Algebra 1

Semester 2 Final Review

- 1. Given y = mx + b what does m represent? What does b represent?
- 2. What axis is generally used for x?

- 3. What axis is generally used for *y*?
- 4. Given the equation $y = \frac{5}{8}x 4$ what is the slope? What is the *y*-intercept?
- 5. Given the equation $y = -\frac{2}{3}x + 7$ what is the slope of the line parallel to this line? What is the slope of the line perpendicular to this line?
- 6. Graph the function x = -2

7. Graph the function y = 4

8. Find the slope of the line that passes through the points (6,2) and (-3,7).

What is the x-intercept of the given function?

9.
$$4x - y = 8$$

10.
$$3x - 2y = 24$$

11.
$$5x + 2y = 10$$

12.
$$-2x+4y=8$$

13.
$$4x - y = 8$$

15.
$$5x + 2y = 10$$

17.
$$4x - y = 8$$

19.
$$4x - y = 8$$

- 21. Which point is on the line $y = \frac{2}{3}x + 1$?
 - a) (-3, 1)
- b) (2, 1)
- c)
- (3, 3) d) (-2, 3)
- 23. Which point is on the line 3x y = 9?
 - (6, 2)a)
- b) (4, -2)
- c) (3, 0)
- d) (-3, 0)
- 25. Which point is on the line shown on the graph?
 - a) (1,0)
 - b) (3, 4)
 - c) (4, 3)
 - d) (0, -2)

14. 3x - 2y = 24

16.
$$-2x+4y=8$$

- 18. 3x 2y = 24
- 20. 3x 2y = 24
- 22. Which point is on the line $y = \frac{1}{4}x 2$?
 - (0, 2)a)
- (4, -1)
- (4, -2)c)
- d) (2, 0)
- 24. Which point is on the line 5x + y = 10?
 - (2, 0)a)
- b) (2, -5)
- c) (5, -10)
- d) (0, -5)
- 26. Which point is on the line shown on the graph?
 - a) (2, 0)
 - (3, 1)b)
 - (3, -3)c)
 - d) (-3, 1)

- 27. Is (4, 3) a solution to the equation y = -3x + 10?
- 28. Is (4, 3) a solution to the equation y = 3x 9?

For problems 29 and 30 use the graph to the right.

Convert the following equations to standard form with integer coefficients.

31.
$$y = \frac{1}{2}x - 4$$

32.
$$y = -\frac{2}{3}x + 1$$

Given the following slope, what is the slope of a parallel line?

33. Given slope =
$$-\frac{3}{4}$$

Given the following slope, what is the slope of a perpendicular line?

35. Given slope =
$$-\frac{3}{4}$$

Write an equation of a line in *point-slope form* that goes through the given point and has the given slope.

38. (6, 1);
$$m = \frac{1}{2}$$

40. (2, -2); m =
$$-\frac{3}{4}$$

Write an equation of a line in *slope-intercept form* that has the given y-intercept and the given slope.

41. y-intercept is -2 and the slope is
$$\frac{5}{8}$$

Write an equation of a line in slope-intercept form that goes through the given point and has the given slope.

44.
$$(0, -5); \frac{4}{3}$$

Write an equation of a line in *slope-intercept form* that goes through the given point and has the given slope.

45.
$$(-3,4)$$
 and has a slope of 0

46.
$$(-3,4)$$
 and has an undefined slope

Write the equation of the line in *slope intercept form* that goes through the given points.

47.
$$(-3,4)$$
 and $(1,12)$

48.
$$(2,4)$$
 and $(-2,0)$

Write in equation of the line in *slope-intercept form* that goes through the given points and has the given slope.

49.
$$(-3,4)$$
 and has a slope of -2

50.
$$(-3,4)$$
 and $m=3$

51. Write the equation of the line that goes through (0,0) and m=3.

52. Plot the following points on the given plane.

$$(0,-4)$$

$$(-1,5)$$

$$(0,-4) \qquad \qquad (-1,5) \qquad \qquad (-5,-1)$$

Graph each of the following equations.

53.
$$y = -x$$

54.
$$y = 3x$$

56.
$$y = \frac{3}{2}x$$

57.
$$y = \frac{2}{3}x + 4$$

58.
$$3y = 9x - 6$$

59.
$$y = -x + 3$$

60.
$$y = x$$

61.
$$y = x + 3$$

62.
$$y = x + 4$$

63.
$$y = -\frac{2}{3}x + 3$$

64.
$$y = -\frac{1}{3}x + 4$$

64.
$$y = -3x$$

66.
$$y = \frac{4}{3}x - 2$$

67.
$$y = \frac{3}{2}x - 4$$

68. x = 2

69. x = 5

y = 270.

Use the following graphs to answer questions 71-73.

