Algebra 1 Unit 3 Common Assessment

Exponential Functions
Answers and Directions Sheet

Teacher Directions:

- Print two test booklets:
a. Part I is made up of questions 1-11. A DataDirector answer sheet will be used for this part. See the next two pages for directions on Data Director. Print a class set of assessments for \#1-11 and do not allow students to write in this booklet. Make scrap paper available to students to work out any problems.
b. Part II is made up of questions $12-15$. Data Director will not be used for this part. Print assessments so that each student has their own and have them record their answers and work in this booklet.
- Students may use a calculator on both parts of the assessment.
- Encourage students to carefully and thoroughly read the directions. Failure to do so may result in a loss of points on several problems, particularly items 13 c , d and 14.
- The test has a total of 25 possible points.

Directions to Students:

- Do not write on Part I of the assessment. Record your answers on the provided answer sheet. Scrap paper is available for you to use. You may write on Part II of the assessment only.
- A calculator is available for both parts of this assessment.
-
- You will have the entire hour to complete the test.
- Please use your best test taking strategies.

Printing Answer Documents

www.achievedata.com/macomb

\qquad
\qquad On the left-hand column under "Interactive Tools" click "Data Director"

Enter your User Name (first initial of first name followed by your last name) and Password if you forgot you password, select the link below the "Login" key

Select the paper and pencil icon titled "Assessments". You will find it in the lower left hand corner of the screen.

Enter " 83342 " in the "Search by Assessment ID" Box. Make sure the year selected is 2012-2013.

Select the "Shared Assessments" folder

Select the file "2012-2013, HLW, Algebra 1, Unit 3 Exponential Functions"

Scroll down to the bottom of the screen. Select the PDF file in the Downloadable Assessment Materials box titled "with student names"

In the first box titled "Print answer sheets for individual or multiple classes" select "Continue to next step".

Choose your name, the correct semester, and the periods you are printing answer sheets for. To select multiple periods, hold down the CTRL key. Do not select a grade as it is possible you have students from multiple grades inside your class. To deselect a grade, hold down the CTRL key and select the grade. Click "Generate Report".

Follow directions on page for printing.

Printing Reports

www.achievedata.com/macomb

\qquad Follow directions by your scanner to scan your bubble sheets.

Click on the Intranet
On the left-hand column under "Interactive Tools" click "Data Director"

Enter your User Name (first initial of first name followed by your last name) and Password (if you forgot you password, select the link below the "Login" key

Select the paper and pencil icon titled "Assessments". You will find it in the lower left hand corner of the screen.

Enter " 83342 " in the "Search by Assessment ID Box." Make sure the year selected is 2012-2013.

Select the "Shared Assessments" folder

Select the file "2012-2013, HLW, Algebra 1, Unit 3 Exponential Functions"

Select "Classroom Assessment Report." You will find it on the far right side of the screen under "Reports related to this assessment."

Click the PDF Icon to open the file

Print

Grading the Assessment

Abbreviations: see page 27 of the hyperlinked document for a detailed explanation of the following codes
SR - Selected Response
ER - Extended Response
CR-Constructed Response

Part II				
Item No.	Item Type	Points	Answer	Standard
12	CR	2	$2 \cdot 3^{x}$; Students may write this using either an equation or function notation. 1 Point for $\mathrm{a}=2$ 1 Point for $\mathrm{b}=3$	
13	CR	8	a) $13,000 \cdot(0.85)^{x}$; Students may write this using either an equation or function notation. 1 Point for $a=13,000$ 1 Point for $b=0.85$ b) $\$ 2559.37$; Students may round down to $\$ 2559$ for full credit 1 point for correct answer. If a student wrote an incorrect equation	a) F.BF. 1 a) A.CED. 2 a) F.LE. 2 b) F.IF. 2 c) A.CED. 2 c) F.IF. 7

Algebra 1 Unit 3 Common Assessment
 Exponential Functions

PART I

Use the following information for questions 1-3.

