plots on the	Illustrative Math Topics S.ID.A.1-3 Haircut Costs Given data on haircuts, calculate basic statistical data.	Journal entries written about the usage of statistics in the real world.	Formative Fluency Practice Activities

features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. F.IF.B.5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives	Match the graph to the appropriate picture of the container being filled. F.IF.B.4-5 The Canoe Trip, Variation 2 Fill in a table using information given to determine the time needed to travel a certain distance in a canoe. Interactive Notebook for graphs. The images should focus on the relationship between a function and a graph. Guided Instruction on what a graph represents and how to read a graph. Pearson Video tutorials for extra help or re-teaching Brain Pop videos and activities as an alternative to standard instruction or for extra practice and remediation. PARCC Sample Questions found on the PARCC website. Informational Text and responses to comprehension questions involving the use of graphs.	Open-ended responses to questions that require the comprehension of graphs. Student-led discussion of key points of graphs. Technology based presentation about the a selfcreated graph. The students will make their own graphs and then make a story to go along with the graph. Finally, the students will present it to the class. Collected Homework Notebook Checks	Many schools celebrate Arbor Day by planting young trees to replenish our ecosystem. Trees use carbon dioxide that humans and animals exhale to make oxygen. Trees anchor the soil and prevent erosion. They also produce fruit. Wood from trees is used for the construction of everything from pencils to houses. As you work through the activities, you will learn more about the uses of trees. You will use formulas to analyze data and predict the production of wood and fruit. Then you will

Unit 5: Introduction to Trigonometry

Overview At-a-Glance

Unit \#5 - Introduction to Trigonometry

Unit Description:

This unit focuses on learning the request material to understand trigonometry. These topics include rational equations, radicals, and basic trigonometric functions.

Essential Skills:

- Define trigonometric ratios and solve problems involving right triangles
- Use trigonometric functions to solve real life problems.
- Solve rational equations for values relative unknowns.
- Find the domain and range of rational equations
- Simply radical expressions.
- Solve radical equations.

Standards Addressed within this Unit

Central Unit Standards- This unit will focus primarily on learning goals aligned with the following standards:

- G.SRT.C. 6
- G.SRT.C. 7
- G.SRT.C. 8
- N.RN.A. 1
- N.RN.A. 2
- N.RN.B. 3
- A.APR.D. 6
- A.APR.D. 7

Supporting Unit Standards- This unit will also include activities aligned with the following standards:

Math Standards \quad NGSS Standards

- NJSLS 6.EE.A. 2
- NJSLS 6.G.A. 3
- NJSLS 7.G.A. 1
- HS.PS3.D
- NJSLS 7.G.A. 2
- HS.PS4.C
- NJSLS 8.EE.A. 2

ELA Standards

- RST.11-12.1
- RST.11-12.7
- RST.11-12.8
- RST.9-10.8
- WHST.11-12.8
- WHST.9-12.2

Modifications for Special Education Students, English

Language Learners, Students at Risk of Failure, and Gifted
Students- Modify instructional approach and/or assignments and evaluations as needed based for students with IEPs, 504s, ELLs and gifted and talented students including but not limited to:

- Alternate responses (drawings with captions, spoken responses, etc.)
- Advance/guided notes
- Extended time
- Teacher modeling (non-verbal teacher communication in addition to spoken instructions)
- Simplified written and verbal instructions
- ELL support materials (eDictionaries, native language prompts, etc.)
- Increased integration of higher order thinking processes, creative and critical thinking activities, problem-solving, and open-ended tasks
- Advanced pacing levels
- Greater opportunities for freedom of choice and independent study that encourage independent and intrinsic learning
- CSI projects to integrate higher-order thinking skills and creativity
- Create portfolios and peer lessons
- Reteaching worksheets
- Graphic organizers
- Visual Vocabulary
- Hands-on activity labs and modeling activities using tangrams
- Graph paper to produce visual representations of transformations
- Enrichment activities and worksheets