- 71. Which of the graphs above suggests one solution to the system of linear equations?
- 72. Which of the graphs above suggests no solutions to the system of linear equations?
- 73. Which of the graphs above suggests an infinite number of solutions to the system of linear equations?
- 74. When algebraically solving the system of linear equations represented in Graph A, one might get

a.
$$x = 1, y = 2$$

b.
$$2 = 2$$

c.
$$2 = 3$$

these

75. When algebraically solving the system of linear equations represented in Graph B, one might get

a.
$$x = 1, y = 2$$

b.
$$2 = 2$$

$$2 = 3$$

- none of these
- 76. When algebraically solving the system of linear equations represented in Graph C, one might get

d.

a.
$$x = 1, y = 2$$

b.
$$2 = 2$$

c.
$$2 = 3$$

77. Graph the following equations y = 3x + 4 and y = -3x - 2 on the same plane.

Use the quadratic formula to solve each of the following equations.

78.
$$x^2 + 3x - 2 = 0$$

79.
$$3x^2 + 6x - 6 = 0$$

80.
$$2x^2 - 1 = 3x$$

81.
$$4x^2 + 13x - 12 = 0$$

Solve.

82.
$$-5 - a > 25$$

83.
$$-7 + a < 21$$

84.
$$-7a > 35$$

85.
$$-3x < 15$$

87.
$$30 \le 2x$$

88.
$$\frac{a}{10} \le -7$$

89.
$$\frac{a}{5} \ge -9$$

90.
$$-\frac{a}{5} \ge 3$$

91.
$$-\frac{a}{3} \le 4$$

92.
$$-\frac{1}{7}a \le 3$$

93.
$$-\frac{1}{3}a \ge 2$$

94.
$$4x + 5 \ge 5$$

95.
$$5x \ge 10$$

96.
$$x - 4 \ge 8$$

97.
$$x - 7 \ge 3$$

98.
$$a + 4 \le 12$$

99.
$$a + 7 \le 21$$

100.
$$5a > 20$$

101.
$$4a > 40$$

102.
$$-2x-5 > 4x-8$$

103.
$$4x-3 > 2x+3$$

104.
$$x+5 \le 3(x-3)$$

$$-2x+5 > -(3x+2)$$

Simplify the following radicals.

106.
$$\sqrt{36}$$

107.
$$-\sqrt{81}$$

108.
$$\sqrt{2-1}$$

109.
$$\sqrt{-5+5}$$

110.
$$\sqrt{48}$$

111.
$$\sqrt{75}$$

112.
$$\sqrt{45}$$

113.
$$\sqrt{\frac{36}{81}}$$

114.
$$\sqrt{\frac{2}{9}}$$

115.
$$\sqrt{\frac{25}{100}}$$

- 116. When graphing $y = x^2 5$, what is the x-coordinate of the vertex?
- 117. When graphing $y = x^2 + 4$, what is the x-coordinate of the vertex?

Graph the following equations.

$$y = x^2$$

$$y = x^2 - 4$$

$$y = (x-4)^2$$

119.
$$y = x^2 + 4$$

121.
$$y = (x+4)^2$$

123.
$$y = (x-4)^2 + 4$$

124.
$$y = (x+4)^2 + 4$$

126.
$$y = 4x^2$$

128. Find the vertex for:
$$y = (x-7)^2 + 5$$

130. Find the vertex for:
$$y = -2(x+5)^2 + 7$$

125.
$$y = -x$$

$$y = \frac{1}{4}x^2$$

129. Find the vertex for:
$$y = (x+1)^2 - 5$$

131. Find the vertex for:
$$y = \frac{2}{3}(x+3)^2 - 18$$

Express radicals in simplest form.

$$3\sqrt{24}$$

$$9\sqrt{128}$$

134.
$$\sqrt{3} \cdot \sqrt{3}$$

$$\sqrt{107} \cdot \sqrt{107}$$

$$\sqrt{6}$$
• $\sqrt{12}$

$$\sqrt{2}$$
• $\sqrt{26}$

$$6\sqrt{50}$$

$$\frac{1}{3}\sqrt{162}$$

- When graphing $y = ax^2 + bx + c$, how do you calculate the x-coordinate of the vertex? 140.
- After finding the x-coordinate of the vertex, how do you find the y-coordinate? 141.

Find the x-coordinate of the vertex of the given equations.

$$y = x^2 + 4x + 7$$

143.
$$y = x^2 - 4x + 7$$

$$y = -x^2 - 16x + 1$$

$$y = -x^2 + 16x + 1$$

146.
$$y = 3x^2 + 12x - 11$$

$$y = -2x^2 - 14x - 9$$

$$y = -2x^2 + 7x - 5$$

149.
$$y = 15x^2 - 12x + 17$$

$$y = x^2 - 4$$

$$y = -7x^2$$