Growth of bacteria in milk causes a need to "time-date" the containers so that shoppers will buy the milk and consume it before number of bacteria grows too large, making the milk unsafe to drink. The model $B(x)=500 \cdot(2.8)^{x}$ represents the growth of the bacteria in milk, where $B(x)$ is the total number of bacteria present in the milk, and x represents the number of days after the milk has been packaged. Assume for the problem that this model is accurate, and that no other factors affect the milk.

1) What is the bacteria count in the milk 4 days after it has been packaged?
a) Approximately 11,000
b) Approximately 31,000
c) Approximately 86,000
d) Approximately 241,000
2) Suppose that milk is safe to drink as long as the bacteria count is less than $5,000,000$. What is the first day after packaging that the milk becomes unsafe to drink?
a) The $5^{\text {th }}$ day
b) The $7^{\text {th }}$ day
c) The $9^{\text {th }}$ day
d) The $10^{\text {th }}$ day
3) Which one of the statements below is true?
a) Using the function $B(x)=500 \cdot(2.8)^{x}, 500$ represents the rate of growth of the bacteria
b) The number of new bacteria added each day remains the same
c) The graph of the amount of bacteria has a horizontal asymptote

Completely simplify the expression for questions 4-11.

4) $(-5.1)^{0}$
a) -5.1
b) -1
c) 0
d) 1
5) $\frac{3}{g^{-2} h^{3}}$
a) $\frac{3}{g^{2} h^{3}}$
b) $\frac{3 g^{2}}{h^{3}}$
c) $\frac{6 g}{h^{3}}$
d) $\frac{3}{g h^{3}}$
6) $4^{-6} \cdot 4^{7}$
a) 1
b) 4
c) 13
d) 4^{13}
7) $4 c^{-1} \cdot 3 c^{10}$
a) $12 c^{-10}$
b) $12 c^{9}$
c) $7 c^{-10}$
d) $7 c^{9}$
8) $\left(m^{7}\right)^{2}$
a) m^{9}
b) m^{14}
c) m^{49}
d) $2 m^{14}$
9) $\left(y^{-5}\right)^{-10} \cdot y^{10}$
a) y^{-60}
b) y^{-40}
c) y^{60}
d) y^{500}
10) $\frac{n^{6}}{n^{2}}$
a) $\frac{1}{n^{4}}$
b) n^{4}
c) n^{8}
d) n^{12}
11) $\frac{c^{8} d^{-12}}{c^{-4} d^{-8}}$
a) $c^{12} d^{4}$
b) $c^{-4} d^{-4}$
c) $\frac{c^{12}}{d^{4}}$
d) $\frac{d^{-4}}{c^{-12}}$

PART II

12) E. Coli bacteria is growing on your kitchen counter. The amount of bacteria after $1,2,3$, and 4 hours is given in the table below. Using the table, write a rule that represents the growth of the bacteria.

Time (hours)	E. Coli Bacteria
1	6
2	18
3	54
4	162

13) A high school senior buys a car for $\$ 13,000$. The value of the car decreases by 15% per year.
a) Write an equation that models this context
b) How much is the car worth after 10 years?
c) Graph your equation from part a). Scale and label the graph.

d) What is a real world domain and range for this problem? Explain your answer.
14) Determine the range of the function $y=2(5)^{x}$ for a domain of $\{-2,0,2\}$
15) An employer offers you a position and gives you two options for your pay:

Option 1: You would be paid $\$ 3100$ per month and get a signing bonus of $\$ 2500$
Option 2: You would get paid $\$ 5$ for the first month and then your pay would double each month after that.

Which option would you chose? Explain how you would make your decision. Under what conditions would you pick option 1? Under what conditions would you pick option 2? Use specific mathematical evidence (like equation, table, and/or graph) to support your claims. A table and graph has been provided for you to use.