Unit Details

Integration of $21^{\text {st }}$ century skills through NJSLS 9 and Career

 Education:- Lessons, activities, and assessments require creativity and innovation on the part of the students. They are required to create projects and products as examples of mastery in each unit.
- Critical thinking and problem solving skills are a core component of learning and assessment throughout this curriculum. Students are required, in each unit, to advance their learning through all levels of Bloom's Taxonomy to address the evaluation, synthesis, and creation of products using learning at the highest levels. Problem-solving is a recurring theme in the curriculum as students must seek ways to creatively apply the concepts to solve problems rather than simply remember the material.
- Students explore areas that support environmental literacy, including society's impact on the environment and what can be done to support environmental solutions.
- Learning and assessment activities support the push to make students media literate, as they are often required to analyze, evaluate, and create messages in a wide variety of media modes, genres, and formats.
- In order to succeed in this course, students must be able to use technology as a tool in order to research, organize, evaluate, and communicate information.
- Activities in the curriculum help develop life and career skills in all students by promoting flexibility and adaptability, requiring initiative and self-direction in the learning process, supporting social and cross-cultural skills in both content and teamwork efforts, and measuring productivity and accountability through independent and group assignment completion.

Assessments- including benchmarks, formative,

 summative, and alternative assessments
Formative

- Fluency Practice Activities
- Pearson Lesson Quizzes
- Topic Readiness Assessment
- Mid-Topic Assessment
- Mid-Topic Performance Task
- (ExamView®) Lesson and Checkpoint Quizzes
- PMI Quizzes

Summative

- STEM Project
- Topic Assessment
- Topic Performance Task

Suggested Interdisciplinary Activities for this Unit

Career Education - A construction worker is cutting along a diagonal of a rectangular board 15 ft . long and 8 ft . wide. What will be the length of the cut?

Health/PE - Calculate the throwing distance of a ball from home to $2^{\text {nd }}$ base. What velocity/time is necessary to prevent a stolen base?

English Language Arts \& Literacy - Are $\sqrt{ } 3$ and $\sqrt{ } 12$ like radicals? Can their sum be simplified? Can their product? Explain the difference.
$\underline{\text { Art - Write a paper on the wavelengths of different colors? Why are they }}$ different? What other aspects are different than wavelength?

Science - You need to build a handicapped ramp. The ground distance is 10 feet and the height is 4 feet. How long should the ramp be? Does it meet ADA specifications?

History/Social Studies - Originally each face of the Great Pyramid of Giza was a triangle with base of 756 feet and height of 612 feet. How far is a corner of the base of a pyramid to its top? What are the current dimensions and how has the change affected the surface area and volume of the pyramid?

Technology - Use technology to explore the graphs of many polynomial functions, and describe the shape, end behavior and number of zeros in order to make informal observations

Music - Learn and sing the quadratic equation song (Pop Goes the Weasel).Use technology to explore the graphs of many polynomial functions, and describe the shape, end behavior and number of zeros to begin to make informal observations.

Unit Resources

Teachers should utilize school resources available in our Media Center to infuse alternate sources, perspectives, and approaches. Resources should include textual support but also span multimedia options to engage multiple modalities. In addition, to support struggling readers and increase rigor for advanced readers, the coursework may also draw on additional developmentally appropriate resources to facilitate challenging levels of work for all students.

Leveled Supplemental Materials and Media/School Library

Resources

- Various leveled texts available via text, supplemental text, such as guided notes handouts, additional practice handouts, concept review handouts, sample/alternate tests
- Additional supplemental resources: Learnzillion, Khan Academy, Math TV, BetterLesson, Kuta Software, Math Worksheets Land,
- Informational Text resources from EdHelper, Scholastic Math
- Digital Resources: NJSLS/CC Stations, CSI Math Projects, and NJSLS/CCSS Mathematics Warm-ups.

Integration of the Technology Standard

- 8.1.12.A. 4
- 8.2.12.A. 1
- Microsoft Office: Word, Excel, PowerPoint
- Google Docs/Sheets/Slides- Student will create a slideshow or presentation that talks about how far they can see to the horizon. - Graphing Calculators/Online graphing tools
- www.PowerAlgebra.com- Students will utilize this website to access their textbook or addition practice.
http://parcc-assessment.org/ - Students will utilize this website to take sample PARCC exams

Unit 5: Introduction to Trigonometry

Targeted Instructional Planning to Address Central Unit Standards:

Central Unit Standard and Student Learning Objective	Suggested Instructional Activities	Suggested Student Output	Formative Assessments (Portfolios, Projects, Rubrics)
G.SRT.C.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading	Illustrative Math Topics G.SRT.C.6 Defining Trigonometric Ratio Use similar triangles to show trigonometric ratios.	Journal entries written Gbout the usage of GrigT.C.7 Sine and Cosine of Complimentary Angles Prove why sine and cosine of complimentary angles are equal.	Formative Fluency Practice world.

